1
|
Ertürk Gürkan S, Gürkan M, Sarıtunç V, İbiş EC, Güneş B. Evaluation of Possible Toxic Effects of Boric Acid in Palourde Clam (Ruditapes decussatus) Through Histological Changes and Oxidative Responses. Biol Trace Elem Res 2025; 203:1151-1161. [PMID: 38743317 PMCID: PMC11750883 DOI: 10.1007/s12011-024-04230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The extensive utilization of boric acid, particularly in industrial and agricultural sectors, also engenders concerns regarding the toxicity of boron and its derivatives. Particularly, the behavior of boric acid at increasing concentrations in aquatic ecosystems remains poorly understood. In light of these concerns, this study aimed to investigate the toxicity of boric acid in bivalves, which occupy a critical position in the food chain. Specimens of Ruditapes decussatus, which had not been previously exposed to any pollutants and were cultivated under controlled conditions, were subjected to three different concentrations of boric acid (0.05 mg/L, 0.5 mg/L, and 5 mg/L) in vitro for 96 h. Following the exposure period, the specimens were assessed for histological changes (the mantle, gill, and digestive gland) and specific oxidative parameters (the gill and digestive gland), including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase, and lipid peroxidation (LPO). The research findings indicated that boric acid primarily induced oxidative damage at the applied concentrations and increased antioxidant levels (p < 0.05). Moreover, although no significant histopathological abnormalities were observed in the examined histological sections, subtle changes were noted. This study evaluated the potential adverse effects of boric acid on bivalves, which are crucial components of the aquatic food chain, utilizing histological and specific physiological parameters following its introduction into aquatic environments. It is anticipated that the findings of this study will contribute to the development of new insights and perspectives regarding the extensive use of boric acid.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Mert Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Volkan Sarıtunç
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ezgi Can İbiş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Berkay Güneş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
2
|
Agnaou M, El Mourabit Y, Nadir M, Elmchichi K, Gouzouli J, Banaoui A, Oualid JA, Latifa L, Ait Alla A, Moukrim A. Sustainable environmental management impact on tourist areas Anza and Cap Ghir in Agadir (Center of Morocco) between 2010 and 2022: Integrated Biomarker response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125215. [PMID: 39481520 DOI: 10.1016/j.envpol.2024.125215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
This research investigates the effects of environmental interventions on pollution levels along the Anza coast of Morocco from 2010 to 2022 through the analysis of biomarkers in Perna perna. Historically, the Anza area has been highly polluted compared to the nearby Cap Ghir coast. Following the relocation of a cement factory and the establishment of wastewater treatment facilities, notable environmental improvements were noted in Anza. Pollution biomarkers such as acetylcholinesterase (AChE), catalase, glutathione S-transferases (GSTs), and malondialdehyde (MDA) were analyzed to assess these changes. The findings indicated an increase in catalase and AChE levels at Anza, suggesting reduced contamination, while GST activity declined, indicating lower exposure to pollutants. In contrast, Cap Ghir showed an increase in oxidative stress biomarkers, suggesting worsening environmental conditions. The Integrated Biomarker Response (IBR) index demonstrated a significant reduction in pollution levels in Anza, with a corresponding increase at Cap Ghir. Principal Component Analysis (PCA) supported these outcomes, revealing a positive correlation between catalase activity and reduced oxidative stress at Anza, whereas Cap Ghir showed elevated oxidative stress markers linked to variations in temperature and salinity. These results underscore the effectiveness of the interventions in enhancing marine health at Anza and highlight the necessity for protective actions at Cap Ghir. This study emphasizes the importance of biomonitoring in shaping environmental policies for coastal areas of Agadir city.
Collapse
Affiliation(s)
- Mustapha Agnaou
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco; Faculty of Applied Sciences, Ait Melloul, Morocco.
| | - Youssef El Mourabit
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco; Research Laboratory in Sciences and Techniques, ESEFA, Ibnou Zohr University, Agadir, 80000, Morocco
| | - Meryam Nadir
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco; Faculty of Applied Sciences, Ait Melloul, Morocco
| | - Karima Elmchichi
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco
| | - Jamila Gouzouli
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco
| | - Ali Banaoui
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco
| | - Lefrere Latifa
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco; Faculty of Applied Sciences, Ait Melloul, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems", Ibn Zohr University, Agadir, Morocco
| | | |
Collapse
|
3
|
Borase HP, Singhal RS, Patil SV. Copper oxide nanoparticles exhibit variable response against enzymatic toxicity biomarkers of Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54325-54337. [PMID: 37821732 DOI: 10.1007/s11356-023-30145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Growing toxicity of nanomaterials to aquatic organisms is a major area of concern as it is destroying the carefully evolved aquatic ecosystem and food web. Copper oxide nanoparticles (CuONPs) are among the top industrially manufactured nanomaterials having multifaceted applications in medicine, agriculture, energy, water technology, and other areas. However, reports on detailed scientific understanding behind toxic effects of CuONPs on aquatic organisms are scant. The present work reports on the interaction of CuONPs of 10 ± 05 nm with an ecologically significant aquatic species, Moina macrocopa, at morphological and enzymatic levels. CuONPs were found to be severely toxic just within 48 h of exposure as seen from the lethal value (48 h LC50) of 0.137 ± 0.002 ppm. Profiling of enzymatic toxicity biomarkers indicated variable response of CuONPs on selected enzymes of M. macrocopa at two sub-lethal concentrations (0.013 to 0.039 ppm). While the activities of acetyl cholinesterase and digestive enzymes (trypsin, amylase) were found to be significantly (p < 0.001) lowered after exposure to CuONPs, the β-galactosidase activity was completely inhibited. Among the antioxidant enzymes that were assayed, superoxide dismutase and glutathione-S-transferase activity was found to increase (p > 0.001), while that of catalase decreased (p > 0.001, < 0.05) with increase in exposure to CuONPs. An upsurge of several folds was seen in the activity of alkaline phosphatase after exposure to CuONPs as compared to the control group. CuONPs accumulated in the gut region of M. macrocopa which provided an ideal environment for CuONP to interact and alter the enzymes in M. macrocopa. This report highlights the use of enzymes as sensitive biomarker to detect toxicity of trace amount of CuONPs in a very sensitive non-target crustacean species found in water bodies.
Collapse
Affiliation(s)
- Hemant Pandit Borase
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| | - Satish Vitthal Patil
- School of Life Sciences, Kavayitri Bahinabai Chaudhari, North Maharashtra University, Jalgaon, 425001, Maharashtra, India.
| |
Collapse
|
4
|
Ventura E, Gonçalves JM, Vilke JM, d'Errico G, Benedetti M, Regoli F, Bebianno MJ. Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus? MARINE POLLUTION BULLETIN 2024; 206:116697. [PMID: 39018822 DOI: 10.1016/j.marpolbul.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted.
Collapse
Affiliation(s)
- Emma Ventura
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal; Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joanna M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Juliano M Vilke
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
5
|
Cima F, Varello R. Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Front Physiol 2023; 14:1230943. [PMID: 37654677 PMCID: PMC10466049 DOI: 10.3389/fphys.2023.1230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Edible bivalves constitute an important bioresource from an economic point of view, and studies on their immune responses to environmental pollutants are crucial for both the preservation of biodiversity and economic reasons. The worldwide diffusion of copper(I)-based antifouling paints has increased copper leaching into coastal environments and its potential impact on both target and nontarget organisms. In this study, immunotoxicity assays were carried out with short-term (60 min) cultures of hemocytes from the bivalves Mytilus galloprovincialis-a mussel dominant in the macrofouling community-and Ruditapes philippinarum-a clam dominant in the soft-sediment community-exposed to CuCl to compare the toxic effects on their immune responses. The LC50 values were similar, 40 μM (3.94 mg L-1) for the mussel and 44 μM (4.33 mg L-1) for the clam. In both species, apoptosis occurred after exposure to 1 µM (98.9 μg L-1) CuCl, the concentration able to significantly increase the intracellular Ca2+ content. Biomarkers of cell morphology and motility revealed microfilament disruption, a significant decrease in yeast phagocytosis and lysosome hydrolase (β-glucuronidase) inhibition beginning from 0.5 µM (49.5 μg L-1) CuCl in both the mussel and clam. The same concentration of CuCl affected biomarkers of oxidative stress, as a significant decrease in reduced glutathione content in the cytoplasm and inhibition of mitochondrial cytochrome-c oxidase (COX) were detected in both species. Comparison of the biomarkers showed that clam is more sensitive than the mussel regarding alterations to the lysosomal membrane and reactive oxygen species (ROS) production, which supports the potential harmful effects of antifouling biocides on the survival of nontarget pivotal species in the coastal community.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Biology of Ascidians, Department of Biology (DiBio), University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
Assessment of effects of metal contamination and abiotic factors on fatty acid composition and biochemical biomarkers activity in the liver of Chelon ramada collected from two ecosystems on the Mahdia coast, Tunisia. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023; 28:molecules28062460. [PMID: 36985432 PMCID: PMC10059899 DOI: 10.3390/molecules28062460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.
Collapse
|
8
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
9
|
Added A, Khalloufi N, Khazri A, Harrath AH, Mansour L, Nahdi S, Boufahja F, Aldahmash W, Alrefaei AF, Dellali M. Effects of an Endocrine Disruptor Triclosan on Ruditapes decussatus: Multimarker and Histological Approaches. Animals (Basel) 2023; 13:ani13030402. [PMID: 36766291 PMCID: PMC9913085 DOI: 10.3390/ani13030402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The aim of this work was to study the ecotoxicological effects of an endocrine disruptor triclosan on the clam Ruditapes decussatus. The bivalves were exposed to three concentrations of this biocide (C1 = 100 ng/L, C2 = 200 ng/L and C3 = 500 ng/L) for three and seven days. The impact was assessed at the gills and digestive glands, through activities of an antioxidant defense biomarker (Gluthatione S-Transferase, GST), a damage biomarker (Malondialdehyde, MDA), and a neurotoxicity biomarker (Acetylcholinesterase, AChE). Furthermore, histological traits were approached in different organs to evaluate any possible alteration induced by triclosan. It appears from this study that both gills and digestive glands responded discernibly to triclosan and effects were concentration-dependent. The stressed clams showed a significant increase in their GST and MDA activities in gills and digestive glands compared to controls for both time slots considered. In turn, the AChE activity was clearly inhibited in both organs in a time dependent way. The histological study made it possible to observe several structural pathologies caused by triclosan in the gills and the digestive gland. These alterations consisted mainly of inflammatory reactions, malformations of the lamellae and fusion of the gill filaments, degeneration of the connective tissue, and the erosion of the gill cilia with the appearance of certain severe alterations (cell necrosis and apoptosis), which can thus cause a malfunction of the gills and eventually lead to a reduction in oxygen consumption and a disruption of the osmoregulation for bivalves. Alterations in the digestive gland have also been detected, mainly by epithelial alterations, thinning of the tubules, and alteration of the basal cell membrane which can impair the ability of clams to absorb food. At germinal cells, several damages were observed in the oocytes which probably disturbed the reproductive function and the fertility of the clams. The damages observed in female gonads were caused by the cytolysis of a large number of oocytes through autophagy and necrosis at 200 ng triclosan/L. Moreover, at 500 ng triclosan/L, hemocytic infiltration was observed in acini and apoptotic bodies reflected in the fragmentation of more than 90% of oocytes.
Collapse
Affiliation(s)
- Amira Added
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Noureddine Khalloufi
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Abdelhafidh Khazri
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saber Nahdi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Dellali
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| |
Collapse
|
10
|
Mansour C, Esteban MÁ, Hacene OR, Mosbahi DS, Guardiola FA. Comparative study of immunological biomarkers in the carpet shell clams (Ruditapes decussatus) from metal-contaminated sites in the South Lagoon of Tunis (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12059-12074. [PMID: 36103068 PMCID: PMC9898382 DOI: 10.1007/s11356-022-22902-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The South Lagoon of Tunis (Tunisia) is a Mediterranean lagoon adversely affected by industrial contaminants, harbour activity and untreated urban sewage. In this lagoon, the clam Ruditapes decussatus has been widely used as a biomonitor of seawater pollution through measurements of parameters related to oxidative stress and neurotoxicity. However, few studies have considered parameters of the immune system of this species in the South Lagoon of Tunis. Therefore, the aim of the present work was to evaluate several immune-related parameters in the cell-free haemolymph of carpet shell clams sampled during August and February from three polluted sites in the South Lagoon of Tunis (S1, S2 and S3) and one less polluted site as a reference site (RS) in order to identify suitable biomarkers for environmental quality assessments of this ecosystem. Concerning the immune-related parameters, seasonal factors modulated phenoloxidase, lysozyme, protease and esterase activity, with lower values measured for samples collected in August than for samples collected in February. In fact, bactericidal activity against two of the pathogenic bacteria tested and the activity of most immune-related enzymes were reduced in the cell-free haemolymph of clams collected from the most sampling sites in August compared to February one. In addition, values of abiotic parameters (temperature, salinity and pH) and metal (cadmium, copper, iron, lead and zinc) concentrations in the clams' soft tissues, previously obtained and published by the authors, as well as the values of immune-related parameters were integrated using principal component analyses. Results indicated that the values of all measured immune-related parameters were negatively correlated with the temperature values and the variations most of these parameters highlighted that the chemical industrial area (S3) was the most impacted location within the South Lagoon of Tunis. The present study illustrates that the immune-related parameters measured in carpet shell clam cell-free haemolymph represent suitable biomarkers for environmental quality assessments because they provide effective seasonal and spatial discrimination.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Qu Y, Zhang T, Zhang R, Wang X, Zhang Q, Wang Q, Dong Z, Zhao J. Integrative assessment of biomarker responses in Mytilus galloprovincialis exposed to seawater acidification and copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158146. [PMID: 35987231 DOI: 10.1016/j.scitotenv.2022.158146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The interactive effects of ocean acidification (OA) and copper (Cu) ions on the mussel Mytilus galloprovincialis are not well understood. The underlying mechanisms also remain obscure. In this study, individuals of M. galloprovincialis were exposed for 28 days to 25 μg/L and 50 μg/L Cu ions at two pH levels (ambient level - pH 8.1; acidified level - pH 7.6). The mussels were then monitored for 56 days to determine their recovery ability. Physiological parameters (clearance rate and respiration rate), oxidative stress and neurotoxicity biomarkers (activities of superoxide dismutase, lipid peroxidation, catalase, and acetylcholinesterase), as well as the recovery ability of these parameters, were investigated in two typical tissues (i.e., gills and digestive glands). Results showed that (1) OA affected the bioconcentration of Cu in the gills and digestive glands of the mussels; (2) both OA and Cu can lead to physiological disturbance, oxidative stress, cellular damage, energy metabolism disturbance, and neurotoxicity on M. galloprovincialis; (3) gill is more sensitive to OA and Cu than digestive gland; (4) Most of the biochemical and physiological alternations caused by Cu and OA exposures in M. galloprovincialis can be repaired by the recovery experiments; (5) integrated biomarker response (IBR) analysis demonstrated that both OA and Cu ions exposure caused survival stresses to the mussels, with the highest effect shown in the co-exposure treatment. This study highlights the necessity to include OA along with pollutants in future studies to better elucidate the risks of ecological perturbations. The work also sheds light on the recovery of marine animals after short-term environmental stresses when the natural environment has recovered.
Collapse
Affiliation(s)
- Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongliang Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
12
|
Abou El-Ela AS, Ntiri ES, Munawar A, Shi XX, Zhang C, Pilianto J, Zhang Y, Chen M, Zhou W, Zhu ZR. Silver and copper-oxide nanoparticles prepared with GA 3 induced defense in rice plants and caused mortalities to the brown planthopper, Nilaparvata lugens (Stål). NANOIMPACT 2022; 28:100428. [PMID: 36126900 DOI: 10.1016/j.impact.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nanoparticles have been employed as nanopesticides for pest control in agriculture. However, the harmful effects of their chemical synthesis on human and environmental health have resulted in increased use of green synthetic approaches, including the use of plant extracts. The brown planthopper, Nilaparvata lugens (Stål) (BPH), is a severe pest of rice plants (Oryza sativa L.), especially in Asia. It is usually controlled chemically but has developed resistance against many insecticides. RESULTS In this study, we synthesized metallic silver (Ag-NPs) and copper-oxide (CuO-NPs) nanoparticles using the exogenous phytohormone, gibberellic acid (GA3), as a reducing agent. We then sprayed them separately on rice plants and BPH together and evaluated their effects on the plants and insects. SEM and TEM images showed that the synthesis was successful, indicated by the sizes (25-60 nm), uniform shape and spherical and cubical structures of Ag-NPs, as well as by the rugby sheet-like of CuO-NPs with lateral sizes of 150-340 nm and thickness of 30-70 nm. Independent applications of the nanoparticles and GA3 on rice plants induced different volatile profiles, of which the highest number emitted was under Ag-NPs, including the highest emission of linalool. Transcriptome analysis showed that Ag-NPs-treated rice plants showed different transcriptome profiles compared to the control, 24 h after treatment, including the upregulation of the linalool synthase gene, genes of plants transcription factors such as WRKY, bHLH and NAC and other genes involved in plant defense responses. In all treatments, the mortality rate of BPH increased with an increase in NPs concentrations over time but was prominent under Ag-NPs treatment. The LC50 values for Ag-NPs and CuO-NPs decreased with an increase in time. Also, the nanoparticles increased the activities of protective enzymes (POD, SOD and CAT), inhibited that of detoxification enzymes (A-CHE, ACP and AKP), and reduced total protein concentrations in the BPH. CONCLUSIONS These results show that synthesizing nanoparticles using phytohormones may be a safer and environmentally friendly option, which also holds promise for controlling the BPH in rice production.
Collapse
Affiliation(s)
- Amr S Abou El-Ela
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eric Siaw Ntiri
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Joko Pilianto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Research Institute, Zhejiang University, Sanya 572000, China.
| |
Collapse
|
13
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
14
|
The protective role of vitamins (E + C) on Nile tilapia (Oreochromis niloticus) exposed to ZnO NPs and Zn ions: Bioaccumulation and proximate chemical composition. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The accumulation potency of zinc nanoparticles in Nile tilapia (Oreochromis niloticus) were previously studied but their impacts on proximate chemical composition in muscle tissue by describing the dose-dependent accumulation and the protective role of vitamins (E + C), have not been investigated. Therefore, this study was carried out to assess the protective role of vitamins (E + C) on Zn accumulation in muscle and gill tissues of O. niloticus exposed to three sublethal concentrations (1/8 LC50, 1/4 LC50, and 1/2 LC50) of zinc oxide nanoparticles (ZnO NPs) compared to zinc oxide bulk particles (ZnO BPs) as well as their effects on the induced chemical composition alterations for different experimental periods (7, 14, 21, and 28 day). The data displayed that fish exposed to the different sublethal concentrations of ZnO NPs or ZnO BPs have a significant increase (p<0.05) in Zn ions accumulation in muscle and gill tissues compared to control group but Zn was accumulated in gill tissue higher than muscle tissue at all exposure periods. Also, Zn accumulation was higher in fish tissues exposed to ZnO NPs than ZnO BPs. On the other hand, groups supplemented with vitamins (E + C) showed a significant decreasing (p<0.05) in accumulated Zn levels compared to groups without supplementation. The values of these supplemented groups returned to similar levels established in the control at low concentrations but still higher than control at the high concentrations. Furthermore, the results showed that moisture and ash content slightly increased while protein and fat decreased in fish exposed to ZnO NPs or ZnO BPs compared to control group. In conclusion, the findings supported that a combination of vitamins (E + C) reduced Zn accumulation and ameliorated chemical composition alterations in O.niloticus fish.
Collapse
|
15
|
El Ayeb N, Béjaoui M, Muhr H, Touaylia S, Mahmoudi E. Behaviour and biochemical responses of the marine clam Ruditapes decussatus exposed to phosphogypsum. ENVIRONMENTAL TECHNOLOGY 2021; 42:3651-3662. [PMID: 32149584 DOI: 10.1080/09593330.2020.1740332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The phosphate fertilizer and phosphoric acid industries increase phosphogypsum levels in the aquatic environment leading to various disturbing effects. In the present work, we investigated the bio-uptake of heavy metals following the exposure of Ruditapes decussatus to three concentrations of phosphogypsum, 10, 20 and 40 g kg-1, under laboratory conditions. The amounts of Zn, Cd and Pb in several organs of the clam Ruditapes decussatus was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). Phosphogypsum acts on the behaviour of R. decussatus by increasing filtration rates. The most treatments showed significantly higher metal concentration in all tissues than the controls. Excavation behaviour was altered in treated bivalves compared to controls. The filtration rate (FR) of clams was significantly affected by exposure to phosphogypsum. Indeed, FR increased in clams exposed to phosphogypsum. Phosphogypsum has decreased SOD, CAT and MDA activities in the gills, digestive gland, gonad and muscles according to the concentration indicating a defense against oxidative stress. AChE was significantly inhibited in clams from all the sampling sites compared to controls. The considered parameters could be useful biomarkers for the evaluation of phosphogypsum toxicity in threatened biota. This study was conducted as part of a further investigation into the use of a comprehensive approach combining chemical and biological parameters to assess the health status of the Gabes gulf population. It provides the first database referring to phosphogypsum contamination and its biological effect in this ecosystem. The present study fills in a needed gap in the literature.
Collapse
Affiliation(s)
- Nesrine El Ayeb
- Faculty of Sciences of Bizerte, LR01ES14 Environmental Biomonitoring Laboratory, University of Carthage, Jarzouna, Tunisia
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
| | - Mustapha Béjaoui
- Faculty of Sciences of Bizerte, LR01ES14 Environmental Biomonitoring Laboratory, University of Carthage, Jarzouna, Tunisia
| | - Hervé Muhr
- Laboratoire Réactions et Génie des Procédés LRGP, Université de Lorraine, Nancy, France
| | - Samir Touaylia
- Faculty of Sciences of Bizerte, LR01ES14 Environmental Biomonitoring Laboratory, University of Carthage, Jarzouna, Tunisia
| | - Ezzeddine Mahmoudi
- Faculty of Sciences of Bizerte, LR01ES14 Environmental Biomonitoring Laboratory, University of Carthage, Jarzouna, Tunisia
| |
Collapse
|
16
|
Adegbola IP, Aborisade BA, Adetutu A. Health risk assessment and heavy metal accumulation in fish species ( Clarias gariepinus and Sarotherodon melanotheron) from industrially polluted Ogun and Eleyele Rivers, Nigeria. Toxicol Rep 2021; 8:1445-1460. [PMID: 34401354 PMCID: PMC8349904 DOI: 10.1016/j.toxrep.2021.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Concentration of Arsenic and Cadmium in the fish tissues exceed the limits set by the European Union. THQ values indicated likely adverse effects during a person’s lifetime with continuous exposure to Arsenic and Cadmium. As, Cd, and Nickel may pose cancer risk to consumer of fish from the two rivers over longtime exposure. Cancer risk due to long time consumption of fish from the rivers can be a major concern.
Ogun and Eleyele Rivers are in the Western part of Nigeria with a potential risk of heavy metal pollution because of many industrial wastes channeling through their courses. Therefore, in this study, the concentration of heavy metals and the possible human health risk of consuming Clarias gariepinus and Sarotherodon melanotheron collected from industrially polluted Ogun and Eleyele Rivers in Nigeria were evaluated. The concentration of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), and lead (Pb) in tissues (gill, muscle, and liver) of fish was measured using Atomic Absorption Spectroscopy (AAS) and compared with the maximum permissible. The Estimated Daily Intake (EDI), Targeted Hazard Quotient (THQ), and Carcinogenic Risk (CR) of the metals were estimated for the determination of human health risk. Probabilistic predictions of the health risk were performed with Oracle Crystal Ball software. Results of this study showed that the dry weight concentrations of the metals in the gills, liver, and muscle of the two fish species from the two sites were well below the permissible limits set by the joint FAO/WHO Expert Committee. Only the EDI for arsenic in gills of C. gariepinus obtained from the Ogun River exceeded the set limit. The THQ was >1 for As in the gills and liver of C. gariepinus and S. melanotheron obtained from the Ogun river suggesting non-carcinogenic risk to the consumers. The carcinogenic risk above 10−6 obtained for As, Cd, and Ni in the tissues of the two fish species suggested cancer risk to the consumers of fish from the two rivers. Consequent to our observation, consumption of fish from the study site presents some public health concerns. Therefore, this study advises routine heavy metal monitoring of fish along these rivers to implement regulatory standards by the government environmental health management agencies.
Collapse
|
17
|
Dellali M, Khallouli A, Harrath AH, Falodah F, Alwasel S, Beyrem H, Gyedu-Ababio T, Rohal-Lupher M, Boufahja F. Effects of Au/TiO 2 metallic nanoparticles on Unio ravoisieri: assessment through an oxidative stress and toxicity biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18176-18185. [PMID: 33410041 DOI: 10.1007/s11356-020-12305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Several studies have been performed on the effects of nanoparticles on aquatic life. However, most of them investigated marine organisms, not freshwater organisms. This study investigated biomarker responses after exposure for 48 h and 7 days to newly made gold and titanium dioxide (Au/TiO2) metallic nanoparticles (MNPs) (100 and 200 μg·L-1) using the freshwater bivalve mussel Unio ravoisieri. Biochemical analysis of the gills and digestive glands showed induction of oxidative stress following exposure of the bivalve to Au/TiO2 MNPs. After 2 or 7 days of exposure to Au/TiO2 MNPs, both utilized concentrations of Au/TiO2 MNPs induce an overproduction of H2O2. Catalase and glutathione S-transferase activities and the malonedialdehyde content significantly increased in the presence of Au/TiO2 MNPs, depending on the concentration and target organ. In contrast, acetylcholinesterase activity was significantly inhibited, indicating a discernible disturbance of the cholinergic system in the presence of Au/TiO2 MNPs. The behavior of the freshwater mussel was altered by reducing the clearance rate. Therefore, U. ravoisieri can be used as a model species in laboratory studies to mirror the presence of MNPs, and the biomarker approach is important for detecting the effects of Au/TiO2 MNPs. In addition, digestive gland is the target organ of Au/TiO2NPs contamination.
Collapse
Affiliation(s)
- Mohamed Dellali
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Altaf Khallouli
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fawaz Falodah
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | | | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
18
|
Silva S, Cravo A, Ferreira C, Correia C, Almeida CMM. Biomarker Responses of the Clam Ruditapes decussatus Exposed to a Complex Mixture of Environmental Stressors under the Influence of an Urban Wastewater-Treatment Plant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:272-283. [PMID: 33026664 DOI: 10.1002/etc.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
To evaluate the potential impact of an urban wastewater-treatment plant on Ria Formosa coastal lagoon, a sentinel species, the clam Ruditapes decussatus, was exposed along a gradient of the effluent's dispersal for 1 mo. Three exposure sites were selected to study the responses of 3 biomarkers: electron transport system, acetylcholinesterase, and lipid peroxidation. As complementary data, morphometric measurements, condition index, and lipid and protein content were considered together with in situ physicochemical characterization of the sites (temperature, salinity, pH, and dissolved oxygen). Electron transport system activity levels were between 35.7 and 50.5 nmol O2 /min g protein, acetylcholinesterase activity levels ranged from 2.6 to 3.8 nmol/min g protein, and lipid peroxidation ranged from 174.7 to 246.4 nmol malondialdehyde/g protein. The exposure sites shaped the response not only of biomarkers but also of "health" parameters (protein, lipids, and condition index). Lipid peroxidation was the most responsive biomarker also associated with electron transport system, especially at the closest site to the urban wastewater-treatment plant. Because of the presence of complex mixtures of contaminants in urban effluents, biomarker responses can provide valuable information in environmental assessment. However, it is vital to identify all biological and ecological factors induced by the natural life cycle of clams. Abiotic factors can mask or overlap the response of biomarkers and should be considered in a multibiomarker approach. Environ Toxicol Chem 2021;40:272-283. © 2020 SETAC.
Collapse
Affiliation(s)
- Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Alexandra Cravo
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Cristina Ferreira
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Cátia Correia
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Cristina M M Almeida
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
19
|
Riaz A, Riaz MA, Shahzad K, Ijaz B, Khan MS. Deposition trend of subchronic exposure of copper oxide nanoparticles (CuO-NPs) and its effect on the antioxidant system of Labeo rohita. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
20
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO 2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110776. [PMID: 32474243 DOI: 10.1016/j.ecoenv.2020.110776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, titanium dioxide nanoparticles (n-TiO2) have been extensively used in several industrial applications and the manufacture of novel consumer products. Although strict regulations have been put in place to limit their release into the aquatic environment, these nanoparticles can still be found at elevated levels within the environment, which can result in toxic effects on exposed organisms and has possible implications in term of public health. Bivalve mollusks are a unique and ideal group of shellfish for the study and monitoring the aquatic pollution by n-TiO2 because of their filter-feeding behaviour and ability to accumulate toxicants in their tissues. In these animals, exposure to n-TiO2 leads to oxidative stress, immunotoxicity, neurotoxicity, and genotoxicity, as well as behavioral and physiological changes. This review summarizes the uptake, accumulation, and fate of n-TiO2 in aquatic environments and the possible interactions between n-TiO2 and other contaminants such as heavy metals and organic pollutants. Moreover, the toxicological impacts and mechanisms of action are discussed for a wide range of bivalve mollusks. This data underlines the pressing need for additional knowledge and future research plans for the development of control strategies to mitigate the release of n-TiO2 to the aquatic environment to prevent the toxicological impacts on bivalves and protect public health.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
21
|
Bejaoui S, Michán C, Telahigue K, Nechi S, Cafsi ME, Soudani N, Blasco J, Costa PM, Alhama J. Metal body burden and tissue oxidative status in the bivalve Venerupis decussata from Tunisian coastal lagoons. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105000. [PMID: 32662434 DOI: 10.1016/j.marenvres.2020.105000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Coastal transitional waters are exposed to many anthropogenic threats. This study aims to assess the trace metals' pollution status of transitional waters by evaluating its biological effects in the clam Venerupis decussata. Among the studied sites along the Tunisian littoral, South Tunis and Boughrara were the most impacted, since clams from these two lagoons presented significant differences in: (i) trace metal contents, (ii) in-cell hydrogen peroxide, (iii) enzymatic and non-enzymatic defenses, (iv) damage to lipids and proteins, and (v) protein post-translational modifications. These changes related to evident histopathological traits. PCA showed a clear separation between the digestive gland and gills tissues and illustrated an impact gradient in Tunisian coastal lagoons. Water temperature was revealed as an added natural stressor that, when concurring with high pollution, may jeopardize an ecosystem's health and contribute to the accumulation of hazardous metals in organisms.
Collapse
Affiliation(s)
- Safa Bejaoui
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain; Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Khaoula Telahigue
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis, Tunisia
| | - Mhamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510, Puerto Real (Cadiz), Spain
| | - Pedro M Costa
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
22
|
Environmental Fate of Multistressors on Carpet Shell Clam Ruditapes decussatus: Carbon Nanoparticles and Temperature Variation. SUSTAINABILITY 2020. [DOI: 10.3390/su12124939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ruditapes decussatus is a native clam from the Southern Europe and Mediterranean area, relevant to the development of sustainable aquaculture in these regions. As sessile organisms, bivalves are likely to be exposed to chemical contaminations and environmental changes in the aquatic compartment and are widely used as bioindicator species. Carbon-based nanomaterials (CNTs) use is increasing and, consequently, concentrations of these contaminants in aquatic systems will rise. Therefore, it is imperative to assess the potential toxic effects of such compounds and the interactions with environmental factors such as water temperature. For this, we exposed R. decussatus clams to four different water temperatures (10, 15, 20 and 25 °C) in the presence or absence of CNTs for 96 h. Different parameters related with oxidative stress status, aerobic metabolism, energy reserves and neurotoxicity were evaluated. The relationship and differences among water temperatures and contamination were highlighted by principal coordinates analysis (PCO). CNTs exposure increased oxidative damage as protein carbonylation (PC) in exposed clams at 10 °C. Higher temperatures (25 °C) were responsible for the highest redox status (ratio between reduced and oxidized glutathione, GSH/GSSG) observed as well as neurotoxic effects (acetylcholinesterase—AChE activity). Antioxidant defenses were also modulated by the combination of CNTs exposure with water temperatures, with decrease of glutathione peroxidase (GR) activity at 15 °C and of glutathione S-transferases (GSTs) activity at 20 °C, when compared with unexposed clams. Clams energy reserves were not altered, probably due to the short exposure period. Overall, the combined effects of CNTs exposure and increasing water temperatures can impair R. decussatus cellular homeostasis inducing oxidative stress and damage.
Collapse
|
23
|
Monitoring Bioaccumulation (in Gills and Muscle Tissues), Hematology, and Genotoxic Alteration in Ctenopharyngodon idella Exposed to Selected Heavy Metals. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6185231. [PMID: 32382561 PMCID: PMC7180433 DOI: 10.1155/2020/6185231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022]
Abstract
Health and environmental problems arising from metals present in the aquatic ecosystem are very well known. The present study investigated toxicological effects of LC15 of metals such as copper, chromium, and lead for 24, 48, 72, and 96 h on hematological indices, RBC nucleus and cell morphology, and gill and muscle tissues of grass carp (Ctenopharyngodon idella). Experimental dose concentrations of copper were 1.5, 1.4, 1.2, and 1 mgL−1. Similarly, dose concentrations of chromium were 25.5, 22.5, 20, and 18 mgL−1 while those of lead were 250, 235, 225, and 216 mgL−1, respectively. Maximum decrease in the concentration of Hb, RBCs, and monocytes was observed against chromium, while maximum increase in the concentration of lymphocytes was reported against lead. Abnormalities such as single and double micronuclei, deformed nucleus, nuclear shift, irregular nucleus, deformed cells, microcyte cells, and vacuolated and swollen cells were observed. Gill tissues absorbed maximum concentration of lead followed by chromium and copper. Muscle tissues also absorbed maximum concentration of lead followed by chromium and copper, respectively. Histological alterations such as epithelial lifting, interlamellar spaces, club gill filaments, gill bridging, curling filaments, swelling and fusion of cells, irregular cells, destruction of epithelial cells, cellular necrosis, and inflammatory cells were observed in gill tissues while inflammation and necrosis of muscle fibers, degeneration of muscle fibers, edema of muscle bundles, zig-zag of muscle fibers, and lesions were observed in muscle tissues of fish exposed with different doses of these heavy metals, indicating the toxicity of metals to aquatic fauna as well as to human being via food chain.
Collapse
|
24
|
Mansour C, Guibbolini M, Rouane Hacene O, Saidane Mosbahi D, Risso-de Faverney C. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:478-494. [PMID: 32016484 DOI: 10.1007/s00244-020-00713-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
In the present study, a multi-biomarker approach was used to assess the biological effects of metal pollution in the southern lagoon of Tunis, on clam Ruditapes decussatus both in "hot" (in summer) and "cold" (in winter) seasons. Clams were collected in August 2015 and February 2016 from three sites of the lagoon and from Louza considered a reference site. The concentrations of five trace metals (cadmium, copper, iron, lead, and zinc) in the soft tissues of R. decussatus were evaluated at the sampling sites. A core of biomarkers indicative of (a) neurotoxicity (acetylcholinesterase, AChE); (b) biotransformation (glutathione S-transferase, GST); (c) oxidative stress (catalase, CAT; total glutathione peroxidase, T-GPx; total glutathione peroxidase, T-GPx; selenium-dependent glutathione peroxidase, Se-GPx; glutathione reductase, GR; superoxide dismutase, SOD) (d) lipid peroxidation (malondialdhyde, MDA level), and (e) apoptotic process (caspase 3-like, CSP3) was selected for measurements of environmental effects on the populations of clams collected from the different sampling sites. The results of metal bioaccumulation in soft tissues of Ruditapes decussatus revealed a high pollution in the South Lagoon of Tunis with spatial variation and relatively high levels at the navigation channel. Anthropogenic pollutants in the lagoon led to the activation of antioxidant defense and biotransformation enzymes to oxidative damage of the membrane and activation of apoptosis, and revealed neurotoxicity. Among this core of biomarkers, the antioxidants enzymes (CAT, SOD, GR, and GPx) were very sensitive, allowing the discrimination among sites and pointing to the navigation channel as the most impacted site in the southern lagoon of Tunis. Moreover, a significant effect of season was recorded on biomarkers responses (e.g., CAT, GR, SOD, AChE, and CSP3 activities and MDA levels) with higher levels in winter than in summer, probably influenced by the reproductive stage and food availability. Finally, the measurement of the selected core of biomarkers in the whole soft tissues of clams was considered as an integrated indicator of environmental stress. Moreover, R. decussatus proved to be a remarkable sentinel species capable to establish a reliable diagnosis of the health status of the marine environment in different areas of the southern lagoon of Tunis, both in "hot" and "cold" seasons.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia.
| | - Marielle Guibbolini
- University Côte d'Azur, CNRS, ECOSEAS, UMR 7035, 28 Avenue Valrose BP 71, 06108, Nice Cedex 2, France
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia
| | | |
Collapse
|
25
|
Johari SA, Sarkheil M, Asghari S, Haghighat F, Dekani L, Keyvanshokooh S. Comparative toxicity of nanoparticulate and ionic copper following dietary exposure to common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108680. [PMID: 31794874 DOI: 10.1016/j.cbpc.2019.108680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 01/21/2023]
Abstract
Copper is an essential element for the normal growth and survival of all organisms including fish. However, its excessive presence in the environment can cause bioaccumulation and aquatic toxicology. The aim of the present study was to compare the dietary toxicity effects of two different Cu compounds, copper oxide nanoparticles (CuO-NPs) and ionic copper (CuSO4) in juvenile common carp, Cyprinus carpio. To prepare experimental diets, two nominal concentrations of 100 and 1000 mg Cu kg-1 diet were added to a basal diet. Carp (n = 450, average initial weight of 35.94 ± 5.35 g) were fed on the Cu-supplemented diets and basal diets for two 21-day courses as dietary exposure and recovery periods, respectively. The growth performance, survival rate and blood biochemical indices as well as copper accumulation in target organs of fish were investigated at the end of each exposure period. The results showed that the weight gain (WG) of carp significantly decreased coincident with increasing concentration of the both dietary Cu forms (P = 0.00). Both Cu sources at concentrations of 100 mg kg-1 diet decreased the survival rate of fish (P = 0.003), likely due to more feed intake and thus increased copper toxicity. The both forms of dietary Cu at two different concentrations significantly decreased the plasma glutamate oxaloacetate transaminase (GOT) level compared to the control group (P = 0.008). Fish exposed to diets containing Cu sources except 100 mg Cu kg-1 of CuO-NPs showed the lower glutamate pyruvate transaminase (GPT) activity in comparison to the control (P = 0.00). The plasma sodium level in1000 mg CuO-NPs kg-1 diet was significantly lower than the control (P = 0.001). The plasma potassium level increased in the all Cu-supplemented groups except 100 mg kg-1 of CuO-NPs after the dietary exposure period (P = 0.035). The copper accumulation was dose-dependent in all target organs. In 100 mg Cu kg-1 dietary groups, the liver showed the highest Cu accumulation (P = 0.00), while in 1000 mg Cu kg-1 dietary groups, the highest Cu content was observed in the intestine (P = 0.00). The results demonstrated the enhanced toxicological responses in fish after 21 days of dietary exposure, but the levels of most of biochemical indices and tissues Cu content decreased or returned to the control values after the recovery period.
Collapse
Affiliation(s)
- Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saba Asghari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Fatemeh Haghighat
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Leila Dekani
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| |
Collapse
|
26
|
Jindal R, Handa K. Hexavalent chromium-induced toxic effects on the antioxidant levels, histopathological alterations and expression of Nrf2 and MT2 genes in the branchial tissue of Ctenopharyngodon idellus. CHEMOSPHERE 2019; 230:144-156. [PMID: 31103860 DOI: 10.1016/j.chemosphere.2019.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Ability of hexavalent chromium to accumulate and induce oxidative stress has been studied in the gills of Ctenopharyngodon idellus, with the resulting damage in the form of altered endogenous antioxidant enzyme activity and, histopathology in the tissue. The fish were exposed to 5.3 (C1) and 10.63 mg/L (C2) of hexavalent chromium and were scrutinised on 15th, 30th and 45th day of toxicant exposure. Oxidative stress studied in terms of lipid peroxidation and glutathione levels and the antioxidant enzymes activity also exhibited alterations. The histopathological modifications in gills announced lesions in the form of hyperplasia, aneurysm, lamellar fusion, focal proliferation, epithelial degeneration and necrosis with loss of lamellae, bringing irreversible damage on 45th day with mean degree of tissue change value of 100.35 ± 10.69. Bioaccumulation of chromium, and increased anomalies in branchial tissue exhibited damage in concentration and time-dependent manner. The ultrastructural anomalies in the cellular morphology in the epithelial cells of filaments and lamellae, exhibited pleomorphic nuclei, swollen mitochondria, extensive vacuolation and loss of microridges in pavement cells. The tissue also displayed altered regulation of Nrf2 and Mt2 following Cr(VI) exposure with maximum downregulation on 45th day by 61 and 53%, respectively. PCA generated two principal components, PC1 (GSH, GST, CAT and SOD) and PC2 (DTC, MDA and Cr(VI) concentration). Thus, it can be concluded that accumulation of Cr(VI) induces alteration in the gene expression of Nrf2 and Mt2 leading to the development of oxidative stress, ensuing various pathological changes creating hindrance in fish survival.
Collapse
Affiliation(s)
- Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India
| | - Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
27
|
Casu V, Tardelli F, De Marchi L, Monni G, Cuccaro A, Oliva M, Freitas R, Pretti C. Soluble esterases as biomarkers of neurotoxic compounds in the widespread serpulid Ficopomatus enigmaticus (Fauvel, 1923). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:883-891. [PMID: 31311415 DOI: 10.1080/03601234.2019.1640028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The characterization of soluble cholinesterases (ChEs) together with carboxylesterases (CEs) in Ficopomatus enigmaticus as suitable biomarkers of neurotoxicity was the main aim of this study. ChEs of F. enigmaticus were characterized considering enzymatic activity, substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (Km and Vmax) and in vitro response to model inhibitors (eserine hemisulfate, iso-OMPA, BW284C51), and carbamates (carbofuran, methomyl, aldicarb, and carbaryl). CEs were characterized based on enzymatic activity, kinetic parameters and in vitro response to carbamates (carbofuran, methomyl, aldicarb, and carbaryl). Results showed that cholinesterases from F. enigmaticus showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was not hydrolyzed differently from other Annelida species. CE activity was in the same range of cholinesterase activity with acetylthiocholine as substrate; the enzyme activity showed high affinity for the substrate p-nytrophenyl butyrate. Carbamates inhibited ChE activity with propionylthiocholine as substrate to a higher extent than with acetylthiocoline. Also CE activity was inhibited by all tested carbamates except carbaryl. In vitro data highlighted the presence of active forms of ChEs and CEs in F. enigmaticus that could potentially be inhibited by pesticides at environmentally relevant concentration.
Collapse
Affiliation(s)
- Valentina Casu
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Federica Tardelli
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, University of Aveiro, Aveiro, Portugal
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Alessia Cuccaro
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| | - Matteo Oliva
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| |
Collapse
|
28
|
Phoonaploy U, Tengjaroenkul B, Neeratanaphan L. Effects of electronic waste on cytogenetic and physiological changes in snakehead fish (Channa striata). ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:363. [PMID: 31081532 DOI: 10.1007/s10661-019-7509-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to investigate cadmium (Cd), chromium (Cr), and lead (Pb) concentrations in water and sediment as well as the muscle, gill, and liver of snakehead fish (Channa striata) and to reveal chromosomal aberrations, changes in serum biochemical parameters, and histopathological alterations of fish from a reservoir near an electronic waste dumping area. Cd, Cr, and Pb concentrations were determined using inductively coupled plasma optical emission spectrometry. Chromosomal aberrations were studied in kidney cells using a conventional technique. The biochemical parameters were measured using an automated analyzer, and histopathological photographs were obtained using a transmission electron microscope. The results showed that heavy-metal concentrations in water and sediment did not exceed the standards, whereas Cd and Pb concentrations in the gill and liver exceeded the standards. The accumulation pattern of heavy metals in organ tissues was exhibited according to the following order: gill > liver > muscle. Five types of chromosomal aberrations were a centromere gap, single chromatid break, deletion, single chromatid gap, and fragmentation. The average percentages of chromosomal aberrations in polluted and reference C. striata were 4.60% and 1.00%, respectively. The statistical analyses of chromosomal aberration and biochemical parameters indicated that total protein, aspartate aminotransferase, and alanine aminotransferase significantly differed between the polluted and reference C. striata (p < 0.05). The liver histopathological alterations revealed atypical cellular structures, such as vacuolar appearance, nucleus degeneration, rough endoplasmic reticulum disintegration, abnormal cytoplasmic mitochondria, and deposition of heavy metals. Heavy-metal contaminations from electronic waste dumping areas affect fish in terms of chromosomal aberration, serum biochemistry, and histopathology.
Collapse
Affiliation(s)
| | - Bundit Tengjaroenkul
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
29
|
Sezer Tuncsoy B, Tuncsoy M, Gomes T, Sousa V, Teixeira MR, Bebianno MJ, Ozalp P. Effects of Copper Oxide Nanoparticles on Tissue Accumulation and Antioxidant Enzymes of Galleria mellonella L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:341-346. [PMID: 30600390 DOI: 10.1007/s00128-018-2529-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Effects of copper oxide nanoparticles (CuO NPs) were investigated in the midgut and fat body of Galleria mellonella. Fourth instar larvae were exposed to 10 µg Cu/L of CuO until becoming last instar larvae, and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and acetylcholinesterase (AChE) and metal accumulation were evaluated. Copper accumulation was observed in midgut and fat body tissues of G. mellonella larvae exposed to CuO NPs. CuO NPs increased CAT activities in midgut and fat body, while SOD activities were decreased. CuO NPs exhibited significant increases in GST activity in fat body, while no significant differences were observed in the midgut of G. mellonella larvae. AChE activity significantly decreased in the midgut of G. mellonella whereas there is no significant effect on fat body in CuO NPs exposed larvae. In overall, these findings demonstrate that tissue accumulation and oxidative stress that is countered by antioxidant enzymes occur when G. mellonella larvae exposed to environmental concentration of CuO nanoparticles.
Collapse
Affiliation(s)
- Benay Sezer Tuncsoy
- Department of Biology, Faculty of Science and Letters, University of Cukurova, 01330, Adana, Turkey.
| | - Mustafa Tuncsoy
- Department of Biology, Faculty of Science and Letters, University of Cukurova, 01330, Adana, Turkey
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway
| | - Vânia Sousa
- CENSE, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Pinar Ozalp
- Department of Biology, Faculty of Science and Letters, University of Cukurova, 01330, Adana, Turkey
| |
Collapse
|
30
|
Moëzzi F, Hedayati SA, Ghadermarzi A. Copper Bioaccumulation Kinetics in Swan Mussel, Anodonta cygnea (Linnaeus, 1758) During Waterborne Exposure to CuO Nanoparticles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:46-51. [PMID: 30443661 DOI: 10.1007/s00128-018-2489-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
This study was conducted to investigate bioaccumulation of copper in two internal organs (mantle and foot) of swan mussel, Anodonta cygnea (Linnaeus, 1758) in exposure to copper oxide nanoparticles (CuO NPs). Basal concentration of Cu in the mantle (3.15 ± 1.09 µg g-1 DW) was significantly (p < 0.05) lower than the foot (5.43 ± 1.54 µg g-1 DW). At the end of the exposure period, the highest concentration of Cu in both organs belonged to the highest exposure concentration. Calculated bioconcentration factor (BCF) values showed significant (p < 0.05) higher values for the mantle in each day and each exposure concentration (except the lowest exposure concentration) than the foot. For both organs, the highest and lowest BCFs occurred at the lowest and highest exposure concentrations, respectively. Cu concentration in both organs was significantly (p < 0.05) decreased after day 4. Based on the results, it was obvious that exposure to sub-lethal concentrations of CuO NPs would lead to the significant accumulation of copper in mantle and foot that may have adverse effects on this organism.
Collapse
Affiliation(s)
- Fateh Moëzzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Seyyed Aliakbar Hedayati
- Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University, Gorgan, Iran
| | - Amir Ghadermarzi
- Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University, Gorgan, Iran
| |
Collapse
|
31
|
Tapia-Morales S, López-Landavery EA, Giffard-Mena I, Ramírez-Álvarez N, Gómez-Reyes RJE, Díaz F, Galindo-Sánchez CE. Transcriptomic response of the Crassostrea virginica gonad after exposure to a water-accommodation fraction of hydrocarbons and the potential implications in reproduction. Mar Genomics 2018; 43:9-18. [PMID: 30409725 DOI: 10.1016/j.margen.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 11/26/2022]
Abstract
The Crassostrea virginica oyster has biological and economic importance in the Gulf of Mexico, an area with a high extraction and production of hydrocarbons. Exposure to hydrocarbons affects the reproductive processes in bivalves. In C. virginica, the effect of hydrocarbons on the gonad of the undifferentiated organism has not been evaluated to determine the possible damage during the maturation process. To evaluate this effect, RNA-seq data was generated from C. virginica gonads exposed to a 200 μg/L of hydrocarbons at different exposure times (7, 14 and 21 days) and a control treatment (without hydrocarbons). The analysis of the gonad transcriptome showed the negative effect of hydrocarbons on maturation, with a sub-expression of 22 genes involved in different stages of this process. Additionally, genes in the immune system were down-regulated, which may indicate that exposure to hydrocarbons causes immunosuppression in bivalves. A group of oxidative stress genes was also reduced. These data contribute to a better understanding of the effect of hydrocarbons on the reproductive process in bivalves and, at the same time, allow us to identify possible biomarkers associated with hydrocarbon contamination in the gonad of C. virginica.
Collapse
Affiliation(s)
- S Tapia-Morales
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico; Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Laboratorio de Patología Experimental Acuícola, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - E A López-Landavery
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - I Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Laboratorio de Patología Experimental Acuícola, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - N Ramírez-Álvarez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - R J E Gómez-Reyes
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - F Díaz
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - C E Galindo-Sánchez
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico.
| |
Collapse
|
32
|
Solé M, Bonsignore M, Rivera-Ingraham G, Freitas R. Exploring alternative biomarkers of pesticide pollution in clams. MARINE POLLUTION BULLETIN 2018; 136:61-67. [PMID: 30509842 DOI: 10.1016/j.marpolbul.2018.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Acetylcholinesterase (AChE) is a reliable biomarker of pesticide exposure although in clams this activity is often very low or undetectable. Carboxylesterases (CEs) exhort several physiological roles, but also respond to pesticides. Searching for an AChE alternative, baseline CE activities were characterised in Ruditapes decussatus gills and digestive glands using five substrates suggestive of different isozymes. The long chain p-nitrophenyl butyrate and 1-naphthyl butyrate were the most sensitive. In the digestive gland, their kinetic parameters (Vmax and Km) and in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon (CPX) were calculated. IC50 values, in the pM-nM range, suggest a high protection efficiency of CE-related enzymes towards CPX neurotoxicity. Other targeted enzymes were: activities of glutathione reductase, glutathione peroxidase, catalase, glutathione S-transferases (GSTs) and lactate dehydrogenase in gills and digestive glands. The high GSTs activity and CE/AChE ratio suggests that R. decussatus has a great capacity for enduring pesticide exposure.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Martina Bonsignore
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Mejdoub Z, Zaid Y, Hmimid F, Kabine M. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca. J Trace Elem Med Biol 2018; 48:30-37. [PMID: 29773190 DOI: 10.1016/j.jtemb.2018.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 11/15/2022]
Abstract
The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period.
Collapse
Affiliation(s)
- Zineb Mejdoub
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University Hassan II Casablanca, Morocco.
| | - Younes Zaid
- Laboratory of Thrombosis Hemostasis, Research Center, Mohammed VI University of Health Sciences, Boulevard Taïeb Naciri, Commune Hay Hassani, 82403 Casablanca, Morocco
| | - Fouzia Hmimid
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University Hassan II Casablanca, Morocco
| | - Mostafa Kabine
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University Hassan II Casablanca, Morocco
| |
Collapse
|
34
|
De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R. Effects of multi-walled carbon nanotube materials on Ruditapes philippinarum under climate change: The case of salinity shifts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:199-211. [PMID: 29655118 DOI: 10.1016/j.aquatox.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The toxicity of carbon nanotubes (CNTs) is closely related to their physico-chemical characteristics as well as the physico-chemical parameters of the media where CNTs are dispersed. In a climate change scenario, changes in seawater salinity are becoming a topic of concern particularly in estuarine and coastal areas. Nevertheless, to our knowledge no information is available on how salinity shifts may alter the sensitivity (in terms of biochemical responses) of bivalves when exposed to different CNTs. For this reason, a laboratory experiment was performed exposing the Manila clam Ruditapes philippinarum, one of the most dominant bivalves of the estuarine and coastal lagoon environments, for 28 days to unfunctionalized multi-walled carbon nanotube MWCNTs (Nf-MWCNTs) and carboxylated MWCNTs (f-MWCNTs), maintained at control salinity (28) and low salinity 21. Concentration-dependent toxicity was demonstrated in individuals exposed to both MWCNT materials and under both salinities, generating alterations of energy reserves and metabolism, oxidative status and neurotoxicity compared to non-contaminated clams. Moreover, our results showed greater toxic impacts induced in clams exposed to f-MWCNTs compared to Nf-MWCNTs. In the present study it was also demonstrated how salinity shifts altered the toxicity of both MWCNT materials as well as the sensitivity of R. philippinarum exposed to these contaminates in terms of clam metabolism, oxidative status and neurotoxicity.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
35
|
De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R. Toxic effects of multi-walled carbon nanotubes on bivalves: Comparison between functionalized and nonfunctionalized nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1532-1542. [PMID: 29056376 DOI: 10.1016/j.scitotenv.2017.10.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Despite of the large array of available carbon nanotube (CNT) configurations that allow different industrial and scientific applications of these nanoparticles, their impacts on aquatic organisms, especially on invertebrate species, are still limited. To our knowledge, no information is available on how surface chemistry alteration (functionalization) of CNTs may impact the toxicity of these NPs to bivalve species after a chronic exposure. For this reason, the impacts induced by chronic exposure (28days) to unfunctionalized MWCNTs (Nf-MWCNTs) in comparison with functionalized MWCNTs (f-MWCNTs), were evaluated in R. philippinarum, by measuring alterations induced in clams' oxidative status, neurotoxicity and metabolic capacity. The results obtained revealed that exposure to both MWCNT materials altered energy-related responses, with higher metabolic capacity and lower glycogen, protein and lipid concentrations in clams exposed to these CNTs. Moreover, R. philippinarum exposed to Nf-MWCNTs and f-MWCNTs showed oxidative stress expressed in higher lipid peroxidation and lower ratio between reduced and oxidized glutathione, despite the activation of defense mechanisms (superoxide-dismutase, glutathione peroxidase and glutathione S-transferases) in exposed clams. Additionally, neurotoxicity was observed by inhibition of Cholinesterases activity in organisms exposed to both MWCNTs.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Tunçsoy M, Duran S, Ay Ö, Cicik B, Erdem C. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:360-364. [PMID: 28685220 DOI: 10.1007/s00128-017-2129-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.
Collapse
Affiliation(s)
- Mustafa Tunçsoy
- Biology Department, Faculty of Science and Letters, Çukurova University, Adana, Turkey.
| | - Servet Duran
- Biology Department, Faculty of Science and Letters, Çukurova University, Adana, Turkey
| | - Özcan Ay
- Faculty of Fisheries, Mersin University, Yenişehir Campus, Yenişehir, Mersin, Turkey
| | - Bedii Cicik
- Faculty of Fisheries, Mersin University, Yenişehir Campus, Yenişehir, Mersin, Turkey
| | - Cahit Erdem
- Biology Department, Faculty of Science and Letters, Çukurova University, Adana, Turkey
| |
Collapse
|
37
|
De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Soares AMVM, Freitas R. The impacts of emergent pollutants on Ruditapes philippinarum: biochemical responses to carbon nanoparticles exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:38-47. [PMID: 28364639 DOI: 10.1016/j.aquatox.2017.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the most important carbon Nanoparticles (NPs). The production and use of these NPs are increasing rapidly and, therefore, the need to assess their presence in the environment and associated risks has become of prime importance. Recent studies demonstrated the impacts of different NPs on bivalves, a taxonomic group where species tolerance to anthropogenic stressors, such as pollutants, is widely variable. The Manila clam Ruditapes philippinarum is one of the most commonly used bivalve species in environmental monitoring studies and ecotoxicology tests, however, to our knowledge, no information is available on biochemical alterations on this species due to MWCNTs exposure. Thus, the present study aimed to assess the toxic effects of different MWCNT concentrations (0.01; 0.10 and 1.00mg/L) in R. philippinarum biochemical (energy reserves, metabolic capacity, oxidative status and neurotoxicity) performance, after 28days of exposure. The results obtained revealed that exposure to MWCNTs altered energy-related responses, with higher metabolic capacity and lower glycogen and protein concentrations in clams exposed to these carbon NPs. Moreover, R. philippinarum exposed to MWCNTs showed oxidative stress expressed in higher lipid peroxidation and lower ratio between reduced and oxidized glutathione, despite the activation of defence mechanisms in exposed clams. Additionally, neurotoxicity was observed by inhibition of cholinesterases activity in organisms exposed to MWCNTs. The present study provides valuable information regarding how these emerging pollutans could become a potential risk for the environment and living organisms.
Collapse
Affiliation(s)
- Lucia De Marchi
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Mechanical Technology and Automation, University of Aveiro, 3810-193, Portugal
| | - Victor Neto
- Center for Mechanical Technology and Automation, University of Aveiro, 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56126, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
38
|
Madhav MR, David SEM, Kumar RSS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N. Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:227-238. [PMID: 28454023 DOI: 10.1016/j.etap.2017.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 05/23/2023]
Abstract
Metal nanoparticles production rate and its applications have raised concerns about their release and toxicity to the aquatic and terrestrial organisms. The primary size of Copper Oxide nanoparticles (CuO NP's) was found to be 114±36nm using Scanning Electron Microscopy (SEM) and a significant increase in the hydrodynamic diameter of CuO NP was seen within 1h of interaction. The median lethal concentration (LC50) values obtained from the acute toxicity studies on different life stages of Artemia salina was found to be 61.4, 35, 12.2 and 175.2mg/L for 1d, 2d, 7d old and adult, respectively. The toxicity associated changes in biochemical markers such as Catalase, Reduced glutathione and Glutathione-S-Transferase were evident. The accumulation of Cu nanoparticles into the gut of Artemia salina was the major reason for toxicity. This study demonstrate the toxicity of CuO NPs to Artemia salina, and the obtained results necessitate the detailed investigation on the possible eco-toxicological implication of these nanomaterials.
Collapse
Affiliation(s)
- M R Madhav
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | | | - R S Suresh Kumar
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - J S Swathy
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - M Bhuvaneshwari
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - N Chandrasekaran
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India.
| |
Collapse
|
39
|
Danielli NM, Trevisan R, Mello DF, Fischer K, Deconto VS, da Silva Acosta D, Bianchini A, Bainy ACD, Dafre AL. Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keap1 pathway in bivalves. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:16-26. [PMID: 28216009 DOI: 10.1016/j.cbpc.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 01/28/2023]
Abstract
Analysis of the Pacific oyster Crassostrea gigas annotated genome revealed genes with conserved sequences belonging to typical cap 'n' collar Nrf2 domain, a major player in antioxidant protection, and domains belonging to Nrf2 cytoplasmic repressor (Keap1), but little is known about Nrf2/Keap1 induction in bivalves. C. gigas were exposed to waterborne 10 and 30μM curcumin, a known inducer of the mammalian Nrf2. Curcumin disappeared from the seawater after 10h, and accumulated in the gills (10h) and digestive gland (10-96h). A clear induction of glutathione (GSH)-related antioxidant defenses was observed at 96h in the gills of curcumin exposed animals (10 and 30μM), including GSH levels, and the activity of glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). This response was completely absent in the digestive gland, in line with the idea that bivalve gills act as a major site for antioxidant protection under acute exposure. The relative mRNA levels coding glutamate-cysteine ligase, GR, GPx2 and GSTpi were clearly induced by curcumin treatment (30μM, 24h). Curcumin pre-treatment for 96h increased oyster resistance to cumene hydroperoxide, but neither Nrf2 nor Keap1 genes were modulated by curcumin. However, the conserved sequences belonging to typical Nrf2 and Keap1 domains, and the notorious induction of antioxidant defense-related genes known to be controlled by Nrf2 in mammals, indicates a functional Nrf2/Keap1 pathway in bivalves, and curcumin seems to be a new tool to investigate the antioxidant response in bivalves.
Collapse
Affiliation(s)
- Naissa Maria Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| | - Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danielle Ferraz Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Kelvis Fischer
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Vanessa Schadeck Deconto
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Daiane da Silva Acosta
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Adalto Bianchini
- Institute of Biological Sciences, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
40
|
Idris NSU, Low KH, Koki IB, Kamaruddin AF, Md Salleh K, Zain SM. H emibagrus sp. as a potential bioindicator of hazardous metal pollution in Selangor River. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:220. [PMID: 28425070 DOI: 10.1007/s10661-017-5939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Nor Shahirul Umirah Idris
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Kah Hin Low
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Isa Baba Koki
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemistry, Northwest University Kano, Kano, PMB 3220, Nigeria
| | - Ahmad Firdaus Kamaruddin
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Terengganu, Terengganu, Malaysia
| | - Kaharudin Md Salleh
- Fisheries Research Institute, Freshwater Fisheries Research Division, Glami Lemi, Titi, 71650, Jelebu, N. Sembilan, Malaysia
| | - Sharifuddin Md Zain
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Bioaccumulation of Some Heavy Metals: Analysis and Comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5801432. [PMID: 28396869 PMCID: PMC5370476 DOI: 10.1155/2017/5801432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/14/2016] [Accepted: 02/21/2017] [Indexed: 11/25/2022]
Abstract
We examined and compared heavy metals bioaccumulation in Cyprinus carpio and Labeo rohita netted from Sardaryab, a tributary of River Kabul. By using atomic absorption spectrometry we assessed different organs including livers, gills, and muscles. Metals studied were chromium, iron, zinc, lead, and copper. Livers of both species showed higher concentrations of metals while muscles showed the least amount. Chromium and iron were the highly concentrated metals in the gills and livers of both species. A quantity of 0.154 ± 0.011, 0.199 ± 0.0079, and 0.024 ± 0.008 μg/g of chromium was found in the gills, livers, and muscles of Cyprinus carpio, respectively. Similarly, the gills, liver, and muscles of Labeo rohita contained 0.133 ± 0.008, 0.165 ± 0.01, and 0.019 ± 0.006 μg/g of Cr, respectively. Iron was highest in carp in the range of 0.086 ± 0.01 in gills and 0.067 ± 0.011 μg/g in muscles, comparatively. All the studied metals were found within the US recommended daily dietary allowances (RDA) limits; hence no immediate risk in their consumption for human was found. The data showed that Cyprinus carpio being omnivorous and bottom feeder stored higher concentrations of metals as compared to Labeo rohita.
Collapse
|
42
|
Aissaoui A, Sadoudi-Ali Ahmed D, Cherchar N, Gherib A. Assessment and biomonitoring of aquatic pollution by heavy metals (Cd, Cr, Cu, Pb and Zn) in Hammam Grouz Dam of Mila (Algeria). ACTA ACUST UNITED AC 2017. [DOI: 10.1080/00207233.2017.1294423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Azzeddine Aissaoui
- Laboratoire de Production, sauvegarde des espèces menacées et des récoltes, Influence des variations climatiques (PSEMVR), Faculty of Biological and Agricultural Sciences, Department of Plant and Animal Biology, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
- National Centre for Biotechnology Research, Constantine, Algeria
| | - Djamila Sadoudi-Ali Ahmed
- Laboratoire de Production, sauvegarde des espèces menacées et des récoltes, Influence des variations climatiques (PSEMVR), Faculty of Biological and Agricultural Sciences, Department of Plant and Animal Biology, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Nabil Cherchar
- National Centre for Biotechnology Research, Constantine, Algeria
| | - Abdelfettah Gherib
- National Centre for Biotechnology Research, Constantine, Algeria
- Biology and Environmental Laboratory, Faculty of Sciences, Department of Biology, University Mentouri of Constantine, Constantine, Algeria
| |
Collapse
|
43
|
Xia B, Zhu L, Han Q, Sun X, Chen B, Qu K. Effects of TiO 2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:128-135. [PMID: 28178595 DOI: 10.1016/j.etap.2017.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Manufactured nanoparticles (NPs) have caused extensive concern about their toxic effects on the marine environment. However, the chronic toxicity of NPs at predicted environmental relevant concentration on the marine organisms is poorly understood. In this study, we investigated the oxidative stress, neurotoxicity and histopathological effects of TiO2 NPs at predicted environmental relevant concentration (1mg/L) to marine scallop Chlamys farreri. The results showed that TiO2 NPs caused obviously oxidative damage on the scallops as evidenced by the significantly elevated superoxide dismutase (SOD), catalase (CAT) activities and malondialdehyde (MDA) contents. The increased acetylcholine esterase (AChE) activities reflected neurotoxicity of TiO2 NPs. The histopathological analysis revealed alterations in the gill and digestive gland, such as dysplastic and necrosis. Additionally, integrated biomarker response (IBR) values indicated that TiO2 NPs can cause strong toxic effects on the scallop. These results suggested that predicted environmental relevant TiO2 NPs can cause adverse effects on scallops and IBR analysis can be used as an effective approach for risk assessment of NPs on the marine organisms.
Collapse
Affiliation(s)
- Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qian Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
44
|
Mennillo E, Casu V, Tardelli F, De Marchi L, Freitas R, Pretti C. Suitability of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to pesticides: In vitro characterization. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:152-159. [PMID: 27777085 DOI: 10.1016/j.cbpc.2016.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Cholinesterases of Diopatra neapolitana were characterized for their activity in whole body and different body segments (apical, intermediate, posterior), substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (Km and Vmax) and in vitro response to model inhibitors (eserine hemisulfate, isoOMPA, BW284C51) and carbamates (carbofuran, methomyl, aldicarb and carbaryl). Results showed that the rate of hydrolysis for acetyl- and propionylthiocholine was higher in the posterior segment than the apical/intermediate segments and whole body. Cholinesterases of D. neapolitana showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was poorly hydrolyzed indicating, together with the absence of inhibition by the specific inhibitor and the absence of reactive bands in native electrophoresis, a lack of an active butyrylcholinesterase, differently than that observed in other Annelida species. The degree of inhibition by selected carbamates of cholinesterase activity with propionylthiocholine as substrate was higher than that observed with ATChI-ChE activity; aldicarb showed the highest inhibitory effect.
Collapse
Affiliation(s)
- Elvira Mennillo
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Valentina Casu
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Federica Tardelli
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, University of Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, University of Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy; Interuniversitary Center of Marine Biology (CIBM) "G. Bacci", Leghorn 57128, Italy.
| |
Collapse
|
45
|
Oaten JFP, Hudson MD, Jensen AC, Williams ID. Seasonal effects to metallothionein responses to metal exposure in a naturalised population of Ruditapes philippinarum in a semi-enclosed estuarine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1279-1290. [PMID: 27707664 DOI: 10.1016/j.scitotenv.2016.09.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
The Manila clam (Ruditapes philippinarum), an invasive species in Northern Europe, can be used as a bioindicator of metal pollution. Seasonal effects on metallothionein (MT) production have not been considered in this species at the northernmost extent of its European distribution. This study assesses the annual seasonal effects on MT and metal concentrations in R. philippinarum from Poole Harbour, UK. R. philippinarum were collected in winter, spring, summer, and autumn throughout 2015, and MT and metal concentrations, as well as biotic and abiotic variables, were quantified. During winter, linear regression analysis showed significant positive relationships between tissue metal and MT concentrations. However, during spring and summer, these relationships were mostly insignificant. MT concentrations during spring had significant positive relationships with tissue and whole weight. Significant positive relationships were also observed between MT and condition index, during summer. During spring and summer, biotic factors seem to override the role of MT as a detoxification mechanism for metal exposure in this species. This is probably due to an increase in MT concentration in spring caused by gametogenesis, associated with increased tissue weight as the gonads expand. A depletion of energy resources, or physical stressors such as heat, may be attributed to the reduced MT production in clams of poor body condition in summer. The evidence from this study suggests that MT may only be a useful biomarker of metal pollution during winter in R. philippinarum in the UK. This verifies the natural variability of MT in this species at high latitudes, and highlights the potential and limits to a widely available bioindicator of metal pollution.
Collapse
Affiliation(s)
- J F P Oaten
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| | - M D Hudson
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| | - A C Jensen
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, European Way, Southampton, Hampshire SO14 3ZH, United Kingdom.
| | - I D Williams
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| |
Collapse
|
46
|
Chalghmi H, Zrafi I, Gourves PY, Bourdineaud JP, Saidane-Mosbahi D. Combined effects of metal contamination and abiotic parameters on biomarker responses in clam Ruditapes decussatus gills: an integrated approach in biomonitoring of Tunis lagoon. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:895-907. [PMID: 27337063 DOI: 10.1039/c6em00139d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spatial and seasonal alteration in a battery of biomarkers responses (enzymatic activity of glutathione-S-transferase, catalase and acetylcholinesterase and lipid peroxidation) were investigated to assess the metal derived effects in clam (Ruditapes decussatus) gills, collected from Tunis lagoon (Tunisia). Trace metals (Ag, As, Cd, Cu, Hg, Mn, Ni, Pb, V and Zn) concentrations were assessed seasonally in sediments and tissues of R. decussatus from three different sites (S1, S2 and S3). Bioaccumulation factor (BAF) analysis showed a spatio-temporal variation of metal uptake rates in clams through sediments. Likewise, the multibiomarker approach enabled a time-site trend differentiation between sites with distinctive degrees of anthropogenic contamination. Site S2 was identified as the most impacted region due to the presence of different contamination sources (shipping and industrial activities). The results suggest that biomarker's seasonal variation arises from a complex interaction between environmental conditions (e.g. temperature, salinity) and probably biological factors (mainly the reproduction process) along with anthropogenic pressure. The general biological response measured with the IBR index at all the sampling sites revealed the highest metabolic stress in summer. The combined effects of metal contamination and increased temperature and salinity in summer appear to induce the highest metabolic adaptation response. The selected biomarkers provided an integrated response, which is useful for the assessment of the combined effects of metal contamination and abiotic parameters in clams and the environmental status of coastal lagoon ecosystem.
Collapse
Affiliation(s)
- Houssem Chalghmi
- UMR CNRS 5805 EPOC, University of Bordeaux, Arcachon Marine Station, Place du Dr Peyneau, 33120 Arcachon, France. and Laboratory of Analysis Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Ines Zrafi
- Center of Water Researches and Technologies, Technopark Borj Cedria, BP. 273, 8020 Soliman, Tunisia
| | - Pierre-Yves Gourves
- UMR CNRS 5805 EPOC, University of Bordeaux, Arcachon Marine Station, Place du Dr Peyneau, 33120 Arcachon, France.
| | - Jean-Paul Bourdineaud
- UMR CNRS 5805 EPOC, University of Bordeaux, Arcachon Marine Station, Place du Dr Peyneau, 33120 Arcachon, France.
| | - Dalila Saidane-Mosbahi
- Laboratory of Analysis Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir 5000, Tunisia
| |
Collapse
|
47
|
Aru V, Sarais G, Savorani F, Engelsen SB, Cesare Marincola F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. MARINE POLLUTION BULLETIN 2016; 107:292-299. [PMID: 27058966 DOI: 10.1016/j.marpolbul.2016.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of 48h heavy metal exposure upon the metabolic profiles of Ruditapes decussatus and Ruditapes philippinarum using (1)H NMR metabolomics. Both species were exposed to increasing concentrations of lead nitrate (10, 40, 60 and 100μg/L) and zinc chloride (20, 50, 100 and 150μg/L), under laboratory conditions. ICP-OES analysis was further performed on the clams' samples in order to verify the occurrence of heavy metal bioaccumulation. With respect to the controls, the metabolic profiles of treated R. decussatus exhibited higher levels of organic osmolytes and lower contents of free amino acids. An opposite behavior was shown by R. philippinarum. In terms of heavy metal, the exposure effects were more evident in the case of Pb rather than Zn. These findings show that NMR-based metabolomics has the required sensitivity and specificity for the identification of metabolites that can act as sensitive indicators of contaminant-induced stress.
Collapse
Affiliation(s)
- Violetta Aru
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy
| | - Giorgia Sarais
- Departement of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Francesco Savorani
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Søren Balling Engelsen
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Flaminia Cesare Marincola
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
48
|
Edge KJ, Johnston EL, Dafforn KA, Simpson SL, Kutti T, Bannister RJ. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:525-534. [PMID: 26970856 DOI: 10.1016/j.envpol.2016.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions.
Collapse
Affiliation(s)
- Katelyn J Edge
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Emma L Johnston
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW 2088, Australia
| | - Katherine A Dafforn
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Tina Kutti
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | |
Collapse
|
49
|
Ahmed M, Ahmad T, Liaquat M, Abbasi KS, Farid IBA, Jahangir M. Tissue specific metal characterization of selected fish species in Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:212. [PMID: 26951449 DOI: 10.1007/s10661-016-5214-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Concentration of various metals, i.e., zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and silver (Ag), was evaluated in five indigenous fish species (namely, silver carp, common carp, mahseer, thela fish, and rainbow trout), by using atomic absorption spectrophotometer. It is proved from this study that, overall, mahseer and rainbow trout had high amount of zinc, whereas thela fish and silver carp had high concentration of copper, chromium, silver, nickel, and lead, while common carp had highest amount of iron contents. Furthermore, a tissue-specific discrimination among various fish species was observed, where higher metal concentrations were noticed in fish liver, with decreasing concentration in other organs like skin, gills, and finally the least contents in fish muscle. Multivariate data analysis showed not only a variation in heavy metals among the tissues but also discrimination among the selected fish species.
Collapse
Affiliation(s)
- Mukhtiar Ahmed
- Section of Food Science and Technology, Department of Agricultural Sciences, University of Haripur, Haripur, Pakistan
| | - Taufiq Ahmad
- Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar, Pakistan
| | - Muhammad Liaquat
- Section of Food Science and Technology, Department of Agricultural Sciences, University of Haripur, Haripur, Pakistan
| | - Kashif Sarfraz Abbasi
- Department of Food Technology, PMAS University of Arid Agriculture, Rawalpindi, Pakistan
| | - Ibrahim Bayoumi Abdel Farid
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
- Department of Biology, Faculty of Science, Al-Jouf University, Sakaka, Al-Jouf, KSA
| | - Muhammad Jahangir
- Section of Food Science and Technology, Department of Agricultural Sciences, University of Haripur, Haripur, Pakistan.
| |
Collapse
|
50
|
Trevisan R, Mello DF, Delapedra G, Silva DGH, Arl M, Danielli NM, Metian M, Almeida EA, Dafre AL. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:105-119. [PMID: 26859778 DOI: 10.1016/j.aquatox.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10μM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Department of Aquaculture, Federal University of Santa Catarina, 88034-001 Florianópolis, Brazil.
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Gabriel Delapedra
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danilo G H Silva
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Miriam Arl
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Naissa M Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Marc Metian
- International Atomic Energy Agency-Environment Laboratories (IAEA-EL), 4a Quai Antoine 1er, MC-98000 Principality of Monaco, Monaco
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| |
Collapse
|