1
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
4
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Alshaalan KS, Albawardi TK, Zhra M, Bin Sulaiman N, Jnied OY, Saleem RA, Aljada A. Differential Expression of LMNA/C and Insulin Receptor Transcript Variants in Peripheral Blood Mononuclear Cells of Leukemia Patients. J Clin Med 2024; 13:2568. [PMID: 38731097 PMCID: PMC11084221 DOI: 10.3390/jcm13092568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Khalid Saud Alshaalan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Turki Khalid Albawardi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Norah Bin Sulaiman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Osama Yaheia Jnied
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Rimah Abdullah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| |
Collapse
|
6
|
Li J, Huang G. Insulin receptor alternative splicing in breast and prostate cancer. Cancer Cell Int 2024; 24:62. [PMID: 38331804 PMCID: PMC10851471 DOI: 10.1186/s12935-024-03252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer etiology represents an intricate, multifactorial orchestration where metabolically associated insulin-like growth factors (IGFs) and insulin foster cellular proliferation and growth throughout tumorigenesis. The insulin receptor (IR) exhibits two splice variants arising from alternative mRNA processing, namely IR-A, and IR-B, with remarkable distribution and biological effects disparities. This insightful review elucidates the structural intricacies, widespread distribution, and functional significance of IR-A and IR-B. Additionally, it explores the regulatory mechanisms governing alternative splicing processes, intricate signal transduction pathways, and the intricate association linking IR-A and IR-B splicing variants to breast and prostate cancer tumorigenesis. Breast cancer and prostate cancer are the most common malignant tumors with the highest incidence rates among women and men, respectively. These findings provide a promising theoretical framework for advancing preventive strategies, diagnostic modalities, and therapeutic interventions targeting breast and prostate cancer.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Gena Huang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China.
| |
Collapse
|
7
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Worrell SG, Alvarado CE, Thibault D, Towe CW, Mitchell JD, Vekstein A, Kosinski AS, Hartwig MG, Linden PA. Impact of Diabetes on Pathologic Response to Multimodality Therapy for Esophageal Cancer. Ann Thorac Surg 2024; 117:190-196. [PMID: 35970230 DOI: 10.1016/j.athoracsur.2022.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/03/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The incidence of esophageal cancer has increased faster than that of most cancers. Evidence from other malignant neoplasms suggests that diabetic patients have a worse response to multimodality therapy. We hypothesized that diabetic patients with esophageal cancer will have a decreased response to neoadjuvant chemotherapy and radiation therapy compared with nondiabetic patients. METHODS A retrospective study of The Society of Thoracic Surgeons General Thoracic Surgery Database identified all patients who had an esophagectomy after neoadjuvant therapy for esophageal cancer between 2012 and 2019. Patients were compared on the basis of the presence of diabetes. A pathologic complete response (pCR) was defined as ypT0 N0. The χ2 and Wilcoxon rank sum tests were used to compare patients' demographic and clinical characteristics between those with and those without diabetes. Multivariable logistic regression was used to evaluate the predictors of response to neoadjuvant therapy. RESULTS Of the 9171 patients who met inclusion criteria, 2011 (22%) patients were diabetic and 7160 (78%) patients were nondiabetic. Patients with diabetes were older, more likely to be male, and more likely to have all comorbidities. Univariate analysis revealed that diabetic patients were less likely to have pCR (16% vs 18%; P = .026). Although multivariable analysis showed a trend toward diabetic patients' having lower odds of achieving pCR, diabetes was not independently associated with pCR (odds ratio, 0.89; 95% CI, 0.78-1.01; P = .075). CONCLUSIONS Diabetic patients may be less likely than nondiabetic patients to achieve pCR after neoadjuvant treatment of esophageal cancer. This suggests the need for further exploration as diabetic patients with esophageal cancer can potentially benefit from different treatment paradigms compared with their nondiabetic counterparts.
Collapse
Affiliation(s)
- Stephanie G Worrell
- Division of Cardiothoracic Surgery, Section of Thoracic Surgery, Department of Surgery, University of Arizona, Tucson, Arizona.
| | - Christine E Alvarado
- Division of Thoracic and Esophageal Surgery, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Dylan Thibault
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Christopher W Towe
- Division of Thoracic and Esophageal Surgery, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - John D Mitchell
- Division of Cardiothoracic Surgery, Section of General Thoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Andrew Vekstein
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Andrzej S Kosinski
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Philip A Linden
- Division of Thoracic and Esophageal Surgery, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
9
|
Monteiro M, Zhang X, Yee D. Insulin promotes growth in breast cancer cells through the type I IGF receptor in insulin receptor deficient cells. Exp Cell Res 2024; 434:113862. [PMID: 38036052 PMCID: PMC10842809 DOI: 10.1016/j.yexcr.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Breast cancer is the most common cancer in women. The upregulation of insulin-like growth factor (IGF) system observed in certain types of breast cancers was linked to growth, metastasis, and survival resulting in multiple strategies designed to target the type I IGF receptor (IGF-1R) in breast cancer. These attempts failed to prove beneficial and it has been suggested that insulin receptor (IR) could also play an important role in breast cancer biology. To better understand the IR's role in breast cancer cells, the receptor was deleted from MCF-7L cells using CRISPR technology, and fluorescence-assisted cell sorting was used to obtain clone 35 (CL35). It was found that CL35 activated signaling pathways upon insulin stimulation despite the absence of IR expression. We hypothesized that CL35 used a surrogate receptor for sustained growth and development. IGF-1R was able to activate insulin signaling and growth in CL35. Thus, insulin may play a central role in regulating breast cancer growth due to its ability to activate all the receptors of the IGF family. These findings argue that dual targeting of IR and IGF-IR may be required to inhibit breast cancer growth.
Collapse
Affiliation(s)
- Marvis Monteiro
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA; Purdue University, Heine Pharmacy Building, 575 Stadium Mall Drive, West Lafayette, IN, 47907-2091, USA
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Beihaghi M, Sahebi R, Beihaghi MR, Nessiani RK, Yarasmi MR, Gholamalizadeh S, Shahabnavaie F, Shojaei M. Evaluation of rs10811661 polymorphism in CDKN2A / B in colon and gastric cancer. BMC Cancer 2023; 23:985. [PMID: 37845622 PMCID: PMC10577985 DOI: 10.1186/s12885-023-11461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
One of the causes of colon and gastric cancer is the dysregulation of carcinogenic genes, tumor inhibitors, and micro-RNA. The purpose of this study is to apply rs10811661 polymorphism in CDKN2A /B gene as an effective biomarker of colon cancer and early detection of gastric cancer. As a result,400 blood samples, inclusive of 200 samples from healthy individuals and 200 samples (100 samples from intestinal cancer,100 samples from stomach cancer) from the blood of someone with these cancers, to determine the genotype of genes in healthful and ill people through PCR-RFLP approach and Allelic and genotypic tests of SPSS software. To observe the connection between gastric cancer and bowel cancer risk and genotypes, the t-student test for quantitative variables and Pearson distribution for qualitative variables have been tested and the results have been evaluated using the Chi-square test. The effects confirmed that the highest frequency of TT genotypes is in affected individuals and CC genotype is in healthful individuals. In addition, it confirmed that women were more inclined than men to T3 tumor invasion and most grade II and III colon cancers, and in older sufferers with gastric cancer, the grade of tumor tended to be grade I. Among genetic variety and rs10811661, with invasiveness, there is a tumor size and degree in the affected person. In summary, our findings suggest that the rs10811661 polymorphism of the CDKN2A / B gene is strongly associated with the occurrence of intestinal cancer and stomach is linked to its potential role as a prognostic biomarker for the management of bowel cancer and stomach.
Collapse
Affiliation(s)
- Maria Beihaghi
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran.
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Beihaghi
- Department of Public Health, Sheffield Hallam University, Sheffield, South Yorkshire, England
| | | | | | | | | | - Mitra Shojaei
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
13
|
Hawash M, Al-Smadi D, Kumar A, Olech B, Dominiak PM, Jaradat N, Antari S, Mohammed S, Nasasrh A, Abualhasan M, Musa A, Suboh S, Çapan İ, Qneibi M, Natsheh H. Characterization and Investigation of Novel Benzodioxol Derivatives as Antidiabetic Agents: An In Vitro and In Vivo Study in an Animal Model. Biomolecules 2023; 13:1486. [PMID: 37892167 PMCID: PMC10604990 DOI: 10.3390/biom13101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we synthesized benzodioxol carboxamide derivatives and investigated their antidiabetic potential. The synthesized compounds (Ia-Ic and IIa-IId) underwent characterization via HRMS, 1H-, 13CAPT-NMR, and MicroED. Their efficacy against α-amylase was assessed in vitro, while MTS assays were employed to gauge cytotoxicity across cancer and normal cell lines. Additionally, the antidiabetic impact of compound IIc was evaluated in vivo using a streptozotocin-induced diabetic mice model. Notably, IIa and IIc displayed potent α-amylase inhibition (IC50 values of 0.85 and 0.68 µM, respectively) while exhibiting a negligible effect on the Hek293t normal cell line (IC50 > 150 µM), suggesting their safety. Compound IId demonstrated significant activity against four cancer cell lines (26-65 µM). In vivo experiments revealed that five doses of IIc substantially reduced mice blood glucose levels from 252.2 mg/dL to 173.8 mg/dL in contrast to the control group. The compelling in vitro anticancer efficacy of IIc and its safety for normal cells underscores the need for further in vivo assessment of this promising compound. This research highlights the potential of benzodioxol derivatives as candidates for the future development of synthetic antidiabetic drugs.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Derar Al-Smadi
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus 00970, Palestine;
| | - Anil Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.K.); (B.O.); (P.M.D.)
| | - Barbara Olech
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.K.); (B.O.); (P.M.D.)
- Centre of New Technologies, University of Warsaw, ul. S. Banacha 2c, 02-097 Warsaw, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.K.); (B.O.); (P.M.D.)
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Sarah Antari
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Sarah Mohammed
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Ala’a Nasasrh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| | - Ahmed Musa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (A.M.); (S.S.); (M.Q.)
| | - Shorooq Suboh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (A.M.); (S.S.); (M.Q.)
| | - İrfan Çapan
- Department of Material and Material Processing Technologies, Technical Sciences Vocational College, Gazi University, 06560 Ankara, Turkey;
- Basic and Engineering Sciences Central Laboratory Application and Research Center (GUTMAM), Gazi University, 06500 Ankara, Turkey
| | - Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (A.M.); (S.S.); (M.Q.)
| | - Hiba Natsheh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine; (N.J.); (S.A.); (S.M.); (A.N.); (M.A.)
| |
Collapse
|
14
|
Cigrovski Berkovic M, Giovanardi F, Mrzljak A, Lai Q. Prognostic role of metformin in diabetes mellitus type 2 patients with hepatocellular carcinoma: A systematic review and meta-analysis. World J Diabetes 2023; 14:1289-1300. [PMID: 37664473 PMCID: PMC10473950 DOI: 10.4239/wjd.v14.i8.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the commonest malignancies associated with significant cancer-related death. The identification of chemo-preventive agents following HCC treatments with the potential to lower the risk of HCC adverse course is intriguing. Metformin, a first-line agent used in the treatment of type 2 diabetes mellitus (T2DM), has been associated with inhibition of HCC growth. AIM To determine whether metformin can prevent adverse events (i.e., death, tumor progression, and recurrence) after any HCC treatment in T2DM patients. METHODS A systematic review of the published literature was undertaken focused on the role of metformin on outcomes in patients with T2DM and HCC receiving any tumor therapy. A search of the PubMed and Cochrane Central Register of Con-trolled Trials Databases was conducted. RESULTS A total of 13 studies (n = 14886 patients) were included in this review. With regard to the risk of death, a decreased risk was reported in cases receiving metformin, although this decrease was not statistically significant [odds ratio (OR) = 0.89, P = 0.42]. When only patients treated with curative strategies were considered, a more marked correlation between metformin and favorable cases was reported (OR = 0.70, P = 0.068). When analyzing palliative treatment, there was no statistical significance in terms of the correlation between metformin and favorable cases (OR = 0.74, P = 0.66). As for the risks of progressive disease and recurrence, no obvious correlation between metformin use and reduced risk was reported. When sub-analyses were performed for patients from different regions, the results for patients from Eastern countries showed a tendency for decreased risk of death in T2DM cases receiving metformin (OR = 0.69, P = 0.17), but the same was not seen in patients from Western countries (OR = 1.19, P = 0.31). CONCLUSION Metformin failed to show a marked impact in preventing adverse effects after HCC treatment. A trend was reported in T2DM cases receiving curative therapies in relation to the risk of death, especially in patients from Eastern regions. Great heterogeneity was reported among the different studies. Further large studies are required to definitively clarify the real impact of metformin as a chemopreventive agent for HCC.
Collapse
Affiliation(s)
- Maja Cigrovski Berkovic
- Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb, Zagreb 10000, Croatia
| | - Francesco Giovanardi
- General Surgery and Organ Transplantation Unit, Department of Surgery, Sapienza University of Rome, Rome 00018, Italy
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb 10000, Croatia
- Department of Medicine, School of Medicine, Zagreb 10000, Croatia
| | - Quirino Lai
- General Surgery and Organ Transplantation Unit, Department of Surgery, Sapienza University of Rome, Rome 00018, Italy
| |
Collapse
|
15
|
Sharafutdinova KI, Shlyapina VS, Baeva AI, Timurshin AA, Sabanaeva IE, Nakieva AG, Kalashnikova MF, Khabibov MN. [Diabetes mellitus and the female reproductive system tumors]. PROBLEMY ENDOKRINOLOGII 2023; 69:103-110. [PMID: 37448252 DOI: 10.14341/probl13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023]
Abstract
The article discusses various pathophysiological conditions and processes that lead to the development of tumors in diabetes mellitus. These include obesity, hyperglycemia, hyperinsulinemia, inflammation, and oxidative stress. The data of epidemiological studies are given, in which it was found that diabetes mellitus (both type 1 and type 2) increases the risk of developing the female reproductive system tumors, such as ovarian cancer, endometrial cancer, while for cervical cancer, vaginal cancer and vulvar cancer, such a relationship has not been clearly identified.
Collapse
Affiliation(s)
| | - V S Shlyapina
- Russian National Research Medical University named after N.I. Pirogov
| | - A I Baeva
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | - M N Khabibov
- First Moscow State Medical University (Sechenov University)
| |
Collapse
|
16
|
Queiroga LDL, Pitta RM, Trevisani MDF, Montenegro CGDSP, Bugano DDG, Figueira Junior AJ, Baker JS, Bocalini DS, Matos LDNJD. Is physical inactivity and sedentary behavior associated with tumor stage in breast cancer patients? A cross-sectional study of Brazilian women. EINSTEIN-SAO PAULO 2023; 21:eAO0215. [PMID: 37341217 DOI: 10.31744/einstein_journal/2023ao0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE A comparative analysis of the association between sedentary behavior versus physical activity levels and tumor staging in women with breast cancer. METHODS The present research adopted a cross-sectional study design to recruit a total of 55 adult and elderly women newly diagnosed with breast cancer for data collection and analysis. Inclusion criteria involved patients in procession of a formal approval for participation in the study by the treating physician and those not hitherto subjected to the first cycle of chemotherapy. RESULTS Physical activity levels did not influence the pathological stage of breast cancer (p=0.26) or histological tumor grade (p=0.07) in the analyzed subjects. However, there was a significant association between physical activity levels and responsiveness to hormones (epidermal growth factor receptor (HER2), p<0.05) in the analyzed subjects. Significant difference was detected in the histological tumor grade in relation to the mean time spent sitting during the weekend (p<0.05). However, sedentary behavior had no influence on the tumor stage (p>0.05). CONCLUSION Physical activity levels did not influence the tumor stage and histological tumor grade. Sedentary behavior had a significant influence on the histological tumor grade.
Collapse
|
17
|
Diversity of Structural, Dynamic, and Environmental Effects Explain a Distinctive Functional Role of Transmembrane Domains in the Insulin Receptor Subfamily. Int J Mol Sci 2023; 24:ijms24043906. [PMID: 36835322 PMCID: PMC9965288 DOI: 10.3390/ijms24043906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.
Collapse
|
18
|
Lambova SN. Pleiotropic Effects of Metformin in Osteoarthritis. Life (Basel) 2023; 13:life13020437. [PMID: 36836794 PMCID: PMC9960992 DOI: 10.3390/life13020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
The involvement of the knee joint is the most common localization of the pathological process in osteoarthritis (OA), which is associated with obesity in over 50% of the patients and is mediated by mechanical, inflammatory, and metabolic mechanisms. Obesity and the associated conditions (hyperglycemia, dyslipidemia, and hypertension) have been found to be risk factors for the development of knee OA, which has led to the emerging concept of the existence of a distinct phenotype, i.e., metabolic knee OA. Combined assessment of markers derived from dysfunctional adipose tissue, markers of bone and cartilage metabolism, as well as high-sensitivity inflammatory markers and imaging, might reveal prognostic signs for metabolic knee OA. Interestingly, it has been suggested that drugs used for the treatment of other components of the metabolic syndrome may also affect the clinical course and retard the progression of metabolic-associated knee OA. In this regard, significant amounts of new data are accumulating about the role of metformin-a drug, commonly used in clinical practice with suggested multiple pleiotropic effects. The aim of the current review is to analyze the current views about the potential pleiotropic effects of metformin in OA. Upon the analysis of the different effects of metformin, major mechanisms that might be involved in OA are the influence of inflammation, oxidative stress, autophagy, adipokine levels, and microbiome modulation. There is an increasing amount of evidence from in vitro studies, animal models, and clinical trials that metformin can slow OA progression by modulating inflammatory and metabolic factors that are summarized in the current up-to-date review. Considering the contemporary concept about the existence of metabolic type knee OA, in which the accompanying obesity and systemic low-grade inflammation are suggested to influence disease course, metformin could be considered as a useful and safe component of the personalized therapeutic approach in knee OA patients with accompanying type II diabetes or obesity.
Collapse
Affiliation(s)
- Sevdalina Nikolova Lambova
- Department of Propaedeutics of Internal Diseases “Prof Dr Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department in Rheumatology, MHAT “Sveti Mina”, 4002 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
20
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
21
|
McGeagh L, Robles LA, Persad R, Rowe E, Bahl A, Aning J, Koupparis A, Abrams P, Perks C, Holly J, Johnson L, Shiridzinomwa C, Challapalli A, Shingler E, Taylor H, Oxley J, Sandu M, Martin RM, Lane JA. Prostate cancer-Exercise and Metformin Trial (Pre-EMpT): study protocol for a feasibility factorial randomized controlled trial in men with localised or locally advanced prostate cancer. Pilot Feasibility Stud 2022; 8:179. [PMID: 35962445 PMCID: PMC9372971 DOI: 10.1186/s40814-022-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Evidence from observational studies have shown that moderate intensity physical activity can reduce risk of progression and cancer-specific mortality in participants with prostate cancer. Epidemiological studies have also shown participants taking metformin to have a reduced risk of prostate cancer. However, data from randomised controlled trials supporting the use of these interventions are limited. The Prostate cancer–Exercise and Metformin Trial examines that feasibility of randomising participants diagnosed with localised or locally advanced prostate cancer to interventions that modify physical activity and blood glucose levels. The primary outcomes are randomisation rates and adherence to the interventions over 6 months. The secondary outcomes include intervention tolerability and retention rates, measures of insulin-like growth factor I, prostate-specific antigen, physical activity, symptom-reporting, and quality of life. Methods Participants are randomised in a 2 × 2 factorial design to both a physical activity (brisk walking or control) and a pharmacological (metformin or control) intervention. Participants perform the interventions for 6 months with final measures collected at 12 months follow-up. Discussion Our trial will determine whether participants diagnosed with localised or locally advanced prostate cancer, who are scheduled for radical treatments or being monitored for signs of cancer progression, can be randomised to a 6 months physical activity and metformin intervention. The findings from our trial will inform a larger trial powered to examine the clinical benefits of these interventions. Trial registration Prostate Cancer Exercise and Metformin Trial (Pre-EMpT) is registered on the ISRCTN registry, reference number ISRCTN13543667. Date of registration 2nd August 2018–retrospectively registered. First participant was recruited on 11th September 2018.
Collapse
Affiliation(s)
- Lucy McGeagh
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK.,Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
| | - Luke A Robles
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Raj Persad
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | - Edward Rowe
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | - Amit Bahl
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Jonathan Aning
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | | | - Paul Abrams
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | - Claire Perks
- Insulin-like Growth Factors and Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jeffrey Holly
- Insulin-like Growth Factors and Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lyndsey Johnson
- Clinical Research Centre, North Bristol NHS Trust, Bristol, UK
| | | | - Amarnath Challapalli
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Ellie Shingler
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Hilary Taylor
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK.,Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Meda Sandu
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Richard M Martin
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK.,Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - J Athene Lane
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK. .,Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
22
|
George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, Mohammed L. The Role of Type 2 Diabetes in Pancreatic Cancer. Cureus 2022; 14:e26288. [PMID: 35898377 PMCID: PMC9308974 DOI: 10.7759/cureus.26288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) and its potential complications, such as cancers, are increasing worldwide at an astounding rate. There are many factors such as obesity, diabetes, alcohol consumption, and the adoption of sedentary lifestyles that are driving pancreatic cancer (PC) to become one of the leading causes of cancer mortality in the United States. PC is notorious for its generic symptoms and late-stage presentation with rapid metastasis. The connection between T2DM and the risk of PC development is multifaceted and complex. Some of the proposed theories reveal that chronic inflammation, insulin resistance, hyperinsulinemia, hyperglycemia, and abnormalities in the insulin and insulin-like growth factor axis (IGF) contribute to the disease association between these two conditions. This literature review aims to highlight relevant studies and explore the molecular mechanisms involved in the etiology of diabetes and its impact on PC development, as well as the role of anti-diabetic agents on PC. Despite extensive studies, the exact interaction between T2DM and PC remains obscure and will need further investigation. According to current knowledge, there is a substantial link between diabetes, obesity, and dietary patterns in the development and progression of PC. Consequently, focusing our efforts on preventive measures by reducing modifiable risk factors remains the most effective strategy to reduce the risk of PC at this time. Antidiabetic drugs can have various effects on the occurrence and prognosis of PC with metformin offering a clear benefit of inhibiting PC and insulin increasing the risk of PC. The development of future novel therapies will require a deeper knowledge of the triggering mechanisms and interplay between these two disease states.
Collapse
|
23
|
Leitão C, Matos B, Roque F, Herdeiro MT, Fardilha M. The Impact of Lifestyle on Prostate Cancer: A Road to the Discovery of New Biomarkers. J Clin Med 2022; 11:2925. [PMID: 35629050 PMCID: PMC9148038 DOI: 10.3390/jcm11102925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and its incidence has been rising through the years. Several risk factors have been associated with this disease and unhealthy lifestyles and inflammation were appointed as major contributors for PCa development, progression, and severity. Despite the advantages associated with the currently used diagnostic tools [prostate-specific antigen(PSA) serum levels and digital rectal examination (DRE)], the development of effective approaches for PCa diagnosis is still necessary. Finding lifestyle-associated proteins that may predict the development of PCa seems to be a promising strategy to improve PCa diagnosis. In this context, several biomarkers have been identified, including circulating biomarkers (CRP, insulin, C-peptide, TNFα-R2, adiponectin, IL-6, total PSA, free PSA, and p2PSA), urine biomarkers (PCA3, guanidine, phenylacetylglycine, and glycine), proteins expressed in exosomes (afamin, vitamin D-binding protein, and filamin A), and miRNAs expressed in prostate tissue (miRNA-21, miRNA-101, and miRNA-182). In conclusion, exploring the impact of lifestyle and inflammation on PCa development and progression may open doors to the identification of new biomarkers. The discovery of new PCa diagnostic biomarkers should contribute to reduce overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Catarina Leitão
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Bárbara Matos
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Roque
- Research Unit for Inland Development, Polytechnic of Guarda (UDI-IPG), Avenida Doutor Francisco Sá Carneiro, 6300-559 Guarda, Portugal;
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
25
|
Bilusic M, Toney NJ, Donahue RN, Wroblewski S, Zibelman M, Ghatalia P, Ross EA, Karzai F, Madan RA, Dahut WL, Gulley JL, Schlom J, Plimack ER, Geynisman DM. A randomized phase 2 study of bicalutamide with or without metformin for biochemical recurrence in overweight or obese prostate cancer patients (BIMET-1). Prostate Cancer Prostatic Dis 2022; 25:735-740. [PMID: 35079115 PMCID: PMC9309187 DOI: 10.1038/s41391-022-00492-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Metformin may have anticancer effects that are independent of its hypoglycemic effects. Retrospective studies have shown that metformin use is associated with decreased incidence of prostate cancer and prostate cancer-specific mortality. Preclinical studies suggesting additive anticancer effects of combining metformin and bicalutamide prompted this clinical trial (NCT02614859). METHODS This open-label, randomized, phase 2 trial enrolled non-diabetic patients with biochemically recurrent prostate cancer, a PSADT of 3-9 months, BMI > 25 and normal testosterone. Patients were randomized 1:2 to observation for an initial 8 weeks (Arm A) or metformin 1000 mg twice daily (Arm B). Bicalutamide 50 mg/day was added after 8 weeks to both arms. The primary objective was to evaluate the number of patients with undetectable PSA ( < 0.2 ng/mL) at the end of 32 weeks. Immune correlatives were assessed as exploratory endpoints. RESULTS A total of 29 patients were enrolled from March 2015 to January 2020. No difference was seen between the 2 arms in the proportion of patients with undetectable PSA. Modest PSA decrease ranging from 4% to 24% were seen in 40.0% (95% CI: 19.1-64.0%) of patients with metformin monotherapy, compared to 11.1% (95% CI: 0.3-48.3%) in the observation arm. Metformin monotherapy reduced PD-1+ NK cells, and increased NKG2D+ NK cells. The combination of metformin and bicalutamide led to greater reductions in PD-1 expressing NK, CD4+ T, and CD8+ T-cell subsets compared to bicalutamide alone. The trial was stopped early due to predicted inability to achieve its primary endpoint. CONCLUSIONS Although metformin plus bicalutamide was well tolerated, there was no improvement in rates of achieving undetectable PSA at 32 weeks. Metformin monotherapy induced modest PSA declines in 40% of patients after 8 weeks. Metformin, given alone and in combination with bicalutamide, displayed immune modifying effects, primarily within NK and T cells subsets. TRIAL REGISTRATION Trial Registration Number: NCT02614859.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, 33136, USA.
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Wroblewski
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Zibelman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pooja Ghatalia
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth R Plimack
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Daniel M Geynisman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
26
|
Huang Y, Han X, Chang T, Li FF, Chen X, She YQ. Serum ErbB2 concentration positively correlated to the glycemic variations in newly diagnosed Type 2 diabetic patients. Sci Rep 2022; 12:4940. [PMID: 35322023 PMCID: PMC8943124 DOI: 10.1038/s41598-022-07549-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Evidences indicate that elevated levels of circulating ErbB2 are closely associated with increased incidence of diabetes. However, the relationship between ErbB2 concentration and glycemic variations (GV) in type 2 diabetic (T2D) patients remains elucidated. The aim of this study was to assess whether there is an association between serum ErbB2 concentration and GV in newly diagnosed T2D patients. This was a three-center, and observational study. Between April 2019 and July 2019, a total of 106 newly diagnosed T2D patients were recruited. All recruited subjects were admitted as inpatients and received anti-diabetes agents free during the study period. At baseline, fasting serum was collected for ErbB2 measurement and all recruited patients were subjected a prospective CGM for at least 3 days. The primary endpoint was the relationships between ErbB2 concentrations and GV in T2D patients. Data of a total of 95 subjects who met the inclusion criteria were analyzed at the endpoint. Subjects were divided into quartiles according to their serum ErbB2 concentrations. We observed that subjects with an elevated level of ErbB2 had a higher value of GV in terms of mean amplitude of glucose excursion (MAGE), standard deviation of mean glucose (SDMG), and the coefficient of variation (CV%) than those with lower levels (all P < 0.05). Multiple linear regression analyzes after adjusting for confounder factors indicate that serum ErbB2 levels were significantly positively correlated with the MAGE (β = 0.664, t = 7.218, P < 0.01), SD (β = 0.469, t = 5.125, P < 0.01) and CV% (β = 0.337, t = 4.442, P < 0.01), respectively. Our data indicated that diabetic patients with higher ErbB2 concentrations may have large GV, which is an independent risk factor for microvascular and macrovascular complications.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Nanjing, China
| | - Xia Han
- Department of Endocrinology, Zhimaying Community Health Service Center, Qinhuai District, Nanjing, China
| | - Ting Chang
- Department of Nursing School, Nanjing University of Chinese Medicine, No. 282 Hanzhong Road, Nanjing, 210023, China
| | - Feng-Fei Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuan Chen
- Department of Nursing School, Nanjing University of Chinese Medicine, No. 282 Hanzhong Road, Nanjing, 210023, China.
| | - Yu-Qing She
- Department of Endocrinology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Provence Hospital, No. 166 Shanghe Street, Pukou District, Nanjing, 210056, China.
| |
Collapse
|
27
|
Qi X, He P, Yao H, Sun H, Qi J, Cao M, Cui B, Ning G. Insulin therapy and biliary tract cancer: insights from real-world data. Endocr Connect 2022; 11:EC-21-0546.R2. [PMID: 35148280 PMCID: PMC8942312 DOI: 10.1530/ec-21-0546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The association between insulin therapy and the risk of biliary tract cancer (BTC) is uncertain. We aimed to assess this risk in type 2 diabetic patients. METHODS Using electronic medical data from the Shanghai Hospital Link database, 202,557 patients with type 2 diabetes (164,997 insulin never-users and 37,560 insulin ever-users) were identified in this study between January 1, 2013, and December 31, 2016, with follow-up until December 31, 2019. By propensity score matching, an ever-user was matched with a never-user. Cox proportional hazards regression analysis was used to estimate risk ratios (HRs) and 95% CIs for three subtypes of BTC (intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC)). RESULTS At a mean follow-up of 5.33 years, 143 cases of BTC were observed. The crude incidence rates (per 100,000 person-years) of ECC, ICC, and GBC in ever-users:never-users were 10.22:3.63, 2.04:2.04, and 8.17:6.01, respectively. Insulin therapy was associated with an increased risk of ECC (HR, 4.10; 95% CI, 1.54-10.92; P = 0.005) compared to patients who never used insulin. No statistically significant results were observed for insulin and ICC/GBC. Consistent results were also found in the original cohort. CONCLUSIONS The relationship between insulin therapy and BTC is type-specific. Further studies are warranted to provide evidence on the identification of ECC risk groups among type 2 diabetic patients.
Collapse
Affiliation(s)
- Xiaohui Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping He
- Shanghai Hospital Link Center, Shanghai Hospital Development Center, Shanghai, China
| | - Huayan Yao
- Computer Net Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jiying Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cui
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to B Cui or G Ning: or
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to B Cui or G Ning: or
| |
Collapse
|
28
|
Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol (Lausanne) 2022; 13:800995. [PMID: 35222270 PMCID: PMC8873103 DOI: 10.3389/fendo.2022.800995] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies suggest associations between diabetes mellitus and some cancers. The risk of a number of cancers appears to be increased in diabetes mellitus. On the other hand, some cancer and cancer therapies could lead to diabetes mellitus. Genetic factors, obesity, inflammation, oxidative stress, hyperglycemia, hyperinsulinemia, cancer therapies, insulin and some oral hypoglycemic drugs appear to play a role in the crosstalk between diabetes mellitus and cancers. This review summarized the associations between various types of diabetes and cancers and updated available evidence of underlying mechanisms between diabetes and cancers.
Collapse
Affiliation(s)
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Chen N, Zhou YS, Wang LC, Huang JB. Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review). Oncol Rep 2022; 47:55. [PMID: 35039878 PMCID: PMC8808708 DOI: 10.3892/or.2022.8266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic approaches that target the metabolism of tumor cells have been a popular research topic in recent years. Previous studies have demonstrated that glycolysis inhibitors reduce the proliferation of non‑small cell lung cancer (NSCLC) cells by interfering with the aerobic glycolytic pathway. However, the mitochondrial oxidative phosphorylation (OXPHOS) pathway in tumor cells has also been implicated in lung cancer metabolism. Metformin, a known inhibitor of mitochondrial OXPHOS, has been indicated to reduce NSCLC morbidity and mortality in clinical studies. The present article reviewed the therapeutic effects of metformin against NSCLC, both as a single agent and combined with other anticancer treatments, in order to provide a theoretical basis for its clinical use in adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Na Chen
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Yi-Shu Zhou
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
30
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Cirillo F, Pellegrino M, Talia M, Perrotta ID, Rigiracciolo DC, Spinelli A, Scordamaglia D, Muglia L, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancer-associated fibroblasts. Clin Transl Med 2021; 11:e516. [PMID: 34841688 PMCID: PMC8567034 DOI: 10.1002/ctm2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of PhysicsUniversity of CalabriaRendeItaly
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, and Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | | | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rita Guzzi
- Department of PhysicsUniversity of CalabriaRendeItaly
| | | | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of CataniaGaribaldi‐Nesima HospitalCataniaItaly
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| |
Collapse
|
32
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Bou Malhab LJ, Abdel-Rahman WM. Obesity and inflammation: colorectal cancer engines. Curr Mol Pharmacol 2021; 15:620-646. [PMID: 34488607 DOI: 10.2174/1874467214666210906122054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah. United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah. United Arab Emirates
| |
Collapse
|
34
|
Capik O, Sanli F, Kurt A, Ceylan O, Suer I, Kaya M, Ittmann M, Karatas OF. CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 2021; 24:891-902. [PMID: 33753875 DOI: 10.1038/s41391-021-00353-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed among men after lung cancer in developed countries. Investigation of the underlying molecular mechanisms of PCa is urgently needed in order to develop better therapeutic strategies and to reveal more effective therapeutic targets. In this study, we aimed at exploring the potential functions of CASC11 in association with miR-145 and IGF1R during the malignant progression of PCa cells. METHODS We initially investigated the oncogenic potential of noncoding members of CASC gene family and analyzed the effects of CASC11 overexpression on proliferation, migration, and colony formation ability of DU145, LNCaP, and PC3 PCa cells. We, then, exprlored the association of CASC11, miR-145, and IGF1R expression and their impacts on PI3K/AKT/mTOR signaling pathway in in vitro models. RESULTS In silico analysis revealed that of the CASC family only CASC11 showed consistent results considering its differential expression as well as its association with the overall survival of patients. We demonstrated that ectopic overexpression of CASC11 significantly increased the proliferation, colony formation, and migration capacity in all three cell lines. CASC11 overexpression caused suppression of miR-145 and overexpression of IGF1R, leading to activation of PI3K/AKT/mTOR signaling pathway. CONCLUSION In summary, we found that CASC11 is upregulated in PCa cells and clinical tumor samples in comparison to corresponding controls and revealed that ectopic CASC11 overexpression promotes cellular phenotypes associated with PCa progression through CASC11/miR-145/IGF1R axis.
Collapse
Affiliation(s)
- Ozel Capik
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ali Kurt
- Department of Pathology, Erzurum Faculty of Medicine, Health Sciences University, Erzurum, Turkey
| | - Onur Ceylan
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VAMC, Houston, TX, USA
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey. .,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
35
|
Jaiswal P, Tripathi V, Nayak A, Kataria S, Lukashevich V, Das A, Parmar HS. A molecular link between diabetes and breast cancer: Therapeutic potential of repurposing incretin-based therapies for breast cancer. Curr Cancer Drug Targets 2021; 21:829-848. [PMID: 34468298 DOI: 10.2174/1568009621666210901101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.
Collapse
Affiliation(s)
- Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Shreya Kataria
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Vladimir Lukashevich
- Institute of Physiology of the National Academy of Sciences of Belarus, Minsk-220072. Belarus
| | - Apurba Das
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | | |
Collapse
|
36
|
Bellinato F, Gisondi P, Girolomoni G. Risk of lymphohematologic malignancies in patients with chronic plaque psoriasis: A systematic review with meta-analysis. J Am Acad Dermatol 2021; 86:86-96. [PMID: 34363908 DOI: 10.1016/j.jaad.2021.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The association between chronic plaque psoriasis and lymphohematologic malignancies (LHMs) remains controversial. OBJECTIVE To investigate the risk of LHMs in patients with psoriasis according to the best evidence. METHODS A systematic review and meta-analysis of observational cohort studies was undertaken to assess the association of psoriasis with different LHMs. A literature search for relevant studies was performed on February 28, 2021. The random-effects model in conducting meta-analyses was applied. To evaluate the risk of bias, the Newcastle-Ottawa Scale was employed. RESULTS A total of 25 observational studies were selected, comprising collectively 2,501,652 subjects. A significantly increased risk for LHM (hazard ratio [HR], 1.55; 1.24-2.94) and lymphoma (HR, 1.27; 1.08-1.50) in patients with moderate-to-severe plaque psoriasis compared to the general population was found. In detail, increased risks for Hodgkin lymphoma (HR, 1.71; 1.27-2.30), non-Hodgkin lymphoma (HR, 1.27; 1.08-1.50), multiple myeloma (HR, 1.32; 1.03-1.69), and leukemia (HR, 1.28; 1.00-1.65) were found. The risk of cutaneous T-cell lymphoma was markedly augmented in patients with psoriasis (HR, 6.22; 3.39-11.42). LIMITATIONS Possible ascertainment bias related to the diagnosis of LHMs. CONCLUSION The increased risk of LHMs, particularly cutaneous T-cell lymphoma, in patients with psoriasis could be related to exposure to systemic immunosuppressive therapies, comorbidities, and sustained immune activation, particularly in the skin.
Collapse
Affiliation(s)
- Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy.
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Berk Ş, Janssen JAMJL, van Koetsveld PM, Dogan F, Değerli N, Özcan S, Kelestimur F, Hofland LJ. Modifying Effects of Glucose and Insulin/Insulin-Like Growth Factors on Colon Cancer Cells. Front Oncol 2021; 11:645732. [PMID: 34290976 PMCID: PMC8287530 DOI: 10.3389/fonc.2021.645732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/08/2021] [Indexed: 01/26/2023] Open
Abstract
There are only a few experimental studies which have investigated effects of glucose alone, and glucose in combination with insulin/insulin-like growth factors (IGF) on the growth of colon cancer. In the present study, we studied in vitro in human colorectal cancer cells originating from four Dukes' stages of colorectal cancer the effects of glucose, insulin and IGFs on proliferation, migration, cell cycle progression and gene expression of the IGF system. Growth of colon cancer cells originating from a Dukes' stage A was glucose-dependent, whereas growth of cancer cells from Dukes' stage B, C and D was glucose-independent. Stimulatory effects of insulin and IGFs on cell growth were observed only in colon cancer cells originating from Dukes' stage C and D. IGF-II stimulated migration in Dukes' stage B cells only. The growth stimulatory effects in Dukes' stage C and D colorectal cancer cells were accompanied by G2/M arrest and associated with an increased IGF-IR/IGF-II receptor ratio. In conclusion, our in vitro data suggest that the stimulating effects of glucose, IGFs and insulin on proliferation differ between colorectal cancer cells from early and late Dukes' stages. Stimulatory effects of glucose on proliferation appear predominantly present in stage Dukes' stage A colorectal cancer cells, while in contrast growth factor-mediated stimulation of cell proliferation is more pronounced in Dukes' late stage (metastasized) colorectal cancer cells. Moreover, our study suggests that a stringent glucose control may be important to control tumor growth in early stages of colorectal cancer, while inhibition of the endocrine actions of the IGFs and insulin become more important in the late (metastasized) stages of colorectal cancer to restrain growth of colon cancer cells.
Collapse
Affiliation(s)
- Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.,Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joseph A M J L Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Naci Değerli
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Yeditepe University, Faculty of Medicine, Istanbul, Turkey
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
38
|
Hui T, Shang C, Yang L, Wang M, Li R, Song Z. Metformin improves the outcomes in Chinese invasive breast cancer patients with type 2 diabetes mellitus. Sci Rep 2021; 11:10034. [PMID: 33976288 PMCID: PMC8113316 DOI: 10.1038/s41598-021-89475-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Early reports indicate that metformin, a clinical drug administered to treat type 2 diabetes mellitus (T2DM), was found to be associated with a better prognosis of cancer. The objective of this study was retrospectively analyzed the effect of metformin on the outcomes of Chinese breast cancer patients with T2DM. A total of 3757 primary invasive breast cancer patients who underwent surgery from January 2010 to December 2013 were enrolled. According to the medication treatment, all the patients were divided as non-diabetes group, metformin group and insulin group. The follow-up data for disease-free survival (DFS) and overall survival (OS) were obtained from 3553 patients (median follow up of 85 months) and estimated with the Kaplan–Meier method followed by a log-rank test. Multivariate Cox proportional hazards regression model was applied. The results showed that there was a significant survival difference among non-diabetes group, metformin group and insulin group, 5-year DFS was 85.8%, 96.1%, 73.0%, and 5-year OS was 87.3%, 97.1%, 73.3% respectively (P < 0.05). Prognostic analysis showed metformin was significantly associated with better DFS and OS. Our results suggested that metformin may have a good effect on the survival of invasive breast cancer patients with T2DM.
Collapse
Affiliation(s)
- Tianli Hui
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China
| | - Chao Shang
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China
| | - Liu Yang
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China
| | - Meiqi Wang
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China
| | - Ruoyang Li
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China
| | - Zhenchuan Song
- Breast Center, Hebei Medical University Fourth Affiliated Hospital, No. 169 Tianshan Street, Shijiazhuang, 050035, China.
| |
Collapse
|
39
|
Yang Q, Zang HM, Xing T, Zhang SF, Li C, Zhang Y, Dong YH, Hu XW, Yu JT, Wen JG, Jin J, Li J, Zhao R, Ma TT, Meng XM. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153541. [PMID: 33773190 DOI: 10.1016/j.phymed.2021.153541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Acute kidney injury (AKI), characterised by excessive inflammatory cell recruitment and programmed cell death, has a high morbidity and mortality; however, effective and specific therapies for AKI are still lacking. OBJECTIVE This study aimed to evaluate the renoprotective effects of gypenoside XLIX (Gyp XLIX) in AKI. METHODS The protective effects of Gyp XLIX were tested in two AKI mouse models established using male C57BL/6 mice (aged 6-8 weeks) by a single intraperitoneal injection of cisplatin (20 mg/kg) or renal ischemia-reperfusion for 40 min. Gyp XLIX was administered intraperitoneally before cisplatin administration or renal ischemia-reperfusion. Renal function, tubular injury, renal inflammation and programmed cell death were evaluated. In addition, the renoprotective effects of Gyp XLIX were also evaluated in cisplatin- or hypoxia-treated tubular epithelial cells. The mechanisms underlying these effects were then explored using RNA sequencing. RESULTS In vivo, Gyp XLIX substantially suppressed the increase in serum creatinine and blood urea nitrogen levels. Moreover, tubular damage was alleviated by Gyp XLIX as shown by periodic acid-Schiff staining, electron microscopy and molecular analysis of KIM-1. Consistently, we found that Gyp XLIX suppressed renal necroptosis though the RIPK1/RIPK3/MLKL pathway. The anti-inflammatory and antinecroptotic effects were further confirmed in vitro. Mechanistically, RNA sequencing showed that Gyp XLIX markedly suppressed the levels of IGF binding protein 7 (IGFBP7). Co-immunoprecipitation and western blot analysis further showed that Gyp XLIX reduced the binding of IGFBP7 to IGF1 receptor (IGF1R). Additionally, picropodophyllin, an inhibitor of IGF1R, abrogated the therapeutic effects of Gyp XLIX on cisplatin-induced renal cell injury; this finding indicated that Gyp XLIX may function by activating IGF1R-mediated downstream signalling Additionally, we also detected the metabolic distribution of Gyp XLIX after injection; Gyp XLIX had a high concentration in the kidney and exhibited a long retention time. These findings may shed light on the application of Gyp XLIX for AKI treatment clinically. CONCLUSION Gyp XLIX may serve as a potential therapeutic agent for AKI treatment via IGFBP7/ IGF1R-dependent mechanisms.
Collapse
Affiliation(s)
- Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China; School of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, Anhui Province, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiao-Wei Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Tao-Tao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
40
|
Yan P, Wang Y, Yu X, Liu Y, Zhang ZJ. Type 2 diabetes mellitus and risk of head and neck cancer subtypes: a systematic review and meta-analysis of observational studies. Acta Diabetol 2021; 58:549-565. [PMID: 33389127 DOI: 10.1007/s00592-020-01643-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
AIMS The association between type 2 diabetes mellitus (T2DM) and risk of head and neck cancer (HNC) remains unclear. This study aims to perform a system review and meta-analysis to explore this relationship. METHODS PubMed, Web of Science, and Embase databases were searched for studies published up to July 31, 2020, regarding the association between T2DM and HNC risk. A random-effects model was utilized to calculate summary relative risks (RRs) with corresponding 95% confidence intervals (CIs). RESULTS Fourteen case-control studies and thirteen cohort studies were included in our analysis. We observed a weak association between T2DM and risk of HNC overall, but there was no statistical significance (RR, 1.04; 95% CI, 0.88-1.23; I2 = 83.2%). Interestingly, there was a strong association in East Asia (RR, 1.46; 95% CI, 1.21-1.77; I2 = 36.6%). For HNC subtypes, T2DM conferred a significantly elevated risk in oral cancer (RR, 1.22; 95% CI, 1.01-1.47; I2 = 89.0%). However, in subgroup analyses of smoking, alcohol use, and body mass index (BMI)/obesity adjustments, the association between T2DM and oral cancer risk became insignificant. In addition, T2DM was not associated with a statistically elevated risk of pharyngeal cancer (RR, 1.18; 95% CI, 0.94-1.49; I2 = 72.9%) and laryngeal cancer (RR, 1.03; 95% CI, 0.88-1.22; I2 = 71.2%). CONCLUSIONS This meta-analysis indicates that T2DM is associated with an increased risk of HNC in East Asia. As for site-specific cancer types, the risk of oral cancer was significantly increased in T2DM patients, which appear to be mediated or confounded by smoking, alcohol use, or BMI/obesity.
Collapse
Affiliation(s)
- Pengfei Yan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, China
| | - Yongbo Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xue Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, China
| | - Yu Liu
- Department of Statistics and Management, School of Management, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhi-Jiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
41
|
Dąbrowski M. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors. Int J Mol Sci 2021; 22:ijms22041680. [PMID: 33562380 PMCID: PMC7915237 DOI: 10.3390/ijms22041680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, cancer became the leading cause of death in the population under 65 in the European Union. Diabetes is also considered as a factor increasing risk of cancer incidence and mortality. Type 2 diabetes is frequently associated with being overweight and obese, which also plays a role in malignancy. Among biological mechanisms linking diabetes and obesity with cancer hyperglycemia, hyperinsulinemia, insulin resistance, increased levels of growth factors, steroid and peptide hormones, oxidative stress and increased activity of pro-inflammatory cytokines are listed. Antidiabetic medications can modulate cancer risk through directly impacting metabolism of cancer cells as well as indirectly through impact on risk factors of malignancy. Some of them are considered beneficial (metformin and thiazolidinedions—with the exception of bladder cancer); on the other hand, excess of exogenous insulin may be potentially harmful, while other medications seem to have neutral impact on cancer risk. Inhibitors of the sodium-glucose cotransporter-2 (SGLT-2) are increasingly used in the treatment of type 2 diabetes. However, their association with cancer risk is unclear. The aim of this review was to analyze the anticancer potential of this class of drugs, as well as risks of site-specific malignancies associated with their use.
Collapse
Affiliation(s)
- Mariusz Dąbrowski
- College of Medical Sciences, University of Rzeszów, Al. Rejtana 16C, 35-959 Rzeszów, Poland
| |
Collapse
|
42
|
Soltani S, Abdollahi S, Aune D, Jayedi A. Body mass index and cancer risk in patients with type 2 diabetes: a dose-response meta-analysis of cohort studies. Sci Rep 2021; 11:2479. [PMID: 33510262 PMCID: PMC7844243 DOI: 10.1038/s41598-021-81671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Although obesity has been associated with an increased cancer risk in the general population, the association in patients with type 2 diabetes (T2D) remains controversial. We conducted a dose-response meta-analysis of cohort studies of body mass index (BMI) and the risk of total and site-specific cancers in patients with T2D. A systematic literature search was conducted in PubMed, Scopus, and Medline until September 2020 for cohort studies on the association between BMI and cancer risk in patients with T2D. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using random effects models. Ten prospective and three retrospective cohort studies (3,345,031 participants and 37,412 cases) were included in the meta-analysis. Each 5-unit increase in BMI (kg/m2) was associated with a 6% higher risk of total cancer (RR: 1.06, 95% CI 1.01, 1.10; I2 = 55.4%, n = 6), and with a 12% increased risk in the analysis of breast cancer (RR: 1.12, 95% CI 1.05, 1.20; I2 = 0%, n = 3). The pooled RRs showed no association with prostate cancer (RR: 1.02, 95% CI 0.92, 1.13; I2 = 64.6%, n = 4), pancreatic cancer (RR: 0.97, 95% CI 0.84, 1.11; I2 = 71%, n = 3), and colorectal cancer (RR: 1.05, 95% CI 0.98, 1.13; I2 = 65.9%, n = 2). There was no indication of nonlinearity for total cancer (Pnon-linearity = 0.99), however, there was evidence of a nonlinear association between BMI and breast cancer (Pnon-linearity = 0.004) with steeper increases in risk from a BMI around 35 and above respectively. Higher BMI was associated with a higher risk of total, and breast cancer but not with risk of other cancers, in patients with T2D, however, further studies are needed before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ahmad Jayedi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
43
|
Nozhat Z, Zarkesh M, Baldini E, Mohammadi-Yeganeh S, Azizi F, Hedayati M. Antineoplastic Activity of an Old Natural Antidiabetic Biguanoid on the Human Thyroid Carcinoma Cell Line. Anticancer Agents Med Chem 2021; 22:713-720. [PMID: 33461474 DOI: 10.2174/1871520621666210118093532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decades, metformin (Met), an herbal anti-diabetic medicine, has been proposed as an anti-cancer agent. OBJECTIVE Thyroid cancers are the most common malignancy of the endocrine system. Therefore, the current study was performed to assess the effects of Met on cell proliferation and activation of the Phosphoinositide 3-Kinase (PI3K)/Protein kinase B (AKT)/Forkhead Box O1 (FOXO1) signaling pathway in the Medullary Thyroid Carcinoma (MTC) cells. The effects of Met on the expression of REarranged during Transfection (RET) proto-oncogene were also investigated. METHODS MTC cell line (TT) was treated with 0, 2.5, 5, 10, 20, 30, 40, 50, and 60 mM concentrations of Met for 24, 48, and 72h. The viability and apoptosis of the treated cells were measured by the 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) and Annexin V- Propidium Iodide (PI) assays. The expression level of PI3K, AKT, FOXO1, and RET genes was investigated by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), and phosphorylation of their proteins was determined by the Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Results showed that Met significantly decreased the viability of the MTC cells. Met also reduced the expression level of PI3K, AKT, and FOXO1 genes (P<0.05), whereas it elevated the expression level of RET proto-oncogene (P<0.05). CONCLUSION It seems that the Met has cytostatic effect on the TT cells. Our results showed that anti-tumoral effects of Met may be cell type-specific, and according to the induction of RET (as a proto-oncogene) and inhibition of FOXO1 (as a tumor suppressor gene), Met could not be an appropriate agent in treatment of MTC. The antineoplastic activity of Met has been confirmed against several malignancies in 'in vitro' and 'in vivo' studies. However, its molecular mechanisms in the treatment of different carcinomas particularly in thyroid cancers are not clearly understood and more studies are required to confirm its exact effect on the MTC.
Collapse
Affiliation(s)
- Zahra Nozhat
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Enke Baldini
- Department of Surgical Sciences, University of Rome, Rome. Italy
| | - Samira Mohammadi-Yeganeh
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences. Iran
| | - Feridoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
44
|
Yang Y, Chen X, Ma C. Insulin receptor is implicated in triple-negative breast cancer by decreasing cell mobility. J Biomed Res 2021; 35:189-196. [PMID: 33911052 PMCID: PMC8193710 DOI: 10.7555/jbr.34.20200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis and typically earlier onset of metastasis in comparison with other breast cancer subtypes. It has been reported that insulin receptor (INSR) is downregulated in TNBC, however, its clinical significance and functions in TNBC remain to be elucidated. In this study, we found that INSR expression was significantly downregulated in TNBC, and overexpression of INSR suppressed cell migration and invasion in TNBC. In addition, the survival rate of breast cancer patients with low INSR expression was lower than that of patients with high INSR expression. INSR expression was significantly correlated with lymph node metastasis, clinical tumor stages, ER status, PR status, and the proliferation index Ki-67 expression. In summary, our study suggests that INSR may serve as a biomarker for breast cancer prognosis and it may be a potential target for TNBC treatment.
Collapse
Affiliation(s)
- Ying Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang Chen
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Changyan Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
45
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
46
|
Zhou MJ, Tseng L, Guo X, Jin Z, Bentley-Hibbert S, Shen S, Araujo JL, Spinelli CF, Altorki NK, Sonett JR, Neugut AI, Abrams JA. Low Subcutaneous Adiposity and Mortality in Esophageal Cancer. Cancer Epidemiol Biomarkers Prev 2020; 30:114-122. [PMID: 33008872 DOI: 10.1158/1055-9965.epi-20-0737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recent data suggest that subcutaneous adiposity represents an independent prognostic marker in cancer. We aimed to determine whether subcutaneous adiposity estimated by the subcutaneous adiposity tissue index (SATI) was associated with mortality in esophageal cancer. METHODS We conducted a retrospective analysis of a prospectively enrolled cohort from 2009 to 2015 with esophageal cancer at two major cancer centers. CT scans for initial staging were used to quantify adiposity and skeletal muscle areas. Subjects were categorized as above or below median SATI using sex-specific values. Sarcopenia was defined using previously established skeletal muscle area cutoffs. Cox proportional hazards modeling was performed to determine associations between SATI and all-cause mortality. RESULTS Of the original 167 patients, 78 met inclusion criteria and had CT images available. Mean age was 67 years, 81.8% had adenocarcinoma, and 58.9% had stage 3 or 4 disease. Median follow-up time was 29.5 months. Overall 5-year survival was 38.9% [95% confidence interval (CI), 26.8-50.7]. Lower body mass index, higher Charlson comorbidity score, and more advanced stage were independently associated with low SATI. Patients with low SATI had increased mortality (unadjusted HR 2.23; 95% CI, 1.20-4.12), even when adjusted for sarcopenia or for percent weight loss. In a multivariable model including age, histology, stage, and receipt of curative surgery, the association between low SATI and mortality was attenuated (adjusted HR 1.64; 95% CI, 0.81-3.34). CONCLUSIONS Low subcutaneous adiposity as estimated by SATI may be associated with increased mortality in esophageal cancer. IMPACT Interventions to reduce loss of subcutaneous fat may improve survival in esophageal cancer.
Collapse
Affiliation(s)
- Margaret J Zhou
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Luke Tseng
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Xiaotao Guo
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| | - Zhezhen Jin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Sherry Shen
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - James L Araujo
- Department of Gastroenterology, SUNY Downstate Health Sciences University, New York, New York
| | - Cathy F Spinelli
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York
| | - Nasser K Altorki
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York
| | - Joshua R Sonett
- Department of Thoracic Surgery, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Alfred I Neugut
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York. .,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
47
|
Rysz J, Franczyk B, Ławiński J, Olszewski R, Gluba-Brzózka A. The Role of Metabolic Factors in Renal Cancers. Int J Mol Sci 2020; 21:E7246. [PMID: 33008076 PMCID: PMC7582927 DOI: 10.3390/ijms21197246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
An increasing number of evidence indicates that metabolic factors may play an important role in the development and progression of certain types of cancers, including renal cell carcinoma (RCC). This tumour is the most common kidney cancer which accounts for approximately 3-5% of malignant tumours in adults. Numerous studies indicated that concomitant diseases, including diabetes mellitus (DM) and hypertension, as well as obesity, insulin resistance, and lipid disorders, may also influence the prognosis and cancer-specific overall survival. However, the results of studies concerning the impact of metabolic factors on RCC are controversial. It appears that obesity increases the risk of RCC development; however, it may be a favourable factor in terms of prognosis. Obesity is closely related to insulin resistance and the development of diabetes mellitus type 2 (DM2T) since the adipocytes in visceral tissue secrete substances responsible for insulin resistance, e.g., free fatty acids. Interactions between insulin and insulin-like growth factor (IGF) system appear to be of key importance in the development and progression of RCC; however, the exact role of insulin and IGFs in RCC pathophysiology remains elusive. Studies indicated that diabetes increased the risk of RCC, but it might not alter cancer-related survival. The risk associated with a lipid profile is most mysterious, as numerous studies provided conflicting results. Even though large studies unravelling pathomechanisms involved in cancer growth are required to finally establish the impact of metabolic factors on the development, progression, and prognosis of renal cancers, it seems that the monitoring of health conditions, such as diabetes, low body mass index (BMI), and lipid disorders is of high importance in clear-cell RCC.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland;
| | - Robert Olszewski
- Department of Gerontology, Public Health and Education, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-106 Warsaw, Poland;
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
48
|
Guaitoli V, Alvarez-Ginarte YM, Montero-Cabrera LA, Bencomo-Martínez A, Badel YP, Giorgetti A, Suku E. A computational strategy to understand structure-activity relationship of 1,3-disubstituted imidazole [1,5-α] pyrazine derivatives described as ATP competitive inhibitors of the IGF-1 receptor related to Ewing sarcoma. J Mol Model 2020; 26:222. [PMID: 32748063 DOI: 10.1007/s00894-020-04470-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We followed a comprehensive computational strategy to understand and eventually predict the structure-activity relationship of thirty-three 1,3-disubstituted imidazole [1,5-α] pyrazine derivatives described as ATP competitive inhibitors of the IGF-1 receptor related to Ewing sarcoma. The quantitative structure-activity relationship model showed that the inhibitory potency is correlated with the molar volume, a steric descriptor and the net charge calculated value on atom C1 (q1) and N4 (q4) of the pharmacophore, all of them appearing to give a positive contribution to the inhibitory activity. According to experimental and calculated values, the most potent compound would be 3-[4-(azetidin-2-ylmethyl) cyclohexyl]-1-[3-(benzyloxy) phenyl] imidazo [1,5-α]pyrazin-8-amine (compound 23). Docking was used to guess important residues involved in the ATP-competitive inhibitory activity. It was validated by 200 ns of molecular dynamics (MD) simulation using improved linear interaction energy (LIE) method. MD of previously preferred structures by docking shows that the most potent ligand could establish hydrogen bonds with the ATP-binding site of the receptor, and the Ser979 and Ser1059 residues contribute favourably to the binding stability of compound 23. MD simulation also gave arguments about the chemical structure of the compound 23 being able to fit in the ATP-binding pocket, expecting to remain stable into it during the entire simulation and allowing us to hint the significant contribution expected to be given by electrostatic and hydrophobic interactions to the ligand-receptor complex stability. This computational combined strategy here described could represent a useful and effective prime approach to guide the identification of tyrosine kinase inhibitors as new lead compounds.
Collapse
Affiliation(s)
- Valentina Guaitoli
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, Universidad de La Habana, 10400, La Habana, Cuba
| | - Yoanna María Alvarez-Ginarte
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, Universidad de La Habana, 10400, La Habana, Cuba
| | - Luis Alberto Montero-Cabrera
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, Universidad de La Habana, 10400, La Habana, Cuba. .,Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Yoana Pérez Badel
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, Universidad de La Habana, 10400, La Habana, Cuba
| | - Alejandro Giorgetti
- Department Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona, Italy.,IAS-5/INM-9: Computational Biomedicine - Institute for Advanced Simulation (IAS) / Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, 52425, Julich, Germany
| | - Eda Suku
- Department Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona, Italy
| |
Collapse
|
49
|
Mate A, Blanca AJ, Salsoso R, Toledo F, Stiefel P, Sobrevia L, Vázquez CM. Insulin Therapy in Pregnancy Hypertensive Diseases and its Effect on the Offspring and Mother Later in Life. Curr Vasc Pharmacol 2020; 17:455-464. [PMID: 30426902 DOI: 10.2174/1570161117666181114125109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| | - Antonio J Blanca
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Rocío Salsoso
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Unidad de Enfermedades Coronarias Agudas, Instituto del Corazón, Escuela de Medicina, Universidad de Sao Paulo, Sao Paulo 05403-000 Brazil
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Pablo Stiefel
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| | - Carmen M Vázquez
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| |
Collapse
|
50
|
Association between metformin medication, genetic variation and prostate cancer risk. Prostate Cancer Prostatic Dis 2020; 24:96-105. [PMID: 32424261 DOI: 10.1038/s41391-020-0238-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The relationship between metformin use and prostate cancer risk remains controversial. Genetic variation in metformin metabolism pathways appears to modify metformin glycemic control and the protective association with some cancers. However, no studies to date have examined this pharmacogenetic interaction and prostate cancer chemoprevention. METHODS Clinical data and germline DNA were collected from our prostate biopsy database between 1996 and 2014. In addition to a genome-wide association study (GWAS), 27 single nucleotide polymorphisms (SNPs) implicated in metformin metabolism were included on a custom SNP array. Associations between metformin use and risk of high-grade (Grade Group ≥ 2) and overall prostate cancer were explored using a case-control design. Interaction between the candidate/GWAS SNPs and the metformin-cancer association was explored using a case-only design. RESULTS Among 3481 men, 132 (4%) were taking metformin at diagnosis. Metformin users were older, more likely non-Caucasian, and had higher body mass index, Gleason score, and number of positive cores. Overall, 2061 (59%) were diagnosed with prostate cancer, of which 922 (45%) were high-grade. After adjusting for baseline characteristics, metformin use was associated with higher risk of high-grade prostate cancer (OR = 1.76, 95% CI 1.1-2.9, p = 0.02) and overall prostate cancer (OR = 1.77, 95% CI 1.1-2.9, p = 0.03). None of the 27 candidate SNPs in metformin metabolic pathways had significant interaction with the metformin-cancer association. Among the GWAS SNPs, one SNP (rs149137006) had genome-wide significant interaction with metformin for high-grade prostate cancer, and another, rs115071742, for overall prostate cancer. They were intronic and intergenic SNPs, respectively, with largely uncharacterized roles in prostate cancer chemoprevention. CONCLUSIONS In our cohort, metformin use was associated with increased risk of being diagnosed with prostate cancer. While SNPs involved in metformin metabolism did not have modifying effects on the association with disease risk, one intronic and one intergenic SNP from the GWAS study did, and these require further study.
Collapse
|