1
|
Mokni-Tlili S, Markowicz A, Sułowicz S, Hamdi H. Culture-based and molecular investigation of antibiotic and metal resistance in a semi-arid agricultural soil repeatedly amended with urban sewage sludge. ENVIRONMENTAL RESEARCH 2024; 263:120182. [PMID: 39426453 DOI: 10.1016/j.envres.2024.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Unsustainable agricultural intensification and climate change effects have caused chronic soil depletion in most arid and semi-arid croplands. As such, the land application of urban sewage sludge (USS) has been regulated in several countries as an alternative soil conditioner with recycling benefits. However, the risks of multi-contamination have made its agricultural reuse debatable. Accordingly, this study explored the long-term the impact of repetitive USS applications with increasing rates (0, 40, 80, and 120 t ha-1 year-1) on a sandy soil properties. A special focus was on the spread of antibiotic-resistant bacteria, metal-resistant bacteria and corresponding resistance genes in soil (ARB, MRB, ARGs and MRGs, respectively). The outcomes showed a dose-dependent variation of different soil parameters including the increase of heavy metal content and total heterotrophic bacteria (THB) up to the highest sludge application rate. Besides, the two last sludge lots applied in fall 2019 and 2020 contained cultivable ARB for all addressed antibiotics at much higher counts than in corresponding treated soils. Interestingly, the average index of antibiotic resistance (ARB/THB) increased in the USS used in fall 2020 compared to 2019 (from 6.2% to 9.4%). This indicates that factors such as fluctuations in wastewater quality, treatments operations, and extensive antibiotic use following the outbreak of the COVID-19 pandemic in early 2020 could have caused this variation. The molecular assessment of bacterial resistance resulted in the identification of three ARGs (mefA, sul1 and sul2), one MRG (czcA) and one integron (intI1). This might have implications on resistance co-selection, which can pose a threat to human health via contaminated crops.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Centre, University of Carthage, P.O Box 273, Tunisia
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Correa TL, Quitete MA, do Nascimento CR, Carbone RP, de Carvalho RT, Rocha JA. Profile of Antimicrobial Consumption in Patients Assisted by a Palliative Care Team During the COVID-19 Pandemic in Brazil. Am J Hosp Palliat Care 2024; 41:1246-1251. [PMID: 37950652 DOI: 10.1177/10499091231215432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the profile of antimicrobial consumption in patients assisted by a palliative care (PC) team during the COVID-19 pandemic. METHODS A retrospective observational study was conducted in a quaternary hospital. Patients assisted by the PC team in 2020 were selected. The clinical and demographic characteristics, as well as the outcomes, were assessed using electronic records. RESULTS A total of 181 patients were included in the study, of whom 93.4% had used antimicrobials and 24.3% had had COVID-19. COVID-19 patients were more likely to receive at least one course of antimicrobial therapy. Patients who received polytherapy in the first course of treatment were more likely to die and to be still receiving antimicrobials at death. There was no significant difference in the length of hospital stay, new hospitalization in 12 months, nor the time to death among patients who received monotherapy or polytherapy during the first course of antimicrobial therapy. CONCLUSIONS There was a large amount of PC patients receiving antimicrobial therapy during the COVID-19 pandemic. SARS-CoV-2-positive patients were more likely to receive antimicrobial therapy.
Collapse
Affiliation(s)
- Tulio L Correa
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| | - Matheus Ac Quitete
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| | - Clara Rs do Nascimento
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| | - Rafaela P Carbone
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| | - Ricardo T de Carvalho
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| | - Juraci A Rocha
- Palliative Care Team, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Rukyaa J, Mushi MF, Silago V, Damiano P, Keenan K, Sabiiti W, Holden MTG, Seni J, Mshana SE. Etiology and antimicrobial susceptibility patterns of bacteria causing pneumonia among adult patients with signs and symptoms of lower respiratory tract infections during the COVID-19 pandemic in Mwanza, Tanzania: a cross-sectional study. Pneumonia (Nathan) 2024; 16:16. [PMID: 39232828 PMCID: PMC11375869 DOI: 10.1186/s41479-024-00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Bacterial pneumonia is among the leading causes of morbidity and mortality worldwide. The extensive misuse and overuse of antibiotics observed during the Corona Virus Disease 2019 (COVID-19) pandemic may have changed the patterns of pathogens causing bacterial pneumonia and their antibiotic susceptibility profiles. This study was designed to establish the prevalence of culture-confirmed bacterial pneumonia and describe their antimicrobial susceptibility profile in adult patients who presented with signs and symptoms of lower respiratory tract infections (LRTIs) during the COVID-19 pandemic. METHODOLOGY This hospital-based cross-sectional study was conducted from July 2021 to July 2022 at a zonal referral hospital and two district hospitals in Mwanza, Tanzania. Demographic and clinical data were collected using a standardized questionnaire. Sputum samples were processed by conventional culture followed by the identification of isolates and antibiotic susceptibility testing. Descriptive data analysis was performed using STATA version 15.0. RESULTS A total of 286 patients with a median age of 40 (IQR 29-60) years were enrolled in the study. More than half of the patients enrolled were females (52.4%, n = 150). The overall prevalence of bacterial pneumonia was 34.3% (n = 98). The majority of the bacterial pathogens isolated were Gram-negative bacteria (GNB) (61.2%, 60/98), with a predominance of Klebsiella spp., 38.8% (38/98), followed by Streptococcus pyogenes (21.4%, 21/98). Multi drug resistant (MDR) bacteria were detected in 72/98 (73.5%) of the isolates. The proportions of GNB-resistant strains were 60.0% (36/60) for ciprofloxacin, 60% (36/60) for amoxicillin, 60% (36/60) for amoxicillin, 68.3% (41/60) for trimethoprim-sulfamethoxazole and 58.3% (35/60) for ceftriaxone. CONCLUSION One-third of the patients with signs and symptoms of LRTIs had laboratory-confirmed bacterial pneumonia with a predominance of Gram negative MDR bacteria. This calls for continuous antimicrobial resistance (AMR) surveillance and antimicrobial stewardship programs in the study setting and other settings in developing countries as important strategies for tackling AMR.
Collapse
Affiliation(s)
- Johannes Rukyaa
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania.
| | - Martha F Mushi
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Vitus Silago
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Prisca Damiano
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Katherine Keenan
- Division of Infection and Global Health, School of Medicine, University of St. Andrews, St. Andrews, KY16 9AL, UK
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St. Andrews, St. Andrews, KY16 9AL, UK
| | - Matthew T G Holden
- Division of Infection and Global Health, School of Medicine, University of St. Andrews, St. Andrews, KY16 9AL, UK
| | - Jeremiah Seni
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| |
Collapse
|
4
|
Cokljat M, Cruz CV, Carrara VI, Puttaraksa K, Capriglioni C, Insaurralde SM, Rousseau-Portalis M, Roldan A, Watson JA, Tarning J, White NJ, Guerin PJ. Comparison of WHO versus national COVID-19 therapeutic guidelines across the world: not exactly a perfect match. BMJ Glob Health 2024; 9:e014188. [PMID: 38649182 PMCID: PMC11043689 DOI: 10.1136/bmjgh-2023-014188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic affected all WHO member states. We compared and contrasted the COVID-19 treatment guidelines of each member state with the WHO COVID-19 therapeutic guidelines. METHODS Ministries of Health or accessed National Infectious Disease websites and other relevant bodies and experts were contacted to obtain national guidelines (NGs) for COVID-19 treatment. NGs were included only if they delineated specific pharmacological treatments for COVID-19, which were stratified by disease severity. We conducted a retrospective review using the adapted Reporting Checklist for Public Versions of Guidelines (RIGHT-PVG) survey checklist and a derived comparative metric based on the WHO guidelines was performed. RESULTS COVID-19 therapeutics NGs could be obtained from 109 of the 194 WHO member states. There was considerable variation in guidelines and in disease severity stratifications. Therapeutic recommendations in many NGs differed substantially from the WHO guidelines. Overall in late 2022, 93% of NGs were recommending at least one treatment which had proved to be ineffective in large randomised trials, and was not recommended by WHO. Corticosteroids were not recommended in severe disease in nearly 10% of NGs despite overwhelming evidence of their benefit. NGs from countries with low-resource settings showed the greatest divergence when stratified by gross domestic product per year, Human Development Index and the Global Health Security Index. DISCUSSION Our study is limited to NGs that were readily accessible, and it does not reflect the availability of recommended medicines in the field. Three years after the start of the SARS-CoV-2 pandemic, available COVID-19 NGs vary substantially in their therapeutic recommendations, often differ from the WHO guidelines, and commonly recommend ineffective, unaffordable or unavailable medicines.
Collapse
Affiliation(s)
- Mia Cokljat
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cintia Valeria Cruz
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Verena Ilona Carrara
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneve, Switzerland
| | - Kanoktip Puttaraksa
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Camila Capriglioni
- Laboratorio de Estadistica Aplicada a Ciencias de la Salud (LEACS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Maximo Rousseau-Portalis
- Laboratorio de Estadistica Aplicada a Ciencias de la Salud (LEACS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Roldan
- Laboratorio de Estadistica Aplicada a Ciencias de la Salud (LEACS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - James A Watson
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J Guerin
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
7
|
Yadav V, Ravichandran S. Significance of understanding the genomics of host-pathogen interaction in limiting antibiotic resistance development: lessons from COVID-19 pandemic. Brief Funct Genomics 2024; 23:69-74. [PMID: 36722037 DOI: 10.1093/bfgp/elad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The entire world is facing the stiff challenge of COVID-19 pandemic. To overcome the spread of this highly infectious disease, several short-sighted strategies were adopted such as the use of broad-spectrum antibiotics and antifungals. However, the misuse and/or overuse of antibiotics have accentuated the emergence of the next pandemic: antimicrobial resistance (AMR). It is believed that pathogens while transferring between humans and the environment carry virulence and antibiotic-resistant factors from varied species. It is presumed that all such genetic factors are quantifiable and predictable, a better understanding of which could be a limiting step for the progression of AMR. Herein, we have reviewed how genomics-based understanding of host-pathogen interactions during COVID-19 could reduce the non-judicial use of antibiotics and prevent the eruption of an AMR-based pandemic in future.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skaone University Hospital, Lund University, Malmo SE-20213, Sweden
| | | |
Collapse
|
8
|
Lee S, Choi Y, Kang D, Jeon J. Proposal for priority emerging pollutants in the Nakdong river, Korea: Application of EU watch list mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122838. [PMID: 37918771 DOI: 10.1016/j.envpol.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Collapse
Affiliation(s)
- Sangyoon Lee
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Water Environmental Safety Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
9
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
10
|
Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Clinical development of antivirals against SARS-CoV-2 and its variants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100208. [PMID: 38149085 PMCID: PMC10750039 DOI: 10.1016/j.crmicr.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The unceasing global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls for the development of novel therapeutics. Although many newly developed antivirals and repurposed antivirals have been applied to the treatment of coronavirus disease 2019 (COVID-19), antivirals showing satisfactory clinical efficacy are few in number. In addition, the loss of sensitivity to variants of concern (VOCs) and lack of oral bioavailability have also limited the clinical application of some antivirals. These facts remind us to develop more potent and broad-spectrum antivirals with better pharmacokinetic/pharmacodynamic properties to fight against infections from SARS-CoV-2, its variants, and other human coronaviruses (HCoVs). In this review, we summarize the latest advancements in the clinical development of antivirals against infections by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jie Zhou
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ortiz-Prado E, Izquierdo-Condoy JS, Mora C, Vasconez-Gonzalez J, Fernandez-Naranjo R. Poor regulation, desperation, and misinformation, a countrywide analysis of self-medication and prescription patterns in Ecuador during the COVID-19 pandemic. Res Social Adm Pharm 2023; 19:1579-1589. [PMID: 37659922 DOI: 10.1016/j.sapharm.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The rapid spread of the SARS-CoV-2 virus during the early phase of the pandemic led to an unprecedented global health crisis. Various factors have influenced self-medication practices among the general population and unsubstantiated prescribing practices among healthcare professionals. OBJECTIVE This study aimed to describe trends in the purchase and sale of medicines during the COVID-19 pandemic period (2020-2022) in Ecuador, by comparing them with pre-pandemic periods. METHODS In this study, a cross-sectional design was employed to conduct a comprehensive analysis of 28 pharmacological groups, categorized according to the Anatomical Therapeutic Chemical Classification (ATC). Utilizing an integrated drug consumption database, the study examined physician prescribing data, medicine usage, and spending levels in Ecuador during the COVID-19 pandemic. The analysis involved computing absolute differences in monthly resolution, calculating excessive expenditure in comparison to previous yearly averages, and using Defined Daily Dose (DDD) methodology for internationally comparable results. Furthermore, a correlation analysis was performed to investigate potential associations between prescribed and consumed medicines and the number of new cases and deaths. RESULTS In Ecuador, the average yearly expenditure among these groups prior to the pandemic (2017-2019) amounted to $150,646,206 USD, whereas during 2020 and 2021, the same groups represented a total expenditure of $228,327,210, reflecting a significant increase. The excess expenditure during this period reached 51.4%, equivalent to $77,681,004 USD. Notably, 13% of this expenditure consisted of Over the Counter (OTC) Medicines. The study also identified a remarkable surge in sales of ivermectin, which increased by 2,057%, and hydroxychloroquine, which increased by 171%, as measured by DDD. CONCLUSIONS This study highlights the substantial consumption of medicines by the population in Ecuador during the pandemic. It is concerning that many medications were sold without proven therapeutic indications, indicating that misinformation and desperation may have led to improper prescribing by physicians and patients resorting to ineffective drugs. Moreover, since the sale of these therapeutic drugs requires a prescription, poor regulation, and a lack of control within pharmacies likely contributed to such practices.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador.
| | - Juan S Izquierdo-Condoy
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Carla Mora
- Medical Department, Quifatex, Quito, 170138, Ecuador
| | - Jorge Vasconez-Gonzalez
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Raúl Fernandez-Naranjo
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| |
Collapse
|
12
|
Owens C, Lamb C, Sanchez J, Quintero M, Lopez-Yunez A. Use of a rapid triage assessment tool to discriminate the need for hospitalisation in patients with severe COVID-19 infection presenting to an outpatient clinic: a single-centre, prospective cohort study. BMJ Open 2023; 13:e073781. [PMID: 38030244 PMCID: PMC10689395 DOI: 10.1136/bmjopen-2023-073781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES The WHO designated individuals with low oxygen saturation, SpO2<94%, as severe SARS-CoV2 infection (COVID-19) and recommendations to seek care in a hospital setting were advised. A rapid, office-based method to select patients with severe COVID-19 who need intensive care was necessary during the peak of the pandemic. DESIGN, SETTING AND PARTICIPANTS This is a prospective cohort study of patients with confirmed severe COVID-19 between September 2020 and April 2021. OUTCOME MEASURES AND ANALYSIS Oxygen saturation was obtained at rest (SpO2r), following exertion from a 20 m walk test (SpO2e), and the difference was calculated (SpO2Δ). Radiographs and laboratory values were obtained and recorded. Logistic regression models were used to determine variables associated with hospitalisation. A lung injury score was used to quantify pulmonary involvement. RESULTS Out of 103 patients enrolled with severe COVID-19 infection, 19 (18.4%) were admitted to the hospital (no deaths). Patients managed as outpatients had a standard treatment protocol. The SpO2Δ and SpO2e were associated with hospitalisation (p<0.005) while SpO2r was no different between non-hospitalised and hospitalised patients (90.7%±2.7% vs 90.8%±2.3%, p=0.87). By contrast, exertional SpO2e was significantly different between non-hospitalised and hospitalised (87.3%±2.6% vs 84.4%±3.4%, p=0.0005). The mean lung injury score was 11.0±3.5 (18-point scale) and did not discriminate against those who would need hospitalisation. Lower lung fields were significantly more involved than the upper (p<0.0001). All patients had elevated biomarkers of inflammation, C reactive protein (CRP) median 82.5 IQR (43-128.6) mg/L and evidence of elevated liver enzymes. A logistic regression model was constructed including SpO2Δ, CRP and alanine aminotransferase to predict hospitalisation. Only SpO2Δ was significant, p=0.012, 95% CI (1.128 to 2.704) and correctly classified 85.71% of patients who could remain at home or would need to receive treatment in the hospital. CONCLUSION An office-based, 20 m walk test can help diverge patients with severe COVID-19 who need escalated care. Further, an aggressive standardised treatment protocol can be used to successfully manage patients outside of hospitals despite having severe COVID-19.
Collapse
Affiliation(s)
| | - Chris Lamb
- Weatherhead School of Management, Case Western Reserve University, Cleveland, Ohio, USA
- BioSolutions Services LLC, Englewood Cliffs, New Jersey, USA
| | | | | | | |
Collapse
|
13
|
Durán-Álvarez JC, Prado B, Zanella R, Rodríguez M, Díaz S. Wastewater surveillance of pharmaceuticals during the COVID-19 pandemic in Mexico City and the Mezquital Valley: A comprehensive environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165886. [PMID: 37524191 DOI: 10.1016/j.scitotenv.2023.165886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
This study tracked five pharmaceutically active compounds (PhACs) in Mexico City's sewage, namely, famotidine, indomethacin, dexamethasone, azithromycin, and ivermectin, which were used to treat COVID-19. The monitoring campaign was carried out over 30 months (May 2020 to November 2022), covering the five COVID-19 waves in Mexico. In the Central Emitter, the main sewage outflow, famotidine displayed levels of 132.57 ± 28.16 ng L-1 (range from < LOQ to 189.1 ng L-1), followed by indomethacin (average 672.46 ± 116.4 ng L-1, range from 516.7 to 945.2 ng L-1), dexamethasone (average 610.4 ± 225.7 ng L-1, range from 233.4 to 1044.5 ng L-1), azithromycin (average 4436.2 ± 903.6 ng L-1, range from 2873.7 to 5819.6 ng L-1), and ivermectin (average 3413.3 ± 1244.6 ng L-1, range from 1219.8 to 4622.4 ng L-1). The concentrations of dexamethasone, azithromycin and ivermectin were higher in sewage from a temporary COVID-19 care unit, by a factor of 3.48, 3.52 and 2.55, respectively, compared with those found in municipal wastewater. In the effluent of the Atotonilco Wastewater Treatment Plant (AWWTP), which treats near 60 % of the Mexico City's sewage, famotidine was absent, while concentrations of indomethacin, dexamethasone, azithromycin and ivermectin were 78.2 %, 76.7 %, 74.4 %, and 88.1 % lower than those in the influent, respectively. The occurrence of PhACs in treated and untreated wastewater resulted in medium to high environmental risk since Mexico City's wastewater is reused for irrigation in the Mezquital Valley. There, PhACs were found in irrigation canals at lower levels than those observed in Mexico City throughout the monitoring. On the other hand, famotidine, indomethacin, and dexamethasone were not found in surface water resulting from the infiltration of wastewater through soil in Mezquital Valley, while azithromycin and ivermectin sporadically appeared in surface water samples collected through 2021. Using an optimized risk assessment based on a semi-probabilistic approach, the PhACs were prioritized as ivermectin > azithromycin > dexamethasone > famotidine > indomethacin.
Collapse
Affiliation(s)
- Juan C Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico.
| | - Blanca Prado
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510 Mexico, Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico
| | - Mario Rodríguez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico
| | - Suhaila Díaz
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510 Mexico, Mexico
| |
Collapse
|
14
|
Sunder S, Bhandari K, Sounkaria S, Vyas M, Singh BP, Chandra P. Antibiotics and nano-antibiotics in treatment of lung infection: In management of COVID-19. Microb Pathog 2023; 184:106356. [PMID: 37743025 DOI: 10.1016/j.micpath.2023.106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
The world has witnessed the cruelty of COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The association of COVID-19 with other secondary and bacterial co-infections has tremendously contributed to lung infections. An increased probability of having a secondary lung infection was observed among the post-COVID patients. The treatment of antibiotics has ameliorated the mortality rate. However, the stewardship of antibiotic treatment was linked to increased organ failure. Therefore, the paper discusses the interactions between the virus and host through the ACE2 receptors that contribute to COVID-19 development. Furthermore, the paper provides an invaluable compendium history of SARS-CoV-2 genomic composition. It revolves around most classes of antibiotics used to treat COVID-19 disease and post-COVID lung infections with the complete mechanism. This binds with the exertion of the antibiotics for bacterial infection associated with COVID-19 patients and how beneficial and effective responses have been recorded for the treatment. The application of nanotechnology and possible approaches of nanomedicines is also discussed to its potential usage.
Collapse
Affiliation(s)
- Sushant Sunder
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042, India; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042, India
| | - Shruti Sounkaria
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042, India
| | - Manjari Vyas
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042, India.
| |
Collapse
|
15
|
Burkin MA, Tevyashova AN, Bychkova EN, Melekhin AO, Galvidis IA. Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy. BIOSENSORS 2023; 13:921. [PMID: 37887114 PMCID: PMC10605010 DOI: 10.3390/bios13100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105-41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7-141.3%). During 2022-2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic.
Collapse
Affiliation(s)
- Maksim A. Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
| | - Artem O. Melekhin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Federal Centre for Animal Health, 111622 Moscow, Russia
| | - Inna A. Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| |
Collapse
|
16
|
Hekmat H, Rasooli A, Siami Z, Rutajengwa KA, Vahabi Z, Mirzadeh FA. A Review of Antibiotic Efficacy in COVID-19 Control. J Immunol Res 2023; 2023:6687437. [PMID: 37854054 PMCID: PMC10581857 DOI: 10.1155/2023/6687437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Severe acute respiratory disease is associated with chronic secondary infections that exacerbate symptoms and mortality. So far, many drugs have been introduced to treat this disease, none of which effectively control the coronavirus. Numerous studies have shown that mitochondria, as the center of cell biogenesis, are vulnerable to drugs, especially antibiotics. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence, and practices on the use of antibiotics in coronavirus disease 2019 (COVID-19) in- and outpatients. The current research found widespread usage of antibiotics, mostly in an empirical context, among COVID-19 hospitalized patients. The effectiveness of this approach has not been established. Given the high death rate linked with secondary infections in COVID-19 patients and the developing antimicrobial resistance, further study is urgently needed to identify the most appropriate rationale for antibiotic therapy in these patients.
Collapse
Affiliation(s)
- Hamidreza Hekmat
- Cardiology Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Rasooli
- Department of Emergency Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Siami
- Department of Infectious Disease, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kauthar Amir Rutajengwa
- Medical School Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Geriatric Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Division, Psychiatry Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Rafeeq MM, Nahhas AF, Binothman N, Habib AH, Aljadani M, Sain ZM, Tuwaijri AA, Alshehri MA, Alzahrani OR. PheroxyPyrabenz and Carbopyrropyridin against major proteins of SARS CoV-2: a comprehensive in-silico molecular docking and dynamics simulation studies. J Biomol Struct Dyn 2023; 41:9121-9133. [PMID: 36318617 DOI: 10.1080/07391102.2022.2140202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The pandemic that started in 2020 left us with so much information about viruses and respiratory diseases, and the cause behind it was severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). The world is still recovering, which costs so many economic and other indirect disasters; despite that, no medications are available on the market. Although the WHO approved a few vaccines on an emergency basis, the remarks and the reinfection chances are still under investigation, and a few pharmaceutical companies are also claiming that a few medications can be effective. However, there is no situation in control. SARS CoV-2 mutates and comes in different forms, making the situation unpredictable. In this study, we have screened the complete Asinex's BioDesign library, which contains 170,269 compounds, and shorted the data against the docking score that helps in the identification of 4-[5-(3-Ethoxy-4-hydroxyphenyl)-1-(2-hydroxyethyl)-1H-pyrazol-3-yl]-1, 2-benzenediol (PheroxyPyrabenz) and 1-[(3R,4R)-1-(5-Aminopentanoyl)-4-hydroxy-3-pyrrolidinyl]-1H-pyrrolo[2,3-b]pyridine-4-carboxamide (Carbopyrropyridin) as a significant drug candidate that can work against the multiple proteins of the SARS CoV-2 resulting in seizing the complete biological process of the virus. Further, the study extended to Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics (MD) simulation of both the compounds with their complexity. The complete workflow of the study has shown satisfactory results, and both drug candidates can potentially stop the hunt for drugs against this virus after its experimental validation. Further, we checked both compounds' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, showing case-proof validatory results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Alaa F Nahhas
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Alaa Hamed Habib
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Ziaullah M Sain
- Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), Kingdom of Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Othman R Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
19
|
Ngyedu EK, Acolatse J, Akafity G, Incoom R, Rauf A, Seaton RA, Sneddon J, Cameron E, Watson M, Wanat M, Godman B, Kurdi A. Selling antibiotics without prescriptions among community pharmacies and drug outlets: a simulated client study from Ghana. Expert Rev Anti Infect Ther 2023; 21:1373-1382. [PMID: 37975725 DOI: 10.1080/14787210.2023.2283037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Selling antibiotics without prescriptions is mostly illegal worldwide, including in Ghana, and promotes antimicrobial resistance. We evaluated the prevalence and practice of selling antibiotics without prescriptions among community pharmacies (CPs) and drug outlets, for the first time, in Ghana to quantify and characterize this issue to inform future interventions. RESEARCH DESIGN AND METHODS Two scenarios utilizing the Simulated Client Methodology were enacted: an upper respiratory tract infection of viral origin (scenario one); and pediatric diarrhea (scenario two). CPs/Outlets were selected by stratified proportional random sampling from four metropolitan cities (~14% of the total Ghanaian population). Selling of antibiotics was assessed at three demand levels and its overall prevalence was estimated, then stratified by the study variables. RESULTS Out of the 265 sampled CPs/outlets, the prevalence of selling antibiotic without prescription was 88.3% (n = 234/265), with variations not only across the four regions [92.5% (n = 123/133) in Kumasi, 87.5% (n = 14/16) in Cape Coast, 84.1% (n = 69/82) in Accra, and 82.4% (n = 28/34) in Tamale] but also across CPs [90% (n = 121/134)] and drug outlets [86% (n = 113/131)]. CONCLUSIONS A very high prevalence/sub-optimal practice of selling antibiotics without prescriptions was found. This highlights the need to increase compliance with antibiotic dispensing legislation through evidence-based interventions including education of key stakeholders.
Collapse
Affiliation(s)
- Eric Kofi Ngyedu
- Oral and Maxillofacial Surgery, Research Unit, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | - Joseph Acolatse
- Oral and Maxillofacial Surgery, Research Unit, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | - George Akafity
- Oral and Maxillofacial Surgery, Research Unit, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | - Robert Incoom
- Oral and Maxillofacial Surgery, Research Unit, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | | | - R Andrew Seaton
- Department is Infectious Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | | | - Elaine Cameron
- School of Psychology, University of Stirling, Stirling, UK
| | - Margaret Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK
| | - Marta Wanat
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford, UK
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Centre of Medical and Bio allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Amanj Kurdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK
- Centre of Medical and Bio allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
20
|
Shariq M, Malik AA, Sheikh JA, Hasnain SE, Ehtesham NZ. Regulation of autophagy by SARS-CoV-2: The multifunctional contributions of ORF3a. J Med Virol 2023; 95:e28959. [PMID: 37485696 DOI: 10.1002/jmv.28959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-1 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signalling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Asrar A Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Karageorgos S, Hibberd O, Mullally PJW, Segura-Retana R, Soyer S, Hall D. Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review. Antibiotics (Basel) 2023; 12:1092. [PMID: 37508188 PMCID: PMC10376281 DOI: 10.3390/antibiotics12071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics are one of the most prescribed medications in pediatric emergency departments. Antimicrobial stewardship programs assist in the reduction of antibiotic use in pediatric patients. However, the establishment of antimicrobial stewardship programs in pediatric EDs remains challenging. Recent studies provide evidence that common infectious diseases treated in the pediatric ED, including acute otitis media, tonsillitis, community-acquired pneumonia, preseptal cellulitis, and urinary-tract infections, can be treated with shorter antibiotic courses. Moreover, there is still controversy regarding the actual need for antibiotic treatment and the optimal dosing scheme for each infection.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
- First Department of Pediatrics, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Owen Hibberd
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Patrick Joseph William Mullally
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
- Department of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Roberto Segura-Retana
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
- Pediatric Emergency Department, Hospital Nacional de Niños, San José 0221, Costa Rica
| | - Shenelle Soyer
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
| | - Dani Hall
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK; (S.K.)
- Department of Emergency Medicine, Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
| |
Collapse
|
22
|
Lassan S, Tesar T, Tisonova J, Lassanova M. Pharmacological approaches to pulmonary fibrosis following COVID-19. Front Pharmacol 2023; 14:1143158. [PMID: 37397477 PMCID: PMC10308083 DOI: 10.3389/fphar.2023.1143158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background: In the past few years, COVID-19 became the leading cause of morbidity and mortality worldwide. Although the World Health Organization has declared an end to COVID-19 as a public health emergency, it can be expected, that the emerging new cases at the top of previous ones will result in an increasing number of patients with post-COVID-19 sequelae. Despite the fact that the majority of patients recover, severe acute lung tissue injury can in susceptible individuals progress to interstitial pulmonary involvement. Our goal is to provide an overview of various aspects associated with the Post-COVID-19 pulmonary fibrosis with a focus on its potential pharmacological treatment options. Areas covered: We discuss epidemiology, underlying pathobiological mechanisms, and possible risk and predictive factors that were found to be associated with the development of fibrotic lung tissue remodelling. Several pharmacotherapeutic approaches are currently being applied and include anti-fibrotic drugs, prolonged use or pulses of systemic corticosteroids and non-steroidal anti-inflammatory and immunosuppressive drugs. In addition, several repurposed or novel compounds are being investigated. Fortunately, clinical trials focused on pharmacological treatment regimens for post-COVID-19 pulmonary fibrosis have been either designed, completed or are already in progress. However, the results are contrasting so far. High quality randomised clinical trials are urgently needed with respect to the heterogeneity of disease behaviour, patient characteristics and treatable traits. Conclusion: The Post-COVID-19 pulmonary fibrosis contributes to the burden of chronic respiratory consequences among survivors. Currently available pharmacotherapeutic approaches mostly comprise repurposed drugs with a proven efficacy and safety profile, namely, corticosteroids, immunosuppressants and antifibrotics. The role of nintedanib and pirfenidone is promising in this area. However, we still need to verify conditions under which the potential to prevent, slow or stop progression of lung damage will be fulfilled.
Collapse
Affiliation(s)
- Stefan Lassan
- Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, Bratislava, Slovakia
| | - Tomas Tesar
- Department of Organisation and Management of Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Tisonova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Monika Lassanova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
23
|
Zheng Z, Peng F, Zhou Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:77-83. [PMID: 37388822 PMCID: PMC9988550 DOI: 10.1016/j.pccm.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2022] [Accepted: 12/04/2022] [Indexed: 07/01/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‑19), caused by a novel severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has caused an enormous impact on the global healthcare. SARS-CoV-2 infection primarily targets the respiratory system. Although most individuals testing positive for SARS-CoV-2 present mild or no upper respiratory tract symptoms, patients with severe COVID-19 can rapidly progress to acute respiratory distress syndrome (ARDS). ARDS-related pulmonary fibrosis is a recognized sequelae of COVID-19. Whether post-COVID-19 lung fibrosis is resolvable, persistent, or even becomes progressive as seen in human idiopathic pulmonary fibrosis (IPF) is currently not known and remains a matter of debate. With the emergence of effective vaccines and treatments against COVID-19, it is now important to build our understanding of the long-term sequela of SARS-CoV-2 infection, to identify COVID-19 survivors who are at risk of developing chronic pulmonary fibrosis, and to develop effective anti-fibrotic therapies. The current review aims to summarize the pathogenesis of COVID-19 in the respiratory system and highlights ARDS-related lung fibrosis in severe COVID-19 and the potential mechanisms. It envisions the long-term fibrotic lung complication in COVID-19 survivors, in particular in the aged population. The early identification of patients at risk of developing chronic lung fibrosis and the development of anti-fibrotic therapies are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fei Peng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
24
|
Vaz ES, Vassiliades SV, Giarolla J, Polli MC, Parise-Filho R. Drug repositioning in the COVID-19 pandemic: fundamentals, synthetic routes, and overview of clinical studies. Eur J Clin Pharmacol 2023; 79:723-751. [PMID: 37081137 PMCID: PMC10118228 DOI: 10.1007/s00228-023-03486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.
Collapse
Affiliation(s)
- Elisa Souza Vaz
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Sandra Valeria Vassiliades
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Michelle Carneiro Polli
- Pharmacy Course, São Francisco University (USF), Waldemar César da Silveira St, 105, SP, Campinas, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil.
| |
Collapse
|
25
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
26
|
Xue W, Honda M, Hibi T. Mechanisms of gastrointestinal barrier dysfunction in COVID-19 patients. World J Gastroenterol 2023; 29:2283-2293. [PMID: 37124884 PMCID: PMC10134419 DOI: 10.3748/wjg.v29.i15.2283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major global public health event, resulting in a significant social and economic burden. Although COVID-19 was initially characterized as an upper respiratory and pulmonary infection, recent evidence suggests that it is a complex disease including gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Moreover, it remains unclear whether the gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or are the result of systemic immune activation and subsequent dysregulation of homeostatic mechanisms. This review provides a brief overview of the mechanisms by which SARS-CoV-2 disrupts the integrity of the gastrointestinal barrier including the mechanical barrier, chemical barrier, microbial barrier, and immune barrier.
Collapse
Affiliation(s)
- Weijie Xue
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaki Honda
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
27
|
Galindo-Oseguera E, Pinto-Almazán R, Arellano-Ramírez A, Gasca-López GA, Ocharan-Hernández ME, Calzada-Mendoza CC, Castillo-Cruz J, Martínez-Herrera E. Mortality and Survival Factors in Patients with Moderate and Severe Pneumonia Due to COVID-19. Healthcare (Basel) 2023; 11:932. [PMID: 37046859 PMCID: PMC10093873 DOI: 10.3390/healthcare11070932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During the pandemic, some mortality-related factors were age, sex, comorbidities (obesity, diabetes mellitus, and hypertension), recovery time, hospitalizations, and biochemical markers. The present work aimed to identify the mortality and survival factors in adults with moderate and severe pneumonia due to COVID-19 during the first and second waves of the pandemic in Mexico at a third-level hospital (High-Specialty Regional Hospital of Ixtapaluca (HRAEI), Ixtapaluca, Estado de Mexico, Mexico). A database was generated using information from the electronic clinical records of patients hospitalized from December 2021 to August 2022. Survival analysis was performed associating age, sex, longer recovery times, and some drugs. The risk factors found were age in the patients between 40 and 60 years (OR = 1.70), male sex (OR = 1.53), the presence of comorbidities (OR = 1.66) and hypertension (OR = 2.19), work occupation (construction workers OR = 5.22, factory workers OR = 3.13, unemployed OR = 2.93), the prehospital use of metamizole sodium (OR = 2.17), cough (OR = 1.73), and in-hospital oxygen therapy (reservoir mask OR = 6.6). The survival factors found in this study were working in the healthcare field (OR = 0.26), the prehospital use of certain medications (paracetamol OR = 0.65, dexamethasone OR = 0.55, and azithromycin OR = 0.47), presenting ageusia (OR = 0.5) and hyporexia (OR = 0.34), and the time using in-hospital oxygen therapy (device 1 OR = 0.72). Prehospital treatment needs to be reevaluated as dexamethasone and azithromycin proved to be protective factors. Likewise, providing aggressive oxygen therapy during hospital admission decreased mortality risk.
Collapse
Affiliation(s)
- Evelyn Galindo-Oseguera
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico;
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (R.P.-A.); (M.E.O.-H.); (C.C.C.-M.)
| | - Alfredo Arellano-Ramírez
- Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (A.A.-R.); (G.A.G.-L.)
| | | | - María Esther Ocharan-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (R.P.-A.); (M.E.O.-H.); (C.C.C.-M.)
| | - Claudia C. Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (R.P.-A.); (M.E.O.-H.); (C.C.C.-M.)
| | - Juan Castillo-Cruz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (R.P.-A.); (M.E.O.-H.); (C.C.C.-M.)
| | - Erick Martínez-Herrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (R.P.-A.); (M.E.O.-H.); (C.C.C.-M.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| |
Collapse
|
28
|
Maulana S, Wahyuni TS, Widiyanti P, Zubair MS. <em>In silico</em> screening of potential compounds from begonia genus as 3CL protease (3Cl pro) SARS-CoV-2 inhibitors. J Public Health Afr 2023. [PMID: 37492544 PMCID: PMC10365649 DOI: 10.4081/jphia.2023.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: The emergence of Coronavirus disease (COVID-19) has been declared a pandemic and made a medical emergency worldwide. Various attempts have been made, including optimizing effective treatments against the disease or developing a vaccine. Since the SARS-CoV-2 protease crystal structure has been discovered, searching for its inhibitors by in silico technique becomes possible.
Objective: This study aims to virtually screen the potential of phytoconstituents from the Begonia genus as 3Cl pro-SARS-CoV- 2 inhibitors, based on its crucial role in viral replication, hence making these proteases “promising” for the anti-SARS-CoV-2 target.
Methods: In silico screening was carried out by molecular docking on the web-based program DockThor and validated by a retrospective method. Predictive binding affinity (Dock Score) was used for scoring the compounds. Further molecular dynamics on Desmond was performed to assess the complex stability.
Results: Virtual screening protocol was valid with the area under curve value 0.913. Molecular docking revealed only β-sitosterol-3-O-β-D-glucopyranoside with a lower docking score of - 9.712 kcal/mol than positive control of indinavir. The molecular dynamic study showed that the compound was stable for the first 30 ns simulations time with Root Mean Square Deviation <3 Å, despite minor fluctuations observed at the end of simulation times. Root Mean Square Fluctuation of catalytic sites HIS41 and CYS145 was 0.756 Å and 0.773 Å, respectively.
Conclusions: This result suggests that β-sitosterol-3-O-β-D- glucopyranoside might be a prospective metabolite compound that can be developed as anti-SARS-CoV-2.
Collapse
|
29
|
Yousafzai ADK, Bangash AH, Asghar SY, Abbas SMM, Khawaja HF, Zehra S, Khan AU, Kamil M, Ayesha N, Khan AK, Mohsin R, Ahmed O, Fatima A, Ali A, Badar AU, Abbasi MN, Ashraf M, Shah AH, Iqbal T. Clinical efficacy of Azithromycin for COVID-19 management: A systematic meta-analysis of meta-analyses. Heart Lung 2023; 60:127-132. [PMID: 36996755 PMCID: PMC10017380 DOI: 10.1016/j.hrtlng.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Background Azithromycin has been adopted as a component of the COVID-19 management protocol throughout the global healthcare settings but with a questionable if not downright unsubstantiated evidence base. Objectives In order to amalgamate and critically appraise the conflicting evidence around the clinical efficacy of Azithromycin (AZO) vis a vis COVID-19 management outcomes, a meta-analysis of meta-analyses was carried out to establish an evidence-based holistic status of AZO vis a vis its efficacy as a component-in-use of the COVID-19 management protocol. Methods A comprehensive systematic search was carried out through PubMed/Medline, Cochrane and Epistemonikos with a subsequent appraisal of abstracts and full-texts, as required. The Quality of Reporting of Meta-analyses (QUOROM) checklist and the Assessment of Multiple Systematic Reviews (AMSTAR) methodology were adopted to assess the methodological quality of the included meta-analyses. Random-effects models were developed to calculate summarized pool Odds Ratios (with 95% confidence interval) for the afore determined primary and secondary outcomes. Results AZO, when compared with best available therapy (BAT) including or excluding Hydroxychloroquine, exhibited statistically insignificant reduction in mortality [(n= 27,204 patients) OR= 0.77 (95% CI: 0.51-1.16) (I2= 97%)], requirement of mechanical ventilation [(n= 14,908 patients) OR= 1.4 (95% CI: 0.58-3.35) (I2= 98%)], induction of arrhythmia [(n= 9,723 patients) OR= 1.21 (95% CI: 0.63-2.32) (I2= 92%)] and QTc prolongation (a surrogate for torsadogenic effect) [(n= 6,534 patients) OR= 0.62 (95% CI: 0.23-1.73) (I2= 96%)]. Conclusion The meta-analysis of meta-analyses portrays AZO as a pharmacological agent that does not appear to have a comparatively superior clinical efficacy than BAT when it comes to COVID-19 management. Secondary to a very real threat of anti-bacterial resistance, it is suggested that AZO be discontinued and removed from COVID-19 management protocols.
Collapse
Affiliation(s)
| | - Ali Haider Bangash
- Shifa International Hospital, Islamabad, Pakistan,Corresponding author: Dr Ali Haider Bangash, MBBS, Shifa International Hospital, Islamabad, Pakistan. Medical student member of the American College of Physicians (ACP), American Society of Clinical Oncology (ASCO), European Academy of Neurology (EAN), Congress of Neurological Surgeons (CNS), North American Spine Society (NASS), Society for Neuro-Oncology (SNO), Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART), International Parkinson and Movement Disorder Society & Spine Intervention Society
| | | | | | | | - Saiqa Zehra
- Shifa International Hospital, Islamabad, Pakistan
| | | | - Musa Kamil
- Shifa International Hospital, Islamabad, Pakistan
| | - Noor Ayesha
- Shifa International Hospital, Islamabad, Pakistan
| | | | - Rabia Mohsin
- Shifa International Hospital, Islamabad, Pakistan
| | - Osama Ahmed
- Shifa International Hospital, Islamabad, Pakistan
| | | | - Aliya Ali
- Shifa International Hospital, Islamabad, Pakistan
| | - Ain ul Badar
- Shifa International Hospital, Islamabad, Pakistan
| | | | - Mohammad Ashraf
- Rawalpindi Medical College, Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Tahir Iqbal
- Head of Department, Department of Medicine, Shifa College of Medicine, Islamabad, Pakistan
| |
Collapse
|
30
|
Mekasha YT, Chali BU, Feissa AB, Godena GH, Hassen HK, Wega SS. Quality evaluation of the Azithromycin tablets commonly marketed in Adama, and Modjo towns, Oromia Regional State, Ethiopia. PLoS One 2023; 18:e0282156. [PMID: 36862656 PMCID: PMC9980786 DOI: 10.1371/journal.pone.0282156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Azithromycin is a therapeutically" relevant macrolide antibiotic registered on the Essential Medicines List of the World Health Organization. The fact that medicine is selected as an essential drug doesn't mean that it is of good quality. Hence, a continuous quality evaluation of the drug should be mandated to verify that the right medication is available on the market. OBJECTIVE To evaluate the quality of Azithromycin Tablets commonly marketed in Adama, and Modjo town, Oromia Regional State, Ethiopia. METHODS All six brands were subjected to in-vitro quality control tests, which were carried out according to procedures described in the manufacturer's method, the United States Pharmacopeia, and the WHO inspection tool. All quality control parameters were compared by one-way ANOVA. Statistically, significant difference was considered when P<0.05. The in-vitro dissolution profiles of the brands were also compared statistically using the post-hoc Dunnett test, model-independent and model-dependent approaches. RESULTS All of the evaluated brands agreed with WHO visual inspection criteria. All of the tablets achieved the thickness, and diameter test requirements of the manufacturer's specification (±5%). All brands passed the hardness, friability, weight variation, disintegration, identity, and assay tests as stipulated by USP. The dissolution rate was more than 80% in 30 minutes, which was within the USP specification. The model-independent parameters have confirmed that only two brands (2/6) were deemed better brands for interchangeability. Weibull and Korsemeyer's Peppas model were the best release models. CONCLUSION All of the evaluated brands passed the quality specification. The model dependent approaches revealed that drug release data fit well to the Weibull, and Korsemeyer's Peppas release models. However, the model-independent parameters have confirmed that only two brands were deemed better brands (2/6) for interchangeability. Due to the dynamic nature of low-quality medications, the Ethiopian Food, and Drug Authority should keep an eye on marketed products to guarantee their quality, especially for drugs like azithromycin for which non-bioequivalence data from the study has revealed a clinical concern.
Collapse
Affiliation(s)
- Yesuneh Tefera Mekasha
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Belachew Umeta Chali
- Pharmaceutical Sciences, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Anbessa Bekele Feissa
- Pharmaceutical Sciences, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Gemmechu Hasen Godena
- Pharmaceutical Sciences, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Hassen Kebede Hassen
- Veterinary Drug and Feed Control and Administration Authority, Addis Ababa, Ethiopia
| | - Sultan Suleman Wega
- Pharmaceutical Sciences, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
31
|
Panahi Y, Gorabi AM, Talaei S, Beiraghdar F, Akbarzadeh A, Tarhriz V, Mellatyar H. An overview on the treatments and prevention against COVID-19. Virol J 2023; 20:23. [PMID: 36755327 PMCID: PMC9906607 DOI: 10.1186/s12985-023-01973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs. RESULT There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials. CONCLUSION This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Mokni-Tlili S, Hechmi S, Ouzari HI, Mechergui N, Ghorbel M, Jedidi N, Hassen A, Hamdi H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: influence of application rates and pedo-climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26596-26612. [PMID: 36369449 PMCID: PMC9652132 DOI: 10.1007/s11356-022-23802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunisia
| | - Najet Mechergui
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
33
|
Pauly I, Kumar Singh A, Kumar A, Singh Y, Thareja S, Kamal MA, Verma A, Kumar P. Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment. Curr Pharm Des 2023; 28:3677-3705. [PMID: 36345244 DOI: 10.2174/1381612829666221107123841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION The drug repurposing approach provides a new avenue in COVID-19 treatment.
Collapse
Affiliation(s)
- Irine Pauly
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jaddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, Australia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
34
|
Biondo C, Midiri A, Gerace E, Zummo S, Mancuso G. SARS-CoV-2 Infection in Patients with Cystic Fibrosis: What We Know So Far. Life (Basel) 2022; 12:2087. [PMID: 36556452 PMCID: PMC9786139 DOI: 10.3390/life12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory infections are the most common and most frequent diseases, especially in children and the elderly, characterized by a clear seasonality and with an incidence that usually tends to decrease with increasing age. These infections often resolve spontaneously, usually without the need for antibiotic treatment and/or with the possible use of symptomatic treatments aimed at reducing overproduction of mucus and decreasing coughing. However, when these infections occur in patients with weakened immune systems and/or underlying health conditions, their impact can become dramatic and in some cases life threatening. The rapid worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has caused concern for everyone, becoming especially important for individuals with underlying lung diseases, such as CF patients, who have always paid close attention to implementing protective strategies to avoid infection. However, adult and pediatric CF patients contract coronavirus infection like everyone else. In addition, although numerous studies were published during the first wave of the pandemic on the risk for patients with cystic fibrosis (CF) to develop severe manifestations when infected with SARS-CoV-2, to date, a high risk has been found only for patients with poorer lung function and post-transplant status. In terms of preventive measures, vaccination remains key. The best protection for these patients is to strengthen preventive measures, such as social distancing and the use of masks. In this review, we aim to summarize and discuss recent advances in understanding the susceptibility of CF individuals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
35
|
Ceramella J, Iacopetta D, Sinicropi MS, Andreu I, Mariconda A, Saturnino C, Giuzio F, Longo P, Aquaro S, Catalano A. Drugs for COVID-19: An Update. Molecules 2022; 27:8562. [PMID: 36500655 PMCID: PMC9740261 DOI: 10.3390/molecules27238562] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
36
|
The impact of the secondary infections in ICU patients affected by COVID-19 during three different phases of the SARS-CoV-2 pandemic. Clin Exp Med 2022:10.1007/s10238-022-00959-1. [PMID: 36459278 PMCID: PMC9717567 DOI: 10.1007/s10238-022-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Microbial secondary infections can contribute to an increase in the risk of mortality in COVID-19 patients, particularly in case of severe diseases. In this study, we collected and evaluated the clinical, laboratory and microbiological data of COVID-19 critical ill patients requiring intensive care (ICU) to evaluate the significance and the prognostic value of these parameters. One hundred seventy-eight ICU patients with severe COVID-19, hospitalized at the S. Francesco Hospital of Nuoro (Italy) in the period from March 2020 to May 2021, were enrolled in this study. Clinical data and microbiological results were collected. Blood chemistry parameters, relative to three different time points, were analyzed through multivariate and univariate statistical approaches. Seventy-four percent of the ICU COVID-19 patients had a negative outcome, while 26% had a favorable prognosis. A correlation between the laboratory parameters and days of hospitalization of the patients was observed with significant differences between the two groups. Moreover, Staphylococcus aureus, Enterococcus faecalis, Candida spp, Pseudomonas aeruginosa and Klebsiella pneumoniae were the most frequently isolated microorganisms from all clinical specimens. Secondary infections play an important role in the clinical outcome. The analysis of the blood chemistry tests was found useful in monitoring the progression of COVID-19.
Collapse
|
37
|
Chavda VP, Patel AB, Vora LK, Singla RK, Shah P, Uversky VN, Apostolopoulos V. Nitric Oxide and its Derivatives Containing Nasal Spray and Inhalation Therapy for the Treatment of COVID-19. Curr Pharm Des 2022; 28:3658-3670. [PMID: 36284382 DOI: 10.2174/1381612829666221024124848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and has evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants change the severity of the diesease and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via the intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, U.K
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Priyal Shah
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia
| |
Collapse
|
38
|
Taha I, Abdou Y, Hammad I, Nady O, Hassan G, Farid MF, Alofi FS, Alharbi N, Salamah E, Aldeeb N, Elmehallawy G, Alruwathi R, Sarah E, Rashad A, Rammah O, Shoaib H, Omar ME, Elmehallawy Y, Kassim S. Utilization of Antibiotics for Hospitalized Patients with Severe Coronavirus Disease 2019 in Al-Madinah Al-Munawara, Saudi Arabia: A Retrospective Study. Infect Drug Resist 2022; 15:7401-7411. [DOI: 10.2147/idr.s386162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
|
39
|
Nandi S, Nayak BS, Khede MK, Saxena AK. Repurposing of Chemotherapeutics to Combat COVID-19. Curr Top Med Chem 2022; 22:2660-2694. [PMID: 36453483 DOI: 10.2174/1568026623666221130142517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a novel strain of SARS coronavirus. The COVID-19 disease caused by this virus was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 mainly spreads through droplets sprayed by coughs or sneezes of the infected to a healthy person within the vicinity of 6 feet. It also spreads through asymptomatic carriers and has negative impact on the global economy, security and lives of people since 2019. Numerous lives have been lost to this viral infection; hence there is an emergency to build up a potent measure to combat SARS-CoV-2. In view of the non-availability of any drugs or vaccines at the time of its eruption, the existing antivirals, antibacterials, antimalarials, mucolytic agents and antipyretic paracetamol were used to treat the COVID-19 patients. Still there are no specific small molecule chemotherapeutics available to combat COVID-19 except for a few vaccines approved for emergency use only. Thus, the repurposing of chemotherapeutics with the potential to treat COVID-19 infected people is being used. The antiviral activity for COVID-19 and biochemical mechanisms of the repurposed drugs are being explored by the biological assay screening and structure-based in silico docking simulations. The present study describes the various US-FDA approved chemotherapeutics repositioned to combat COVID-19 along with their screening for biological activity, pharmacokinetic and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| | - Bhabani Shankar Nayak
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Mayank Kumar Khede
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Anil Kumar Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
40
|
|
41
|
Elekhnawy E, Negm WA, El-Sherbeni SA, Zayed A. Assessment of drugs administered in the Middle East as part of the COVID-19 management protocols. Inflammopharmacology 2022; 30:1935-1954. [PMID: 36018432 PMCID: PMC9411846 DOI: 10.1007/s10787-022-01050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
The pandemic spread of coronavirus (COVID-19) has been reported first at the end of 2019. It continues disturbing various human aspects with multiple pandemic waves showing more fatal novel variants. Now Egypt faces the sixth wave of the pandemic with controlled governmental measures. COVID-19 is an infectious respiratory disease-causing mild to moderate illness that can be progressed into life-threatening complications based on patients- and variant type-related factors. The symptoms vary from dry cough, fever to difficulty in breathing that required urgent hospitalization. Most countries have authorized their national protocols for managing manifested symptoms and thus lowering the rate of patients' hospitalization and boosting the healthcare systems. These protocols are still in use even with the development and approval of several vaccines. These protocols were instructed to aid home isolation, bed rest, dietary supplements, and additionally the administration of antipyretic, steroids, and antiviral drugs. The current review aimed to highlight the administered protocols in the Middle East, namely in Egypt and the Kingdom of Saudi Arabia demonstrating how these protocols have shown potential effectiveness in treating patients and saving many soles.
Collapse
Affiliation(s)
- Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Suzy A. El-Sherbeni
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
42
|
Paruchuri S, Yetukuri K, Nadendla R. Repurposing Molnupiravir as a new opportunity to treat COVID-19. JOURNAL OF GENERIC MEDICINES 2022; 18:205-213. [PMID: 38603247 PMCID: PMC9357751 DOI: 10.1177/17411343221115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With the emergence of new and re-emerging viral diseases, scientists have been working to produce new medications with novel targets and pathways. The discovery of safe and efficacious antiviral medicines is critical due to the constant introduction of new virus types and short lifetime of protection. Since the outbreak, there have been significant efforts to repurpose existing and licensed medications for rapid human testing and possible emergency use authorizations. The exploration of surviving medications for new restorative motives is known as drug repurposing. It is a successful, rapid, and highly reliable alternative to traditional drug methods. COVID-19 is being treated using a number of repurposed and new medicines. Molnupiravir is a repurposed Covid-19 medicine that was specifically developed to cure influenza and is used to treat mild to moderately ill Covid-19 patients with high risk of becoming seriously ill. The importance of medication repurposing, as well as the regulatory procedure for repurposed pharmaceuticals and Emergency Use Authorization in the United States, are summarized in this article.
Collapse
Affiliation(s)
- Sahithi Paruchuri
- Department of Pharmaceutical Regulatory Affairs, Chalapathi Institute of
Pharmaceutical Sciences (Autonomous), Guntur, India
| | - Koushik Yetukuri
- Department of Pharmaceutical Regulatory Affairs, Chalapathi Institute of
Pharmaceutical Sciences (Autonomous), Guntur, India
| | - RamaRao Nadendla
- Department of Pharmaceutical Regulatory Affairs, Chalapathi Institute of
Pharmaceutical Sciences (Autonomous), Guntur, India
| |
Collapse
|
43
|
Antimicrobial Resistance of Salmonella Strains Isolated from Human, Wild Boar, and Environmental Samples in 2018-2020 in the Northwest of Italy. Pathogens 2022; 11:pathogens11121446. [PMID: 36558780 PMCID: PMC9787983 DOI: 10.3390/pathogens11121446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance is one of the most challenging public health problems worldwide, and integrated surveillance is a key aspect in a One Health control strategy. Additionally, Salmonella is the second most common zoonosis in Europe. We aimed to investigate the circulation of Salmonella strains and their related antimicrobial resistance in human, environmental, and wild boar samples from the northwest of Italy, from 2018 to 2020, to obtain a more comprehensive epidemiological picture. Salmonella Typhimurium 1,4,[5],12:i:-, S. Veneziana and S. Newport were the most common serotypes occurring in humans, the environment, and wild boar, respectively. Antimicrobial resistance was rather common in Salmonella isolates, with those from human displaying the highest degree of resistance against sulfadiazine−sulfamerazine−sulfamethazine (>90% of resistance). Moreover, resistance against azithromycin were exclusively observed in environmental samples, while only 7.7% (95% CI = 1.6−20.8) of wild boar isolates experienced resistance against trimethoprim−sulfamethoxazole. Multidrug resistance concurrently involved up to seven antimicrobial classes in human isolates, including third-generation cephalosporins and fluoroquinolones. Salmonella Typhimurium in humans and serotypes Goldcoast and Rissen from environmental sources showed the highest levels of resistance. This study shows diverse antimicrobial resistance patterns in Salmonella strains isolated from different sources and gives a broad picture of antimicrobial resistance spread in wild animals, humans, and the environment.
Collapse
|
44
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Efficacy of Therapeutic Plasma Exchange in Severe Acute Respiratory Distress Syndrome in COVID-19 Patients from the Western Part of Romania. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121707. [PMID: 36556909 PMCID: PMC9781662 DOI: 10.3390/medicina58121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has surprised the medical world with its devastating effects such as severe acute respiratory distress syndrome (ARDS) and cytokine storm, but also with the scant therapeutic solutions which have proven to be effective against the disease. Therapeutic plasma exchange (TPE) has been proposed from the very beginning as a possible adjuvant treatment in severe cases. Our objective was to analyze the evolution of specific biological markers of the COVID-19 disease before and one day after a therapeutic plasma exchange session, how a change in these parameters influences the patient’s respiratory status, as well as the impact of TPE on the survival rate. Materials and Methods: In this retrospective study, we include 65 patients with COVID-19 admitted to the intensive care unit department of our hospital between March 2020 and December 2021, and who received a total of 120 sessions of TPE. Results: TPE significantly reduced the following inflammation markers (p < 0.001): interleukin-6 (IL-6), C-reactive protein (CRP), lactate dehydrogenase (LDH), fibrinogen, ferritin, and erythrocyte sedimentation rate. This procedure significantly increased the number of lymphocytes and decreased D-dimers levels (p = 0.0024). TPE significantly improved the PaO2/FiO2 ratio (p < 0.001) in patients with severe acute respiratory distress syndrome (PaO2/FiO2 < 100). Survival was improved in intubated patients who received TPE. Conclusions: TPE involved the reduction in inflammatory markers in critical patients with COVID-19 disease and the improvement of the PaO2/FiO2 ratio in patients with severe ARDS and had a potential benefit on the survival of patients with extremely severe COVID-19 disease.
Collapse
|
46
|
Stegarescu A, Lung I, Ciorîță A, Kacso I, Opriș O, Soran ML, Soran A. The Antibacterial Properties of Nanocomposites Based on Carbon Nanotubes and Metal Oxides Functionalized with Azithromycin and Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4115. [PMID: 36500738 PMCID: PMC9735462 DOI: 10.3390/nano12234115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Different microorganisms are present in nature, some of which are assumed to be hazardous to the human body. It is crucial to control their continuing growth to improve human life. Nanomaterial surface functionalization represents a current topic in continuous evolution that supports the development of new materials with multiple applications in biology, medicine, and the environment. This study focused on the antibacterial activity of different nanocomposites based on functionalized multi-walled carbon nanotubes against four common bacterial strains. Two metal oxides (CuO and NiO) and two antibiotics (azithromycin and ciprofloxacin) were selected for the present study to obtain the following nanocomposites: MWCNT-COOH/Antibiotic, MWCNT-COOH/Fe3O4/Antibiotic, and MWCNT-COOH/Fe3O4/MO/Antibiotic. The present study included two Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Ciprofloxacin (Cip) functionalized materials (MWCNT-COOH/Fe3O4/Cip) were most efficient against all tested bacterial strains; therefore, we conclude that Cu and Ni reduce the effects of Cip. The obtained results indicate that the nanocomposites functionalized with Cip are more effective against selected bacteria strains compared to azithromycin (Azi) functionalized nanocomposites. The current work determined the antibacterial activities of different nanocomposites and gave fresh insights into their manufacture for future research regarding environmental depollution.
Collapse
Affiliation(s)
- Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Abo-zeid Y, Amer A, Bakkar MR, El-Houssieny B, Sakran W. Antimicrobial Activity of Azithromycin Encapsulated into PLGA NPs: A Potential Strategy to Overcome Efflux Resistance. Antibiotics (Basel) 2022; 11:1623. [PMID: 36421266 PMCID: PMC9686761 DOI: 10.3390/antibiotics11111623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance represents a public health problem with a major negative impact on health and socioeconomic development, and is one of the biggest threats in the modern era. This requires the discovery of new approaches to control microbial infections. Nanomedicine could be one of the promising strategies to improve the treatment of microbial infections. Polymer nanoparticles (PNPs) were reported to overcome the efflux-resistant mechanism toward chemotherapeutic agents. However, to the best of our knowledge, no studies were performed to explore their ability to overcome the efflux-resistant mechanism in bacteria. In the current study, azithromycin (AZI), a macrolide antibiotic, was encapsulated into a biocompatible polymer, poly (lactic-co-glycolic acid) (PLGA) using the nano-precipitation method. The effect of the drug to polymer ratio, surfactant, and pH of the aqueous medium on particle size and drug loading percentage (DL%) were investigated in order to maximize the DL% and control the size of NPs to be around 100 nm. The antibacterial activity of AZI-PLGA NPs was investigated against AZI-resistant bacteria; Methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis (E. faecalis), where the efflux mechanism was demonstrated to be one of the resistant mechanisms. AZI-PLGA NPs were safer than free AZI, as revealed from the cytotoxicity test, and were able to overcome the efflux-resistant mechanism, as revealed by decreasing the MIC of AZI-PLGA NPs by four times than free AZI. The MIC value reduced from 256 to 64 µg/mL and from >1000 to 256 µg/mL for MRSA and E. faecalis, respectively. Therefore, encapsulation of AZI into PNPs was shown to be a promising strategy to overcome the efflux-resistant mechanism towards AZI and improve its antibacterial effect. However, future investigations are necessary to explore the effect (if any) of particle size, surface charge, and material composition of PNPs on antibacterial activity. Moreover, it is essential to ascertain the safety profiles of these PNPs, the possibility of their large-scale manufacture, and if this concept could be extended to other antibiotics.
Collapse
Affiliation(s)
- Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Amr Amer
- National Organization for Drug Control and Research (NODCAR), Giza 12511, Egypt
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | | | - Wedad Sakran
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
48
|
Mirzaie F, Teymori F, Shahcheragh S, Dobaradaran S, Arfaeinia H, Kafaei R, Sahebi S, Farjadfard S, Ramavandi B. Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. CHEMOSPHERE 2022; 307:135996. [PMID: 35970214 PMCID: PMC9372055 DOI: 10.1016/j.chemosphere.2022.135996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
One of the environmental effects of COVID 19 is the contamination of ecosystems with antibiotics due to their high consumption to treat this disease. Many years ago, the distribution of antibiotics including azithromycin (Azi) in wastewater treatment plants in Bushehr city, seawater, and sediment of the Persian Gulf has been investigated. As Azi has been prescribed to COVID 19 patients, contamination of the environment with this drug can also be assumed. Thus, we decided to examine this hypothesis by repeating our previous study during COVID 19 period. We collected wastewater samples from influent, effluent, and different units of three wastewater treatment plants (WWTPs) including one municipal WWTP (Plant A) and two hospital-WWTPs (Plant B and C). Seawater and adjusted sediments were gathered from 8 stations located in the Persian Gulf in two seasons to evaluate the special and temporal variation. The results showed a huge growth of Azi pollution in all studied matrixes. The mean Azi values in the influent of Plant A, B, and C were 145 ng/L, 110 ng/L, and 896 ng/L, which represented an 9, 6, and 48-time increase compared with those obtained in 2017 (before COVID 19). The Azi removal efficiency had a different behavior compared to before COVID 19. The mean concentration of Azi in seawater and sediment samples was 9 ng/L and 6 ng/g, which was 3 and 4-fold higher than the previous study. Opposed to our former study, the Azi amount in the aqueous phase was less subjected to temporal seasonal variations. Our observations indicated the wide distribution of Azi in the environment and a future threat of intense growth of antibiotic resistance in ecosystems.
Collapse
Affiliation(s)
- Farzad Mirzaie
- Environmental Laboratory, Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Fatemeh Teymori
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Raheleh Kafaei
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soleyman Sahebi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Sima Farjadfard
- Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
49
|
Smaali A, Berkani M, Benmatti H, Lakhdari N, Al Obaid S, Alharbi SA, Fakhreddine B, Ines A, Marouane F, Rezania S, Lakhdari N. Degradation of Azithromycin from aqueous solution using Chlorine-ferrous- oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. ENVIRONMENTAL RESEARCH 2022; 214:114026. [PMID: 35977588 DOI: 10.1016/j.envres.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 μM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 μM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.
Collapse
Affiliation(s)
- Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Hadjer Benmatti
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Belhadef Fakhreddine
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole université des frères Mentouri Constantine 1, Ain Bey, 25000, Constantine, Algeria
| | - Amri Ines
- Laboratoire SARL HupPharma 25100, Constantine, Algeria
| | - Fateh Marouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
50
|
Antonazzo IC, Fornari C, Rozza D, Conti S, di Pasquale R, Cortesi P, Kaleci S, Ferrara P, Zucchi A, Maifredi G, Silenzi A, Cesana G, Mantovani LG, Mazzaglia G. Azithromycin use and outcomes in patients with COVID-19: an observational real-world study. Int J Infect Dis 2022; 124:27-34. [PMID: 36089152 PMCID: PMC9458549 DOI: 10.1016/j.ijid.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Previous studies ruled out the benefits of azithromycin for treatment of patients with COVID-19 who are hospitalized. However, the effects of azithromycin for treatment of patients with positive SARS-CoV-2 test results in the community remains a matter of debate. This study aimed to assess whether azithromycin, when used in subjects with positive test results for SARS-CoV-2, is associated with a reduced risk of hospitalization, in-hospital COVID-19 outcomes, and death. METHODS Two study cohorts were selected. Cohort A included subjects with positive test results for SARS-CoV-2 between February 20, 2020 and December 10, 2020; cohort B included subjects infected with SARS-CoV-2 and hospitalized between February 20, 2020 and December 31, 2020. We compared the risk of hospitalization, intensive care unit access, need for mechanical ventilation, and death in azithromycin users versus nonusers. A clustered Fine-Gray analysis was employed to assess the risk of hospitalization; logistic and Cox regressions were performed to assess the risk of intensive care unit access, mechanical ventilation, and death. RESULTS In cohort A, among 4861 azithromycin users and 4861 propensity-matched nonusers, azithromycin use was associated with higher risk of hospitalization (hazard ratio [HR] 1.59, 95% confidence interval [CI] 1.45-1.75) compared with nonuse. In cohort B, among 997 subjects selected in both groups, azithromycin use was not significantly associated with intensive care unit access (odds ratio [OR] 1.22, 95% CI 0.93-1.56), mechanical ventilation (OR 1.30, 95% CI 0.99-1.70), 14-day mortality (HR0.88, 95% CI 0.74-1.05), or 30-day mortality (HR 0.89, 95% CI 0.77-1.03). CONCLUSION Our findings confirm the lack of benefits of azithromycin treatment among community patients infected with SARS-CoV-2, raising concern on potential risks associated with its inappropriate use.
Collapse
Affiliation(s)
| | - Carla Fornari
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Davide Rozza
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy.
| | - Sara Conti
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | | | - Paolo Cortesi
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Shaniko Kaleci
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Pietro Ferrara
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Alberto Zucchi
- Health Protection Agency of Bergamo (ATS Bergamo), Bergamo, Italy
| | | | - Andrea Silenzi
- General Directorate for Health Prevention, Ministry of Health, Rome, Italy
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | | | | |
Collapse
|