1
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
- Université Paris Saclay , Gif-sur-Yvette 91190, France
| | - Matteo Scarsini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| |
Collapse
|
2
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
3
|
Pérez-Pérez ME, Mallén-Ponce MJ, Odriozola-Gil Y, Rubio A, Salas JJ, Martínez-Force E, Pérez-Pulido AJ, Crespo JL. Lipid turnover through lipophagy in the newly identified extremophilic green microalga Chlamydomonas urium. THE NEW PHYTOLOGIST 2024; 243:284-298. [PMID: 38730535 DOI: 10.1111/nph.19811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Yosu Odriozola-Gil
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Alejandro Rubio
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Department), University Pablo de Olavide, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Ctra Utrera Km1, Ed. 46, 41013, Sevilla, Spain
| | | | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Department), University Pablo de Olavide, 41013, Sevilla, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| |
Collapse
|
4
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
5
|
Joli N, Concia L, Mocaer K, Guterman J, Laude J, Guerin S, Sciandra T, Bruyant F, Ait-Mohamed O, Beguin M, Forget MH, Bourbousse C, Lacour T, Bailleul B, Nef C, Savoie M, Tremblay JE, Campbell DA, Lavaud J, Schwab Y, Babin M, Bowler C. Hypometabolism to survive the long polar night and subsequent successful return to light in the diatom Fragilariopsis cylindrus. THE NEW PHYTOLOGIST 2024; 241:2193-2208. [PMID: 38095198 DOI: 10.1111/nph.19387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 02/09/2024]
Abstract
Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.
Collapse
Affiliation(s)
- Nathalie Joli
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Lorenzo Concia
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Karel Mocaer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) & Collaboration for Joint PhD Degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69117, Heidelberg, Germany
| | - Julie Guterman
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastien Guerin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Theo Sciandra
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Flavienne Bruyant
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Ouardia Ait-Mohamed
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Marine Beguin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marie-Helene Forget
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Thomas Lacour
- Laboratoire PHYSiologie des micro ALGues (PDG-ODE-PHYTOX-PHYSALG), Centre Atlantique, 44 311, Nantes, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, Institut de Biologie Physico Chimique, CNRS, Sorbonne Université, Paris, 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Mireille Savoie
- Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | | | - Johann Lavaud
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
- UMR 6539 LEMAR-Laboratory of Environmental Marine Sciences, CNRS/Univ Brest/Ifremer/IRD, IUEM-Institut Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, 29280, Plouzané, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit and Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Marcel Babin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
6
|
Li DW, Tan JZ, Li ZF, Ou LJ. Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense. CHEMOSPHERE 2024; 349:140844. [PMID: 38042419 DOI: 10.1016/j.chemosphere.2023.140844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
Collapse
Affiliation(s)
- Da-Wei Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Jin-Zhou Tan
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Zhuo-Fan Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
7
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
8
|
Borg M, Krueger-Hadfield SA, Destombe C, Collén J, Lipinska A, Coelho SM. Red macroalgae in the genomic era. THE NEW PHYTOLOGIST 2023; 240:471-488. [PMID: 37649301 DOI: 10.1111/nph.19211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.
Collapse
Affiliation(s)
- Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA, 23480, USA
| | - Christophe Destombe
- International Research Laboratory 3614 (IRL3614) - Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, 29680, France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29680, France
| | - Agnieszka Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| |
Collapse
|
9
|
Mallén-Ponce MJ, Gámez-Arcas S, Pérez-Pérez ME. Redox partner interactions in the ATG8 lipidation system in microalgae. Free Radic Biol Med 2023; 203:58-68. [PMID: 37028463 DOI: 10.1016/j.freeradbiomed.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005, Paris, France
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain.
| |
Collapse
|
10
|
Kato S, Misumi O, Maruyama S, Nozaki H, Tsujimoto-Inui Y, Takusagawa M, Suzuki S, Kuwata K, Noda S, Ito N, Okabe Y, Sakamoto T, Yagisawa F, Matsunaga TM, Matsubayashi Y, Yamaguchi H, Kawachi M, Kuroiwa H, Kuroiwa T, Matsunaga S. Genomic analysis of an ultrasmall freshwater green alga, Medakamo hakoo. Commun Biol 2023; 6:89. [PMID: 36690657 PMCID: PMC9871001 DOI: 10.1038/s42003-022-04367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.
Collapse
Affiliation(s)
- Shoichi Kato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yoshida, Yamaguchi, 753-8512, Japan
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai, 980-8578, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mari Takusagawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoji Okabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, 903-0213, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Tomoko M Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan.
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
11
|
Zhang S, Yazaki E, Sakamoto H, Yamamoto H, Mizushima N. Evolutionary diversification of the autophagy-related ubiquitin-like conjugation systems. Autophagy 2022; 18:2969-2984. [PMID: 35427200 PMCID: PMC9673942 DOI: 10.1080/15548627.2022.2059168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two autophagy-related (ATG) ubiquitin-like conjugation systems, the ATG12 and ATG8 systems, play important roles in macroautophagy. While multiple duplications and losses of the ATG conjugation system proteins are found in different lineages, the extent to which the underlying systems diversified across eukaryotes is not fully understood. Here, in order to understand the evolution of the ATG conjugation systems, we constructed a transcriptome database consisting of 94 eukaryotic species covering major eukaryotic clades and systematically identified ATG conjugation system components. Both ATG10 and the C-terminal glycine of ATG12 are essential for the canonical ubiquitin-like conjugation of ATG12 and ATG5. However, loss of ATG10 or the C-terminal glycine of ATG12 occurred at least 16 times in a wide range of lineages, suggesting that possible covalent-to-non-covalent transition is not limited to the species that we previously reported such as Alveolata and some yeast species. Some species have only the ATG8 system (with conjugation enzymes) or only ATG8 (without conjugation enzymes). More than 10 species have ATG8 homologs without the conserved C-terminal glycine, and Tetrahymena has an ATG8 homolog with a predicted transmembrane domain, which may be able to anchor to the membrane independent of the ATG conjugation systems. We discuss the possibility that the ancestor of the ATG12 and ATG8 systems is more similar to ATG8. Overall, our study offers a whole picture of the evolution and diversity of the ATG conjugation systems among eukaryotes, and provides evidence that functional diversifications of the systems are more common than previously thought.Abbreviations: APEAR: ATG8-PE association region; ATG: autophagy-related; LIR: LC3-interacting region; NEDD8: neural precursor cell expressed, developmentally down-regulated gene 8; PE: phosphatidylethanolamine; SAMP: small archaeal modifier protein; SAR: Stramenopiles, Alveolata, and Rhizaria; SMC: structural maintenance of chromosomes; SUMO: small ubiquitin like modifier; TACK: Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota; UBA: ubiquitin like modifier activating enzyme; UFM: ubiquitin fold modifier; URM: ubiquitin related modifier.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Euki Yazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Saitama, Japan
| | - Hirokazu Sakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,CONTACT Noboru Mizushima Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
12
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Deciphering the function and evolution of the target of rapamycin signaling pathway in microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6993-7005. [PMID: 35710309 PMCID: PMC9664231 DOI: 10.1093/jxb/erac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen on the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as a central regulator of cell growth and a nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed that the highly conserved central components of the TOR pathway are likely to have been present in the last eukaryotic common ancestor, and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress of this signaling pathway in these organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
13
|
Target of Rapamycin Regulates Photosynthesis and Cell Growth in Auxenochlorella pyrenoidosa. Int J Mol Sci 2022; 23:ijms231911309. [PMID: 36232611 PMCID: PMC9569773 DOI: 10.3390/ijms231911309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Auxenochlorella pyrenoidosa is an efficient photosynthetic microalga with autotrophic growth and reproduction, which has the advantages of rich nutrition and high protein content. Target of rapamycin (TOR) is a conserved protein kinase in eukaryotes both structurally and functionally, but little is known about the TOR signalling in Auxenochlorella pyrenoidosa. Here, we found a conserved ApTOR protein in Auxenochlorella pyrenoidosa, and the key components of TOR complex 1 (TORC1) were present, while the components RICTOR and SIN1 of the TORC2 were absent in Auxenochlorella pyrenoidosa. Drug sensitivity experiments showed that AZD8055 could effectively inhibit the growth of Auxenochlorella pyrenoidosa, whereas rapamycin, Torin1 and KU0063794 had no obvious effect on the growth of Auxenochlorella pyrenoidosaa. Transcriptome data results indicated that Auxenochlorella pyrenoidosa TOR (ApTOR) regulates various intracellular metabolism and signaling pathways in Auxenochlorella pyrenoidosa. Most genes related to chloroplast development and photosynthesis were significantly down-regulated under ApTOR inhibition by AZD8055. In addition, ApTOR was involved in regulating protein synthesis and catabolism by multiple metabolic pathways in Auxenochlorella pyrenoidosa. Importantly, the inhibition of ApTOR by AZD8055 disrupted the normal carbon and nitrogen metabolism, protein and fatty acid metabolism, and TCA cycle of Auxenochlorella pyrenoidosa cells, thus inhibiting the growth of Auxenochlorella pyrenoidosa. These RNA-seq results indicated that ApTOR plays important roles in photosynthesis, intracellular metabolism and cell growth, and provided some insights into the function of ApTOR in Auxenochlorella pyrenoidosa.
Collapse
|
14
|
To Die or Not to Die—Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:microorganisms10081657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
|
15
|
Spitz D, Comas M, Gerstner L, Kayser S, Helmstädter M, Walz G, Hermle T. mTOR-Dependent Autophagy Regulates Slit Diaphragm Density in Podocyte-like Drosophila Nephrocytes. Cells 2022; 11:2103. [PMID: 35805186 PMCID: PMC9265458 DOI: 10.3390/cells11132103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Both mTOR signaling and autophagy are important modulators of podocyte homeostasis, regeneration, and aging and have been implicated in glomerular diseases. However, the mechanistic role of these pathways for the glomerular filtration barrier remains poorly understood. We used Drosophila nephrocytes as an established podocyte model and found that inhibition of mTOR signaling resulted in increased spacing between slit diaphragms. Gain-of-function of mTOR signaling did not affect spacing, suggesting that additional cues limit the maximal slit diaphragm density. Interestingly, both activation and inhibition of mTOR signaling led to decreased nephrocyte function, indicating that a fine balance of signaling activity is needed for proper function. Furthermore, mTOR positively controlled cell size, survival, and the extent of the subcortical actin network. We also showed that basal autophagy in nephrocytes is required for survival and limits the expression of the sns (nephrin) but does not directly affect slit diaphragm formation or endocytic activity. However, using a genetic rescue approach, we demonstrated that excessive, mTOR-dependent autophagy is primarily responsible for slit diaphragm misspacing. In conclusion, we established this invertebrate podocyte model for mechanistic studies on the role of mTOR signaling and autophagy, and we discovered a direct mTOR/autophagy-dependent regulation of the slit diaphragm architecture.
Collapse
Affiliation(s)
- Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
- CIBSS—Centre for Integrative Biological Signalling Studies, 79106 Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| |
Collapse
|
16
|
Tyutereva EV, Murtuzova AV, Voitsekhovskaja OV. Autophagy and the Energy Status of Plant Cells. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:19. [DOI: 10.1134/s1021443722020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2025]
Abstract
Abstract
In plant cells the homeostatic control of energy balance involves the production and recycling of adenylates with macroergic bonds, ATP and ADP. The maintenance of anabolic processes requires the relative saturation of the adenylate pool with high energy phosphoanhydride bonds. The bulk of ATP synthesis is carried out both in mitochondria and in chloroplasts while optimal ATP levels within other cell compartments are maintained by adenylate kinases (AK). AK activity was recently found in cytosol, mitochondria, plastids and the nucleus. ATP synthesis in energy-producing organelles, as well as redistribution of nutrients among cellular compartments, requires fine-tuned regulation of ion homeostasis. A special role in energy metabolism is played by autophagy, a process of active degradation of unwanted and/or damaged cell components and macromolecules within the central lytic vacuole. So-called constitutive autophagy controls the quality of cellular contents under favorable conditions, i.e., when the cellular energy status is high. Energy depletion can lead to the activation of the pro-survival process of autophagic removal and utilization of damaged structures; the breakdown products are then used for ATP regeneration and de novo synthesis of macromolecules. Mitophagy and chlorophagy maintain the populations of healthy and functional energy-producing “stations”, preventing accumulation of defective mitochondria and chloroplasts as potential sources of dangerous reactive oxygen species. However, the increase of autophagic flux above a threshold level can lead to the execution of the vacuolar type of programmed cell death (PCD). In this case autophagy also contributes to preservation of energy through support of the outflow of nutrients from dying cells to healthy neighboring tissues. In plants, two central protein kinases, SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin), are responsible for the regulation of the metabolic switch between anabolic and catabolic pathways. TOR promotes the energy-demanding metabolic reactions in response to nutrient availability and simultaneously suppresses catabolism including autophagy. SnRK1, the antagonist of TOR, senses a decline in cellular energy supply and reacts by inducing autophagy through several independent pathways. Here, we provide an overview of the recent knowledge about the interplay between SnRK1 and TOR, autophagy and PCD in course of the regulation of energy balance in plants.
Collapse
|
17
|
Zhu X, Chen S, Luo G, Zheng W, Tian Y, Lei X, Yao L, Wu C, Xu H. A Novel Algicidal Bacterium, Microbulbifer sp. YX04, Triggered Oxidative Damage and Autophagic Cell Death in Phaeocystis globosa, Which Causes Harmful Algal Blooms. Microbiol Spectr 2022; 10:e0093421. [PMID: 35019679 PMCID: PMC8754136 DOI: 10.1128/spectrum.00934-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.
Collapse
Affiliation(s)
- Xiaoying Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Shuangshuang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Guiying Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Xueqian Lei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| |
Collapse
|
18
|
Role of Autophagy in Haematococcus lacustris Cell Growth under Salinity. PLANTS 2022; 11:plants11020197. [PMID: 35050085 PMCID: PMC8778389 DOI: 10.3390/plants11020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
The microalga Haematococcus lacustris (formerly H. pluvialis) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, H. lacustris experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in H. lacustris subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae. Addition of NaCl in concentrations of 0.2% or 0.8% to the growth medium induced formation of autophagosomes in H. lacustris, while simultaneous addition of AZD8055 up to a final concentration of 0.2 µM further stimulated this process. AZD8055 significantly improved the yield of H. lacustris cells after 5 days of exposure to 0.2% NaCl. Strikingly, this occurred by acceleration of cell growth, and not by acceleration of aplanospore formation. The level of astaxanthin synthesis was not affected by AZD8055. However, cytological data suggested a role of autophagosomes, lysosomes and Golgi cisternae in cell remodeling during high salt stress.
Collapse
|
19
|
Abstract
The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.
Collapse
|
20
|
Zhou X, Zhao P, Sun MX. Autophagy in sexual plant reproduction: new insights. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7658-7667. [PMID: 34338297 DOI: 10.1093/jxb/erab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction. Here, based on recent efforts to understand the roles and molecular mechanisms underlying autophagy, we highlight the specific roles of autophagy in plant reproduction and provide new insights for further studies.
Collapse
Affiliation(s)
- Xuemei Zhou
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Engineering Research Centre for the Protection and Utilization of Bioresource in Ethnic Area of Southern China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Feldmesser E, Ben-Dor S, Vardi A. An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Sci Rep 2021; 11:20795. [PMID: 34675226 PMCID: PMC8531018 DOI: 10.1038/s41598-021-00072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan coccolithophore widespread in temperate oceans. This unicellular photoautotroph forms massive recurring blooms that play an important role in large biogeochemical cycles of carbon and sulfur, which play a role in climate change. The mechanism of bloom formation and demise, controlled by giant viruses that routinely infect these blooms, is poorly understood. We generated a pan-transcriptome of E. huxleyi, derived from three strains with different susceptibility to viral infection. Expression profiling of E. huxleyi sensitive and resistant strains showed major basal differences, including many genes that are induced upon viral infection. This suggests that basal gene expression can affect the host metabolic state and the susceptibility of E. huxleyi to viruses. Due to its ecological importance, the pan-transcriptome and its protein translation, applicable to many E. huxleyi strains, is a powerful resource for investigation of eukaryotic microbial communities.
Collapse
Affiliation(s)
- Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
22
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins. Cells 2021; 10:cells10051258. [PMID: 34069694 PMCID: PMC8161075 DOI: 10.3390/cells10051258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs and the diversity of their functions in various lineages is an important challenge for understanding the evolutionary background of autophagy.
Collapse
|
24
|
Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021; 22:ijms22084075. [PMID: 33920817 PMCID: PMC8071135 DOI: 10.3390/ijms22084075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.
Collapse
|
25
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3340-3351. [PMID: 33587749 DOI: 10.1093/jxb/erab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a highly conserved degradative pathway that ensures cellular homeostasis through the removal of damaged or useless intracellular components including proteins, membranes, or even entire organelles. A main hallmark of autophagy is the biogenesis of autophagosomes, double-membrane vesicles that engulf and transport to the vacuole the material to be degraded and recycled. The formation of autophagosomes responds to integrated signals produced as a consequence of metabolic reactions or different types of stress and is mediated by the coordinated action of core autophagy-related (ATG) proteins. ATG4 is a key Cys-protease with a dual function in both ATG8 lipidation and free ATG8 recycling whose balance is crucial for proper biogenesis of the autophagosome. ATG4 is conserved in the green lineage, and its regulation by different post-translational modifications has been reported in the model systems Chlamydomonas reinhardtii and Arabidopsis. In this review, we discuss the major role of ATG4 in the integration of stress and redox signals that regulate autophagy in algae and plants.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
26
|
Wang P, Wang T, Han J, Li M, Zhao Y, Su T, Ma C. Plant Autophagy: An Intricate Process Controlled by Various Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:754982. [PMID: 34630498 PMCID: PMC8495024 DOI: 10.3389/fpls.2021.754982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 05/17/2023]
Abstract
Autophagy is a ubiquitous process used widely across plant cells to degrade cellular material and is an important regulator of plant growth and various environmental stress responses in plants. The initiation and dynamics of autophagy in plant cells are precisely controlled according to the developmental stage of the plant and changes in the environment, which are transduced into intracellular signaling pathways. These signaling pathways often regulate autophagy by mediating TOR (Target of Rapamycin) kinase activity, an important regulator of autophagy initiation; however, some also act via TOR-independent pathways. Under nutrient starvation, TOR activity is suppressed through glucose or ROS (reactive oxygen species) signaling, thereby promoting the initiation of autophagy. Under stresses, autophagy can be regulated by the regulatory networks connecting stresses, ROS and plant hormones, and in turn, autophagy regulates ROS levels and hormone signaling. This review focuses on the latest research progress in the mechanism of different external signals regulating autophagy.
Collapse
|
27
|
Teulière J, Bernard G, Bapteste E. The Distribution of Genes Associated With Regulated Cell Death Is Decoupled From the Mitochondrial Phenotypes Within Unicellular Eukaryotic Hosts. Front Cell Dev Biol 2020; 8:536389. [PMID: 33072737 PMCID: PMC7539657 DOI: 10.3389/fcell.2020.536389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the evolutionary origin of the mitochondrion and of certain forms of RCD, in particular apoptosis, are thought to coincide, suggesting a central general role for mitochondria in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including functional mitochondria, metabolically diversified mitochondria, functionally reduced mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of mitochondria. We investigated the distribution of genes associated with various forms of RCD. No homologs for described mammalian regulators of regulated necrosis could be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily a mitochondriate Monocercomonoides exilis display heterogeneous reductions of apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be identified. These same species of protists with MRO and M. exilis harbored non-reduced autophagic cell death gene sets. Moreover, transiently multicellular protist taxa appeared enriched in apoptotic and autophagy associated genes compared to free-living protists. This analysis suggests that genes associated with apoptosis in animals and the presence of the mitochondria are significant yet non-essential biological components for RCD in protists. More generally, our results support the hypothesis of a selection for RCD, including both apoptosis and autophagy, as a developmental mechanism linked to multicellularity.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Guillaume Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
28
|
Murúa P, Müller DG, Etemadi M, van West P, Gachon CMM. Host and pathogen autophagy are central to the inducible local defences and systemic response of the giant kelp Macrocystis pyrifera against the oomycete pathogen Anisolpidium ectocarpii. THE NEW PHYTOLOGIST 2020; 226:1445-1460. [PMID: 31955420 PMCID: PMC7317505 DOI: 10.1111/nph.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Kelps are key primary producers of cold and temperate marine coastal ecosystems and exhibit systemic defences against pathogens. Yet, the cellular mechanisms underpinning their immunity remain to be elucidated. We investigated the time course of infection of the kelp Macrocystis pyrifera by the oomycete Anisolpidium ectocarpii using TEM, in vivo autophagy markers and autophagy inhibitors. Over several infection cycles, A. ectocarpii undergoes sequential physiological shifts sensitive to autophagy inhibitors. Initially lipid-rich, pathogen thalli become increasingly lipid-depleted; they subsequently tend to become entirely abortive, irrespective of their lipid content. Moreover, infected algal cells mount local defences and can directly eliminate the pathogen by xenophagy. Finally, autophagy-dependent plastid recycling is induced in uninfected host cells. We demonstrate the existence of local, inducible autophagic processes both in the pathogen and infected host cells, which result in the restriction of pathogen propagation. We also show the existence of a systemic algal response mediated by autophagy. We propose a working model accounting for all our observations, whereby the outcome of the algal-pathogen interaction (i.e. completion or not of the pathogen life cycle) is dictated by the induction, and possibly the mutual hijacking, of the host and pathogen autophagy machineries.
Collapse
Affiliation(s)
- Pedro Murúa
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
| | - Dieter G. Müller
- Fachbereich Biologie der Universität KonstanzD‐78457KonstanzGermany
| | - Mohammad Etemadi
- Institute of MicrobiologyUniversity of InnsbruckA‐6020InnsbruckTyrolAustria
| | - Pieter van West
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismesMuséum National d'Histoire NaturelleCP 54, 57 rue Cuvier75005ParisFrance
| |
Collapse
|
29
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
30
|
Pancha I, Chokshi K, Tanaka K, Imamura S. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production. PLANT & CELL PHYSIOLOGY 2020; 61:675-684. [PMID: 32105317 DOI: 10.1093/pcp/pcaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.
Collapse
Affiliation(s)
- Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- Department of Biology, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
| | - Kaumeel Chokshi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
31
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
32
|
Kajikawa M, Fukuzawa H. Algal Autophagy Is Necessary for the Regulation of Carbon Metabolism Under Nutrient Deficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:36. [PMID: 32117375 PMCID: PMC7012896 DOI: 10.3389/fpls.2020.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Autophagy is a mechanism to recycle intracellular constituents such as amino acids and other carbon- and nitrogen (N)-containing compounds. Although autophagy-related (ATG) genes required for autophagy are encoded by many algal genomes, their functional importance in microalgae in nutrient-deficiency has not been appraised using ATG-defective mutants. Recently, by characterization of an insertional mutant of the ATG8 encoding a ubiquitin-like protein indispensable for autophagosome formation in a green alga Chlamydomonas reinhardtii, we have provided evidence that supports the following notions. ATG8 protein is required for the degradation of lipid droplets and triacylglycerol (TAG) triggered by resupply of N to cell culture in N-deficient conditions. ATG8 protein is also necessary for starch accumulation under phosphorus-deficient conditions. Algal autophagy is not necessary for inheritance of chloroplast and mitochondrial genomes. In this review, we discuss the physiological roles of algal autophagy associated with nutrient deficiency revealed by the genetic and biochemical analyses using disruption mutants and reagents that inhibit the fatty acid biosynthesis and vacuolar H+-ATPase.
Collapse
|
33
|
Couso I, Pérez-Pérez ME, Ford MM, Martínez-Force E, Hicks LM, Umen JG, Crespo JL. Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. THE PLANT CELL 2020; 32:69-80. [PMID: 31712405 PMCID: PMC6961625 DOI: 10.1105/tpc.19.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 05/05/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Megan M Ford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Enrique Martínez-Force
- Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Edificio 46, Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
34
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
35
|
Im SH, Klochkova TA, Lee DJ, Gachon CMM, Kim GH. Genetic toolkits of the red alga Pyropia tenera against the three most common diseases in Pyropia farms. JOURNAL OF PHYCOLOGY 2019; 55:801-815. [PMID: 30897208 DOI: 10.1111/jpy.12857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis-blight and red-rot disease caused by oomycete pathogens and green-spot disease caused by the PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing the genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera expressed sequence tags (EST)s. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly up-regulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly up-regulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant resistance genes were specifically regulated against each pathogen. Our results suggested that disease response in P. tenera consists of a general constitutive defense and a genetic toolkit against specific pathogens.
Collapse
Affiliation(s)
- Soo Hyun Im
- Department of Biology, Kongju National University, Kongju, 32588, Republic of Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, 32588, Republic of Korea
| | - Da Jeoung Lee
- Department of Biology, Kongju National University, Kongju, 32588, Republic of Korea
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, 32588, Republic of Korea
| |
Collapse
|
36
|
Bramucci AR, Case RJ. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi. Sci Rep 2019; 9:5215. [PMID: 30894549 PMCID: PMC6426857 DOI: 10.1038/s41598-018-36847-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
The model coccolithophore, Emiliania huxleyi, forms expansive blooms dominated by the calcifying cell type, which produce calcite scales called coccoliths. Blooms last several weeks, after which the calcified algal cells rapidly die, descending into the deep ocean. E. huxleyi bloom collapse is attributed to E. huxleyi viruses (EhVs) that infect and kill calcifying cells, while other E. huxleyi pathogens, such as bacteria belonging to the roseobacter clade, are overlooked. EhVs kill calcifying E. huxleyi by inducing production of bioactive viral-glycosphingolipids (vGSLs), which trigger algal programmed cell death (PCD). The roseobacter Phaeobacter inhibens was recently shown to interact with and kill the calcifying cell type of E. huxleyi, but the mechanism of algal death remains unelucidated. Here we demonstrate that P. inhibens kills calcifying E. huxleyi by inducing a highly specific type of PCD called apoptosis-like-PCD (AL-PCD). Host death can successfully be abolished in the presence of a pan-caspase inhibitor, which prevents the activation of caspase-like molecules. This finding differentiates P. inhibens and EhV pathogenesis of E. huxleyi, by demonstrating that bacterial-induced AL-PCD requires active caspase-like molecules, while the viral pathogen does not. This is the first demonstration of a bacterium inducing AL-PCD in an algal host as a killing mechanism.
Collapse
Affiliation(s)
- Anna R Bramucci
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
37
|
Deng W, Ma L, Zhang Y, Zhou J, Wang Y, Liu Z, Xue Y. THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy 2019; 14:296-310. [PMID: 29157087 DOI: 10.1080/15548627.2017.1402990] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved process for degrading cytoplasmic contents, determines cell survival or death, and regulates the cellular homeostasis. Besides ATG proteins, numerous regulators together with various post-translational modifications (PTMs) are also involved in autophagy. In this work, we collected 4,237 experimentally identified proteins regulated in autophagy and cell death pathways from the literature. Then we computationally identified potential orthologs of known proteins, and developed a comprehensive database of The Autophagy, Necrosis, ApopTosis OrchestratorS (THANATOS, http://thanatos.biocuckoo.org ), containing 191,543 proteins potentially associated with autophagy and cell death pathways in 164 eukaryotes. We performed an evolutionary analysis of ATG genes, and observed that ATGs required for the autophagosome formation are highly conserved across eukaryotes. Further analyses revealed that known cancer genes and drug targets were overrepresented in human autophagy proteins, which were significantly associated in a number of signaling pathways and human diseases. By reconstructing a human kinase-substrate phosphorylation network for ATG proteins, our results confirmed that phosphorylation play a critical role in regulating autophagy. In total, we mapped 65,015 known sites of 11 types of PTMs to collected proteins, and revealed that all types of PTM substrates were enriched in human autophagy. In addition, we observed multiple types of PTM regulators such as protein kinases and ubiquitin E3 ligases or adaptors were significantly associated with human autophagy, and again the results emphasized the importance of PTM regulations in autophagy. We anticipated THANATOS can be a useful resource for further studies.
Collapse
Affiliation(s)
- Wankun Deng
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Lili Ma
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Ying Zhang
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Jiaqi Zhou
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Yongbo Wang
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Zexian Liu
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.,b State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine , Sun Yat-sen University Cancer Center , 651 Dongfeng Road East, 510060 , Guangzhou , Guangdong , P. R. China
| | - Yu Xue
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
38
|
Kajikawa M, Yamauchi M, Shinkawa H, Tanaka M, Hatano K, Nishimura Y, Kato M, Fukuzawa H. Isolation and Characterization of Chlamydomonas Autophagy-Related Mutants in Nutrient-Deficient Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:126-138. [PMID: 30295899 DOI: 10.1093/pcp/pcy193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
Autophagy is a recycling system for amino acids and carbon- and nitrogen (N)-containing compounds. To date, the functional importance of autophagy in microalgae in nutrient-deficient conditions has not been evaluated by using autophagy-defective mutants. Here, we provide evidence which supports the following notions by characterizing an insertional mutant of the autophagy-related gene ATG8, encoding a ubiquitin-like protein necessary for the formation of the autophagosome in the green alga, Chlamydomonas reinhardtii. First, ATG8 is required for maintenance of cell survival and Chl content in N-, sulfur- and phosphate-deficient conditions. Secondly, ATG8 supports the degradation of triacylglycerol and lipid droplets after the resupply of N to cells cultured in N-limiting conditions. Thirdly, ATG8 is also necessary for accumulation of starch in phosphate-deficient conditions. Additionally, autophagy is not essential for maternal inheritance of the organelle genomes in gametogenesis.
Collapse
Affiliation(s)
| | - Marika Yamauchi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Manabu Tanaka
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kyoko Hatano
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Norizuki T, Kanazawa T, Minamino N, Tsukaya H, Ueda T. Marchantia polymorpha, a New Model Plant for Autophagy Studies. FRONTIERS IN PLANT SCIENCE 2019; 10:935. [PMID: 31379911 PMCID: PMC6652269 DOI: 10.3389/fpls.2019.00935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a catabolic process for bulk and selective degradation of cytoplasmic components in the vacuole/lysosome. In Saccharomyces cerevisiae, ATG genes were identified as essential genes for autophagy, and most ATG genes are highly conserved among eukaryotes, including plants. Although reverse genetic analyses have revealed that autophagy is involved in responses to abiotic and biotic stresses in land plants, our knowledge of its molecular mechanism remains limited. This limitation is partly because of the multiplication of some ATG genes, including ATG8, in widely used model plants such as Arabidopsis thaliana, which adds complexity to functional studies. Furthermore, due to limited information on the composition and functions of the ATG genes in basal land plants and charophytes, it remains unclear whether multiplication of ATG genes is associated with neofunctionalization of these genes. To gain insight into the diversification of ATG genes during plant evolution, we compared the composition of ATG genes in plants with a special focus on a liverwort and two charophytes, which have not previously been analyzed. Our results showed that the liverwort Marchantia polymorpha and the charophytes Klebsormidium nitens and Chara braunii harbor fundamental sets of ATG genes with low redundancy compared with those of A. thaliana and the moss Physcomitrella patens, suggesting that multiplication of ATG genes occurred during land plant evolution. We also attempted to establish an experimental system for analyzing autophagy in M. polymorpha. We generated transgenic plants expressing fluorescently tagged MpATG8 to observe its dynamics in M. polymorpha and produced autophagy-defective mutants by genome editing using the CRISPR/Cas9 system. These tools allowed us to demonstrate that MpATG8 is transported into the vacuole in an MpATG2-, MpATG5-, and MpATG7-dependent manner, suggesting that fluorescently tagged MpATG8 can be used as an autophagosome marker in M. polymorpha. M. polymorpha can provide a powerful system for studying the mechanisms and evolution of autophagy in plants.
Collapse
Affiliation(s)
- Takuya Norizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
40
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
41
|
Heredia-Martínez LG, Andrés-Garrido A, Martínez-Force E, Pérez-Pérez ME, Crespo JL. Chloroplast Damage Induced by the Inhibition of Fatty Acid Synthesis Triggers Autophagy in Chlamydomonas. PLANT PHYSIOLOGY 2018; 178:1112-1129. [PMID: 30181343 PMCID: PMC6236622 DOI: 10.1104/pp.18.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/23/2018] [Indexed: 05/19/2023]
Abstract
Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.
Collapse
Affiliation(s)
- Luis Gonzaga Heredia-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain
| | - Ascensión Andrés-Garrido
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
42
|
McConnell EW, Werth EG, Hicks LM. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function. Redox Biol 2018; 17:35-46. [PMID: 29673699 PMCID: PMC6006682 DOI: 10.1016/j.redox.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
Post-translational modifications (PTMs) are covalent modifications to protein residues which may alter both conformation and activity, thereby modulating signaling and metabolic processes. While PTMs have been largely investigated independently, examination into how different modification interact, or crosstalk, will reveal a more complete understanding of the reciprocity of signaling cascades across numerous pathways. Combinatorial reversible thiol oxidation and phosphorylation in eukaryotes is largely recognized, but rigorous approaches for experimental discovery are underdeveloped. To begin meaningful interrogation of PTM crosstalk in systems biology research, knowledge of targeted proteins must be advanced. Herein, we demonstrate protein-level enrichment of reversibly oxidized proteoforms in Chlamydomonas reinhardtii with subsequent phosphopeptide analysis to determine the extent of phosphorylation in the redox thiol proteome. Label-free quantification was used to quantify 3353 oxidized Cys-sites on 1457 enriched proteins, where sequential phosphopeptide enrichment measured 1094 sites of phosphorylation on 720 proteins with 23% (172 proteins) also identified as reversibly oxidized. Proteins identified with both reversible oxidation and phosphorylation were involved in signaling transduction, ribosome and translation-related machinery, and metabolic pathways. Several redox-modified Calvin-Benson cycle proteins were found phosphorylated and many kinases/phosphatases involved in phosphorylation-dependent photosynthetic state transition and stress-response pathways had sites of reversible oxidation. Identification of redox proteins serves as a crucial element in understanding stress response in photosynthetic organisms and beyond, whereby knowing the ensemble of modifications co-occurring with oxidation highlights novel mechanisms for cellular control. Quantified reversible oxidation on protein cysteine residues. Sequential phosphopeptide enrichment to define the phosphorylated redox proteome. Found >3000 oxidized cysteines and >1000 phosphosites in Chlamydomonas reinhardtii. Co-modified proteins discovered across diverse metabolic and signaling pathways.
Collapse
Affiliation(s)
- Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
43
|
Couso I, Pérez-Pérez ME, Martínez-Force E, Kim HS, He Y, Umen JG, Crespo JL. Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1355-1367. [PMID: 29053817 PMCID: PMC6018900 DOI: 10.1093/jxb/erx372] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/28/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in Chlamydomonas.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Seville, Spain
| | - Hee-Sik Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yonghua He
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
- Correspondence:
| |
Collapse
|
44
|
Denny P, Feuermann M, Hill DP, Lovering RC, Plun-Favreau H, Roncaglia P. Exploring autophagy with Gene Ontology. Autophagy 2018; 14:419-436. [PMID: 29455577 PMCID: PMC5915032 DOI: 10.1080/15548627.2017.1415189] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study.
Collapse
Affiliation(s)
- Paul Denny
- a Functional Gene Annotation , Institute of Cardiovascular Science, University College London , London , UK
| | - Marc Feuermann
- b SIB Swiss Institute of Bioinformatics , Geneva , Switzerland
| | - David P Hill
- c The Jackson Laboratory , Bar Harbor , ME , USA.,f The Gene Ontology Consortium
| | - Ruth C Lovering
- a Functional Gene Annotation , Institute of Cardiovascular Science, University College London , London , UK
| | - Helene Plun-Favreau
- d Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Paola Roncaglia
- e European Bioinformatics Institute (EMBL-EBI) , European Molecular Biology Laboratory, Wellcome Genome Campus , Hinxton , Cambridge , UK.,f The Gene Ontology Consortium
| |
Collapse
|
45
|
Zhang Z, Sun D, Cheng KW, Chen F. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. BIORESOURCE TECHNOLOGY 2018; 247:610-615. [PMID: 28985609 DOI: 10.1016/j.biortech.2017.09.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 05/16/2023]
Abstract
The present study showed that inhibition of autophagy significantly increased cellular levels of reactive oxygen species in Chlorella zofingiensis under nitrogen starvation. This was accompanied with increased expression of PSY, and enhanced accumulation of astaxanthin after 48h of cultivation. Nevertheless, the proportion of astaxanthin in secondary carotenoids remained unchanged. Meanwhile, the expression level of ACCase was also elevated in the 3-MA-treated cells compared to the control despite a >20% lower content of fatty acid in the former than the latter. This phenomenon might be due to inhibition of recycling of cellular components by 3-MA and suggests the potential involvement of post-transcriptional regulation in fatty acid biosynthesis. In summary, our work has been the first to report a potentially important role of autophagy in fatty acid and astaxanthin accumulation in C. zofingiensis under stress conditions. The findings might provide valuable insights to guide further research in this area.
Collapse
Affiliation(s)
- Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ka-Wing Cheng
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
46
|
Roustan V, Weckwerth W. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:1590. [PMID: 30546371 PMCID: PMC6280106 DOI: 10.3389/fpls.2018.01590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/15/2018] [Indexed: 05/13/2023]
Abstract
Rapamycin is an inhibitor of the evolutionary conserved Target of Rapamycin (TOR) kinase which promotes and coordinates translation with cell growth and division. In heterotrophic organisms, TOR regulation is based on intra- and extracellular stimuli such as amino acids level and insulin perception. However, how plant TOR pathways have evolved to integrate plastid endosymbiosis is a remaining question. Despite the close association of the TOR signaling with the coordination between protein turn-over and growth, proteome and phosphoproteome acclimation to a rapamycin treatment have not yet been thoroughly investigated in Chlamydomonas reinhardtii. In this study, we have used in vivo label-free phospho-proteomic analysis to profile both protein and phosphorylation changes at 0, 24, and 48 h in Chlamydomonas cells treated with rapamycin. Using multivariate statistics we highlight the impact of TOR inhibition on both the proteome and the phosphoproteome. Two-way ANOVA distinguished differential levels of proteins and phosphoproteins in response either to culture duration and rapamycin treatment or combined effects. Finally, protein-protein interaction networks and functional enrichment analysis underlined the relation between plastid and mitochondrial metabolism. Prominent changes of proteins involved in sulfur, cysteine, and methionine as well as nucleotide metabolism on the one hand, and changes in the TCA cycle on the other highlight the interplay of chloroplast and mitochondria metabolism. Furthermore, TOR inhibition revealed changes in the endomembrane trafficking system. Phosphoproteomics data, on the other hand, highlighted specific differentially regulated phosphorylation sites for calcium-regulated protein kinases as well as ATG7, S6K, and PP2C. To conclude we provide a first combined Chlamydomonas proteomics and phosphoproteomics dataset in response to TOR inhibition, which will support further investigations.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth,
| |
Collapse
|
47
|
Monitoring Autophagy in the Model Green Microalga Chlamydomonas reinhardtii. Cells 2017; 6:cells6040036. [PMID: 29065500 PMCID: PMC5755495 DOI: 10.3390/cells6040036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an intracellular catabolic system that delivers cytoplasmic constituents and organelles in the vacuole. This degradative process is mediated by a group of proteins coded by autophagy-related (ATG) genes that are widely conserved from yeasts to plants and mammals. Homologs of ATG genes have been also identified in algal genomes including the unicellular model green alga Chlamydomonas reinhardtii. The development of specific tools to monitor autophagy in Chlamydomonas has expanded our current knowledge about the regulation and function of this process in algae. Recent findings indicated that autophagy is regulated by redox signals and the TOR network in Chlamydomonas and revealed that this process may play in important role in the control of lipid metabolism and ribosomal protein turnover in this alga. Here, we will describe the different techniques and approaches that have been reported to study autophagy and autophagic flux in Chlamydomonas.
Collapse
|
48
|
Jayaswal PK, Dogra V, Shanker A, Sharma TR, Singh NK. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. PLoS One 2017; 12:e0184276. [PMID: 28922368 PMCID: PMC5603157 DOI: 10.1371/journal.pone.0184276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.
Collapse
Affiliation(s)
- Pawan Kumar Jayaswal
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- Banasthali University, Banasthali, Rajasthan, India
| | - Vivek Dogra
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Asheesh Shanker
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, Patna, Bihar, India
| | - Tilak Raj Sharma
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
Prioretti L, Avilan L, Carrière F, Montané MH, Field B, Grégori G, Menand B, Gontero B. The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|