1
|
Cancella de Abreu M, Ropers J, Oueidat N, Pieroni L, Frère C, Fontenay M, Torelino K, Chauvin A, Hekimian G, Marcelin AG, Parfait B, Tubach F, Hausfater P. Biomarkers of COVID-19 short-term worsening: a multiparameter analysis within the prospective multicenter COVIDeF cohort. Eur J Emerg Med 2024; 31:429-437. [PMID: 39480645 DOI: 10.1097/mej.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND During a pandemic like COVID-19, hospital resources are constrained and accurate severity triage of the patients is required. OBJECTIVE The objective of this study is to estimate the predictive performances of candidate biomarkers for short-term worsening (STW) of COVID-19. DESIGN Prospective, multicenter (20 hospitals in Paris) cohort study of consecutive COVID-19 patients with systematic biobanking at admission, during the first waves of COVID-19 in France in 2020 (COVIDeF cohort). SETTING AND PARTICIPANTS Consecutive COVID-19 patients were screened for inclusion. They were excluded in presence of severity criteria defined by either an ICU admission, mechanical ventilation (including noninvasive ventilation), acute respiratory distress, or in-hospital death before sampling. Routine blood tests measured during usual care and centralized systematic measurement of creatine kinase, C-reactive protein (CRP), procalcitonin, soluble urokinase plasminogen activator receptor (suPAR), high-sensitive troponin T (TnT-hs), N terminal pro-B natriuretic peptide (NT-proBNP), calprotectin, platelet factor 4, mid-regional pro-adrenomedullin (MR-proADM), and proendothelin were performed. OUTCOME MEASURES AND ANALYSES The primary outcome was STW, defined by a severity criteria within 7 days. A backward stepwise logistic regression model and a 'best subset' approach were used to identify independent association, and the area under the receiving operator characteristics (AUROC) was computed. RESULTS Five hundred and eleven patients were analyzed, of whom 60 (11.7%) experienced STW. Median time to occurrence of a severity criteria was 3 days. At admission, lower values of eosinophils, lymphocytes, platelets, alanine aminotransferase, and higher values of neutrophils, creatinine, urea, CRP, TnT-hs, suPAR, NT-proBNP, calprotectin, procalcitonin, MR-proADM, and proendothelin were predictive of worsening. Stepwise logistic regression identified three biomarkers significantly associated with worsening: CRP [adjusted odds ratio (aOR): 1.10, 95% confidence interval (95% CI): 1.06-1.15 for a 10-unit increase, AUROC: 0.73 (0.66-0.79)], procalcitonin [aOR: 0.42, 95% CI: 0.22-0.81, AUROC: 0.69 (0.64-0.88)], and MR-proADM [aOR: 2.85, 95% CI: 1.74-4.69, AUROC: 0.75 (0.69-0.81)]. These biomarkers outperformed clinical variables except diabetes and cancer comorbidities. CONCLUSION In this multicenter prospective study that assessed a large panel of biomarkers for COVID-19 patients, CRP, procalcitonin, and MR-proADM were independently associated with the risk of STW. TRIAL REGISTRATION ClinicalTrials.gov NCT04352348.
Collapse
Affiliation(s)
- Marta Cancella de Abreu
- Emergency Department, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université
- Groupe de Recherche Clinique (GRC)-14 BIOSFAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI), UMR 1135, Sorbonne Université
| | - Jacques Ropers
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
| | - Nathalie Oueidat
- Biochemistry Department, UF des Urgences Biologiques, Service de Biochimie métabolique, Hôpital Pitié-Salpêtrière, DMU BioGeM, AP-HP Sorbonne Université
| | - Laurence Pieroni
- Unité de Biochimie, Département de Biochimie-Hormonologie-Suivi thérapeutique général, Hôpital Tenon, DMU BioGeM, AP-HP Sorbonne Université
| | - Corinne Frère
- UMRS 1166, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104
- Hematology Laboratory, Assistance Publique-Hôpitaux de Paris Centre, Service d'hématologie biologique, Hôpital Cochin
| | - Krystel Torelino
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
| | - Anthony Chauvin
- Emergency Department, Hôpital Lariboisoière, APHP-Université de Paris Cité
| | - Guillaume Hekimian
- Critical Care Department, Service de Médecine Intensive Réanimation, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université
| | - Anne-Geneviève Marcelin
- Laboratoire de Virologie, Virology Laboratory Department, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, AP-HP Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
| | - Beatrice Parfait
- Centre de Ressources Biologiques - site Cochin, Fédération des CRB/PRB, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Hopital Cochin, Paris, France
| | - Florence Tubach
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université
- Groupe de Recherche Clinique (GRC)-14 BIOSFAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI), UMR 1135, Sorbonne Université
| |
Collapse
|
2
|
Francavilla B, Velletrani G, Fiorelli D, Maurantonio S, Passali FM, Schirinzi T, Bernardini S, Di Girolamo S, Nuccetelli M. Circulating calprotectin as a potential biomarker of persistent olfactory dysfunctions in Post-COVID-19 patients. Cytokine 2024; 181:156688. [PMID: 38963942 DOI: 10.1016/j.cyto.2024.156688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND This longitudinal prospective study aims to investigate the potential of circulating calprotectin (cCLP) as a biomarker in persistent olfactory dysfunctions following COVID-19 infection. METHODS Thirty-six patients with persistent hyposmia or anosmia post COVID-19 were enrolled (HT0) and re-evaluated after three months of olfactory training (HT1). Two control groups included 18 subjects without olfactory defects post COVID-19 (CG1) and 18 healthy individuals (CG2). Nasal brushing of the olfactory cleft and blood collection were performed to assess circulating calprotectin levels. RESULTS Higher calprotectin levels were observed in serum and nasal supernatant of hyposmic patients (HT0) compared to control groups (CG1 and CG2). Post-olfactory training (HT1), olfactory function improved significantly, paralleled by decreased calprotectin levels in serum and nasal samples. Circulating calprotectin holds potential as a biomarker in persistent olfactory dysfunctions after COVID-19. The decrease in calprotectin levels post-olfactory training implies a role in monitoring and evaluating treatment responses. DISCUSSION AND CONCLUSIONS These findings contribute to the growing literature on potential biomarkers in post-COVID-19 olfactory dysfunctions and underscore the importance of investigating novel biomarkers for personalized patient management. Nevertheless, further studies are needed to validate the application of calprotectin assay in nasal diseases and its correlation with nasal cytology.
Collapse
Affiliation(s)
- Beatrice Francavilla
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Gianluca Velletrani
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy.
| | - Denise Fiorelli
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| | - Sara Maurantonio
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | | | - Tommaso Schirinzi
- Department of Neurology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| |
Collapse
|
3
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
4
|
Lan T, Slezak T, Pu J, Zinkus-Boltz J, Adhikari S, Pekow JR, Taneja V, Zuniga J, Gómez-García IA, Regino-Zamarripa N, Ahmed M, Khader SA, Rubin DT, Kossiakoff AA, Dickinson BC. Development of Luminescent Biosensors for Calprotectin. ACS Chem Biol 2024; 19:1250-1259. [PMID: 38843544 DOI: 10.1021/acschembio.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Calprotectin, a metal ion-binding protein complex, plays a crucial role in the innate immune system and has gained prominence as a biomarker for various intestinal and systemic inflammatory and infectious diseases, including inflammatory bowel disease (IBD) and tuberculosis (TB). Current clinical testing methods rely on enzyme-linked immunosorbent assays (ELISAs), limiting accessibility and convenience. In this study, we introduce the Fab-Enabled Split-luciferase Calprotectin Assay (FESCA), a novel quantitative method for calprotectin measurement. FESCA utilizes two new fragment antigen binding proteins (Fabs), CP16 and CP17, that bind to different epitopes of the calprotectin complex. These Fabs are fused with split NanoLuc luciferase fragments, enabling the reconstitution of active luciferase upon binding to calprotectin either in solution or in varied immobilized assay formats. FESCA's output luminescence can be measured with standard laboratory equipment as well as consumer-grade cell phone cameras. FESCA can detect physiologically relevant calprotectin levels across various sample types, including serum, plasma, and whole blood. Notably, FESCA can detect abnormally elevated native calprotectin from TB patients. In summary, FESCA presents a convenient, low-cost, and quantitative method for assessing calprotectin levels in various biological samples, with the potential to improve the diagnosis and monitoring of inflammatory diseases, especially in at-home or point-of-care settings.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinyue Pu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Julia Zinkus-Boltz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sarbani Adhikari
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Joel R Pekow
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Vibha Taneja
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Itzel A Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Nora Regino-Zamarripa
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Mushtaq Ahmed
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shabaana A Khader
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - David T Rubin
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Bohn MK, Havelka A, Eriksson M, Adeli K. Validation of Serum Calprotectin Relative to Other Biomarkers of Infection in Febrile Infants Presenting to the Emergency Department. Antibiotics (Basel) 2024; 13:425. [PMID: 38786153 PMCID: PMC11117379 DOI: 10.3390/antibiotics13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial stewardship involves a delicate balance between the risk of undertreating individuals and the potential societal burden of overprescribing antimicrobials. This balance is especially crucial in neonatal care. In this observational study, the usefulness of biomarkers of infectious diseases (calprotectin, procalcitonin (PCT), C-reactive protein (CRP), and white blood cells (WBCs) were evaluated in 141 febrile infants aged 28-90 days presenting to an emergency department. Since our focus was on the usefulness of serum calprotectin, this biomarker was not part of clinical decision-making. A significant difference was observed in the levels of all biomarkers, related to final discharge diagnosis and disposition status. The difference in levels related to antibiotic prescription was significant for all biomarkers but WBCs. The performance of calprotectin in the detection of bacterial infections (AUC (95% CI): 0.804 (0.691, 0.916)) was comparable to the performance of both PCT (0.901 (0.823, 0.980)) and CRP (0.859 (0.764, 0.953)) and superior to the WBC count (0.684 (0.544, 0.823)). Procalcitonin and CRP demonstrated a statistically significantly higher specificity relative to calprotectin. In this cohort, antibiotic use did not always correlate to a definite diagnosis of confirmed bacterial infection. The sample size was limited due to associated challenges with recruiting febrile infants. Hence, there is a need for adequate diagnostic tools to help discriminate between various kinds of infections. This study suggests serum calprotectin, procalcitonin, and CRP may serve as valuable biomarkers to differentiate between types of infection, in addition to clinical input and decision-making.
Collapse
Affiliation(s)
- Mary Kathryn Bohn
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Aleksandra Havelka
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Gentian AS, 1596 Moss, Norway
| | - Mats Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden;
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| | - Khosrow Adeli
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
6
|
Gatselis NK, Lyberopoulou A, Lygoura V, Giannoulis G, Samakidou A, Vaiou A, Antoniou K, Triantafyllou K, Stefos A, Georgiadou S, Sagris D, Sveroni D, Gabeta S, Ntaios G, Norman GL, Dalekos GN. Calprotectin serum levels on admission and during follow-up predict severity and outcome of patients with COVID-19: A prospective study. Eur J Intern Med 2024; 122:78-85. [PMID: 37953124 DOI: 10.1016/j.ejim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND & AIMS Calprotectin reflects neutrophil activation and is increased in various inflammatory conditions including severe COVID-19. However, serial serum calprotectin measurements in COVID-19 patients are limited. We assessed prospectively, calprotectin levels as biomarker of severity/outcome of the disease and a COVID-19 monitoring parameter in a large cohort of consecutive COVID-19 patients. METHODS Calprotectin serum levels were measured in 736 patients (58.2 % males; median age 63-years; moderate disease, n = 292; severe, n = 444, intubated and/or died, n = 50). Patients were treated with combined immunotherapies according to our published local algorithm. The endpoint was the composite event of intubation due to severe respiratory failure (SRF)/COVID-19-related mortality. RESULTS Median (interquartile range) calprotectin levels were significantly higher in patients with severe disease [7(8.2) vs. 6.1(8.1)μg/mL, p = 0.015]. Calprotectin on admission was the only independent risk factor for intubation/death (HR=1.473, 95 %CI=1.003-2.165, p = 0.048) even after adjustment for age, sex, body mass index, comorbidities, neutrophils, lymphocytes, neutrophil to lymphocytes ratio, ferritin, and CRP. The area under the curve (AUC, 95 %CI) of calprotectin for prediction of intubation/death was 0.619 (0.531-0.708), with an optimal cut-off at 13 μg/mL (sensitivity: 44 %, specificity: 79 %, positive and negative predictive values: 13 % and 95 %, respectively). For intubated/died patients, paired comparisons from baseline to middle of hospitalization and subsequently to intubation/death showed significant increase of calprotectin (p = 0.009 and p < 0.001, respectively). Calprotectin alteration had the higher predictive ability for intubation/death [AUC (95 %CI):0.803 (0.664-0.943), p < 0.001]. CONCLUSIONS Calprotectin levels on admission and their subsequent dynamic alterations could serve as indicator of COVID-19 severity and predict the occurrence of SRF and mortality.
Collapse
Affiliation(s)
- Nikolaos K Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggeliki Lyberopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Vasiliki Lygoura
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Giannoulis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Anna Samakidou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Antonia Vaiou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Antoniou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Triantafyllou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggelos Stefos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Sarah Georgiadou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Sagris
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dafni Sveroni
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Ntaios
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Gary L Norman
- Research and Development, Headquarters & Technology Center Autoimmunity, Werfen, San Diego, CA 92131, USA
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
7
|
Zhang H, Zhang Q, Liu K, Yuan Z, Xu X, Dong J. Elevated level of circulating calprotectin correlates with severity and high mortality in patients with COVID-19. Immun Inflamm Dis 2024; 12:e1212. [PMID: 38477671 PMCID: PMC10936233 DOI: 10.1002/iid3.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Patients with coronavirus disease-2019 (COVID-19) are characterized by hyperinflammation. Calprotectin (S100A8/S100A9) is a calcium- and zinc-binding protein mainly secreted by neutrophilic granulocytes or macrophages and has been suggested to be correlated with the severity and prognosis of COVID-19. AIM To thoroughly evaluate the diagnostic and prognostic utility of calprotectin in patients with COVID-19 by analyzing relevant studies. METHODS PubMed, Web of Science, and Cochrane Library were comprehensively searched from inception to August 1, 2023 to retrieve studies about the application of calprotectin in COVID-19. Useful data such as the level of calprotectin in different groups and the diagnostic efficacy of this biomarker for severe COVID-19 were extracted and aggregated by using Stata 16.0 software. RESULTS Fifteen studies were brought into this meta-analysis. First, the pooled standardized mean differences (SMDs) were used to estimate the differences in the levels of circulating calprotectin between patients with severe and non-severe COVID-19. The results showed an overall estimate of 1.84 (95% confidence interval [CI]: 1.09-2.60). Diagnostic information was extracted from 11 studies, and the pooled sensitivity and specificity of calprotectin for diagnosing severe COVID-19 were 0.75 (95% CI: 0.64-0.84) and 0.88 (95% CI: 0.79-0.94), respectively. The AUC was 0.89 and the pooled DOR was 18.44 (95% CI: 9.07-37.51). Furthermore, there was a strong correlation between elevated levels of circulating calprotectin and a higher risk of mortality outcomes in COVID-19 patients (odds ratio: 8.60, 95% CI: 2.17-34.12; p < 0.1). CONCLUSION This meta-analysis showed that calprotectin was elevated in patients with severe COVID-19, and this atypical inflammatory cytokine might serve as a useful biomarker to distinguish the severity of COVID-19 and predict the prognosis.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Qingyu Zhang
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Kun Liu
- Graduate School of EducationShandong Sport UniversityJinanShandong ProvinceChina
| | - Zenong Yuan
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Xiqiang Xu
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Jun Dong
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| |
Collapse
|
8
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Chen J, Yin D, Wong HYH, Duan X, Yu KHO, Ho JWK. Vulture: cloud-enabled scalable mining of microbial reads in public scRNA-seq data. Gigascience 2024; 13:giad117. [PMID: 38195165 PMCID: PMC10776309 DOI: 10.1093/gigascience/giad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The rapidly growing collection of public single-cell sequencing data has become a valuable resource for molecular, cellular, and microbial discovery. Previous studies mostly overlooked detecting pathogens in human single-cell sequencing data. Moreover, existing bioinformatics tools lack the scalability to deal with big public data. We introduce Vulture, a scalable cloud-based pipeline that performs microbial calling for single-cell RNA sequencing (scRNA-seq) data, enabling meta-analysis of host-microbial studies from the public domain. In our benchmarking experiments, Vulture is 66% to 88% faster than local tools (PathogenTrack and Venus) and 41% faster than the state-of-the-art cloud-based tool Cumulus, while achieving comparable microbial read identification. In terms of the cost on cloud computing systems, Vulture also shows a cost reduction of 83% ($12 vs. ${\$}$70). We applied Vulture to 2 coronavirus disease 2019, 3 hepatocellular carcinoma (HCC), and 2 gastric cancer human patient cohorts with public sequencing reads data from scRNA-seq experiments and discovered cell type-specific enrichment of severe acute respiratory syndrome coronavirus 2, hepatitis B virus (HBV), and Helicobacter pylori-positive cells, respectively. In the HCC analysis, all cohorts showed hepatocyte-only enrichment of HBV, with cell subtype-associated HBV enrichment based on inferred copy number variations. In summary, Vulture presents a scalable and economical framework to mine unknown host-microbial interactions from large-scale public scRNA-seq data. Vulture is available via an open-source license at https://github.com/holab-hku/Vulture.
Collapse
Affiliation(s)
- Junyi Chen
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Harris Y H Wong
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xin Duan
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Ken H O Yu
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua W K Ho
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang W, Hwang S, Park D, Park YD. The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene. Protein Pept Lett 2024; 31:356-374. [PMID: 38766834 DOI: 10.2174/0109298665290166240426072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases. OBJECTIVE To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA. METHODS Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted. RESULTS We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway. CONCLUSION Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
| | - Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
11
|
Li H, Zhang M, Zhao Q, Zhao W, Zhuang Y, Wang J, Hang W, Wen Z, Wang L, Chen C, Wang DW. Self-recruited neutrophils trigger over-activated innate immune response and phenotypic change of cardiomyocytes in fulminant viral myocarditis. Cell Discov 2023; 9:103. [PMID: 37816761 PMCID: PMC10564723 DOI: 10.1038/s41421-023-00593-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 10/12/2023] Open
Abstract
Fulminant myocarditis (FM) is a life-threatening inflammatory disease. However, the mechanisms underlying its acute onset are unknown. By dynamic cardiac function measurement, we discovered that the initiation of sudden hemodynamic collapse was on day 4 in the mouse model of FM. Single-cell RNA-sequencing study revealed that healthy cardiomyocytes (CMs) lost their contractile and metabolic function and differentiated into pro-angiogenic and pro-inflammatory CMs. Meanwhile, neutrophils, the most expanded immune cells, exhibited a unique developmental trajectory only after migrating to the heart, where they continuously attracted peripheral neutrophils via Cxcl2/Cxcl3, resulting in the acute accumulation of neutrophils in the heart. Well-differentiated cardiac-infiltrating neutrophils, rather than viruses, induced phenotypic changes in CMs. Moreover, neutrophils could amplify cytokine storm by recruiting and activating pro-inflammatory monocytes. Blockade of the self-recruiting loop of neutrophils by targeting the Cxcl2/Cxcl3-Cxcr2 axis substantially alleviated FM in mice. Collectively, we provide a comprehensive single-cell atlas of immune cells and CMs in FM, elucidate the disease pathogenesis, and suggest potential therapeutic strategies.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhuang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Ahn SH, Shin KH, Oh JT, Park SC, Rha MS, Kim SI, Cho HJ, Yoon JH, Kim CH. Calprotectin in chronic rhinosinusitis eosinophil extracellular traps. Int Forum Allergy Rhinol 2023; 13:1926-1936. [PMID: 36932634 DOI: 10.1002/alr.23157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Calprotectin is an antimicrobial peptide primarily secreted by neutrophils. Furthermore, calprotectin secretion increases in patients with chronic rhinosinusitis (CRS) with polyps (CRSwNP) and positively correlates with neutrophil markers. However, CRSwNP is known to be associated with type 2 inflammation related to tissue eosinophilia. Therefore, the authors investigated calprotectin expression in eosinophils and eosinophil extracellular traps (EETs) and explored the associations between tissue calprotectin and the clinical findings of patients with CRS. METHODS A total of 63 patients participated, and patients diagnosed with CRS were classified based on the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis (JESREC) score. The authors performed hematoxylin and eosin staining, immunohistochemistry, immunofluorescence with calprotectin, myeloperoxidase (MPO), major basic protein (MBP), and citrullinated histone H3 with the participant's tissues. Finally, correlations between calprotectin and the clinical data were examined. RESULTS Calprotectin-positive cells are co-localized not only in MPO-positive cells but also in MBP-positive cells in human tissues. Calprotectin was also involved in EETs and neutrophil extracellular traps. The number of calprotectin-positive cells in the tissue was positively correlated with the number of tissue and blood eosinophils. In addition, calprotectin in the tissue is associated with the olfactory function, Lund-Mackay computed tomography score, and JESREC score. CONCLUSIONS Calprotectin, known to be secreted by neutrophils, in CRS was also expressed in eosinophils. In addition, calprotectin, which functions as an antimicrobial peptide, may play an important role in the innate immune response based on its EET involvement. Therefore, calprotectin expression could reflect as a disease severity biomarker for CRS.
Collapse
Affiliation(s)
- Sang Hyeon Ahn
- Department of Otorhinolaryngology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, South Korea
- Department of Medicine, The Graduate School of Yonsei University, Seoul, South Korea
| | - Kyu Ha Shin
- Department of Otorhinolaryngology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, South Korea
| | - Jun Taek Oh
- Department of Otorhinolaryngology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, South Korea
| | - Sang Chul Park
- Department of otorhinolaryngology, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo In Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Sensory Phenotyping Center, Seoul, South Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Sensory Phenotyping Center, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Sensory Phenotyping Center, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Sensory Phenotyping Center, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Medical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Kroll MH, Bi C, Salm AE, Szymanski J, Goldstein DY, Wolgast LR, Rosenblatt G, Fox AS, Kapoor H. Risk Estimation of Severe COVID-19 Based on Initial Biomarker Assessment Across Racial and Ethnic Groups. Arch Pathol Lab Med 2023; 147:1109-1118. [PMID: 37338199 DOI: 10.5858/arpa.2023-0039-sa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT.— Disease courses in COVID-19 patients vary widely. Prediction of disease severity on initial diagnosis would aid appropriate therapy, but few studies include data from initial diagnosis. OBJECTIVE.— To develop predictive models of COVID-19 severity based on demographic, clinical, and laboratory data collected at initial patient contact after diagnosis of COVID-19. DESIGN.— We studied demographic data and clinical laboratory biomarkers at time of diagnosis, using backward logistic regression modeling to determine severe and mild outcomes. We used deidentified data from 14 147 patients who were diagnosed with COVID-19 by polymerase chain reaction SARS-CoV-2 testing at Montefiore Health System, from March 2020 to September 2021. We generated models predicting severe disease (death or more than 90 hospital days) versus mild disease (alive and fewer than 2 hospital days), starting with 58 variables, by backward stepwise logistic regression. RESULTS.— Of the 14 147 patients, including Whites, Blacks, and Hispanics, 2546 (18%) patients had severe outcomes and 3395 (24%) had mild outcomes. The final number of patients per model varied from 445 to 755 because not all patients had all available variables. Four models (inclusive, receiver operating characteristic, specific, and sensitive) were identified as proficient in predicting patient outcomes. The parameters that remained in all models were age, albumin, diastolic blood pressure, ferritin, lactic dehydrogenase, socioeconomic status, procalcitonin, B-type natriuretic peptide, and platelet count. CONCLUSIONS.— These findings suggest that the biomarkers found within the specific and sensitive models would be most useful to health care providers on their initial severity evaluation of COVID-19.
Collapse
Affiliation(s)
- Martin H Kroll
- From the Department of Medical Operations and Quality (Kroll), Quest Diagnostics, Secaucus, New Jersey
| | - Caixia Bi
- Department of Corporate Medical (Bi), Quest Diagnostics, Secaucus, New Jersey
| | - Ann E Salm
- Department of Infectious Diseases/Immunology (Salm, Kapoor), Quest Diagnostics, Secaucus, New Jersey
| | - James Szymanski
- Department of Pathology, Montefiore Medical Center, Bronx, New York (Szymanski, Goldstein, Wolgast, Fox)
| | - D Yitzchak Goldstein
- Department of Pathology, Montefiore Medical Center, Bronx, New York (Szymanski, Goldstein, Wolgast, Fox)
| | - Lucia R Wolgast
- Department of Pathology, Montefiore Medical Center, Bronx, New York (Szymanski, Goldstein, Wolgast, Fox)
| | - Gregory Rosenblatt
- The Department of Pathology, Albert Einstein College of Medicine, Bronx, New York (Rosenblatt). Kapoor is currently located at HK Healthcare Consultant LLC in Davie, Florida
| | - Amy S Fox
- Department of Pathology, Montefiore Medical Center, Bronx, New York (Szymanski, Goldstein, Wolgast, Fox)
| | - Hema Kapoor
- Department of Infectious Diseases/Immunology (Salm, Kapoor), Quest Diagnostics, Secaucus, New Jersey
| |
Collapse
|
14
|
Abstract
COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.
Collapse
Affiliation(s)
- Anthony Sciaudone
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Heather Corkrey
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Fiachra Humphries
- Innate Immunity (F.H.). University of Massachusetts Chan Medical School, Worcester, MA
| | - Milka Koupenova
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
15
|
Hufnagel K, Fathi A, Stroh N, Klein M, Skwirblies F, Girgis R, Dahlke C, Hoheisel JD, Lowy C, Schmidt R, Griesbeck A, Merle U, Addo MM, Schröder C. Discovery and systematic assessment of early biomarkers that predict progression to severe COVID-19 disease. COMMUNICATIONS MEDICINE 2023; 3:51. [PMID: 37041310 PMCID: PMC10089829 DOI: 10.1038/s43856-023-00283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The clinical course of COVID-19 patients ranges from asymptomatic infection, via mild and moderate illness, to severe disease and even fatal outcome. Biomarkers which enable an early prediction of the severity of COVID-19 progression, would be enormously beneficial to guide patient care and early intervention prior to hospitalization. METHODS Here we describe the identification of plasma protein biomarkers using an antibody microarray-based approach in order to predict a severe cause of a COVID-19 disease already in an early phase of SARS-CoV-2 infection. To this end, plasma samples from two independent cohorts were analyzed by antibody microarrays targeting up to 998 different proteins. RESULTS In total, we identified 11 promising protein biomarker candidates to predict disease severity during an early phase of COVID-19 infection coherently in both analyzed cohorts. A set of four (S100A8/A9, TSP1, FINC, IFNL1), and two sets of three proteins (S100A8/A9, TSP1, ERBB2 and S100A8/A9, TSP1, IFNL1) were selected using machine learning as multimarker panels with sufficient accuracy for the implementation in a prognostic test. CONCLUSIONS Using these biomarkers, patients at high risk of developing a severe or critical disease may be selected for treatment with specialized therapeutic options such as neutralizing antibodies or antivirals. Early therapy through early stratification may not only have a positive impact on the outcome of individual COVID-19 patients but could additionally prevent hospitals from being overwhelmed in potential future pandemic situations.
Collapse
Affiliation(s)
| | - Anahita Fathi
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - Nadine Stroh
- Sciomics GmbH, Neckargemünd, Baden-Württemberg, Germany
| | - Marco Klein
- Sciomics GmbH, Neckargemünd, Baden-Württemberg, Germany
| | | | - Ramy Girgis
- Sciomics GmbH, Neckargemünd, Baden-Württemberg, Germany
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Camille Lowy
- Sciomics GmbH, Neckargemünd, Baden-Württemberg, Germany
| | - Ronny Schmidt
- Sciomics GmbH, Neckargemünd, Baden-Württemberg, Germany
| | | | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Marylyn M Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | |
Collapse
|
16
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
17
|
Nevejan L, Strypens T, Van Nieuwenhove M, Boel A, Cattoir L, Van Vaerenbergh K, Meeus P, Bossuyt X, De Neve N, Van Hoovels L. Serial measurement of circulating calprotectin as a prognostic biomarker in COVID-19 patients in intensive care setting. Clin Chem Lab Med 2023; 61:494-502. [PMID: 36473060 DOI: 10.1515/cclm-2022-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Circulating calprotectin (cCLP) has been shown to be a promising prognostic marker for COVID-19 severity. We aimed to investigate the prognostic value of serial measurements of cCLP in COVID-19 patients admitted to an intensive care unit (ICU). METHODS From November 2020 to May 2021, patients with COVID-19, admitted at the ICU of the OLV Hospital, Aalst, Belgium, were prospectively included. For sixty-six (66) patients, blood samples were collected at admission and subsequently every 48 h during ICU stay. On every sample (total n=301), a cCLP (EliA™ Calprotectin 2, Phadia 200, Thermo Fisher Scientific; serum/plasma protocol (for Research Use Only, -RUO-) and C-reactive protein (CRP; cobas c501/c503, Roche Diagnostics) analysis were performed. Linear mixed models were used to associate biomarkers levels with mortality, need for mechanical ventilation, length of stay at ICU (LOS-ICU) and medication use (antibiotics, corticosteroids, antiviral and immune suppressant/modulatory drugs). RESULTS Longitudinally higher levels of all biomarkers were associated with LOS-ICU and with the need for mechanical ventilation. Medication use and LOS-ICU were not associated with variations in cCLP and CRP levels. cCLP levels increased significantly during ICU hospitalization in the deceased group (n=21/66) but decreased in the non-deceased group (n=45/66). In contrast, CRP levels decreased non-significantly in both patient groups, although significantly longitudinally higher CRP levels were obtained in the deceased subgroup. CONCLUSIONS Serial measurements of cCLP provides prognostic information which can be useful to guide clinical management of COVID-19 patients in ICU setting.
Collapse
Affiliation(s)
- Louis Nevejan
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium.,Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
| | - Thomas Strypens
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium.,Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
| | - Mathias Van Nieuwenhove
- Department of Intensive Care Medicine, OLV Hospital, Aalst, Belgium.,Department of Anesthesiology, OLV Hospital, Aalst, Belgium
| | - An Boel
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Lien Cattoir
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | | | - Peter Meeus
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nikolaas De Neve
- Department of Intensive Care Medicine, OLV Hospital, Aalst, Belgium.,Department of Anesthesiology, OLV Hospital, Aalst, Belgium
| | - Lieve Van Hoovels
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Fuzo CA, Fraga-Silva TFC, Maruyama SR, Bastos VAF, Rogerio LA, Takamiya NT, da Silva-Neto PV, Pimentel VE, Toro DM, Pérez MM, de Carvalho JCS, Carmona-Garcia I, Oliveira CNS, Degiovani AM, Ostini FM, Constant LF, de Amorim AP, Vilar FC, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Gaspar GG, Viana AL, Fernandes APM, Santos IKFM, Russo EMS, Cardoso CRB, Sorgi CA, Faccioli LH, Bonato VLD, Dias-Baruffi M. The turning point of COVID-19 severity is associated with a unique circulating neutrophil gene signature. Immunology 2023. [PMID: 36740582 DOI: 10.1111/imm.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.
Collapse
Affiliation(s)
- Carlos A Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thais F C Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Víctor A F Bastos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana A Rogerio
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Nayore T Takamiya
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Vinícius E Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Malena M Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ingryd Carmona-Garcia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camilla N S Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Augusto M Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Fátima M Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Leticia F Constant
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Alessandro P de Amorim
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Fernando C Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marley R Feitosa
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogerio S Parra
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José J R da Rocha
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Omar Feres
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gilberto G Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angelina L Viana
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P M Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabel K F M Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elisa M S Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vânia L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
19
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Goudswaard LJ, Williams CM, Khalil J, Burley KL, Hamilton F, Arnold D, Milne A, Lewis PA, Heesom KJ, Mundell SJ, Davidson AD, Poole AW, Hers I. Alterations in platelet proteome signature and impaired platelet integrin α IIbβ 3 activation in patients with COVID-19. J Thromb Haemost 2023; 21:1307-1321. [PMID: 36716966 PMCID: PMC9883069 DOI: 10.1016/j.jtha.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbβ3 activation and P-selectin expression. Agonist-stimulated integrin αIIbβ3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.
Collapse
Affiliation(s)
- Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK. https://twitter.com/lucygoudswaard
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jawad Khalil
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Kate L Burley
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Fergus Hamilton
- Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK; Department of Infection Sciences, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - David Arnold
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Alice Milne
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Phil A Lewis
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
21
|
Stanford S, Roy A, Rea C, Harris B, Ashton A, Mangles S, Everington T, Taher R, Burns D, Arbuthnot E, Cecil T. Pilot study to evaluate hypercoagulation and inflammation using rotational thromboelastometry and calprotectin in COVID-19 patients. PLoS One 2023; 18:e0269738. [PMID: 36607961 PMCID: PMC9821718 DOI: 10.1371/journal.pone.0269738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Abnormal coagulation and inflammation are hallmarks of SARs-COV-19. Stratifying affected patients on admission to hospital may help identify those who at are risk of developing severe disease early on. Rotational Thromboelastometry (ROTEM) is a point of care test that can be used to measure abnormal coagulation and calprotectin is a measure of inflammation. AIM Assess if ROTEM can measure hypercoagulability on admission and identify those who will develop severe disease early on. Assess if calprotectin can measure inflammation and if there is a correlation with ROTEM and calprotectin. METHODS COVID-19 patients were recruited on admission and ROTEM testing was undertaken daily for a period of 7 days. Additionally inflammatory marker calprotectin was also tested for the same period. RESULTS 33 patients were recruited to the study out of which 13 were admitted to ITU and 20 were treated on the ward. ROTEM detected a hypercoagulable state on admission but did not stratify between those admitted to a ward or escalated to ITU. Calprotectin levels were raised but there was no statistical difference (p = 0.73) between patients admitted to a ward or escalated to ITU. Significant correlations were observed between FIBA5 (r = 0.62; p<0.00), FIBCFT (r = -0.57; p<0.00), FIBMCF (r = 0.64; p<0.00) and INMCF (r = 0.57; p<0.00) and calprotectin. CONCLUSION COVID-19 patients were hypercoagulable on admission. The correlations between ROTEM and calprotectin underline the interactions between inflammation and coagulation.
Collapse
Affiliation(s)
- Sophia Stanford
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Ashok Roy
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
- * E-mail:
| | - Catherine Rea
- East Sussex Healthcare NHS Foundation Trust, Eastbourne, United Kingdom
| | - Ben Harris
- Anaesthetics and Critical Care, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Antony Ashton
- Anaesthetics and Critical Care, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Sarah Mangles
- Haemophilia, Haemostasis and Thrombosis Centre, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Tamara Everington
- Haemophilia, Haemostasis and Thrombosis Centre, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Rayan Taher
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Daniel Burns
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Emily Arbuthnot
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| | - Tom Cecil
- Peritoneal Malignancy Institute, Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, United Kingdom
| |
Collapse
|
22
|
Gillrie MR, Rosin N, Sinha S, Kang H, Farias R, Nguyen A, Volek K, Mah J, Mahe E, Fritzler MJ, Yipp BG, Biernaskie J. Case report: Immune profiling links neutrophil and plasmablast dysregulation to microvascular damage in post-COVID-19 Multisystem Inflammatory Syndrome in Adults (MIS-A). Front Immunol 2023; 14:1125960. [PMID: 36911724 PMCID: PMC9995372 DOI: 10.3389/fimmu.2023.1125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Despite surviving a SARS-CoV-2 infection, some individuals experience an intense post-infectious Multisystem Inflammatory Syndrome (MIS) of uncertain etiology. Children with this syndrome (MIS-C) can experience a Kawasaki-like disease, but mechanisms in adults (MIS-A) are not clearly defined. Here we utilize a deep phenotyping approach to examine immunologic responses in an individual with MIS-A. Results are contextualized to healthy, convalescent, and acute COVID-19 patients. The findings reveal systemic inflammatory changes involving novel neutrophil and B-cell subsets, autoantibodies, complement, and hypercoagulability that are linked to systemic vascular dysfunction. This deep patient profiling generates new mechanistic insight into this rare clinical entity and provides potential insight into other post-infectious syndromes.
Collapse
Affiliation(s)
- Mark R Gillrie
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hellen Kang
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela Nguyen
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kelsie Volek
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jordan Mah
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Etienne Mahe
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Cai X, Hong L, Liu Y, Huang X, Lai H, Shao L. Salmonella pathogenicity island 1 knockdown confers protection against myocardial fibrosis and inflammation in uremic cardiomyopathy via down-regulation of S100 Calcium Binding Protein A8/A9 transcription. Ren Fail 2022; 44:1819-1832. [PMID: 36299239 PMCID: PMC9621201 DOI: 10.1080/0886022x.2022.2137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Aim Uremic cardiomyopathy (UCM) is a characteristic cardiac pathology that is commonly found in patients with chronic kidney disease. This study dissected the mechanism of SPI1 in myocardial fibrosis and inflammation induced by UCM through S100A8/A9. Methods An UCM rat model was established, followed by qRT-PCR and western blot analyses of SPI1 and S100A8/A9 expression in myocardial tissues. After alterations of SPI1 and S100A8/A9 expression in UCM rats, the blood specimens were harvested from the cardiac apex of rats. The levels of creatine phosphokinase-MB (CK-MB), blood creatinine, blood urea nitrogen (BUN), and inflammatory cytokines (interleukin [IL]-6, IL-1β, and tumor necrosis factor-α [TNF-α]) were examined in the collected blood. Collagen fibrosis was assessed by Masson staining. The expression of fibrosis markers [transforming growth factor (TGF)-β1, α-smooth muscle actin (SMA), Collagen 4a1, and Fibronectin], IL-6, IL-1β, and TNF-α was measured in myocardial tissues. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were conducted to test the binding relationship between SPI1 and S100A8/A9. Results S100A8/A9 and SPI1 were highly expressed in the myocardial tissues of UCM rats. Mechanistically, SPI1 bound to the promoter of S100A8/A9 to facilitate S100A8/A9 transcription. S100A8/A9 or SPI1 knockdown reduced myocardial fibrosis and inflammation and the levels of CK-MB, blood creatinine, and BUN, as well as the expression of TGF-β1, α-SMA, Collagen 4a1, Fibronectin, IL-6, TNF-α, and IL-1β in UCM rats. Conclusion SPI1 knockdown diminished S100A8/A9 transcription, thus suppressing myocardial fibrosis and inflammation caused by UCM.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Hengli Lai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| |
Collapse
|
24
|
Shokri‐Afra H, Moradi M, Musavi H, Moradi‐Sardareh H, Moradi poodeh B, Kazemi Veisari A, Oladi Z, Ebrahimi M. Serum calprotectin can indicate current and future severity of COVID-19. J Clin Lab Anal 2022; 37:e24809. [PMID: 36525302 PMCID: PMC9833977 DOI: 10.1002/jcla.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Predictive and prognostic biomarkers to guide 2019 novel coronavirus disease (COVID-19) are critically evolving. Dysregulated immune responses are the pivotal cause of severity mainly mediated by neutrophil activation. Thus, we evaluated the association of calprotectin, neutrophil secretory protein, and other mediators of inflammation with the severity and outcomes of COVID-19. METHODS This two-center prospective study focused on PCR-proven COVID-19 patients (n = 76) with different clinical presentations and SARS-CoV-2 negative control subjects (n = 24). Serum calprotectin (SC) was compared with IL-6 and other laboratory parameters. RESULTS Median levels of SC were significantly higher in COVID-19 patients in comparison to the control group (3760 vs. 2100 ng/ml, p < 0.0001). Elevated SC was significantly respective of disease severity (3760 ng/ml in mild up to 5700 ng/ml in severe cases, p < 0.0001). Moreover, the significant positive and negative correlations of SC with disease severity and oxygenation status indicated disease progression and respiratory worsening, respectively. It was found that SC was high in severe patients during hospitalization and significantly declined to normal after recovery. The logistic analysis identified the independent predictive power of SC for respiratory status or clinical severity. Indeed, SC behaved as a better discriminator for both outcomes, as it exhibited the largest area under the curve (receiver operating curve analysis), with the highest specificity and sensitivity when the predictive value of inflammatory biomarkers was compared. CONCLUSION Calprotectin can be used as a reliable prognostic tool to predict the poor clinical outcomes of COVID-19 patients.
Collapse
Affiliation(s)
- Hajar Shokri‐Afra
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Mona Moradi
- Pediatric Infectious Diseases Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Hadis Musavi
- Department of Clinical Biochemistry, School of MedicineBabol University of Medical SciencesBabolIran
| | - Hemen Moradi‐Sardareh
- Department of Research and TechnologyAsadabad School of Medical ScienceAsadabadIran,Biomad companyOsloNorway
| | - Bahman Moradi poodeh
- Department of Laboratory Sciences, Lahijan BranchIslamic Azad UniversityLahijanIran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Ziaeddin Oladi
- Department of Internal Medicine, School of Medicine, Ghaem Shahr Razi HospitalMazandaran University of Medical SciencesSariIran
| | - Mahboobe Ebrahimi
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
25
|
Colicchia M, Schrottmaier WC, Perrella G, Reyat JS, Begum J, Slater A, Price J, Clark JC, Zhi Z, Simpson MJ, Bourne JH, Poulter NS, Khan AO, Nicolson PLR, Pugh M, Harrison P, Iqbal AJ, Rainger GE, Watson SP, Thomas MR, Mutch NJ, Assinger A, Rayes J. S100A8/A9 drives the formation of procoagulant platelets through GPIbα. Blood 2022; 140:2626-2643. [PMID: 36026606 PMCID: PMC10653093 DOI: 10.1182/blood.2021014966] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Joanne C. Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Megan J. Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George E. Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
26
|
Matiollo C, Rateke ECDM, Moura EQDA, Andrigueti M, Augustinho FCD, Zocche TL, Silva TE, Gomes LO, Farias MR, Narciso-Schiavon JL, Schiavon LL. Elevated calprotectin levels are associated with mortality in patients with acute decompensation of liver cirrhosis. World J Hepatol 2022; 14:1964-1976. [PMID: 36483607 PMCID: PMC9724106 DOI: 10.4254/wjh.v14.i11.1964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute decompensation (AD) of cirrhosis is related to systemic inflammation and elevated circulating cytokines. In this context, biomarkers of inflammation, such as calprotectin, may be of prognostic value.
AIM To evaluate serum calprotectin levels in patients hospitalized for complications of cirrhosis.
METHODS This is a prospective cohort study that included 200 subjects hospitalized for complications of cirrhosis, 20 outpatients with stable cirrhosis, and 20 healthy controls. Serum calprotectin was measured by enzyme-linked immunosorbant assay.
RESULTS Calprotectin levels were higher among groups with cirrhosis when compared to healthy controls. Higher median calprotectin was related to Child-Pugh C, ascites, and hepatic encephalopathy. Higher calprotectin was related to acute-on-chronic liver failure (ACLF) and infection in the bivariate, but not in multivariate analysis. Calprotectin was not associated with survival among patients with ACLF; however, in patients with AD without ACLF, higher calprotectin was associated with a lower 30-d survival, even after adjustment for chronic liver failure-consortium (CLIF-C) AD score. A high-risk group (CLIF-C AD score ≥ 60 and calprotectin ≥ 580 ng/mL) was identified, which had a 30-d survival (27.3%) similar to that of patients with grade 3 ACLF (23.3%).
CONCLUSION Serum calprotectin is associated with prognosis in patients with AD without ACLF and may be useful in clinical practice to early identify patients with a very low short-term survival.
Collapse
Affiliation(s)
- Camila Matiollo
- Clinical Analysis Laboratory Unit, University Hospital, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | | | | | - Michelle Andrigueti
- Clinical Analysis Laboratory Unit, University Hospital, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | | | - Tamara Liana Zocche
- Division of Gastroenterology, University Hospital, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Telma Erotides Silva
- Division of Gastroenterology, University Hospital, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Lenyta Oliveira Gomes
- Department of Pharmaceutical Sciences Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Mareni Rocha Farias
- Department of Pharmaceutical Sciences Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Janaina Luz Narciso-Schiavon
- Division of Gastroenterology, Department of Internal Medicine, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Leonardo Lucca Schiavon
- Division of Gastroenterology, Department of Internal Medicine, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|
27
|
Messing M, Sekhon MS, Hughes MR, Stukas S, Hoiland RL, Cooper J, Ahmed N, Hamer MS, Li Y, Shin SB, Tung LW, Wellington CL, Sin DD, Leslie KB, McNagny KM. Prognostic peripheral blood biomarkers at ICU admission predict COVID-19 clinical outcomes. Front Immunol 2022; 13:1010216. [DOI: 10.3389/fimmu.2022.1010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic continues to challenge the capacities of hospital ICUs which currently lack the ability to identify prospectively those patients who may require extended management. In this study of 90 ICU COVID-19 patients, we evaluated serum levels of four cytokines (IL-1β, IL-6, IL-10 and TNFα) as well as standard clinical and laboratory measurements. On 42 of these patients (binned into Initial and Replication Cohorts), we further performed CyTOF-based deep immunophenotyping of peripheral blood mononuclear cells with a panel of 38 antibodies. All measurements and patient samples were taken at time of ICU admission and retrospectively linked to patient clinical outcomes through statistical approaches. These analyses resulted in the definition of a new measure of patient clinical outcome: patients who will recover after short ICU stays (< 6 days) and those who will subsequently die or recover after long ICU stays (≥6 days). Based on these clinical outcome categories, we identified blood prognostic biomarkers that, at time of ICU admission, prospectively distinguish, with 91% sensitivity and 91% specificity (positive likelihood ratio 10.1), patients in the two clinical outcome groups. This is achieved through a tiered evaluation of serum IL-10 and targeted immunophenotyping of monocyte subsets, specifically, CD11clow classical monocytes. Both immune biomarkers were consistently elevated ( ≥15 pg/ml and ≥2.7 x107/L for serum IL-10 and CD11clow classical monocytes, respectively) in those patients who will subsequently die or recover after long ICU stays. This highly sensitive and specific prognostic test could prove useful in guiding clinical resource allocation.
Collapse
|
28
|
Captur G, Moon JC, Topriceanu CC, Joy G, Swadling L, Hallqvist J, Doykov I, Patel N, Spiewak J, Baldwin T, Hamblin M, Menacho K, Fontana M, Treibel TA, Manisty C, O'Brien B, Gibbons JM, Pade C, Brooks T, Altmann DM, Boyton RJ, McKnight Á, Maini MK, Noursadeghi M, Mills K, Heywood WE. Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. EBioMedicine 2022; 85:104293. [PMID: 36182629 PMCID: PMC9515404 DOI: 10.1016/j.ebiom.2022.104293] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Center for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London NW3 2QG, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK
| | - George Joy
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Jenny Hallqvist
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Justyna Spiewak
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Tomas Baldwin
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Matt Hamblin
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Katia Menacho
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Cardiac MRI Unit, Pond Street, Hampstead, London NW3 2QG, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK; Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Outcomes Research Consortium, Department of Outcomes Research, The Cleveland Clinic, 9500 Euclid Ave P77, Cleveland, OH 44195, USA
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Corrina Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; Lung Division, Royal Brompton Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
29
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Loh JT, Teo JKH, Lam KP. Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-2 spike protein. Front Immunol 2022; 13:996637. [PMID: 36172386 PMCID: PMC9510782 DOI: 10.3389/fimmu.2022.996637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Increased neutrophils and elevated level of circulating calprotectin are hallmarks of severe COVID-19 and they contribute to the dysregulated immune responses and cytokine storm in susceptible patients. However, the precise mechanism controlling calprotectin production during SARS-CoV-2 infection remains elusive. In this study, we showed that Dok3 adaptor restrains calprotectin production by neutrophils in response to SARS-CoV-2 spike (S) protein engagement of TLR4. Dok3 recruits SHP-2 to mediate the de-phosphorylation of MyD88 at Y257, thereby attenuating downstream JAK2-STAT3 signaling and calprotectin production. Blocking of TLR4, JAK2 and STAT3 signaling could prevent excessive production of calprotectin by Dok3-/- neutrophils, revealing new targets for potential COVID-19 therapy. As S protein from SARS-CoV-2 Delta and Omicron variants can activate TLR4-driven calprotectin production in Dok3-/- neutrophils, our study suggests that targeting calprotectin production may be an effective strategy to combat severe COVID-19 manifestations associated with these emerging variants.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| |
Collapse
|
31
|
Daniell H, Nair SK, Shi Y, Wang P, Montone KT, Shaw PA, Choi GH, Ghani D, Weaver J, Rader DJ, Margulies KB, Collman RG, Laudanski K, Bar KJ. Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Mol Ther Methods Clin Dev 2022; 26:266-278. [PMID: 35818571 PMCID: PMC9258412 DOI: 10.1016/j.omtm.2022.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
Although several therapeutics are used to treat coronavirus disease 2019 (COVID-19) patients, there is still no definitive metabolic marker to evaluate disease severity and recovery or a quantitative test to end quarantine. Because severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects human cells via the angiotensin-converting-enzyme 2 (ACE2) receptor and COVID-19 is associated with renin-angiotensin system dysregulation, we evaluated soluble ACE2 (sACE2) activity in the plasma/saliva of 80 hospitalized COVID-19 patients and 27 non-COVID-19 volunteers, and levels of ACE2/Ang (1-7) in plasma or membrane (mACE2) in lung autopsy samples. sACE2 activity was markedly reduced (p < 0.0001) in COVID-19 plasma (n = 59) compared with controls (n = 27). Nadir sACE2 activity in early hospitalization was restored during disease recovery, irrespective of patient age, demographic variations, or comorbidity; in convalescent plasma-administered patients (n = 45), restoration was statistically higher than matched controls (n = 22, p = 0.0021). ACE2 activity was also substantially reduced in the saliva of COVID-19 patients compared with controls (p = 0.0065). There is a strong inverse correlation between sACE2 concentration and sACE2 activity and Ang (1-7) levels in participant plasmas. However, there were no difference in membrane ACE2 levels in lungs of autopsy tissues of COVID-19 (n = 800) versus other conditions (n = 300). These clinical observations suggest sACE2 activity as a potential biomarker and therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Henry Daniell
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Smruti K. Nair
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Yao Shi
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Ping Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen T. Montone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pamela A. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Kaiser Permanente Washington Health Research Group, Seattle, WA, USA
| | - Grace H. Choi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danyal Ghani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald G. Collman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krzysztof Laudanski
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Infantino M, Manfredi M, Alessio MG, Previtali G, Grossi V, Benucci M, Faraone A, Fortini A, Grifoni E, Masotti L, Russo E, Amedei A, FitzGerald E, Albesa R, Norman GL, Mahler M. Clinical utility of circulating calprotectin to assist prediction and monitoring of COVID-19 severity: An Italian study. J Med Virol 2022; 94:5758-5765. [PMID: 35941084 PMCID: PMC9538954 DOI: 10.1002/jmv.28056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Calprotectin (S100A8/A9) has been identified as a biomarker that can aid in predicting the severity of disease in COVID-19 patients. This study aims to evaluate the correlation between levels of circulating calprotectin (cCP) and the severity of COVID-19. METHODS Sera from 245 COVID-19 patients and 110 apparently healthy individuals were tested for calprotectin levels using a chemiluminescent immunoassay (Inova Diagnostics). Intensive care unit (ICU) admission and type of respiratory support administered were used as indicators of disease severity, and their correlation with calprotectin levels was assessed. RESULTS Samples from patients in the ICU had a median calprotectin concentration of 11.6 µg/ml as compared to 3.5 µg/ml from COVID-19 patients who were not in the ICU. The median calprotectin concentration in a cohort of healthy individuals collected before the COVID-19 pandemic was 3.0 µg/ml (95% CI: 2.820-2.969 µg/ml). Patients requiring a Venturi mask, continuous positive airway pressure, or orotracheal intubation all had significantly higher values of calprotectin than controls, with the increase of cCP levels proportional to the increasing need of respiratory support. CONCLUSION Calprotectin levels in serum correlate well with disease severity and represent a promising serological biomarker for the risk assessment of COVID-19 patients.
Collapse
Affiliation(s)
- Maria Infantino
- Immunology and Allergology Laboratory UnitSan Giovanni di Dio HospitalFlorenceItaly
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory UnitSan Giovanni di Dio HospitalFlorenceItaly
| | | | - Giulia Previtali
- Department of Laboratory MedicineASST Papa Giovanni XXIII HospitalBergamoItaly
| | - Valentina Grossi
- Immunology and Allergology Laboratory UnitSan Giovanni di Dio HospitalFlorenceItaly
| | | | - Antonio Faraone
- Department of Internal MedicineSan Giovanni Di Dio HospitalFlorenceItaly
| | - Alberto Fortini
- Department of Internal MedicineSan Giovanni Di Dio HospitalFlorenceItaly
| | - Elisa Grifoni
- Internal Medicine IISan Giuseppe HospitalEmpoliItaly
| | - Luca Masotti
- Internal Medicine IISan Giuseppe HospitalEmpoliItaly
| | - Edda Russo
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Amedeo Amedei
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Emily FitzGerald
- Headquarters & Technology Center Autoimmunity, WerfenSan DiegoCaliforniaUSA
| | - Roger Albesa
- Headquarters & Technology Center Autoimmunity, WerfenSan DiegoCaliforniaUSA
| | - Gary L. Norman
- Headquarters & Technology Center Autoimmunity, WerfenSan DiegoCaliforniaUSA
| | - Michael Mahler
- Headquarters & Technology Center Autoimmunity, WerfenSan DiegoCaliforniaUSA
| |
Collapse
|
33
|
Expression profiles of respiratory V-ATPase and calprotectin in SARS-CoV-2 infection. Cell Death Dis 2022; 8:362. [PMID: 35974012 PMCID: PMC9379883 DOI: 10.1038/s41420-022-01158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a pandemic threat that has been declared a public health emergency of international concern, whereas the effects of cellular microenvironment in the pathogenesis of SARS-CoV-2 are poorly understood. The detailed message of intracellular/lysosome pH was rarely concerned in SARS-CoV-2 infection, which was crucial for the cleavage of SARS-CoV-2 spike (S) protein. Calprotectin, an endogenous danger signal to activate inflammatory response, was vital for the proceeding of COVID-19. We found that the expressions of both vacuolar-ATPase (V-ATPase) and calprotectin (S100A8/S100A9) increased in SARS-CoV-2 infection, by analyzing single-cell RNA sequencing (bronchoalveolar lavage fluid), bulk-RNA sequencing (A549, lung tissue, NHBE), and proteomics (lung tissue), respectively. Furtherly, our wet experiments of flow cytometry and fluorescent assay identified that the intracellular and lysosome pH value was decreased after SARS-CoV-2 S plasmid transfection in A549 cells. Meanwhile, the enhancement of V-ATPase and calprotectin was verified by our real-time polymerase chain reaction and western blot experiment. Collectively, these data suggested that S protein increased V-ATPase in SARS-CoV-2 infection, which provided a microenvironment easier for the cleavage of S protein, and inflammatory cells were apt to be activated by the enhancement of calprotectin in respiratory epithelium. The comprehensive information on profiles of V-ATPase and calprotectin will make clearer about the involvement of cellular microenvironment in the pathogenesis of SARS-CoV-2, and provide a promising approach to combat COVID-19.
Collapse
|
34
|
Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, Flanagan KL, Plebanski M. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol 2022; 13:945021. [PMID: 36032086 PMCID: PMC9403331 DOI: 10.3389/fimmu.2022.945021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies to multiple targets are found during acute COVID-19. Whether all, or some, persist after 6 months, and their correlation with sustained anti-SARS-CoV-2 immunity, is still controversial. Herein, we measured antibodies to multiple SARS-CoV-2 antigens (Wuhan-Hu-1 nucleoprotein (NP), whole spike (S), spike subunits (S1, S2 and receptor binding domain (RBD)) and Omicron spike) and 102 human proteins with known autoimmune associations, in plasma from healthcare workers 8 months post-exposure to SARS-CoV-2 (n=31 with confirmed COVID-19 disease and n=21 uninfected controls (PCR and anti-SARS-CoV-2 negative) at baseline). IgG antibody responses to SARS-CoV-2 antigens were significantly higher in the convalescent cohort than the healthy cohort, highlighting lasting antibody responses up to 8 months post-infection. These were also shown to be cross-reactive to the Omicron variant spike protein at a similar level to lasting anti-RBD antibodies (correlation r=0.89). Individuals post COVID-19 infection recognised a common set of autoantigens, specific to this group in comparison to the healthy controls. Moreover, the long-term level of anti-Spike IgG was associated with the breadth of autoreactivity post-COVID-19. There were further moderate positive correlations between anti-SARS-CoV-2 responses and 11 specific autoantigens. The most commonly recognised autoantigens were found in the COVID-19 convalescent cohort. Although there was no overall correlation in self-reported symptom severity and anti-SARS-CoV-2 antibody levels, anti-calprotectin antibodies were associated with return to healthy normal life 8 months post infection. Calprotectin was also the most common target for autoantibodies, recognized by 22.6% of the overall convalescent cohort. Future studies may address whether, counter-intuitively, such autoantibodies may play a protective role in the pathology of long-COVID-19.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Sabrina Sonda
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Fay H. Johnston
- Public Health Services, Department of Health, Tasmania, TAS, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kylie J. Smith
- Public Health Services, Department of Health, Tasmania, TAS, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michelle McPherson
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Katie L. Flanagan
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
- *Correspondence: Magdalena Plebanski,
| |
Collapse
|
35
|
Targeting Doublecortin-Like Kinase 1 (DCLK1)-Regulated SARS-CoV-2 Pathogenesis in COVID-19. J Virol 2022; 96:e0096722. [PMID: 35943255 PMCID: PMC9472619 DOI: 10.1128/jvi.00967-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of β-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1β signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and β-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of β-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.
Collapse
|
36
|
Soluble urokinase Plasminogen Activator Receptor (suPAR) levels are predictive of COVID-19 severity: An Italian experience. Clin Immunol 2022; 242:109091. [PMID: 35944880 PMCID: PMC9356594 DOI: 10.1016/j.clim.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
Background The soluble urokinase Plasminogen Activator Receptor (suPAR) has been identified as a reliable marker of COVID-19 severity, helping in personalizing COVID-19 therapy. This study aims to evaluate the correlation between suPAR levels and COVID-19 severity, in relation to the traditional inflammatory markers. Methods Sera from 71 COVID-19 patients were tested for suPAR levels using Chorus suPAR assay (Diesse Diagnostica Senese SpA, Italy). suPAR levels were compared with other inflammatory markers: IL-1β, IL-6, TNF-α, circulating calprotectin, neutrophil and lymphocyte counts, and Neutrophil/Lymphocytes Ratio (NLR). Respiratory failure, expressed as P/F ratio, and mortality rate were used as indicators of disease severity. Results A positive correlation of suPAR levels with IL-6 (r = 0.479, p = 0.000), TNF-α (r = 0.348, p = 0.003), circulating calprotectin (r = 0.369, p = 0.002), neutrophil counts (r = 0.447, p = 0.001), NLR (r = 0.492, p = 0.001) has been shown. Stratifying COVID-19 population by suPAR concentration above and below 6 ng/mL, we observed higher levels of circulating calprotectin (10.1 μg/mL, SD 7.9 versus 6.4 μg/mL, SD 7.5, p < 0.001), higher levels of P/F ratio (207.5 IQR 188.3 vs 312.0 IQR 127.8, p = 0.013) and higher mortality rate. Median levels of suPAR were increased in all COVID-19 patients requiring additional respiratory support (Nasal Cannula, Venturi Mask, BPAP and CPAP) (6.5 IQR = 4.9) compared to the group at room air (4.6 IQR = 4.2). Conclusion suPAR levels correlate with disease severity and survival rate of COVID-19 patients, representing a promising prognostic biomarker for the risk assessment of the disease.
Collapse
|
37
|
Loh JT, Zhang B, Teo JKH, Lai RC, Choo ABH, Lam KP, Lim SK. Mechanism for the attenuation of neutrophil and complement hyperactivity by MSC exosomes. Cytotherapy 2022; 24:711-719. [PMID: 35177337 PMCID: PMC8843421 DOI: 10.1016/j.jcyt.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2-infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore
| | - Bin Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore
| | - Andre Boon Hwa Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore.
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore.
| |
Collapse
|
38
|
Identification of COVID-19-Associated DNA Methylation Variations by Integrating Methylation Array and scRNA-Seq Data at Cell-Type Resolution. Genes (Basel) 2022; 13:genes13071109. [DOI: 10.3390/genes13071109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Single-cell transcriptome studies have revealed immune dysfunction in COVID-19 patients, including lymphopenia, T cell exhaustion, and increased levels of pro-inflammatory cytokines, while DNA methylation plays an important role in the regulation of immune response and inflammatory response. The specific cell types of immune responses regulated by DNA methylation in COVID-19 patients will be better understood by exploring the COVID-19 DNA methylation variation at the cell-type level. Here, we developed an analytical pipeline to explore single-cell DNA methylation variations in COVID-19 patients by transferring bulk-tissue-level knowledge to the single-cell level. We discovered that the methylation variations in the whole blood of COVID-19 patients showed significant cell-type specificity with remarkable enrichment in gamma-delta T cells and presented a phenomenon of hypermethylation and low expression. Furthermore, we identified five genes whose methylation variations were associated with several cell types. Among them, S100A9, AHNAK, and CX3CR1 have been reported as potential COVID-19 biomarkers previously, and the others (TRAF3IP3 and LFNG) are closely associated with the immune and virus-related signaling pathways. We propose that they might serve as potential epigenetic biomarkers for COVID-19 and could play roles in important biological processes such as the immune response and antiviral activity.
Collapse
|
39
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
40
|
Circulating Calprotectin as a Predictive and Severity Biomarker in Patients with COVID-19. Diagnostics (Basel) 2022; 12:diagnostics12061324. [PMID: 35741134 PMCID: PMC9221789 DOI: 10.3390/diagnostics12061324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: New tools for the assessment and prediction of the severity of hospitalized COVID-19 patients can help direct limited resources to patients with the greatest need. Circulating levels of calprotectin (S100A8/S100A9) reflect inflammatory activity in multiple conditions, and have been described as being elevated in COVID-19 patients, but their measurement is not routinely utilized. The aim of our study was to assess the practical and predictive value of measuring circulating calprotectin levels in patients at admission and during their hospitalization. Methods: Circulating calprotectin levels were measured in 157 hospitalized patients with COVID-19 using an automated quantitative chemiluminescent assay. Results: Circulating calprotectin levels were strongly correlated with changing respiratory supplementation needs of patients. The overall trajectory of circulating calprotectin levels generally correlated with patient improvement or deterioration. Conclusions: Routine measurement of circulating calprotectin levels may offer a valuable tool to assess and monitor hospitalized patients with COVID-19, as well as other acute inflammatory conditions.
Collapse
|
41
|
Huang Z, Li H, Liu S, Jia J, Zheng Y, Cao B. Identification of Neutrophil-Related Factor LCN2 for Predicting Severity of Patients With Influenza A Virus and SARS-CoV-2 Infection. Front Microbiol 2022; 13:854172. [PMID: 35495713 PMCID: PMC9039618 DOI: 10.3389/fmicb.2022.854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Background Influenza and COVID-19 are respiratory infectious diseases that are characterized by high contagiousness and high mutation and pose a serious threat to global health. After Influenza A virus (IAV) and SARS-CoV-2 infection, severe cases may develop into acute lung injury. Immune factors act as an important role during infection and inflammation. However, the molecular immune mechanisms still remain unclear. We aimed to explore immune-related host factors and core biomarker for severe infection, to provide a new therapeutic target of host factor in patients. Methods Gene expression profiles were obtained from Gene Expression Omnibus and the Seurat R package was used for data process of single-cell transcriptome. Differentially expressed gene analysis and cell cluster were used to explore core host genes and source cells of genes. We performed Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis to explore potential biological functions of genes. Gene set variation analysis was used to evaluate the important gene set variation score for different samples. We conduct Enzyme-linked immunosorbent assay (ELISA) to test plasma concentrations of Lipocalin 2 (LCN2). Results Multiple virus-related, cytokine-related, and chemokine-related pathways involved in process of IAV infection and inflammatory response mainly derive from macrophages and neutrophils. LCN2 mainly in neutrophils was significantly upregulated after either IAV or SARS-CoV-2 infection and positively correlated with disease severity. The plasma LCN2 of influenza patients were elevated significantly compared with healthy controls by ELISA and positively correlated with disease severity of influenza patients. Further bioinformatics analysis revealed that LCN2 involved in functions of neutrophils, including neutrophil degranulation, neutrophil activation involved in immune response, and neutrophil extracellular trap formation. Conclusion The neutrophil-related LCN2 could be a promising biomarker for predicting severity of patients with IAV and SARS-CoV-2 infection and may as a new treatment target in severe patients.
Collapse
Affiliation(s)
- Zhisheng Huang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ju Jia
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Oguariri RM, Brann TW, Adelsberger JW, Chen Q, Goswami S, Mele AR, Imamichi T. Short Communication: S100A8 and S100A9, Biomarkers of SARS-CoV-2 Infection and Other Diseases, Suppress HIV Replication in Primary Macrophages. AIDS Res Hum Retroviruses 2022; 38:401-405. [PMID: 35045753 PMCID: PMC9131038 DOI: 10.1089/aid.2021.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
S100A8 and S100A9 are members of the Alarmin family; these proteins are abundantly expressed in neutrophils, form a heterodimer complex, and are secreted in plasma on pathogen infection or acute inflammatory diseases. Recently, both proteins were identified as novel biomarkers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and were shown to play key roles in inducing an aggressive inflammatory response by mediating the release of large amounts of pro-inflammatory cytokines, called the "cytokine storm." Although co-infection with SARS-CoV-2 in people living with HIV-1 may result in an immunocompromised status, the role of the S100A8/A9 complex in HIV-1 replication in primary T cells and macrophages is still unclear. Here, we evaluated the roles of the proteins in HIV replication to elucidate their functions. We found that the complex had no impact on virus replication in both cell types; however, the subunits of S100A8 and S100A9 inhibit HIV in macrophages. These findings provide important insights into the regulation of HIV viral loads during SARS-CoV-2 co-infection.
Collapse
Affiliation(s)
- Raphael M. Oguariri
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Terrence W. Brann
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Development Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
43
|
Gauchel N, Rieder M, Krauel K, Goller I, Jeserich M, Salzer U, Venhoff AC, Baldus N, Pollmeier L, Wirth L, Kern W, Rieg S, Busch HJ, Hofmann M, Bode C, Duerschmied D, Lother A, Heger LA. Complement system component dysregulation is a distinctive feature of COVID-19 disease: a prospective and comparative analysis of patients admitted to the emergency department for suspected COVID-19 disease. J Thromb Thrombolysis 2022; 53:788-797. [PMID: 34904186 PMCID: PMC8668393 DOI: 10.1007/s11239-021-02617-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
The complement system (CS) plays a pivotal role in Coronavirus disease 2019 (COVID-19) pathophysiology. The objective of this study was to provide a comparative, prospective data analysis of CS components in an all-comers cohort and COVID-19 patients. Patients with suspected COVID-19 infection admitted to the Emergency department were grouped for definite diagnosis of COVID-19 and no COVID-19 accordingly. Clinical presentation, routine laboratory and von Willebrand factor (vWF) antigen as well as CS components 3, 4 and activated 5 (C5a) were assessed. Also, total complement activity via the classical pathway (CH50) was determined. Levels of calprotectin in serum were measured using an automated quantitative lateral flow assay. We included 80 patients in this prospective trial. Of those 19 (23.7%) were tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with COVID-19 had higher levels of CS components 5a and 4 (54.79 [24.14-88.79] ng/ml vs. 35 [23.15-46.1] ng/ml; p = 0.0433 and 0.3772 [± 0.1056] g/L vs. 0.286 [0.2375-0.3748] g/L; p = 0.0168). COVID-19 patients had significantly higher levels of vWF antigen when compared to the control group (288.3 [± 80.26] % vs. 212 [151-320] %; p = 0.0469). There was a significant correlation between CS C3 and 5a with vWF antigen (rs = 0.5957 [p = 0.0131] and rs = 0.5015 [p = 0.042]) in COVID-19 patients. There was no difference in calprotectin plasma levels (4.786 [± 2.397] µg/ml vs. 4.233 [± 2.142] µg/ml; p = 0.4175) between both groups. This prospective data from a single centre all-comers cohort accentuates altered levels of CS components as a distinct feature of COVID-19 disease. Deregulation of CS component 3 and C5a are associated with increased vWF antigen possibly linking vascular damage to alternative CS activation in COVID-19.
Collapse
Affiliation(s)
- Nadine Gauchel
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Marina Rieder
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Krystin Krauel
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Isabella Goller
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Maren Jeserich
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Ana Cecilia Venhoff
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Niklas Baldus
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Luisa Pollmeier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Kern
- Division of Infectious Diseases, Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- Department of Emergency Medicine, Faculty of Medicine, University Hospital of Freiburg, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Achim Lother
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Lukas A Heger
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
44
|
Kassianidis G, Siampanos A, Poulakou G, Adamis G, Rapti A, Milionis H, Dalekos GN, Petrakis V, Sympardi S, Metallidis S, Alexiou Z, Gkavogianni T, Giamarellos-Bourboulis EJ, Theoharides TC. Calprotectin and Imbalances between Acute-Phase Mediators Are Associated with Critical Illness in COVID-19. Int J Mol Sci 2022; 23:ijms23094894. [PMID: 35563282 PMCID: PMC9099708 DOI: 10.3390/ijms23094894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The trajectory from moderate and severe COVID-19 into acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV) is a field of active research. We determined serum levels within 24 h of presentation of 20 different sets of mediators (calprotectin, pro- and anti-inflammatory cytokines, interferons) of patients with COVID-19 at different stages of severity (asymptomatic, moderate, severe and ARDS/MV). The primary endpoint was to define associations with critical illness, and the secondary endpoint was to identify the pathways associated with mortality. Results were validated in serial measurements of mediators among participants of the SAVE-MORE trial. Levels of the proinflammatory interleukin (IL)-8, IL-18, matrix metalloproteinase-9, platelet-derived growth factor (PDGF)-B and calprotectin (S100A8/A9) were significantly higher in patients with ARDS and MV. Levels of the anti-inflammatory IL-1ra and IL-33r were also increased; IL-38 was increased only in asymptomatic patients but significantly decreased in the more severe cases. Multivariate ordinal regression showed that pathways of IL-6, IL-33 and calprotectin were associated with significant probability for worse outcome. Calprotectin was serially increased from baseline among patients who progressed to ARDS and MV. Further research is needed to decipher the significance of these findings compared to other acute-phase reactants, such as C-reactive protein (CRP) or ferritin, for the prognosis and development of effective treatments.
Collapse
Affiliation(s)
- Georgios Kassianidis
- Intensive Care Unit, Korgialeneion-Benakeion Athens General Hospital, 115 26 Athens, Greece;
| | - Athanasios Siampanos
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
| | - Garyphalia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - George Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital of Athens, 115 27 Athens, Greece;
| | - Aggeliki Rapti
- 2nd Department of Pulmonary Medicine, Sotiria General Hospital of Chest Diseases, 115 27 Athens, Greece;
| | - Haralampos Milionis
- 1st Department of Internal Medicine, Medical School, University of Ioannina, 455 00 Ioannina, Greece;
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center in Autoimmune Liver Diseases, General University Hospital of Larissa, 412 21 Larissa, Greece;
| | - Vasileios Petrakis
- 2nd Department of Internal Medicine, Medical School, Democritus University of Thrace, 681 00 Alexandroupolis, Greece;
| | - Styliani Sympardi
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
| | - Symeon Metallidis
- 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, 546 21 Thessaloniki, Greece;
| | - Zoi Alexiou
- 2nd Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
| | - Theologia Gkavogianni
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
| | - Evangelos J. Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
- Correspondence: (E.J.G.-B.); (T.C.T.); Tel.: +30-210-58-31-994 (E.J.G.-B.); Fax: +30-210-53-26446 (E.J.G.-B.)
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
- Correspondence: (E.J.G.-B.); (T.C.T.); Tel.: +30-210-58-31-994 (E.J.G.-B.); Fax: +30-210-53-26446 (E.J.G.-B.)
| |
Collapse
|
45
|
Naqvi I, Giroux N, Olson L, Morrison SA, Llanga T, Akinade TO, Zhu Y, Zhong Y, Bose S, Arvai S, Abramson K, Chen L, Que L, Kraft B, Shen X, Lee J, Leong KW, Nair SK, Sullenger B. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials 2022; 283:121393. [PMID: 35349874 PMCID: PMC8797062 DOI: 10.1016/j.biomaterials.2022.121393] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Ibtehaj Naqvi
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Nicholas Giroux
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University, Graduate School, USA
| | - Lyra Olson
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Sarah Ahn Morrison
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | | | - Tolu O Akinade
- Columbia University, Department of Biomedical Engineering, USA
| | - Yuefei Zhu
- Columbia University, Department of Biomedical Engineering, USA
| | - Yiling Zhong
- Columbia University, Department of Biomedical Engineering, USA
| | - Shree Bose
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Stephanie Arvai
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Karen Abramson
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Lingye Chen
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Loretta Que
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Bryan Kraft
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Xiling Shen
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA
| | - Jaewoo Lee
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Kam W Leong
- Columbia University, Department of Biomedical Engineering, USA
| | - Smita K Nair
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University School of Medicine, Department of Pathology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| | - Bruce Sullenger
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| |
Collapse
|
46
|
Claise C, Saleh J, Rezek M, Vaulont S, Peyssonnaux C, Edeas M. Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights. Int J Infect Dis 2022; 116:74-79. [PMID: 34952211 PMCID: PMC8688186 DOI: 10.1016/j.ijid.2021.12.340] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Mounting evidence links hyperinflammation in gravely ill patients to low serum iron levels and hyperferritinemia. However, little attention has been paid to other iron-associated markers such as transferrin. The aim of this study was to investigate the association of different iron parameters in severe COVID-19 and their relation to disease severity. SUBJECTS AND METHODS This study involved 73 hospitalized patients with positive test results for SARS-CoV-2. Patients were classified into two groups according to symptom severity: mild and severe. Blood levels of anti-SARS-CoV-2 antibodies, interleukin 6 (IL-6), C-reactive protein (CRP), and iron-related biomarkers were measured. RESULTS The results revealed a significant increase in IL-6, CRP, and ferritin levels and decreased transferrin and iron levels in severe COVID-19. Transferrin negatively predicted variations in IgM and IgG levels (P < 0.001), as well as 34.4% and 36.6% increase in IL-6 and CRP levels, respectively (P < 0.005). Importantly, transferrin was the main negative predictor of ferritin levels, determining 22.7% of serum variations (P < 0.001). CONCLUSION Reduced serum transferrin and iron levels, along with the increased CRP and high ferritin, were strongly associated with the heightened inflammatory and immune state in COVID-19. Transferrin can be used as a valuable predictor of increased severity and progression of the disease.
Collapse
Affiliation(s)
| | - Jumana Saleh
- College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Marwa Rezek
- Groupe Hospitalier Sud Ile-de-France (GHSIF), Melun, France
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
47
|
Edwards TS, Dickerhof N, Magon NJ, Paton LN, Sly PD, Kettle AJ. Formation of Calprotectin-Derived Peptides in the Airways of Children with Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:979-990. [PMID: 35046105 DOI: 10.4049/jimmunol.2001017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.
Collapse
Affiliation(s)
- Teagan S Edwards
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Louise N Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| |
Collapse
|
48
|
Mentzer AJ, James T, Yongya M, Cox S, Paddon K, Shine B, Bowen J, Novak A, Knight JC, Fullerton JN. Serum calprotectin is not an independent predictor of severe COVID-19 in ambulatory adult patients. J Infect 2022; 84:e27-e29. [PMID: 34843810 PMCID: PMC8626154 DOI: 10.1016/j.jinf.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Acute General Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
| | - Tim James
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Mirak Yongya
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Stuart Cox
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kevin Paddon
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Brian Shine
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jordan Bowen
- Acute General Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alex Novak
- Acute General Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Emergency Medicine Research Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (EMROx)
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Acute General Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James N Fullerton
- Acute General Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Oxford Centre for Clinical Therapeutics (OCCT), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Nevejan L, Strypens T, Van Nieuwenhove M, Boel A, Cattoir L, Meeus P, Bossuyt X, De Neve N, Van Hoovels L. Prognostic value of circulating calprotectin levels on the clinical course of COVID-19 differs between serum, heparin, EDTA and citrate sample types. Clin Chim Acta 2022; 525:54-61. [PMID: 34919937 PMCID: PMC8669946 DOI: 10.1016/j.cca.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION During the recent SARS-CoV-2 pandemic, circulating calprotectin (cCLP) gained interest as biomarker to predict the severity of COVID-19. We aimed to investigate the prognostic value of cCLP measured in serum, heparin, EDTA and citrate plasma. MATERIALS AND METHODS COVID-19 patients were prospectively included, in parallel with two SARS-CoV-2 negative control populations. The prognostic value of cCLP was compared with IL-6, CRP, LDH, procalcitonin, and the 4C-mortality score by AUROC analysis. RESULTS For the 136 COVID-19 patients, cCLP levels were higher compared to the respective control populations, with significantly higher cCLP levels in serum and heparin than in EDTA or citrate. Higher cCLP levels were obtained for COVID-19 patients with i) severe/critical illness (n = 70), ii) ICU admission (n = 66) and iii) need for mechanical ventilation/ECMO (n = 25), but iv) not in patients who deceased within 30 days (n = 41). The highest discriminatory power (AUC [95% CI]) for each defined outcome was i) CRP (0.835 [0.755-0.914]); ii) EDTA cCLP (0.780 [0.688-0.873]); iii) EDTA cCLP (0.842 [0.758-0.925]) and iv) the 4C-mortality score (0.713 [0.608-0.818]). CONCLUSION Measuring cCLP in COVID-19 patients helps the clinician to predict the clinical course of COVID-19. The discriminatory power of EDTA and citrate plasma cCLP levels often outperforms heparin plasma cCLP levels.
Collapse
Affiliation(s)
- Louis Nevejan
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium,Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
| | - Thomas Strypens
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium,Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
| | - Mathias Van Nieuwenhove
- Department of Intensive Care Medicine, OLV Hospital, Aalst, Belgium,Department of Anesthesiology, OLV Hospital, Aalst, Belgium
| | - An Boel
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Lien Cattoir
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Peter Meeus
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nikolaas De Neve
- Department of Intensive Care Medicine, OLV Hospital, Aalst, Belgium,Department of Anesthesiology, OLV Hospital, Aalst, Belgium
| | - Lieve Van Hoovels
- Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Corresponding author at: Lieve Van Hoovels, Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| |
Collapse
|
50
|
Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de Almeida LGN, Dufour A, Bromley A, McDonald B, Gillrie MR, Fritzler MJ, Yipp BG, Biernaskie J. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med 2022; 28:201-211. [PMID: 34782790 PMCID: PMC8799469 DOI: 10.1038/s41591-021-01576-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
Collapse
Affiliation(s)
- Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Leslie Cao
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark R Gillrie
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J Fritzler
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|