1
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
2
|
Hao DL, Zhou JY, Qu J, Lu HL, Li L, Yao X, Chen JB, Liu JX, Guo HL, Zong JQ. Screening of environmental stimuli for the positive regulation of stomatal aperture in centipedegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108838. [PMID: 38878388 DOI: 10.1016/j.plaphy.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Grasslands, the largest carbon pool in China, possess enormous potential for carbon sequestration. Increasing the stomatal aperture to increase the CO2 absorption capacity is a potential method to improve plant photosynthetic efficiency and ultimately enhance the carbon sequestration capacity of grass plants. Research on stomatal aperture regulation has focused mostly on Arabidopsis or crops, while research on grass plants in these areas is scarce, which seriously restricts the implementation of this grassland carbon sequestration strategy. Here, a widely used ecological grass, centipedegrass, was used as the experimental material. First, a convenient method for observing the stomatal aperture was developed. The leaves were floated in a potassium ion-containing open solution (67 mM KCl, pH 6.0) with the adaxial surface rather than the abaxial surface in contact with the solution and were cultivated under light for 1.5 h. Then, nail polish was applied on the adaxial surface, and a large number of open stomata were imprinted. Second, with the help of this improved method, the concentration‒response characteristics of the stomatal aperture to eleven environmental stimuli were tested. The stomatal aperture is dependent on these environmental stimuli in a concentration-dependent manner. The addition of 100 μM brassinolide led to the maximal stomatal aperture. This study provided a technical basis for manipulating stomatal opening to increase the carbon sequestration capacity of centipedegrass.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, 212400, China
| | - Jia Qu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Hai-Long Lu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Jun-Qin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
3
|
Shu H, Xu K, Li X, Liu J, Altaf MA, Fu H, Lu X, Cheng S, Wang Z. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. PLANT CELL REPORTS 2024; 43:106. [PMID: 38532109 DOI: 10.1007/s00299-024-03196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Kaijing Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Xiangrui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
| | - Jiancheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
4
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Luqman M, Shahbaz M, Maqsood MF, Farhat F, Zulfiqar U, Siddiqui MH, Masood A, Aqeel M, Haider FU. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize ( Zea mays L.) hybrids grown under drought stress. PLANT SIGNALING & BEHAVIOR 2023; 18:2262795. [PMID: 37767863 PMCID: PMC10730227 DOI: 10.1080/15592324.2023.2262795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Drought alters plant physiology, morphology, and biochemical pathways, necessitating effective mitigation strategies. Strigolactones (SLs) are phytohormones known to enhance plant growth under abiotic stress. However, their specific impact on drought stress in maize remains unclear. This study aimed to determine the optimal SL concentration for mitigating drought stress in two maize hybrids (HY-1898, FH-1046). Maize plants were subjected to 60% field capacity drought stress in a pot experiment. After 40 d, different concentrations (0, 0.001, 0.01, and 0.1 mg L-1) of the synthetic SL analogue GR24 were applied to evaluate their effects on growth features, photosynthesis attributes, and osmolyte accumulation in the maize hybrids. Results showed that exogenous SL application significantly increased photosynthetic pigments in maize hybrids under drought stress. Chlorophyll content, gas exchange characteristics, net CO2 assimilation rate, stomatal conductance, water use efficiency, and antioxidant activities were enhanced by GR24. Leaf ascorbic acid and total phenolics also increased with SL application. Organic osmolytes, such as glycine betaine and free proline, were elevated in both maize hybrids under drought stress. Yield-related parameters, including cob diameter, cob weight, number of seeds per cob, and number of seeds per plant, were significantly increased by GR24 under drought stress. Our findings highlight the potential of GR24 foliar application to mitigate drought stress and promote maize growth and grain yield in a concentration-dependent manner. The minimum effective SL concentration against drought stress was determined to be 0.01 mg L-1. Overall, foliar application of GR24 could serve as a sustainable approach for drought tolerance in agriculture.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Fozia Farhat
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atifa Masood
- The department of Botany, University of Lahore, Sargodha, Pakistan
| | - Muhammad Aqeel
- State key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fasih Ullah Haider
- Ecology, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Ecology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Nichol JB, Ribano AKB, Hickerson NM, Ali N, Jamois F, Samuel MA. Plant growth regulator extracts from seaweeds promote plant growth and confer drought tolerance in canola ( Brassica napus). PLANT SIGNALING & BEHAVIOR 2023; 18:2267222. [PMID: 37903454 PMCID: PMC10761089 DOI: 10.1080/15592324.2023.2267222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Brassica napus, commonly known as canola, is an important oilseed crop in Canada contributing over $29.9 billion CAD to the Canadian economy annually. A major challenge facing Canadian canola is drought, which has become increasingly prevalent in recent years due to the changing climate. Research investigating novel agronomic techniques in mitigating drought is key to securing yields and sustainability in canola and other crops. One such technique is the use of bio-stimulant sprays to help offset biotic and abiotic stresses in plants through promoting stand establishment. Previous studies have shown that the application of seaweed extracts as bio-stimulant sprays to Brassicaceae has been successful in improving plant growth and development along with stress tolerance. However, this method has yet to be tested on canola. The organic nutrients that are waste products from processed seaweed help stimulate plant growth, yielding higher quality plants as a result. In association with Le Groupe Roullier, this study demonstrates that the Roullier extracts (RE) help increase plant growth characteristics and drought tolerance in canola when sprayed 3 times over a 3-week period. A high yielding but drought sensitive mutant of canola, d14 (developed through gene editing) was used for drought assays after 8 weeks of growth and where water was withheld for 6 days. Application of the REs prior to drought resulted in plants having enhanced survival rate and improved biomass retention indicating high drought tolerance. Subsequent RNA sequencing and gene ontological term analysis performed using RE treated plants in triplicates, revealed substantial levels of differential expression of growth-related genes along with stress-related genes. These REs elicited responses in plants that had previously only been achieved through gene editing and transgenic methodologies. Using bio-stimulant sprays provides a novel platform to promote beneficial agronomic traits, independent of genetic manipulation.
Collapse
Affiliation(s)
- Justin B. Nichol
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Neil M.N. Hickerson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics Department, Agro Innovation International, Centre Mondial de l’Innovation Roullier - TIMAC AGRO, Saint-Malo, France
| | - Frank Jamois
- Phys-Chem and Bio-Analytics Department, Agro Innovation International, Centre Mondial de l’Innovation Roullier - TIMAC AGRO, Saint-Malo, France
| | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
8
|
Russo G, Capitanio S, Trasoletti M, Morabito C, Korwin Krukowski P, Visentin I, Genre A, Schubert A, Cardinale F. Strigolactones promote the localization of the ABA exporter ABCG25 at the plasma membrane in root epidermal cells of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5881-5895. [PMID: 37519212 DOI: 10.1093/jxb/erad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/29/2023] [Indexed: 08/01/2023]
Abstract
The phytohormones strigolactones crosstalk with abscisic acid (ABA) in acclimation to osmotic stress, as ascertained in leaves. However, our knowledge about underground tissues is limited, and lacking in Arabidopsis: whether strigolactones affect ABA transport across plasma membranes has never been addressed. We evaluated the effect of strigolactones on the localization of ATP BINDING CASSETTE G25 (ABCG25), an ABA exporter in Arabidopsis thaliana. Wild-type, strigolactone-insensitive, and strigolactone-depleted seedlings expressing a green fluorescent protein:ABCG25 construct were treated with ABA or strigolactones, and green fluorescent protein was quantified by confocal microscopy in different subcellular compartments of epidermal root cells. We show that strigolactones promote the localization of an ABA transporter at the plasma membrane by enhancing its endosomal recycling. Genotypes altered in strigolactone synthesis or perception are not impaired in ABCG25 recycling promotion by ABA, which acts downstream or independent of strigolactones in this respect. Additionally, we confirm that osmotic stress decreases strigolactone synthesis in A. thaliana root cells, and that this decrease may support local ABA retention under low water availability by allowing ABCG25 internalization. Thus, we propose a new mechanism for ABA homeostasis regulation in the context of osmotic stress acclimation: the fine-tuning by strigolactones of ABCG25 localization in root cells.
Collapse
Affiliation(s)
- Giulia Russo
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Serena Capitanio
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
- DBIOS, University of Turin, Viale Mattioli 25, I-10125 Torino, Italy
| | - Marta Trasoletti
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Cristina Morabito
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Paolo Korwin Krukowski
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Ivan Visentin
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Andrea Genre
- DBIOS, University of Turin, Viale Mattioli 25, I-10125 Torino, Italy
| | - Andrea Schubert
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Francesca Cardinale
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| |
Collapse
|
9
|
Rodríguez R, Barra PJ, Larama G, Carrion VJ, de la Luz Mora M, Hale L, Durán P. Microbiome engineering optimized by Antarctic microbiota to support a plant host under water deficit. FRONTIERS IN PLANT SCIENCE 2023; 14:1241612. [PMID: 37780522 PMCID: PMC10541027 DOI: 10.3389/fpls.2023.1241612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress. Microbiome engineering was mediated through three factors i) Antarctic soil donation, ii) water deficit and iii) multigenerational tomato host selection. We revealed that tomato plants growing in soils supplemented with Antarctic microbiota were tolerant to water deficit stress after 10 generations. A clear increase in tomato seedling tolerance against water deficit stress was observed in all soils over generations of Host Mediated Microbiome Engineering, being Fildes mixture the most representatives, which was evidenced by an increased survival time, plant stress index, biomass accumulation, and decreased leaf proline content. Microbial community analysis using 16s rRNA gene amplicon sequencing data suggested a microbiome restructuring that could be associated with increased tolerance of water deficit. Additionally, the results showed a significant increase in the relative abundance of Candidatus Nitrosocosmicus and Bacillus spp. which could be key taxa associated with the observed tolerance improvement. We proposed that in situ microbiota engineering through the evolution of three factors (long-standing extreme climate adaption and host and stress selection) could represent a promising strategy for novel generation of microbial inoculants.
Collapse
Affiliation(s)
- Rodrigo Rodríguez
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Agroscientific SpA, Temuco, Chile
| | - Patricio J. Barra
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | | | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Kurepa J, Smalle JA. Plant Hormone Modularity and the Survival-Reproduction Trade-Off. BIOLOGY 2023; 12:1143. [PMID: 37627027 PMCID: PMC10452219 DOI: 10.3390/biology12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Biological modularity refers to the organization of living systems into separate functional units that interact in different combinations to promote individual well-being and species survival. Modularity provides a framework for generating and selecting variations that can lead to adaptive evolution. While the exact mechanisms underlying the evolution of modularity are still being explored, it is believed that the pressure of conflicting demands on limited resources is a primary selection force. One prominent example of conflicting demands is the trade-off between survival and reproduction. In this review, we explore the available evidence regarding the modularity of plant hormones within the context of the survival-reproduction trade-off. Our findings reveal that the cytokinin module is dedicated to maximizing reproduction, while the remaining hormone modules function to ensure reproduction. The signaling mechanisms of these hormone modules reflect their roles in this survival-reproduction trade-off. While the cytokinin response pathway exhibits a sequence of activation events that aligns with the developmental robustness expected from a hormone focused on reproduction, the remaining hormone modules employ double-negative signaling mechanisms, which reflects the necessity to prevent the excessive allocation of resources to survival.
Collapse
Affiliation(s)
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
11
|
Tariq A, Ullah I, Sardans J, Graciano C, Mussarat S, Ullah A, Zeng F, Wang W, Al-Bakre DA, Ahmed Z, Ali S, Zhang Z, Yaseen A, Peñuelas J. Strigolactones can be a potential tool to fight environmental stresses in arid lands. ENVIRONMENTAL RESEARCH 2023; 229:115966. [PMID: 37100368 DOI: 10.1016/j.envres.2023.115966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Environmental stresses pose a significant threat to plant growth and ecosystem productivity, particularly in arid lands that are more susceptible to climate change. Strigolactones (SLs), carotenoid-derived plant hormones, have emerged as a potential tool for mitigating environmental stresses. METHODS This review aimed to gather information on SLs' role in enhancing plant tolerance to ecological stresses and their possible use in improving the resistance mechanisms of arid land plant species to intense aridity in the face of climate change. RESULTS Roots exude SLs under different environmental stresses, including macronutrient deficiency, especially phosphorus (P), which facilitates a symbiotic association with arbuscular mycorrhiza fungi (AMF). SLs, in association with AMF, improve root system architecture, nutrient acquisition, water uptake, stomatal conductance, antioxidant mechanisms, morphological traits, and overall stress tolerance in plants. Transcriptomic analysis revealed that SL-mediated acclimatization to abiotic stresses involves multiple hormonal pathways, including abscisic acid (ABA), cytokinins (CK), gibberellic acid (GA), and auxin. However, most of the experiments have been conducted on crops, and little attention has been paid to the dominant vegetation in arid lands that plays a crucial role in reducing soil erosion, desertification, and land degradation. All the environmental gradients (nutrient starvation, drought, salinity, and temperature) that trigger SL biosynthesis/exudation prevail in arid regions. The above-mentioned functions of SLs can potentially be used to improve vegetation restoration and sustainable agriculture. CONCLUSIONS Present review concluded that knowledge on SL-mediated tolerance in plants is developed, but still in-depth research is needed on downstream signaling components in plants, SL molecular mechanisms and physiological interactions, efficient methods of synthetic SLs production, and their effective application in field conditions. This review also invites researchers to explore the possible application of SLs in improving the survival rate of indigenous vegetation in arid lands, which can potentially help combat land degradation problems.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Ihteram Ullah
- Department of Plant Breeding & Genetics, Gomal University, Dera Ismail Khan, Pakistan
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Fanjiang Zeng
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Dhafer A Al-Bakre
- Department of Biology, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Zeeshan Ahmed
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Sikandar Ali
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhihao Zhang
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Aftab Yaseen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
12
|
Nisa ZU, Wang Y, Ali N, Chen C, Zhang X, Jin X, Yu L, Jing L, Chen C, Elansary HO. Strigolactone signaling gene from soybean GmMAX2a enhances the drought and salt-alkaline resistance in Arabidopsis via regulating transcriptional profiles of stress-related genes. Funct Integr Genomics 2023; 23:216. [PMID: 37391642 DOI: 10.1007/s10142-023-01151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Strigolactone (SL) is a new plant hormone, which not only plays an important role in stimulating seed germination, plant branching, and regulating root development, but also plays an important role in the response of plants to abiotic stresses. In this study, the full-length cDNA of a soybean SL signal transduction gene (GmMAX2a) was isolated, cloned and revealed an important role in abiotic stress responses. Tissue-specific expression analysis by qRT-PCR indicated that GmMAX2a was expressed in all tissues of soybean, but highest expression was detected in seedling stems. Moreover, upregulation of GmMAX2a transcript expression under salt, alkali, and drought conditions were noted at different time points in soybean leaves compared to roots. Additionally, histochemical GUS staining studies revealed the deep staining in PGmMAX2a: GUS transgenic lines compared to WT indicating active involvement of GmMAX2a promoter region to stress responses. To further investigate the function of GmMAX2a gene in transgenic Arabidopsis, Petri-plate experiments were performed and GmMAX2a OX lines appeared with longer roots and improved fresh biomass compared to WT plants to NaCl, NaHCO3, and mannitol supplementation. Furthermore, the expression of several stress-related genes such as RD29B, SOS1, NXH1, AtRD22, KIN1, COR15A, RD29A, COR47, H+-APase, NADP-ME, NCED3, and P5CS were significantly high in GmMAX2a OX plants after stress treatment compared to WT plants. In conclusion, GmMAX2a improves soybean tolerance towards abiotic stresses (salt, alkali, and drought). Hence, GmMAX2a can be considered a candidate gene for transgenic breeding against various abiotic stresses in plants.
Collapse
Affiliation(s)
- Zaib-Un Nisa
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan.
| | - Yudan Wang
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan
| | - Chen Chen
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xu Zhang
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xiaoxia Jin
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Lijie Yu
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Legang Jing
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Chao Chen
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Hosam O Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
14
|
Rani V, Sengar RS, Garg SK, Mishra P, Shukla PK. RETRACTED ARTICLE: Physiological and Molecular Role of Strigolactones as Plant Growth Regulators: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00694-2. [PMID: 36802323 DOI: 10.1007/s12033-023-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Varsha Rani
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - R S Sengar
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - Sanjay Kumar Garg
- M. J. P. Rohilkhand University, Bareilly, Uttar Pradesh, 243006, India
| | - Pragati Mishra
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Pradeep Kumar Shukla
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
15
|
Faizan M, Cheng SH, Tonny SH, Robab MI. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:186-195. [PMID: 36244191 DOI: 10.1016/j.plaphy.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Shi Hui Cheng
- School of Biosciences, University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agriculture University, Mymensingh, 2202, Bangladesh
| | - Merajul Islam Robab
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| |
Collapse
|
16
|
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. PLANT, CELL & ENVIRONMENT 2022; 45:3611-3630. [PMID: 36207810 PMCID: PMC9828678 DOI: 10.1111/pce.14461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.
Collapse
Affiliation(s)
| | | | - Eva Campo
- DISAFA, PlantStressLabTurin UniversityTurinItaly
| | | | | |
Collapse
|
17
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
18
|
Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:821563. [PMID: 35283865 PMCID: PMC8908206 DOI: 10.3389/fpls.2022.821563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Phytohormones are small chemicals critical for plant development and adaptation to a changing environment. Strigolactones (SLs), carotenoid-derived small signalling molecules and a class of phytohormones, regulate multiple developmental processes and respond to diverse environmental signals. SLs also coordinate adjustments in the balance of resource distribution by strategic modification of the plant development, allowing plants to adapt to nutrient deficiency. Instead of operating independently, SL interplays with abscisic acid, cytokinin, auxin, ethylene, and some other plant phytohormones, forming elaborate signalling networks. Hormone signalling crosstalk in plant development and environmental response may occur in a fully concerted manner or as a cascade of sequential events. In many cases, the exact underlying mechanism is unclear because of the different effects of phytohormones and the varying backgrounds of their actions. In this review, we systematically summarise the synthesis, signal transduction, and biological functions of SLs and further highlight the significance of crosstalk between SLs and other phytohormones during plant development and resistance to ever-changing environments.
Collapse
|
19
|
Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules 2021; 26:molecules26154579. [PMID: 34361731 PMCID: PMC8348160 DOI: 10.3390/molecules26154579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.
Collapse
|
20
|
Bhoi A, Yadu B, Chandra J, Keshavkant S. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. PLANTA 2021; 254:28. [PMID: 34241703 DOI: 10.1007/s00425-021-03678-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived molecules, which regulate various developmental and adaptation processes in plants. These are engaged in different aspects of growth such as development of root, leaf senescence, shoot branching, etc. Plants grown under nutrient-deficient conditions enhance SL production that facilitates root architecture and symbiosis of arbuscular mycorrhizal fungi, as a result increases nutrient uptake. The crosstalk of SLs with other phytohormones such as auxin, abscisic acid, cytokinin and gibberellins, in response to abiotic stresses indicates that SLs actively contribute to the regulatory systems of plant stress adaptation. In response to different environmental circumstances such as salinity, drought, heat, cold, heavy metals and nutrient deprivation, these SLs get accumulated in plant tissues. Strigolactones regulate multiple hormonal responsive pathways, which aids plants to surmount stressful environmental constraints as well as reduce negative impact on overall productivity of crops. The external application of SL analog GR24 for its higher bioaccumulation can be one of the possible approaches for establishing various abiotic stress tolerances in plants.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - Bhumika Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
- School of Life and Allied Sciences, ITM University, Raipur, 492 002, India
| | - Jipsi Chandra
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
- National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
| |
Collapse
|
21
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
22
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
23
|
Chesterfield RJ, Vickers CE, Beveridge CA. Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. TRENDS IN PLANT SCIENCE 2020; 25:1087-1106. [PMID: 32660772 DOI: 10.1016/j.tplants.2020.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) control plant development, enhance symbioses, and act as germination stimulants for some of the most destructive species of parasitic weeds, making SLs a potential tool to improve crop productivity and resilience. Field trials demonstrate the potential use of SLs as agrochemicals or genetic targets in breeding programs, with applications in improving drought tolerance, increasing yields, and controlling parasitic weeds. However, for effective translation of SLs into agriculture, understanding and exploiting SL diversity and the development of economically viable sources of SL analogs will be critical. Here we review how manipulation of SL signaling can be used when developing new tools and crop varieties to address some critical challenges, such as nutrient acquisition, resource allocation, stress tolerance, and plant-parasite interactions.
Collapse
Affiliation(s)
- Rebecca J Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Synthetic Biology Future Science Platform, CSIRO, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Synthetic Biology Future Science Platform, CSIRO, Australia.
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Li W, Gupta A, Tian H, Nguyen KH, Tran CD, Watanabe Y, Tian C, Li K, Yang Y, Guo J, Luo Y, Miao Y, Phan Tran LS. Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1789321. [PMID: 32669036 PMCID: PMC8550175 DOI: 10.1080/15592324.2020.1789321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 05/21/2023]
Abstract
Strigolactone and karrikin receptors, DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), respectively, have been shown to positively regulate drought resistance in Arabidopsis thaliana by modulating abscisic acid responsiveness, anthocyanin accumulation, stomatal closure, cell membrane integrity and cuticle formation. Here, we aim to identify genes specifically or commonly regulated by D14 and KAI2 under water scarcity, using comparative analysis of the transcriptome data of the A. thaliana d14-1 and kai2-2 mutants under dehydration conditions. In comparison with wild-type, under dehydration conditions, the expression levels of genes related to photosynthesis and the metabolism of glucosinolates and trehalose were significantly changed in both d14-1 and kai2-2 mutant plants, whereas the transcript levels of genes related to the metabolism of cytokinins and brassinosteroids were significantly altered in the d14-1 mutant plants only. These results suggest that cytokinin and brassinosteroid metabolism might be specifically regulated by the D14 pathway, whereas photosynthesis and metabolism of glucosinolates and trehalose are potentially regulated by both D14 and KAI2 pathways in plant response to water scarcity.
Collapse
Affiliation(s)
- Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | - Hongtao Tian
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Yong Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
- CONTACT Yuchen Miao Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng475001, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Lam-Son Phan Tran ; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| |
Collapse
|
25
|
Brun G. At the crossroads of strigolactones and abscisic acid pathways: A role for miR156. PLANT, CELL & ENVIRONMENT 2020; 43:1609-1612. [PMID: 32406550 DOI: 10.1111/pce.13787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Guillaume Brun
- Institute for Biology, Department for Systematic Botany and Biodiversity, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, Toyooka K, Seo M, Tian L, Tian C, Yamaguchi S, Tanaka M, Seki M, Tran LSP. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:111-127. [PMID: 32022953 DOI: 10.1111/tpj.14712] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 05/23/2023]
Abstract
Functional analyses of various strigolactone-deficient mutants have demonstrated that strigolactones enhance drought resistance; however, the mechanistic involvement of the strigolactone receptor DWARF14 (D14) in this trait remains elusive. In this study, loss-of-function analysis of the D14 gene in Arabidopsis thaliana revealed that d14 mutant plants were more drought-susceptible than wild-type plants, which was associated with their larger stomatal aperture, slower abscisic acid (ABA)-mediated stomatal closure, lower anthocyanin content and delayed senescence under drought stress. Transcriptome analysis revealed a consistent alteration in the expression levels of many genes related to the observed physiological and biochemical changes in d14 plants when compared with the wild type under normal and dehydration conditions. A comparative drought resistance assay confirmed that D14 plays a less critical role in Arabidopsis drought resistance than its paralog karrikin receptor KARRIKIN INSENSITIVE 2 (KAI2). In-depth comparative analyses of the single mutants d14 and kai2 and the double mutant d14 kai2, in relation to various drought resistance-associated mechanisms, revealed that D14 and KAI2 exhibited a similar effect on stomatal closure. On the other hand, D14 had a lesser role in the maintenance of cell membrane integrity, leaf cuticle structure and ABA-induced leaf senescence, but a greater role in drought-induced anthocyanin biosynthesis, than KAI2. Interestingly, a possible additive relationship between D14 and KAI2 could be observed in regulating cell membrane integrity and leaf cuticle development. In addition, our findings also suggest the existence of a complex interaction between the D14 and ABA signaling pathways in the adaptation of Arabidopsis to drought.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Biology, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Ha Duc Chu
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shinjiro Yamaguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
27
|
Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. PLANT, CELL & ENVIRONMENT 2020; 43:1613-1624. [PMID: 32196123 DOI: 10.1111/pce.13758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/12/2023]
Abstract
miR156 is a conserved microRNA whose role and induction mechanisms under stress are poorly known. Strigolactones are phytohormones needed in shoots for drought acclimation. They promote stomatal closure ABA-dependently and independently; however, downstream effectors for the former have not been identified. Linkage between miR156 and strigolactones under stress has not been reported. We compared ABA accumulation and sensitivity as well as performances of wt and miR156-overexpressing (miR156-oe) tomato plants during drought. We also quantified miR156 levels in wt, strigolactone-depleted and strigolactone-treated plants, exposed to drought stress. Under irrigated conditions, miR156 overexpression and strigolactone treatment led to lower stomatal conductance and higher ABA sensitivity. Exogenous strigolactones were sufficient for miR156 accumulation in leaves, while endogenous strigolactones were required for miR156 induction by drought. The "after-effect" of drought, by which stomata do not completely re-open after rewatering, was enhanced by both strigolactones and miR156. The transcript profiles of several miR156 targets were altered in strigolactone-depleted plants. Our results show that strigolactones act as a molecular link between drought and miR156 in tomato, and identify miR156 as a mediator of ABA-dependent effect of strigolactones on the after-effect of drought on stomata. Thus, we provide insights into both strigolactone and miR156 action on stomata.
Collapse
Affiliation(s)
- Ivan Visentin
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Chiara Pagliarani
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Eleonora Deva
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
- Centre for Biotech & Agricultural Research StrigoLab Srl, Turin, Italy
| | - Alessio Caracci
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Claudio Lovisolo
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Andrea Schubert
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Francesca Cardinale
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| |
Collapse
|
28
|
Yoneyama K. Recent progress in the chemistry and biochemistry of strigolactones. JOURNAL OF PESTICIDE SCIENCE 2020; 45:45-53. [PMID: 32508512 PMCID: PMC7251197 DOI: 10.1584/jpestics.d19-084] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are plant secondary metabolites derived from carotenoids. SLs play important roles in the regulation of plant growth and development in planta and coordinate interactions between plants and other organisms including root parasitic plants, and symbiotic and pathogenic microbes in the rhizosphere. In the 50 years since the discovery of the first SL, strigol, our knowledge about the chemistry and biochemistry of SLs has advanced explosively, especially over the last two decades. In this review, recent advances in the chemistry and biology of SLs are summarized and possible future outcomes are discussed.
Collapse
Affiliation(s)
- Koichi Yoneyama
- Women’s Future Development Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790–8577, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Li W, Nguyen KH, Tran CD, Watanabe Y, Tian C, Yin X, Li K, Yang Y, Guo J, Miao Y, Yamaguchi S, Tran LSP. Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis. Biomolecules 2020; 10:biom10040607. [PMID: 32295207 PMCID: PMC7226073 DOI: 10.3390/biom10040607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Previous investigations have shown that the SUPPRESSORS OF MAX2 1-LIKE6, 7 and 8 (SMXL6, 7 and 8) proteins redundantly repress strigolactone (SL) signaling in plant growth and development. Recently, a growing body of evidence indicated that SLs positively regulate plant drought resistance through functional analyses of genes involved in SL biosynthesis and positive regulation of SL signaling. However, the functions of the SL-signaling negative regulators SMXL6, 7 and 8 in drought resistance and the associated mechanisms remain elusive. To reveal the functions of these SMXL proteins, we analyzed the drought-resistant phenotype of the triple smxl6,7,8 mutant plants and studied several drought resistance-related traits. Our results showed that the smxl6,7,8 mutant plants were more resistant to drought than wild-type plants. Physiological investigations indicated that the smxl6,7,8 mutant plants exhibited higher leaf surface temperature, reduced cuticle permeability, as well as decreases in drought-induced water loss and cell membrane damage in comparison with wild-type plants. Additionally, smxl6,7,8 mutant plants displayed an increase in anthocyanin biosynthesis during drought, enhanced detoxification capacity and increased sensitivity to abscisic acid in cotyledon opening and growth inhibition assays. A good correlation between the expression levels of some relevant genes and the examined physiological and biochemical traits was observed. Our findings together indicate that the SMXL6, 7 and 8 act as negative regulators of drought resistance, and that disruption of these SMXL genes in crops may provide a novel way to improve their drought resistance.
Collapse
Affiliation(s)
- Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China; or (K.L.); (Y.Y.); (J.G.); (Y.M.)
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; (C.D.T.); (Y.W.)
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam;
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; (C.D.T.); (Y.W.)
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam;
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; (C.D.T.); (Y.W.)
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China;
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China; or (K.L.); (Y.Y.); (J.G.); (Y.M.)
| | - Yong Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China; or (K.L.); (Y.Y.); (J.G.); (Y.M.)
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China; or (K.L.); (Y.Y.); (J.G.); (Y.M.)
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China; or (K.L.); (Y.Y.); (J.G.); (Y.M.)
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; (C.D.T.); (Y.W.)
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Correspondence: or
| |
Collapse
|
30
|
Kalliola M, Jakobson L, Davidsson P, Pennanen V, Waszczak C, Yarmolinsky D, Zamora O, Palva ET, Kariola T, Kollist H, Brosché M. Differential role of MAX2 and strigolactones in pathogen, ozone, and stomatal responses. PLANT DIRECT 2020; 4:e00206. [PMID: 32128474 PMCID: PMC7047155 DOI: 10.1002/pld3.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 05/23/2023]
Abstract
Strigolactones are a group of phytohormones that control developmental processes including shoot branching and various plant-environment interactions in plants. We previously showed that the strigolactone perception mutant more axillary branches 2 (max2) has increased susceptibility to plant pathogenic bacteria. Here we show that both strigolactone biosynthesis (max3 and max4) and perception mutants (max2 and dwarf14) are significantly more sensitive to Pseudomonas syringae DC3000. Moreover, in response to P. syringae infection, high levels of SA accumulated in max2 and this mutant was ozone sensitive. Further analysis of gene expression revealed no major role for strigolactone in regulation of defense gene expression. In contrast, guard cell function was clearly impaired in max2 and depending on the assay used, also in max3, max4, and d14 mutants. We analyzed stomatal responses to stimuli that cause stomatal closure. While the response to abscisic acid (ABA) was not impaired in any of the mutants, the response to darkness and high CO2 was impaired in max2 and d14-1 mutants, and to CO2 also in strigolactone synthesis (max3, max4) mutants. To position the role of MAX2 in the guard cell signaling network, max2 was crossed with mutants defective in ABA biosynthesis or signaling. This revealed that MAX2 acts in a signaling pathway that functions in parallel to the guard cell ABA signaling pathway. We propose that the impaired defense responses of max2 are related to higher stomatal conductance that allows increased entry of bacteria or air pollutants like ozone. Furthermore, as MAX2 appears to act in a specific branch of guard cell signaling (related to CO2 signaling), this protein could be one of the components that allow guard cells to distinguish between different environmental conditions.
Collapse
Affiliation(s)
- Maria Kalliola
- Faculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | | | - Pär Davidsson
- Faculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Ville Pennanen
- Faculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Cezary Waszczak
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | | | - Olena Zamora
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - E. Tapio Palva
- Faculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Tarja Kariola
- LUMA Centre Päijät‐HämeUniversity of HelsinkiLahtiFinland
| | | | - Mikael Brosché
- Institute of TechnologyUniversity of TartuTartuEstonia
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
31
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J. Strigolactones and their crosstalk with other phytohormones. ANNALS OF BOTANY 2019; 124:749-767. [PMID: 31190074 PMCID: PMC6868373 DOI: 10.1093/aob/mcz100] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a diverse class of butenolide-bearing phytohormones derived from the catabolism of carotenoids. They are associated with an increasing number of emerging regulatory roles in plant growth and development, including seed germination, root and shoot architecture patterning, nutrient acquisition, symbiotic and parasitic interactions, as well as mediation of plant responses to abiotic and biotic cues. SCOPE Here, we provide a concise overview of SL biosynthesis, signal transduction pathways and SL-mediated plant responses with a detailed discourse on the crosstalk(s) that exist between SLs/components of SL signalling and other phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates and salicylic acid. CONCLUSION SLs elicit their control on physiological and morphological processes via a direct or indirect influence on the activities of other hormones and/or integrants of signalling cascades of other growth regulators. These, among many others, include modulation of hormone content, transport and distribution within plant tissues, interference with or complete dependence on downstream signal components of other phytohormones, as well as acting synergistically or antagonistically with other hormones to elicit plant responses. Although much has been done to evince the effects of SL interactions with other hormones at the cell and whole plant levels, research attention must be channelled towards elucidating the precise molecular events that underlie these processes. More especially in the case of abscisic acid, cytokinins, gibberellin, jasmonates and salicylic acid for which very little has been reported about their hormonal crosstalk with SLs.
Collapse
Affiliation(s)
- L O Omoarelojie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - M G Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
- For correspondence. E-mail:
| |
Collapse
|
33
|
de Souza Campos PM, Cornejo P, Rial C, Borie F, Varela RM, Seguel A, López-Ráez JA. Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5631-5642. [PMID: 31359044 PMCID: PMC6812720 DOI: 10.1093/jxb/erz349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/17/2023]
Abstract
Inorganic phosphorus (Pi) fertilizers are expected to become scarce in the near future; so, breeding for improved Pi acquisition-related root traits would decrease the need for fertilizer application. This work aimed to decipher the physiological and molecular mechanisms underlying the differences between two commercial wheat cultivars (Crac and Tukan) with contrasting Pi acquisition efficiencies (PAE). For that, four independent experiments with different growth conditions were conducted. When grown under non-limiting Pi conditions, both cultivars performed similarly. Crac was less affected by Pi starvation than Tukan, presenting higher biomass production, and an enhanced root development, root:shoot ratio, and root efficiency for Pi uptake under this condition. Higher PAE in Crac correlated with enhanced expression of the Pi transporter genes TaPht1;2 and TaPht1;10. Crac also presented a faster and higher modulation of the IPS1-miR399-PHO2 pathway upon Pi starvation. Interestingly, Crac showed increased levels of strigolactones, suggesting a direct relationship between this phytohormone and plant P responses. Based on these findings, we propose that higher PAE of the cultivar Crac is associated with an improved P signalling through a fine-tuning modulation of PHO2 activity, which seems to be regulated by strigolactones. This knowledge will help to develop new strategies for improved plant performance under P stress conditions.
Collapse
Affiliation(s)
- Pedro M de Souza Campos
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, Spain
| | - Fernando Borie
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile, Spain
| | - Rosa M Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, Spain
| | - Alex Seguel
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
34
|
Li W, Herrera-Estrella L, Tran LSP. Do Cytokinins and Strigolactones Crosstalk during Drought Adaptation? TRENDS IN PLANT SCIENCE 2019; 24:669-672. [PMID: 31277931 DOI: 10.1016/j.tplants.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Recent reports have demonstrated that cytokinins (CKs) and strigolactones (SLs) act as negative and positive regulators, respectively, in plant drought responses. These reports have also suggested potential crosstalk between CK and SL signaling pathways in several mechanisms underlying plant drought acclimation. We discuss these reports with a view to potentially exploiting this crosstalk in the design of drought-tolerant crops.
Collapse
Affiliation(s)
- Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| |
Collapse
|
35
|
Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2019; 42:1033-1044. [PMID: 30378140 DOI: 10.1111/pce.13475] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.
Collapse
Affiliation(s)
- Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yutao Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jiajing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingwei Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Wenqian Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Lixia Pan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shuo Lv
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, 6708PB, Wageningen, The Netherlands
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Junmin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
36
|
Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y. Alleviation of drought stress in grapevine by foliar-applied strigolactones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:99-110. [PMID: 30529172 DOI: 10.1016/j.plaphy.2018.11.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Drought is one of the major abiotic stress factors that affect grape growth and yield, which in turn negatively affects the grape and wine production industry. Developing effective approaches to improve grapevine tolerance to drought stress is a priority for viticulture. Strigolactones, a newly discovered class of carotenoid-derived phytohormones, have been found to participate in various physiological processes. Herein, the effect of strigolactones (SLs) on grape seedlings under drought stress was investigated. Two-year-old grape seedlings (Vitis vinifera L.) were sprayed with 3 doses of rac-GR24 (1 μM, 3 μM and 5 μM), a synthesized strigolactone, and then were subjected to 7% (w/v) polyethylene glycol (PEG-6000) to simulate the drought conditions. Synthetic GR24 treated plants showed higher tolerance to drought stress with regard to lower electrolyte leakage, stomatal opening, reactive oxygen species (ROS), and higher relative water content, chlorophyll content, photosynthesis rate and malondialdehyde (MDA) content. GR24 application also decreased the levels of indoleacetic acid (IAA) and zeatin riboside (ZR), while increasing the level of abscisic acid (ABA), both in the roots and leaves under drought stress. These results suggested that foliar application of GR24 could ameliorate the adverse effects of drought due to its regulation of stomatal closure through ABA or ROS, and modulation of chlorophyll components and photosynthesis, as well as activation of the antioxidant defense capacity. Cross-talk with other hormones, especially ABA, was also suggested to be one of the important mechanism during this process. This study contributes to our current understanding of GR24-induced drought tolerance in grapevines.
Collapse
Affiliation(s)
- Zhuo Min
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Runyu Li
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Li Chen
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yang Zhang
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ziyu Li
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Min Liu
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanlun Ju
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yulin Fang
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China; Heyang Grape Station of Experimental Demonstration, Northwest A & F University, Weinan, 715300, Shaanxi, China.
| |
Collapse
|
37
|
Qu X, Cao B, Kang J, Wang X, Han X, Jiang W, Shi X, Zhang L, Cui L, Hu Z, Zhang Y, Wang G. Fine-Tuning Stomatal Movement Through Small Signaling Peptides. FRONTIERS IN PLANT SCIENCE 2019; 10:69. [PMID: 30804962 PMCID: PMC6371031 DOI: 10.3389/fpls.2019.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 05/02/2023]
Abstract
As sessile organisms, plants are continuously exposed to a wide range of environmental stress. In addition to their crucial roles in plant growth and development, small signaling peptides are also implicated in sensing environmental stimuli. Notably, recent studies in plants have revealed that small signaling peptides are actively involved in controlling stomatal aperture to defend against biotic and abiotic stress. This review illustrates our growing knowledge of small signaling peptides in the modulation of stomatal aperture and highlights future challenges to decipher peptide signaling pathways in guard cells.
Collapse
Affiliation(s)
- Xinyun Qu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wenqian Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guodong Wang,
| |
Collapse
|
38
|
Wang X, Lv S, Han X, Guan X, Shi X, Kang J, Zhang L, Cao B, Li C, Zhang W, Wang G, Zhang Y. The Calcium-Dependent Protein Kinase CPK33 Mediates Strigolactone-Induced Stomatal Closure in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1630. [PMID: 31921270 PMCID: PMC6928132 DOI: 10.3389/fpls.2019.01630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) are known to mediate plant acclimation to environmental stress. We recently reported that SLs acted as prominent regulators in promotion of stomatal closure. However, the detailed mechanism by which SLs induce stomatal closure requires further investigation. Here we studied the essential role of the calcium (Ca2+) signal mediating by the calcium-dependent protein kinase (CPK) in SL-induced stomatal closure. SL-induced stomatal closure was strongly inhibited by a Ca2+ chelator and Ca2+ channel blockers, indicating that Ca2+ functions in SL promotion of stomatal closure. Through examining a collection of cpk mutants, we identified CPK33, potentially acting as a Ca2+ transducer, which is implicated in guard cell SL signaling. SL- and Ca2+-induced stomatal closure were impaired in cpk33 mutants. CPK33 kinase activity is essential for SL induction of stomatal closure as SL-induced stomatal closure is blocked in the dead kinase mutant of CPK33. The cpk33 mutant is impaired in H2O2-induced stomatal closure, but not in SL-mediated H2O2 production. Our study thus uncovers an important player CPK33 which functions as an essential Ca2+ signals mediator in Arabidopsis guard cell SL signaling.
Collapse
Affiliation(s)
- Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shuo Lv
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiongjuan Guan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environment Adapting Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guodong Wang, ; Yonghong Zhang,
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Yonghong Zhang,
| |
Collapse
|
39
|
Jamil M, Kountche B, Haider I, Wang J, Aldossary F, Zarban R, Jia KP, Yonli D, Shahul Hameed U, Takahashi I, Ota T, Arold S, Asami T, Al-Babili S. Methylation at the C-3' in D-Ring of Strigolactone Analogs Reduces Biological Activity in Root Parasitic Plants and Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:353. [PMID: 31001294 PMCID: PMC6455008 DOI: 10.3389/fpls.2019.00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Faisal Aldossary
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Randa A. Zarban
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Djibril Yonli
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso
| | - Umar F. Shahul Hameed
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Stefan T. Arold
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
40
|
Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. PLANT, CELL & ENVIRONMENT 2018; 41:2227-2243. [PMID: 29869792 DOI: 10.1111/pce.13364] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 05/19/2023]
Abstract
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid-derived phytohormones, were initially discovered as an "ecological signal" for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL-mediated plant responses and adaptation to abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Japan
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|