1
|
Strand D, Lundgren B, Bergdahl IA, Martin JW, Karlsson O. Personalized mixture toxicity testing: A proof-of-principle in vitro study evaluating the steroidogenic effects of reconstructed contaminant mixtures measured in blood of individual adults. ENVIRONMENT INTERNATIONAL 2024; 192:108991. [PMID: 39299052 DOI: 10.1016/j.envint.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Chemical risk assessments typically focus on single substances, often overlooking real-world co-exposures to chemical mixtures. Mixture toxicology studies using representative mixtures can reveal potential chemical interactions, but these do not account for the unique chemical profiles that occur in the blood of diverse individuals. Here we used the H295R steroidogenesis assay to screen personalized mixtures of 24 persistent organic pollutants (POPs) for cytotoxicity and endocrine disruption. Each mixture was reconstructed at a human exposure relevant concentration (1×), as well as at 10- and 100-fold higher concentration (10×, 100×) by acoustic liquid handling based on measured blood concentrations in a Swedish cohort. Among the twelve mixtures tested, nine mixtures decreased the cell viability by 4-18%, primarily at the highest concentration. While the median and maximum mixtures based on the whole study population induced no measurable effects on steroidogenesis at any concentration, the personalized mixture from an individual with the lowest total POPs concentration was the only mixture that affected estradiol synthesis (35% increase at the 100× concentration). Mixtures reconstructed from blood levels of three different individuals stimulated testosterone synthesis at the 1× (11-15%) and 10× concentrations (12-16%), but not at the 100× concentration. This proof-of-principle personalized toxicity study illustrates that population-based representative chemical mixtures may not adequately account for the toxicological risks posed to individuals. It highlights the importance of testing a range of real-world mixtures at relevant concentrations to explore potential interactions and non-monotonic effects. Further toxicological studies of personalized contaminant mixtures could improve chemical risk assessment and advance the understanding of human health, as chemical exposome data become increasingly available.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay Unit, Dept. of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, Umeå 901 85 Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
2
|
Strand D, Nylander E, Höglund A, Lundgren B, Martin JW, Karlsson O. Screening persistent organic pollutants for effects on testosterone and estrogen synthesis at human-relevant concentrations using H295R cells in 96-well plates. Cell Biol Toxicol 2024; 40:69. [PMID: 39136868 PMCID: PMC11322491 DOI: 10.1007/s10565-024-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Erik Nylander
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay unit, Dept. of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden.
| |
Collapse
|
3
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
4
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
6
|
Jansen A, Berg JP, Klungsøyr O, Müller MHB, Lyche JL, Aaseth JO. The Influence of Persistent Organic Pollutants on Thyroidal, Reproductive and Adrenal Hormones After Bariatric Surgery. Obes Surg 2019; 30:1368-1378. [DOI: 10.1007/s11695-019-04273-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Huang W, He Y, Xiao J, Huang Y, Li A, He M, Wu K. Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32128-32136. [PMID: 31494853 DOI: 10.1007/s11356-019-06404-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/03/2019] [Indexed: 02/05/2023]
Abstract
Polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene (DDE) are suspected to be associated with breast cancer risk, but the results are controversial. This study was performed to evaluate the associations between adipose tissue PCB, DDT, and DDE concentrations and breast cancer risk. Two hundred and nine pathologically diagnosed breast cancer cases and 165 controls were recruited from three local hospitals in Shantou city, China, from 2014 to 2016. Concentrations of 7 PCB congeners, p,p'-DDT, and p,p'-DDE were measured in adipose tissues obtained from the breast for cases and the breast/abdomen for controls during surgery. Clinicopathologic information and demographic characteristics were collected from medical records. PCBs, p,p'-DDT, and p,p'-DDE concentrations in adipose tissues were compared between cases and controls. Multivariate logistic regression model was used to analyze the risk of breast cancer by PCBs, p,p'-DDT, and p,p'-DDE concentrations in adipose tissues. Breast cancer cases have relatively higher menarche age, higher breastfeeding and postmenopausal proportion than controls. Levels of PCB-52, PCB-101, PCB-118, PCB-138, PCB-153, PCB-180, total PCBs (∑PCBs), and p,p'-DDE were relatively higher in breast cancer cases than controls. Breast cancer risk was increased in the third tertile of PCB-101, PCB-118, PCB-138, PCB-153, PCB-180, ∑PCBs, and p,p'-DDE as compared with the first tertile in both adjusted and unadjusted logistic regression models (odds ratios [ORs] were from 1.58 to 7.88); and increased linearly across categories of PCB-118 and p,p'-DDE in unadjusted model, and PCB-118 and PCB-153 in the adjusted model with trend (all P < 0.01). While breast cancer risk was declined in the second tertile of PCB-28, PCB-52, and PCB-101 in both unadjusted and adjusted models, also second tertile of p,p'-DDT and third tertile of PCB-28 in the adjusted models. This study suggests associations between the exposure of PCBs, p,p'-DDT, and p,p'-DDE and breast cancer risk. Based on adjusted models, PCB-118, PCB-138, PCB-153, PCB-180, ∑PCBs, and p,p'-DDE exposures increase breast cancer risk at current exposure levels, despite existing inconsistent even inverse results in PCB-28, PCB-52, PCB-101, and p,p'-DDT. More epidemiological studies are still needed to verify these findings in different populations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yuanni Huang
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Anna Li
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Meirong He
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China.
| |
Collapse
|
8
|
Bohler S, Krauskopf J, Espín-Pérez A, Gebel S, Palli D, Rantakokko P, Kiviranta H, Kyrtopoulos SA, Balling R, Kleinjans J. Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:107-117. [PMID: 30991279 DOI: 10.1016/j.envpol.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands.
| | - Almudena Espín-Pérez
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| | - Stephan Gebel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L, 4362, Luxembourg
| | - Domenico Palli
- Istituto per lo Studio e la Prevenzione Oncologica (ISPO Toscana), FVia Cosimo Il Vecchio, 2, 50139, Florence, Italy
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701, Kuopio, Finland
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701, Kuopio, Finland
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Pharmaceutical Chemistry and Biotechnology, 48 Vassileos Constantinou Ave, 11635, Athens, Greece
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L, 4362, Luxembourg
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| |
Collapse
|
9
|
Ahmed KEM, Frøysa HG, Karlsen OA, Blaser N, Zimmer KE, Berntsen HF, Verhaegen S, Ropstad E, Kellmann R, Goksøyr A. Effects of defined mixtures of POPs and endocrine disruptors on the steroid metabolome of the human H295R adrenocortical cell line. CHEMOSPHERE 2019; 218:328-339. [PMID: 30476764 DOI: 10.1016/j.chemosphere.2018.11.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The presence of environmental pollutants in our ecosystem may impose harmful health effects to wildlife and humans. Several of these toxic chemicals have a potential to interfere with the endocrine system. The adrenal cortex has been identified as the main target organ affected by endocrine disrupting chemicals. The aim of this work was to assess exposure effects of defined and environmentally relevant mixtures of chlorinated, brominated and perfluorinated chemicals on steroidogenesis, using the H295R adrenocortical cell line model in combination with a newly developed liquid chromatography tandem mass spectrometry (LC-MS/MS) method. By using this approach, we could simultaneously analyze 19 of the steroids in the steroid biosynthesis pathway, revealing a deeper insight into possible disruption of steroidogenesis. Our results showed a noticeable down-regulation in steroid production when cells were exposed to the highest concentration of a mixture of brominated and fluorinated compounds (10,000-times human blood values). In contrast, up-regulation was observed with estrone under the same experimental condition, as well as with some other steroids when cells were exposed to a perfluorinated mixture (1000-times human blood values), and the mixture of chlorinated and fluorinated compounds. Interestingly, the low concentration of the perfluorinated mixture alone produced a significant, albeit small, down-regulation of pregnenolone, and the total mixture a similar effect on 17-hydroxypregnenolone. Other mixtures resulted in only slight deviations from the control. Indication of synergistic effects were noted when we used a statistical model to improve data interpretation. A potential for adverse outcomes of human exposures is indicated, pointing to the need for further investigation into these mixtures.
Collapse
Affiliation(s)
| | - Håvard G Frøysa
- Department of Mathematics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Nello Blaser
- Department of Mathematics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Karin Elisabeth Zimmer
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 5330 Majorstuen, N-0304, Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Ralf Kellmann
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| |
Collapse
|
10
|
Dale K, Müller MB, Tairova Z, Khan EA, Hatlen K, Grung M, Yadetie F, Lille-Langøy R, Blaser N, Skaug HJ, Lyche JL, Arukwe A, Hylland K, Karlsen OA, Goksøyr A. Contaminant accumulation and biological responses in Atlantic cod (Gadus morhua) caged at a capped waste disposal site in Kollevåg, Western Norway. MARINE ENVIRONMENTAL RESEARCH 2019; 145:39-51. [PMID: 30803754 DOI: 10.1016/j.marenvres.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess whether fish in Kollevåg, a sheltered bay on the western coast of Norway, previously utilized as a waste disposal site, could be affected by environmental contaminants leaking from the waste. Farmed, juvenile Atlantic cod (Gadus morhua) were caged for six weeks at three different locations in Kollevåg bay and at one reference location. Sediments and cod samples (bile and liver) were analyzed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), per-and polyfluoroalkyl substances (PFASs) and polycyclic aromatic hydrocarbon (PAH) metabolites, revealing a contamination gradient at the four stations. Furthermore, hepatosomatic index (HSI) and Fulton's condition factor (CF) were significantly lower in cod caged closest to the disposal site. Levels and activities of biomarker proteins, such as vitellogenin (Vtg), metallothionein (Mt), and biotransformation and oxidative stress enzymes, including cytochrome P450 1a and 3a (Cyp1a, Cyp3a), glutathione s-transferase (Gst) and catalase (Cat), were quantified in blood plasma and liver tissue. Hepatic Cat and Gst activities were significantly reduced in cod caged at the innermost stations in Kollevåg, indicating modulation of oxidative stress responses. However, these results contrasted with reduced hepatic lipid peroxidation. Significant increases in transcript levels were observed for genes involved in lipid metabolism (fasn and acly) in cod liver, while transcript levels of ovarian steroidogenic enzyme genes such as p450scc, cyp19, 3β-hsd and 20β-hsd showed significant station-dependent increases. Cyp1a and Vtg protein levels were however not significantly altered in cod caged in Kollevåg. Plasma levels of estradiol (E2) and testosterone (T) were determined by enzyme immunoassay (EIA) and showed elevated E2 levels, but only at the innermost station. We conclude that the bay of Kollevåg did not fullfill adequate environmental condition based on environmental quality standards (EQSs) for chemicals in coastal waters. Following a six weeks caging period, environmental contaminants accumulated in cod tissues and effects were observed on biomarker responses, especially those involved in reproductive processes in cod ovary.
Collapse
Affiliation(s)
- Karina Dale
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006, Bergen, Norway.
| | - Mette Bjørge Müller
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Zhanna Tairova
- Department of Biosciences, University of Oslo, Blindernveien 31, 0317, Oslo, Norway.
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway.
| | | | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway.
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006, Bergen, Norway.
| | - Roger Lille-Langøy
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006, Bergen, Norway.
| | - Nello Blaser
- Department of Mathematics, University of Bergen, Allégaten 41, 5007, Bergen, Norway.
| | - Hans J Skaug
- Department of Mathematics, University of Bergen, Allégaten 41, 5007, Bergen, Norway.
| | - Jan Ludvig Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway.
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Blindernveien 31, 0317, Oslo, Norway.
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006, Bergen, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006, Bergen, Norway.
| |
Collapse
|
11
|
Hou J, Su Y, Lin W, Guo H, Li L, Anderson DM, Li D, Tang R, Chi W, Zhang X. Estrogenic potency of MC-LR is induced via stimulating steroidogenesis: In vitro and in vivo evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:615-622. [PMID: 29772511 PMCID: PMC6859840 DOI: 10.1016/j.envpol.2018.04.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 05/06/2023]
Abstract
Waterborne microcystin-LR (MC-LR) has been reported to disrupt sex hormones, while its estrogenic potency remains controversial. We hypothesized that MC-LR could induce estrogenic effects via disrupting sex hormone synthesis, and verified this hypothesis by in vitro and in vivo assays. Effects of MC-LR (1, 10, 100, 500, 1000 and 5000 μg/L) on steroidogenesis were assessed in the H295R cells after 48 h. The contents of 17β-estradiol (E2) and testosterone (T) increased in a non-dose-dependent manner, which showed positive correlations with the expression of steroidogenic genes. In the in vivo assay, adult male zebrafish were exposed to 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d. Similarly, E2 and T contents in the testis were increased, accompanied by extensive up-regulation of steroidogenic genes, especially cyp19a. Meanwhile, the percentage of spermatid in the testis declined. In the liver, the vtg1 gene was significantly up-regulated while both the transcriptional and protein levels of the estrogenic receptor (ER) declined. These results indicate that MC-LR induced non-dose-dependent estrogenic effects at environmental concentrations, which may result from steroidogenesis stimulation via a non-ER-mediated pathway. Our findings support a paradigm shift in the risk assessment of MC-LR from traditional toxicity to estrogenic risk, particularly at low concentrations, and emphasize the potential threat to the male reproductive capacity of wildlife in bloom areas.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Wei Chi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| |
Collapse
|
12
|
Huang AC, Nelson C, Elliott JE, Guertin DA, Ritland C, Drouillard K, Cheng KM, Schwantje HM. River otters (Lontra canadensis) "trapped" in a coastal environment contaminated with persistent organic pollutants: Demographic and physiological consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:306-316. [PMID: 29573713 DOI: 10.1016/j.envpol.2018.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Productive coastal and estuarine habitats can be degraded by contaminants including persistent organic pollutants (POPs) such as PCBs, dioxins, and organochlorine insecticides to the extent of official designation as contaminated sites. Top-predatory wildlife may continue to use such sites as the habitat often appears suitable, and thus bioaccumulate POPs and other contaminants with potential consequences on their health and fitness. Victoria and Esquimalt harbours are located on southern Vancouver Island, British Columbia (BC) and are federally designated contaminated sites due mainly to past heavy industrial activities, such as from shipyards and sawmills. We collected scat samples from river otters (Lontra canadensis) throughout an annual cycle, and combined chemical analysis with DNA genotyping to examine whether the harbour areas constituted a contaminant-induced ecological trap for otters. We confirmed spatial habitat use by radio telemetry of a subsample of otters. Fifteen percent of otter scat contained PCB concentrations exceeding levels considered to have adverse effects on the reproduction of mink (Neovison vison), and there were significant positive correlations between concentrations of PCBs and of thyroid (T3) and sex (progesterone) hormones in fecal samples. Radio telemetry data revealed that otters did not show directional movement away from the harbours, indicating their inability to recognize the contaminated site as a degraded habitat. However, analysis and modeling of the DNA genotyping data provided no evidence that the harbour otters formed a sink population and therefore were in an ecological trap. Despite the highly POP-contaminated habitat, river otters did not appear to be adversely impacted at the population level. Our study demonstrates the value of combining chemical and biological technologies with ecological theory to investigate practical conservation problems.
Collapse
Affiliation(s)
- Andrew C Huang
- Science & Technology Branch, Environment and Climate Change Canada, Delta, BC, Canada
| | - Cait Nelson
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada; British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, BC, Canada
| | - John E Elliott
- Science & Technology Branch, Environment and Climate Change Canada, Delta, BC, Canada; Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel A Guertin
- Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Carol Ritland
- Genetic Data Centre, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ken Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Helen M Schwantje
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, BC, Canada
| |
Collapse
|
13
|
Hudecova AM, Hansen KEA, Mandal S, Berntsen HF, Khezri A, Bale TL, Fraser TWK, Zimmer KE, Ropstad E. A human exposure based mixture of persistent organic pollutants affects the stress response in female mice and their offspring. CHEMOSPHERE 2018; 197:585-593. [PMID: 29407821 DOI: 10.1016/j.chemosphere.2018.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Persistent organic pollutants (POPs) are found in the food chain of both humans and animals and exert a wide spectrum of potentially adverse effects. The present experiment aimed to investigate whether a defined mixture of 29 POPs, based on the dietary intake of Scandinavians, could affect the stress response in female mice exposed through ingestion, and in their offspring. Female mice 129:C57BL/6F0 hybrids were exposed from weaning, throughout pregnancy, and up until necropsy, to either 5000 × or 100 000 × the estimated daily intake for Scandinavians. The offspring were fed a reference diet containing no POPs. Both the mothers and their offspring were tested for basal and stress responsive corticosterone levels, and in an open field test to measure locomotor activity and anxiety-like behaviours. We found mothers to have elevated basal corticosterone levels, as well as a prolonged stress response following POP exposure. In the offspring, there was no effect of POPs on the stress response in females, but the exposed males had an over-sensitised stress response. There was no effect on behaviour in either the mothers or the offspring. In conclusion, we found a human relevant POP mixture can lead to subtle dysregulation of the hypothalamus-pituitary-adrenal axis in mice. As HPA axis dysregulation is commonly associated with neurological disorders, further studies should explore the relevance of this outcome for humans.
Collapse
Affiliation(s)
- Alexandra M Hudecova
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| | - Kristine E A Hansen
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| | - Siddhartha Mandal
- Center for Environmental Health, Public Health Foundation of India, New Delhi, India
| | - Hanne F Berntsen
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, Oslo, Norway
| | - Abdolrahman Khezri
- Section for Biochemistry and Physiology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Norway
| | - Tracy L Bale
- Pereleman School of Medicine, University of Pennsylvania, USA
| | - Thomas W K Fraser
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway.
| | - Karin E Zimmer
- Section for Biochemistry and Physiology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Norway
| | - Erik Ropstad
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| |
Collapse
|
14
|
Pinto CL, Markey K, Dix D, Browne P. Identification of candidate reference chemicals for in vitro steroidogenesis assays. Toxicol In Vitro 2017; 47:103-119. [PMID: 29146384 DOI: 10.1016/j.tiv.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/19/2017] [Accepted: 11/11/2017] [Indexed: 11/15/2022]
Abstract
The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models.
Collapse
Affiliation(s)
- Caroline Lucia Pinto
- U.S. EPA, Office of Science Coordination and Policy, Washington, D.C. 20004, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117, United States.
| | - Kristan Markey
- U.S. EPA, Office of Science Coordination and Policy, Washington, D.C. 20004, United States
| | - David Dix
- U.S. EPA, Office of Chemical Safety and Pollution Prevention, Washington, D.C. 20004, United States
| | - Patience Browne
- U.S. EPA, Office of Science Coordination and Policy, Washington, D.C. 20004, United States
| |
Collapse
|
15
|
Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI, Rantakokko P, Kiviranta H, Toft G. Prenatal exposure to persistent organochlorine pollutants and female reproductive function in young adulthood. ENVIRONMENT INTERNATIONAL 2016; 92-93:366-72. [PMID: 27132162 DOI: 10.1016/j.envint.2016.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND The biopersistent organochlorine pollutants dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) can be detected in humans worldwide. The chemicals can cross the placenta and may interfere with endogenous hormonal homeostasis. OBJECTIVES To investigate effects on female reproduction following intrauterine exposure to selected biopersistent organochlorines. METHODS We used data from a Danish pregnancy cohort with follow-up on 436 eligible daughters at approximately 20years of age. Information on age of menarche (n=335), menstrual cycle length (n=230) and serum concentrations of reproductive hormones (n=243) was obtained. Number of antral follicles was counted by vaginal ultrasound (n=147). Of 244 daughters who attended clinical examination, 170 used hormonal contraceptives and 74 were non-users. Concentrations of p,p'-DDE, HCB and six PCB congeners were analysed in maternal serum samples obtained in pregnancy week 30. RESULTS Age of menarche and menstrual cycle length were found not to be statistically significant associated with prenatal organochlorine exposure. Among non-users of hormonal contraceptives with information on antral follicle number (n=43), daughters exposed to the highest tertile of p,p'-DDE had 28% (95% confidence interval (95% CI): 5; 46%) lower follicle number compared to the low-level exposed reference group. Those exposed to medium and higher levels of HCB had 30% (95% CI: 5; 48%) and 28% (95% CI: 7; 44%) lower follicle number compared to the reference group. Furthermore, maternal serum HCB concentrations were inversely associated with free androgen index among non-users of hormonal contraceptives (n=73). These associations were not found in users of hormonal contraceptives. CONCLUSIONS Among non-users of hormonal contraceptives, we found indications of adverse long-term effects on female reproduction following prenatal exposure to biopersistent organochlorines. These findings may have wide implications for public health as intrauterine exposure occurs worldwide.
Collapse
Affiliation(s)
- Susanne Lund Kristensen
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Obstetrics and Gynecology, Regional Hospital of Randers, Denmark.
| | | | - Erik Ernst
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, and Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | | | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital of Copenhagen University, Copenhagen, Denmark
| | - Anne Vested
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thorhallur Ingi Halldorsson
- Centre for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark; Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, Chemical Exposure Unit, Kuopio, Finland
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Department of Environmental Health, Chemical Exposure Unit, Kuopio, Finland
| | - Gunnar Toft
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Lundin JI, Ylitalo GM, Booth RK, Anulacion B, Hempelmann JA, Parsons KM, Giles DA, Seely EA, Hanson MB, Emmons CK, Wasser SK. Modulation in Persistent Organic Pollutant Concentration and Profile by Prey Availability and Reproductive Status in Southern Resident Killer Whale Scat Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6506-6516. [PMID: 27186642 DOI: 10.1021/acs.est.6b00825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010-2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts.
Collapse
Affiliation(s)
- Jessica I Lundin
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Rebecca K Booth
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - Bernadita Anulacion
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Jennifer A Hempelmann
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Kim M Parsons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98115, United States
| | - Deborah A Giles
- Center for Whale Research , Friday Harbor, Washington 98250, United States
| | - Elizabeth A Seely
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Candice K Emmons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Samuel K Wasser
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Perkins JT, Petriello MC, Newsome BJ, Hennig B. Polychlorinated biphenyls and links to cardiovascular disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2160-72. [PMID: 25877901 PMCID: PMC4609220 DOI: 10.1007/s11356-015-4479-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/31/2015] [Indexed: 05/19/2023]
Abstract
The pathology of cardiovascular disease is multi-faceted, with links to many modifiable and non-modifiable risk factors. Epidemiological evidence now implicates exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), with an increased risk of developing diabetes, hypertension, and obesity; all of which are clinically relevant to the onset and progression of cardiovascular disease. PCBs exert their cardiovascular toxicity either directly or indirectly via multiple mechanisms, which are highly dependent on the type and concentration of PCBs present. However, many PCBs may modulate cellular signaling pathways leading to common detrimental outcomes including induction of chronic oxidative stress, inflammation, and endocrine disruption. With the abundance of potential toxic pollutants increasing globally, it is critical to identify sensible means of decreasing associated disease risks. Emerging evidence now implicates a protective role of lifestyle modifications such as increased exercise and/or nutritional modulation via anti-inflammatory foods, which may help to decrease the vascular toxicity of PCBs. This review will outline the current state of knowledge linking coplanar and non-coplanar PCBs to cardiovascular disease and describe the possible molecular mechanism of this association.
Collapse
Affiliation(s)
- Jordan T Perkins
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bradley J Newsome
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA.
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
18
|
Gilbert D, Mayer P, Pedersen M, Vinggaard AM. Endocrine activity of persistent organic pollutants accumulated in human silicone implants--Dosing in vitro assays by partitioning from silicone. ENVIRONMENT INTERNATIONAL 2015; 84:107-114. [PMID: 26264162 DOI: 10.1016/j.envint.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/28/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing from silicone to the H295R steroidogenesis assay: (1) Measured concentrations of POPs in silicone breast implants were taken from a recent study and silicone disks were loaded according to these measurements. (2) Silicone disks were transferred into H295R cell culture plates in order to control exposure of the adrenal cells by equilibrium partitioning. (3) Hormone production of the adrenal cells was measured as toxicity endpoint. 4-Nonylphenol was used for method development, and the new dosing method was compared to conventional solvent-dosing. The two dosing modes yielded similar dose-dependent hormonal responses of H295R cells. However, with the partitioning-controlled freely dissolved concentrations (Cfree) as dose metrics, dose-response curves were left-shifted by two orders of magnitude relative to spiked concentrations. Partitioning-controlled dosing of POPs resulted in up to 2-fold increases in progestagen and corticosteroid levels at Cfree of individual POPs in or below the femtomolar range. Silicone acted not only as source of the POPs but also as a sorption sink for lipophilic hormones, stimulating the cellular hormone production. Methodologically, the study showed that silicone can be used as reference partitioning phase to transfer in vivo exposure in humans (silicone implants) to in vitro assays (partition-controlled dosing). The main finding was that POPs at the levels at which they are found in humans can interfere with steroidogenesis in a human adrenocortical cell line.
Collapse
Affiliation(s)
- Dorothea Gilbert
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, DTU Environment, Technical University of Denmark, Miljøvej 113, DK-2800 Kgs. Lyngby, Denmark
| | - Mikael Pedersen
- Division of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| |
Collapse
|
19
|
van den Dungen MW, Rijk JC, Kampman E, Steegenga WT, Murk AJ. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells. Toxicol In Vitro 2015; 29:769-78. [DOI: 10.1016/j.tiv.2015.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023]
|
20
|
Ellsworth RE, Mamula KA, Costantino NS, Deyarmin B, Kostyniak PJ, Chi LH, Shriver CD, Ellsworth DL. Abundance and distribution of polychlorinated biphenyls (PCBs) in breast tissue. ENVIRONMENTAL RESEARCH 2015; 138:291-297. [PMID: 25749124 DOI: 10.1016/j.envres.2015.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Many environmental chemicals accumulate in human tissues and may contribute to cancer risk. Polychlorinated biphenyls (PCBs) are associated with adverse health effects, but relationships between PCB exposure and breast cancer are unclear. In this study, we sought to determine whether bioaccumulation of PCBs differs within regions of the human breast and whether PCB levels are associated with clinical and pathological characteristics in breast cancer patients. Tissue sections (n=245) were collected from breast quadrants from 51 women with a diagnosis ranging from disease-free to metastatic breast cancer. Ninety-seven PCB congeners were assayed by high resolution gas chromatography. ANOVA was used to examine PCB distribution within the breast and relationships with clinical/pathological variables. Pearson product-moment correlations assessed relationships between age at mastectomy and PCB levels. PCBs were abundant in breast tissues with a median concentration of 293.4ng/g lipid (range 15.4-1636.3ng/g). PCB levels in breast tissue were significantly different (p<0.001) among functional groupings of congeners defined by structure-activity properties: Group I (28.2ng/g), Group II (96.6ng/g), Group III (166.0ng/g). Total PCB concentration was highly correlated with age at mastectomy, but the distribution of PCBs did not differ by breast quadrant. PCB levels were not associated with patient status or tumor characteristics. In conclusion, PCB congeners with carcinogenic potential were present at high levels in the human breast, but were not associated with clinical or pathological characteristics in breast cancer patients.
Collapse
Affiliation(s)
- Rachel E Ellsworth
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kimberly A Mamula
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | | | - Brenda Deyarmin
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | - Paul J Kostyniak
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lai-Har Chi
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig D Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Casas M, Nieuwenhuijsen M, Martínez D, Ballester F, Basagaña X, Basterrechea M, Chatzi L, Chevrier C, Eggesbø M, Fernandez MF, Govarts E, Guxens M, Grimalt JO, Hertz-Picciotto I, Iszatt N, Kasper-Sonnenberg M, Kiviranta H, Kogevinas M, Palkovicova L, Ranft U, Schoeters G, Patelarou E, Petersen MS, Torrent M, Trnovec T, Valvi D, Toft GV, Weihe P, Weisglas-Kuperus N, Wilhelm M, Wittsiepe J, Vrijheid M, Bonde JP. Prenatal exposure to PCB-153, p,p'-DDE and birth outcomes in 9000 mother-child pairs: exposure-response relationship and effect modifiers. ENVIRONMENT INTERNATIONAL 2015; 74:23-31. [PMID: 25314142 DOI: 10.1016/j.envint.2014.09.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 05/24/2023]
Abstract
Low-level exposure to polychlorinated biphenyl-153 (PCB-153) and dichlorodiphenyldichloroethylene (p-p'-DDE) can impair fetal growth; however, the exposure-response relationship and effect modifiers of such association are not well established. This study is an extension of an earlier European meta-analysis. Our aim was to explore exposure-response relationship between PCB-153 and p-p'-DDE and birth outcomes; to evaluate whether any no exposure-effect level and susceptible subgroups exist; and to assess the role of maternal gestational weight gain (GWG). We used a pooled dataset of 9377 mother-child pairs enrolled in 14 study populations from 11 European birth cohorts. General additive models were used to evaluate the shape of the relationships between organochlorine compounds and birth outcomes. We observed an inverse linear exposure-response relationship between prenatal exposure to PCB-153 and birth weight [decline of 194g (95% CI -314, -74) per 1μg/L increase in PCB-153]. We showed effects on birth weight over the entire exposure range, including at low levels. This reduction seems to be stronger among children of mothers who were non-Caucasian or had smoked during pregnancy. The most susceptible subgroup was girls whose mothers smoked during pregnancy. After adjusting for absolute GWG or estimated fat mass, a reduction in birth weight was still observed. This study suggests that the association between low-level exposure to PCB-153 and birth weight exists and follows an inverse linear exposure-response relationship with effects even at low levels, and that maternal smoking and ethnicity modify this association.
Collapse
Affiliation(s)
- Maribel Casas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Mark Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David Martínez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ferran Ballester
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; University of Valencia, Valencia, Spain; Centre for Public Health Research (CSISP)-FISABIO, Valencia, Spain
| | - Xavier Basagaña
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mikel Basterrechea
- Public Health Division of Gipuzkoa, Basque Government, Spain; Health Research Institute, Biodonostia, San Sebastián, Spain
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Greece
| | - Cécile Chevrier
- Inserm, Rennes, France; University of Rennes I, Rennes, France
| | - Merete Eggesbø
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariana F Fernandez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Centro de Investigación BioMédica, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - Eva Govarts
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mònica Guxens
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of CA, Davis, USA
| | - Nina Iszatt
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Monika Kasper-Sonnenberg
- Department of Hygiene, Social and Environmental Medicine, Ruhr University Bochum, Bochum, Germany
| | - Hannu Kiviranta
- Department of Environmental Health, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; National School of Public Health, Athens, Greece
| | | | - Ulrich Ranft
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Evridiki Patelarou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Greece
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Faroe Islands
| | | | | | - Damaskini Valvi
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gunnar Vase Toft
- Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Faroe Islands
| | - Nynke Weisglas-Kuperus
- Erasmus MC Sophia Children's Hospital, University Medical Centre, Department of Pediatrics, Rotterdam, The Netherlands
| | - Michael Wilhelm
- Department of Hygiene, Social and Environmental Medicine, Ruhr University Bochum, Bochum, Germany
| | - Jürgen Wittsiepe
- Department of Hygiene, Social and Environmental Medicine, Ruhr University Bochum, Bochum, Germany
| | - Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
22
|
Ping J, Wang JF, Liu L, Yan YE, Liu F, Lei YY, Wang H. Prenatal caffeine ingestion induces aberrant DNA methylation and histone acetylation of steroidogenic factor 1 and inhibits fetal adrenal steroidogenesis. Toxicology 2014; 321:53-61. [DOI: 10.1016/j.tox.2014.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
23
|
Yan YE, Liu L, Wang JF, Liu F, Li XH, Qin HQ, Wang H. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation. Toxicol Appl Pharmacol 2014; 277:231-41. [DOI: 10.1016/j.taap.2014.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/26/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
24
|
Tremoen NH, Fowler PA, Ropstad E, Verhaegen S, Krogenæs A. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:516-534. [PMID: 24754389 DOI: 10.1080/15287394.2014.886985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including protein synthesis, stress response, and apoptosis.
Collapse
Affiliation(s)
- Nina Hårdnes Tremoen
- a Department of Production Animal Sciences , Norwegian School Veterinary Science , Oslo
| | | | | | | | | |
Collapse
|
25
|
Chemokine (C-C motif) ligand 22 is down-regulated in a human B lymphoblastoid cell line by PCB153 and in residents from PCBs-contaminated areas. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:21-7. [DOI: 10.1016/j.mrgentox.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 11/21/2022]
|
26
|
Zimmer KE, Kraugerud M, Aleksandersen M, Gutleb AC, Østby GC, Dahl E, Berg V, Skaare JU, Olsaker I, Ropstad E. Fetal adrenal development: comparing effects of combined exposures to PCB 118 and PCB 153 in a sheep model. ENVIRONMENTAL TOXICOLOGY 2013; 28:164-177. [PMID: 21544918 DOI: 10.1002/tox.20703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/07/2011] [Accepted: 01/13/2011] [Indexed: 05/30/2023]
Abstract
This study investigated the effects of exposure to the ubiquitous contaminants polychlorinated biphenyls (PCBs) on the fetal adrenal cortex and on plasma cortisol using the domestic sheep (Ovis aries) as a model. Pregnant ewes were intendedly subjected to oral treatment with PCB 153 (98 μg/kg bw/day), PCB 118 (49 μg/kg bw/day) or the vehicle corn oil from mating until euthanasia on gestation day 134 (±0.25 SE). However, because of accidental cross-contamination occurring twice causing a mixed exposure scenario in all three groups, the focus of this paper is to compare three distinct groups of fetuses with different adipose tissue PCB levels (PCB 153high, PCB 118high and low, combined groups) rather than comparing animals exposed to single PCB congeners to those of a control group. When comparing endocrine and anatomical parameters from fetuses in the PCB 153high (n = 13) or PCB 118high (n = 14) groups with the low, combined group (n = 14), there was a significant decrease in fetal body weight (P < 0.05), plasma cortisol concentration (P < 0.001) and adrenal cortex thickness (P < 0.001). Furthermore, adrenal weight was decreased and plasma ACTH was increased only in the PCB 118high group. Expression of several genes encoding enzymes and receptors related to steroid hormone synthesis was also affected and mostly down-regulated in fetuses with high PCB tissue levels. In conclusion, we suggest that mono-and di-ortho PCBs were able to interfere with growth, adrenal development and cortisol production in the fetal sheep model. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.
Collapse
Affiliation(s)
- Karin E Zimmer
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Postboks 8146 Dep, 0033 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Du G, Hu J, Huang H, Qin Y, Han X, Wu D, Song L, Xia Y, Wang X. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:353-60. [PMID: 23074026 DOI: 10.1002/etc.2034] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 05/21/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.
Collapse
Affiliation(s)
- Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kraugerud M, Aleksandersen M, Nyengaard JR, Ostby GC, Gutleb AC, Dahl E, Berg V, Farstad W, Schweder T, Skaare JU, Ropstad E. In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRH-induced luteinizing hormone secretion in female lambs. ENVIRONMENTAL TOXICOLOGY 2012; 27:623-634. [PMID: 21344607 DOI: 10.1002/tox.20679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes received corn oil, PCB 118, or PCB 153, and offspring was maintained until 60 days postpartum. Ovarian follicles were quantified using stereology. Plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured using radioimmunoassay before and after administration of a gonadotropin releasing hormone (GnRH) analog. PCB 118 exposure increased numbers of transitional, secondary, and the sum of secondary, early antral, and antral (Σsecondary-antral) follicles, PCB 153 exposure only increased the number of primary follicles. GnRH-induced LH levels were significantly elevated in the PCB 153 exposure group. We conclude that PCB 153 and PCB 118 alter follicular dynamics in lambs and modulate the responsiveness of the pituitary gland to GnRH.
Collapse
Affiliation(s)
- Marianne Kraugerud
- Department of Production Animal Sciences, Norwegian School of Veterinary Science, Postboks 8146 Dep., N-0033 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bechshøft TØ, Rigét FF, Sonne C, Letcher RJ, Muir DCG, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Eens M, Covaci A, Dietz R. Measuring environmental stress in East Greenland polar bears, 1892-1927 and 1988-2009: what does hair cortisol tell us? ENVIRONMENT INTERNATIONAL 2012; 45:15-21. [PMID: 22572112 PMCID: PMC3366040 DOI: 10.1016/j.envint.2012.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/13/2012] [Accepted: 04/07/2012] [Indexed: 04/18/2024]
Abstract
Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (p<0.001) concentrations in historical hair samples (1892-1927; n=8) relative to recent ones (1988-2009; n=88). In addition, there was a linear time trend in cortisol concentration of the recent samples (p<0.01), with an annual decrease of 2.7%. The recent hair samples were also analyzed for major bioaccumulative, persistent organic pollutants (POPs). There were no obvious POP related time trends or correlations between hair cortisol and hair POP concentrations. Thus, polar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels.
Collapse
Affiliation(s)
- T Ø Bechshøft
- Department of Bioscience, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferguson KK, Hauser R, Altshul L, Meeker JD. Serum concentrations of p, p'-DDE, HCB, PCBs and reproductive hormones among men of reproductive age. Reprod Toxicol 2012; 34:429-35. [PMID: 22564984 DOI: 10.1016/j.reprotox.2012.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with changes in reproductive hormone levels, however most groups studied have been highly exposed. We investigated the association of PCBs, hexachlorobenzene (HCB) and p, p'-DDE with serum sex hormones in 341 adult men from a US infertility clinic with exposure levels consistent with those observed in the general population. In crude regression models we observed several negative associations of PCBs and HCB with steroid hormone-binding globulin (SHBG) and total and free testosterone. After adjustment for lipids, age and BMI, nearly all significant associations were attenuated. A negative relationship remained between PCB 118 and SHBG (p<0.01), and relationships of dioxin-like PCBs with SHBG and total testosterone, and between PCB 118 and total testosterone, were suggestive. These results suggest a minimal relationship between PCB exposures at low background levels similar to those observed in the general population of the US and circulating reproductive hormones.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, United States
| | | | | | | |
Collapse
|
31
|
Schell LM, Gallo MV, Cook K. What's NOT to eat--food adulteration in the context of human biology. Am J Hum Biol 2012; 24:139-48. [PMID: 22262531 DOI: 10.1002/ajhb.22202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/03/2011] [Accepted: 10/29/2011] [Indexed: 11/07/2022] Open
Abstract
Food has nutritional and non-nutritional components. The latter are not well-studied despite the fact that food adulteration has been common. Food adulteration may have reached its peak in cities of Western Europe and the US in the 18th and 19th centuries when foods were often purposely contaminated with additives to increase bulk, attractiveness, disguise spoilage, and increase profit. Effective regulation of food began in the late 19th and 20th centuries. Nevertheless, today food recalls for bacterial contamination are common, while pesticides and compounds from manufacturing are detected in many foods. Foods with strong reputations for healthiness, such as salmon, may have sizable contaminant contents. The contaminant content of many foods varies by origin and season. Nearly all commercially raised salmon has higher contaminant levels than wild caught salmon. Opting out of the commercial food distribution system is an option, but the value depends on the habitat in which the food is obtained. Traditionally, the Akwesasne Mohawk Nation has depended on local fish and wildlife for their diet. Now pollution of local waterways has led to the contamination of many local foods, and levels of the contaminant polychlorinated biphenyls in the Akwesasne Mohawk people reflect current or past dietary patterns. Many other communities in nonurban settings are exposed to contaminants through long-trail distribution of contaminants in food, air, and/or water. Human biologists considering nutrition, disease, growth, reproduction, aging, to name a few areas, may consider the non-nutritional components of food as many have the ability to alter physiological functioning.
Collapse
Affiliation(s)
- Lawrence M Schell
- Center for the Elimination of Minority Health Disparities, University at Albany, A&S 237, Albany, New York 12222, USA.
| | | | | |
Collapse
|
32
|
Ping J, Lei YY, Liu L, Wang TT, Feng YH, Wang H. Inheritable stimulatory effects of caffeine on steroidogenic acute regulatory protein expression and cortisol production in human adrenocortical cells. Chem Biol Interact 2012; 195:68-75. [DOI: 10.1016/j.cbi.2011.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/29/2011] [Accepted: 11/03/2011] [Indexed: 01/30/2023]
|
33
|
Antunes-Fernandes EC, Bovee TF, Daamen FE, Helsdingen RJ, van den Berg M, van Duursen MB. Some OH-PCBs are more potent inhibitors of aromatase activity and (anti-) glucocorticoids than non-dioxin like (NDL)-PCBs and MeSO2-PCBs. Toxicol Lett 2011; 206:158-65. [DOI: 10.1016/j.toxlet.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 01/23/2023]
|
34
|
Montaño M, Zimmer KE, Dahl E, Berg V, Olsaker I, Skaare JU, Murk AJ, Ropstad E, Verhaegen S. Effects of mixtures of persistent organic pollutants (POPs) derived from cod liver oil on H295R steroidogenesis. Food Chem Toxicol 2011; 49:2328-35. [PMID: 21722693 DOI: 10.1016/j.fct.2011.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Crude cod liver oil and liver oil supplements are consumed as a source of vitamin A, D and polyunsaturated fatty acids; during winter and early pregnancy. Crude cod liver oil however constitutes a considerable source of persistent organic pollutants (POPs). This paper aimed at characterizing and quantifying the influence of POP mixtures extracted from three different steps in the cod liver oil industrial process on hormone production and the expression of steroidogenesis-related genes in H295R cells. Exposure to extracts from crude cod liver oil and from its industrial waste increased progesterone (P4), cortisol (Cort), testosterone (T) and estradiol (E2) production; and among others, the expression of MC2R, CYP11B1 and HSD3B2 genes. Observed effects after exposure to pharmaceutical cod liver oil extract were considerably lower. The type of effects on gene expression and hormone production were similar to those induced by forskolin and PCBs, the latter being the major contaminants within the extracts. Additional research is required to further unveil the mechanisms behind the observed steroidogenic effects and to assess whether the potential risk might outweigh the potential benefits of crude and processed cod liver oil consumption.
Collapse
Affiliation(s)
- M Montaño
- Department of Environment and Agro-biotechnologies, Centre de Recherche Public - Gabriel Lippmann, 41, rue de Brill, L4422 Belvaux, Grand-Duchy of Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zimmer KE, Montaño M, Olsaker I, Dahl E, Berg V, Karlsson C, Murk AJ, Skaare JU, Ropstad E, Verhaegen S. In vitro steroidogenic effects of mixtures of persistent organic pollutants (POPs) extracted from burbot (Lota lota) caught in two Norwegian lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2040-2048. [PMID: 21420147 DOI: 10.1016/j.scitotenv.2011.01.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
This study investigated the effects of two mixtures of persistent organic pollutants (POPs) on steroidogenesis in the H295R cell line. The two mixtures were obtained from the livers of burbot (Lota lota) caught in two Norwegian lakes (Mjøsa and Losna) with different contaminant profiles. Steroid hormone levels in the cell culture medium and mRNA levels of 16 genes involved in steroidogenesis were investigated. The crude Lake Mjøsa extract had to be diluted ten times more than the Lake Losna extract in order to prevent cytotoxicity. The ten times diluted Lake Mjøsa mixture had higher levels of DDT and derivates (∑DDTs, 1.7 times) and brominated flame retardants (∑BDEs and HBCD, 15-25 times) than the Lake Losna mixture, which, on the other hand, had higher concentrations of ∑PCBs (1.5 times higher) and also of HCB, ∑HCH isomers and ∑chlordane isomers (5-20 times higher). In the cell culture media, only cortisol levels were increased at the highest exposure concentration to the Lake Mjøsa mixture, while both cortisol and estradiol levels were increased following exposure to the two highest Lake Losna mixture exposure concentrations. Testosterone levels decreased only at the highest exposure concentration of the Lake Losna mixture. Multivariate models suggested that ∑PCBs, and to a lesser extent ∑DDTs, were responsible for the cortisol responses, while estradiol and testosterone alterations were best explained by HCB and ∑PCBs, respectively. Exposure to the mixtures generally increased mRNA levels, with smaller effects exerted by the Lake Mjøsa mixture than the Lake Losna mixture. It was concluded that both mixtures affected steroidogenesis in the H295R cells. Small differences in mixture composition, rather than the high content of brominated flame retardants in the Lake Mjøsa mixture, were suggested to be the most probable reason for the apparent differences in potencies of the two mixtures.
Collapse
Affiliation(s)
- Karin E Zimmer
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rocheleau CM, Bertke SJ, Deddens JA, Ruder AM, Lawson CC, Waters MA, Hopf NB, Riggs MA, Whelan EA. Maternal exposure to polychlorinated biphenyls and the secondary sex ratio: an occupational cohort study. Environ Health 2011; 10:20. [PMID: 21418576 PMCID: PMC3070618 DOI: 10.1186/1476-069x-10-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/18/2011] [Indexed: 05/29/2023]
Abstract
BACKGROUND Though commercial production of polychlorinated biphenyls was banned in the United States in 1977, exposure continues due to their environmental persistence. Several studies have examined the association between environmental polychlorinated biphenyl exposure and modulations of the secondary sex ratio, with conflicting results. OBJECTIVE Our objective was to evaluate the association between maternal preconceptional occupational polychlorinated biphenyl exposure and the secondary sex ratio. METHODS We examined primipara singleton births of 2595 women, who worked in three capacitor plants at least one year during the period polychlorinated biphenyls were used. Cumulative estimated maternal occupational polychlorinated biphenyl exposure at the time of the infant's conception was calculated from plant-specific job-exposure matrices. A logistic regression analysis was used to evaluate the association between maternal polychlorinated biphenyl exposure and male sex at birth (yes/no). RESULTS Maternal body mass index at age 20, smoking status, and race did not vary between those occupationally exposed and those unexposed before the child's conception. Polychlorinated biphenyl-exposed mothers were, however, more likely to have used oral contraceptives and to have been older at the birth of their first child than non-occupationally exposed women. Among 1506 infants liveborn to polychlorinated biphenyl-exposed primiparous women, 49.8% were male; compared to 49.9% among those not exposed (n = 1089). Multivariate analyses controlling for mother's age and year of birth found no significant association between the odds of a male birth and mother's cumulative estimated polychlorinated biphenyl exposure to time of conception. CONCLUSIONS Based on these data, we find no evidence of altered sex ratio among children born to primiparous polychlorinated biphenyl-exposed female workers.
Collapse
Affiliation(s)
- Carissa M Rocheleau
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
| | - Stephen J Bertke
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
- Department of Mathematical Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - James A Deddens
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
- Department of Mathematical Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Avima M Ruder
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
| | - Christina C Lawson
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
| | - Martha A Waters
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
- Division of Applied Research and Technology; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
| | - Nancy B Hopf
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
- Institut universitaire romand de Santé au Travail/Institute for Work and Health (IST), Lausanne, Switzerland
| | - Margaret A Riggs
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
- Coordinating Office for Terrorism, Preparedness and Emergency Response (Kentucky Department for Public Health); Centers for Disease Control and Prevention; Frankfort, Kentucky, USA
| | - Elizabeth A Whelan
- Division of Surveillance, Hazard Evaluations and Field Studies; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; Cincinnati, Ohio, USA
| |
Collapse
|