1
|
Maaskant A, Voermans B, Levin E, de Goffau MC, Plomp N, Schuren F, Remarque EJ, Smits A, Langermans JAM, Bakker J, Montijn R. Microbiome signature suggestive of lactose-intolerance in rhesus macaques (Macaca mulatta) with intermittent chronic diarrhea. Anim Microbiome 2024; 6:53. [PMID: 39313845 PMCID: PMC11421201 DOI: 10.1186/s42523-024-00338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets. RESULTS The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea. CONCLUSION A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.
Collapse
Affiliation(s)
- Annemiek Maaskant
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Heidelberglaan 8, 3584 CM, Utrecht, The Netherlands.
| | - Bas Voermans
- HORAIZON Technology BV, Marshallaan 2, 2625 GZ, Delft, The Netherlands.
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Evgeni Levin
- HORAIZON Technology BV, Marshallaan 2, 2625 GZ, Delft, The Netherlands
| | - Marcus C de Goffau
- HORAIZON Technology BV, Marshallaan 2, 2625 GZ, Delft, The Netherlands
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicole Plomp
- Department of Microbiology and Systems Biology, Organization for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, The Netherlands
| | - Frank Schuren
- Department of Microbiology and Systems Biology, Organization for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, The Netherlands
| | - Edmond J Remarque
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Antoine Smits
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Heidelberglaan 8, 3584 CM, Utrecht, The Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Roy Montijn
- Department of Microbiology and Systems Biology, Organization for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
2
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
4
|
Yang M, Zheng X, Fan J, Cheng W, Yan T, Lai Y, Zhang N, Lu Y, Qi J, Huo Z, Xu Z, Huang J, Jiao Y, Liu B, Pang R, Zhong X, Huang S, Luo G, Lee G, Jobin C, Eren AM, Chang EB, Wei H, Pan T, Wang X. Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m 6A Epitranscriptome via Bile Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307981. [PMID: 38713722 PMCID: PMC11267274 DOI: 10.1002/advs.202307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.
Collapse
Affiliation(s)
- Meng Yang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Xiaoqi Zheng
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiajun Fan
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Wei Cheng
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tong‐Meng Yan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacau999078China
| | - Yushan Lai
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Nianping Zhang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yi Lu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiali Qi
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zhengyi Huo
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zihe Xu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jia Huang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yuting Jiao
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Biaodi Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and HealthState Key Laboratory of Applied Microbiology Southern ChinaInstitute of MicrobiologyGuangdong Academy of SciencesGuangzhou510070China
| | - Xiang Zhong
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shi Huang
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Guan‐Zheng Luo
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Gina Lee
- Department of Microbiology and Molecular GeneticsChao Family Comprehensive Cancer CenterUniversity of California Irvine School of MedicineIrvineCA92697USA
| | - Christian Jobin
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFL32610USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity26129OldenburgGermany
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of Oldenburg26129OldenburgGermany
| | - Eugene B Chang
- Department of MedicineKnapp Center for Biomedical DiscoveryThe University of Chicago Knapp Center for Biomedical DiscoveryChicagoIL60637USA
| | - Hong Wei
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tao Pan
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Xiaoyun Wang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Lin X, Han H, Wang N, Wang C, Qi M, Wang J, Liu G. The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. Int J Mol Sci 2024; 25:7175. [PMID: 39000282 PMCID: PMC11241073 DOI: 10.3390/ijms25137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.
Collapse
Affiliation(s)
- Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hui Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Ramamoorthy S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Multi-omics Analysis of a Fecal Microbiota Transplantation Trial Identifies Novel Aspects of Acute GVHD Pathogenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1454-1466. [PMID: 38767452 PMCID: PMC11164016 DOI: 10.1158/2767-9764.crc-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acute GVHD (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (alloHCT) associated with gut microbiota disruptions. However, whether therapeutic microbiota modulation prevents aGVHD is unknown. We conducted a randomized, placebo-controlled trial of third-party fecal microbiota transplantation (FMT) administered at the peak of microbiota injury in 100 patients with acute myeloid leukemia receiving induction chemotherapy and alloHCT recipients. Despite improvements in microbiome diversity, expansion of commensals, and shrinkage of potential pathogens, aGVHD occurred more frequently after FMT than placebo. Although this unexpected finding could be explained by clinical differences between the two arms, we asked whether a microbiota explanation might be also present. To this end, we performed multi-omics analysis of preintervention and postintervention gut microbiome and serum metabolome. We found that postintervention expansion of Faecalibacterium, a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, predicted a higher risk for aGVHD. Faecalibacterium expansion occurred predominantly after FMT and was due to engraftment of unique donor taxa, suggesting that donor Faecalibacterium-derived antigens might have stimulated allogeneic immune cells. Faecalibacterium and ursodeoxycholic acid (an anti-inflammatory secondary bile acid) were negatively correlated, offering an alternative mechanistic explanation. In conclusion, we demonstrate context dependence of microbiota effects where a normally beneficial bacteria may become detrimental in disease. While FMT is a broad, community-level intervention, it may need precision engineering in ecologically complex settings where multiple perturbations (e.g., antibiotics, intestinal damage, alloimmunity) are concurrently in effect. SIGNIFICANCE Post-FMT expansion of Faecalibacterium, associated with donor microbiota engraftment, predicted a higher risk for aGVHD in alloHCT recipients. Although Faecalibacterium is a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, our findings suggest that it may become pathogenic in the setting of FMT after alloHCT. Our results support a future trial with precision engineering of the FMT product used as GVHD prophylaxis after alloHCT.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, Washington
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, Washington
| | - Tauseef U. Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | | | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
7
|
Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol 2024; 43:158-174. [PMID: 38588493 DOI: 10.1089/dna.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.
Collapse
Affiliation(s)
- Chang Sun
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Zhao
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yasong Wang
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongying Kuang
- Second Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Yuan X, Tan Y, Bajinka O, Jammeh ML, Dukureh A, Obiegbusi CN, Abdelhalim KA, Mohanad M. The connection between epigenetics and gut microbiota-current perspective. Cell Biochem Funct 2024; 42:e3941. [PMID: 38379252 DOI: 10.1002/cbf.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Both the epigenetic changes and gut microbiota (GM) have attracted a growing interest in establishing effective diagnostics and potential therapeutic strategies for a number of diseases. These disorders include metabolic, central nervous system-related diseases, autoimmune, and gastrointestinal infections (GI). Despite the number of studies, there is no extensive review that connects the epigenetics modifications and GM as biomarkers that could confer effective diagnostics and confer treatment options. To this end, this review hopes to give detailed information on connecting the modifications in epigenetic and GM. An updated and detailed information on the connection between the epigenetics factors and GM that influence diseases are given. In addition, the review showed some associations between the epigenetics to the maternal GM and offspring health. Finally, the limitations of the concept and prospects into this new emerging discipline were also looked into. Although this review elucidated on the maternal diet and response to offspring health with respect to GM and epigenetic modifications, there still exist various limitations to this newly emerging discipline. In addition to integrating complementary multi-omics data, longitudinal sampling will aid with the identification of functional mechanisms that may serve as therapeutic targets. To this end, this review gave a detailed perspective into harnessing disease diagnostics, prevention and treatment options through epigenetics and GM.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Ousman Bajinka
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Modou L Jammeh
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abubakarr Dukureh
- Department of Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidera N Obiegbusi
- Department of Medical Science, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Khalid A Abdelhalim
- Industrial Research and Development, Izmir Biomedicine and Genome Center, Izmir, Turkiye
| | - Mahmoud Mohanad
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
| |
Collapse
|
9
|
Pakmehr A, Mousavi SM, Ejtahed HS, Hoseini-Tavassol Z, Siadat SD, Hasani-Ranjbar S, Larijani B. The Effect of Fecal Microbiota Transplantation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Clin Ther 2024; 46:e87-e100. [PMID: 38087724 DOI: 10.1016/j.clinthera.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE Cardiometabolic disease (CMD) is increasing along with its predisposing factors and adverse consequences. As gut microbiota dysbiosis is established in these patients, fecal microbiota transplantation (FMT), which alters the bacterial composition of the intestine, supposedly can help improve cardiometabolic disturbances. We conducted a systematic review and meta-analysis evaluating the impact of FMT on the cardiometabolic parameters and gut microbiota composition of patients experiencing at least one cardiometabolic issue. METHODS Eligible studies were searched through the PubMed, Web of Science, and Scopus databases until December 2022. The initial search results underwent duplication removal and screening until each included study was scanned for intended data. The Cochrane risk of bias tool was used to evaluate the methodologic accuracy of studies and the random effects model was used for conducting the meta-analysis. FINDINGS Eighteen of the original 2414 articles from the literature search were entered into the systematic review; of these, 11 were included in the meta-analysis. Insulin showed a significant decrease by 24.7 pmol/L (weighted mean difference [WMD], -24.77; 95% CI, -48.704 to -0.848) after short-term follow-up, and HDL increased by 0.1 mmol/l(WMD, 0.106; 95% CI, 0.027 to 0.184) and 0.12 mmol/l(WMD, 0.120; 95% CI, 0.003 to 0.237) in those using a capsule deliver mode and in short-term follow-up, respectively. No significant changes were seen in other lipid profiles, blood glucose, insulin resistance, or anthropometric indices. In addition, multiple studies reported gut microbiota alterations after the intervention, including an increase in butyrate-producing species. IMPLICATIONS Although some articles reported the beneficial effects of FMT on metabolic parameters, we failed to find a clinically significant alteration. Also, information regarding proper donors and the best method to induce FMT have not yet been sufficiently investigated, which should be considered along with means to prevent potential damages. PROSPERO identifier: CRD42022380705.
Collapse
Affiliation(s)
- Azin Pakmehr
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Hoseini-Tavassol
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
11
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
12
|
Stols-Gonçalves D, Mak AL, Madsen MS, van der Vossen EWJ, Bruinstroop E, Henneman P, Mol F, Scheithauer TPM, Smits L, Witjes J, Meijnikman AS, Verheij J, Nieuwdorp M, Holleboom AG, Levin E. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach. Gut Microbes 2023; 15:2223330. [PMID: 37317027 DOI: 10.1080/19490976.2023.2223330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Individuals with nonalcoholic fatty liver disease (NAFLD) have an altered gut microbiota composition. Moreover, hepatic DNA methylation may be altered in the state of NAFLD. Using a fecal microbiota transplantation (FMT) intervention, we aimed to investigate whether a change in gut microbiota composition relates to altered liver DNA methylation in NAFLD. Moreover, we assessed whether plasma metabolite profiles altered by FMT relate to changes in liver DNA methylation. Twenty-one individuals with NAFLD underwent three 8-weekly vegan allogenic donor (n = 10) or autologous (n = 11) FMTs. We obtained hepatic DNA methylation profiles from paired liver biopsies of study participants before and after FMTs. We applied a multi-omics machine learning approach to identify changes in the gut microbiome, peripheral blood metabolome and liver DNA methylome, and analyzed cross-omics correlations. Vegan allogenic donor FMT compared to autologous FMT induced distinct differential changes in I) gut microbiota profiles, including increased abundance of Eubacterium siraeum and potential probiotic Blautia wexlerae; II) plasma metabolites, including altered levels of phenylacetylcarnitine (PAC) and phenylacetylglutamine (PAG) both from gut-derived phenylacetic acid, and of several choline-derived long-chain acylcholines; and III) hepatic DNA methylation profiles, most importantly in Threonyl-TRNA Synthetase 1 (TARS) and Zinc finger protein 57 (ZFP57). Multi-omics analysis showed that Gemmiger formicillis and Firmicutes bacterium_CAG_170 positively correlated with both PAC and PAG. E siraeum negatively correlated with DNA methylation of cg16885113 in ZFP57. Alterations in gut microbiota composition by FMT caused widespread changes in plasma metabolites (e.g. PAC, PAG, and choline-derived metabolites) and liver DNA methylation profiles in individuals with NAFLD. These results indicate that FMTs might induce metaorganismal pathway changes, from the gut bacteria to the liver.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mette S Madsen
- Gubra, Hørsholm, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eveline Bruinstroop
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Femke Mol
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam University Medical Centre (UMC), Vrije Universiteit (VU) University Medical Centre, Amsterdam, Netherlands
| | - Loek Smits
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Julia Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Abraham Stijn Meijnikman
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Horaizon BV, Delft, The Netherlands
| |
Collapse
|
13
|
Zhang B, Zhou W, Liu Q, Huang C, Hu Z, Zheng M, Xin Y, Zhao M, Lu Q. Effects of fecal microbiota transplant on DNA methylation in patients with systemic lupus erythematosus. J Autoimmun 2023; 141:103047. [PMID: 37179169 DOI: 10.1016/j.jaut.2023.103047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterized by multiple organ damage accompanied by the over-production of autoantibodies. Decreased intestinal flora diversity and disruption of homeostasis have been proven to be associated with pathogenesis of SLE. In previous study, a clinical trial was conducted to verify the safety and effectiveness of fecal microbiota transplantation (FMT) in the treatment of SLE. To explore the mechanism of FMT in the treatment of SLE, we included 14 SLE patients participating in clinical trials, including 8 in responders group (Rs) and 6 in non-responders group (NRs), and collected peripheral blood DNA and serum. We found that the serum of S-adenosylmethionine (SAM), methylation group donor, was upregulated after FMT, accompanied by an increase in genome-wide DNA methylation level in Rs. We further showed that the methylation levels in promoter regions of Interferon-γ (IFN-γ), induced Helicase C Domain Containing Protein 1 (IFIH1), endoplasmic reticulum membrane protein complex 8 (EMC8), and Tripartite motif-containing protein 58 (TRIM58) increased after FMT treatment. On the contrary, there was no significant change in the methylation of IFIH1 promoter region in the NRs after FMT, and the methylation level of IFIH1 in the Rs was significantly higher than that in the NRs at week 0. We included 850 K methylation chip sequencing, combining previous data of metagenomic sequencing, and metabolomic sequencing for multi-omics analysis to discuss the relationship between flora-metabolite-methylation in FMT. Finally, we found that hexanoic acid treatment can up-regulate the global methylation of peripheral blood mononuclear cells in SLE patients. Overall, our results delineate changes in methylation level after FMT treatment of SLE and reveal possible mechanisms of FMT treatment in terms of the recovery of abnormal hypomethylation.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenhui Zhou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Cancan Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhi Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Meiling Zheng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yue Xin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
14
|
Wang C, Wang J, Wan R, Yuan T, Yang L, Zhang D, Li X, Liu H, Zhang L. Separate and combined effects of famine exposure and menarche age on metabolic syndrome among the elderly: a cross-sectional study in China. BMC Womens Health 2023; 23:600. [PMID: 37964223 PMCID: PMC10648701 DOI: 10.1186/s12905-023-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Epidemiological studies have revealed multiple risk factors for metabolic syndrome. However, there are no consistent findings on the association between famine exposure, age at menarche, and the prevalence of metabolic syndrome. This cross-sectional study aimed to reveal the individual and combined effects of famine exposure and age at menarche on the prevalence of metabolic syndrome among elderly women. METHODS Four thousand seven hundred seventy participants between 60 and 93 years of age were selected from the China Health and Retirement Longitudinal Study. Statistical differences between the baseline characteristics of famine exposure, age at menarche, and metabolic syndrome were evaluated using the t-test, F-test, and Chi-square test. Three multivariable-adjusted logistic regression models were used to test the association between famine exposure, age of menarche, and the odds ratio of metabolic syndrome. RESULTS Two thousand one hundred ninety-eight (46.08%) participants had metabolic syndrome, while 2572 (53.92%) participants did not. Furthermore, 3068 (64.32%) women reported onset of menarche under 15 years of age, while 1702 (35.68%) women reported onset of menarche above 16 years of age. Regarding the separate association of famine exposure and age of menarche with metabolic syndrome, in model three, the adolescence/adulthood famine exposure group vs. no famine exposure group odds ratio was 2.45 (95% CI 2.02, 2.97), and the older than 16 years vs. younger than 15 years group odds ratio was 1.23 (95% CI 1.09, 1.39), which was the highest odds ratio among the three models. Regarding the combined association of famine exposure and age of menarche with metabolic syndrome, in model three, among the age of menarche ≤ 15 years group, the adolescence/adulthood famine exposure vs. no famine exposure group odds ratio was 2.45 (95% CI: 1.91, 3.14); among the menarche age ≥ 16 years group, the adolescence/adulthood famine exposure stages vs. exposed group odds ratio was 3.27 (95% CI: 2.44, 4.38), which was the highest odds ratio among the three models. CONCLUSION These findings suggested that famine exposure and age at menarche, either separately or in combination, were positively associated with the prevalence of metabolic syndrome among older women.
Collapse
Affiliation(s)
- Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, An Hui Province, Wuhu City, 241000, P.R, China
| | - Jiazhi Wang
- Sports Institute, Chi Zhou College, Education Park, Chi Zhou City, An Hui Province, People's Republic of China
| | - Rui Wan
- Business School, Yunnan University of Finance and Economics, 237 Longquan Road, Kunming City, Yun Nan Province, People's Republic of China
| | - Ting Yuan
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Liu Yang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, An Hui Province, Wuhu City, 241000, P.R, China
| | - Dongmei Zhang
- Department of Pediatric Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Xiaoping Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Haiyang Liu
- Student Health Center, Wannan Medical College, 22 Wenchang West Road, Higher Education ParkAn Hui Province, Wuhu City, People's Republic of China
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, An Hui Province, Wuhu City, 241000, P.R, China.
| |
Collapse
|
15
|
Verhaar BJH, Mosterd CM, Collard D, Galenkamp H, Muller M, Rampanelli E, van Raalte DH, Nieuwdorp M, van den Born BJH. Sex differences in associations of plasma metabolites with blood pressure and heart rate variability: The HELIUS study. Atherosclerosis 2023; 384:117147. [PMID: 37286456 DOI: 10.1016/j.atherosclerosis.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Since plasma metabolites can modulate blood pressure (BP) and vary between men and women, we examined sex differences in plasma metabolite profiles associated with BP and sympathicovagal balance. Our secondary aim was to investigate associations between gut microbiota composition and plasma metabolites predictive of BP and heart rate variability (HRV). METHODS From the HELIUS cohort, we included 196 women and 173 men. Office systolic BP and diastolic BP were recorded, and heart rate variability (HRV) and baroreceptor sensitivity (BRS) were calculated using finger photoplethysmography. Plasma metabolomics was measured using untargeted LC-MS/MS. Gut microbiota composition was determined using 16S sequencing. We used machine learning models to predict BP and HRV from metabolite profiles, and to predict metabolite levels from gut microbiota composition. RESULTS In women, best predicting metabolites for systolic BP included dihomo-lineoylcarnitine, 4-hydroxyphenylacetateglutamine and vanillactate. In men, top predictors included sphingomyelins, N-formylmethionine and conjugated bile acids. Best predictors for HRV in men included phenylacetate and gentisate, which were associated with lower HRV in men but not in women. Several of these metabolites were associated with gut microbiota composition, including phenylacetate, multiple sphingomyelins and gentisate. CONCLUSIONS Plasma metabolite profiles are associated with BP in a sex-specific manner. Catecholamine derivatives were more important predictors for BP in women, while sphingomyelins were more important in men. Several metabolites were associated with gut microbiota composition, providing potential targets for intervention.
Collapse
Affiliation(s)
- Barbara J H Verhaar
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Department of Internal Medicine - Geriatrics, Amsterdam UMC, Location VUmc, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Charlotte M Mosterd
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
| | - Majon Muller
- Department of Internal Medicine - Geriatrics, Amsterdam UMC, Location VUmc, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Daniël H van Raalte
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Goteborgs Universitet, Gothenburg, Sweden
| | - Bert-Jan H van den Born
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; Department of Public and Occupational Health, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Jeong S, Chokkalla AK, Davis CK, Vemuganti R. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry 2023; 28:4044-4055. [PMID: 37188778 PMCID: PMC10646155 DOI: 10.1038/s41380-023-02099-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic and epitranscriptomic modifications that regulate physiological processes of an organism at the DNA and RNA levels, respectively, are novel therapeutic candidates for various neurological diseases. Gut microbiota and its metabolites are known to modulate DNA methylation and histone modifications (epigenetics), as well as RNA methylation especially N6-methyladenosine (epitranscriptomics). As gut microbiota as well as these modifications are highly dynamic across the lifespan of an organism, they are implicated in the pathogenesis of stroke and depression. The lack of specific therapeutic interventions for managing post-stroke depression emphasizes the need to identify novel molecular targets. This review highlights the interaction between the gut microbiota and epigenetic/epitranscriptomic pathways and their interplay in modulating candidate genes that are involved in post-stroke depression. This review further focuses on the three candidates, including brain-derived neurotrophic factor, ten-eleven translocation family proteins, and fat mass and obesity-associated protein based on their prevalence and pathoetiologic role in post-stroke depression.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
17
|
Mattson DL, Dasinger JH, Abais-Battad JM. Dietary Protein, Chronic Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2023; 4:1181-1187. [PMID: 37424061 PMCID: PMC10476688 DOI: 10.34067/kid.0000000000000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
It has been estimated that over a fifth of deaths worldwide can be attributed to dietary risk factors. A particularly serious condition is salt-sensitive (SS) hypertension and renal damage, participants of which demonstrate increased morbidity and mortality. Notably, a large amount of evidence from humans and animals has demonstrated that other components of the diet can also modulate hypertension and associated end-organ damage. Evidence presented in this review provides support for the view that immunity and inflammation serve to amplify the development of SS hypertension and leads to malignant disease accompanied by tissue damage. Interestingly, SS hypertension is modulated by changes in dietary protein intake, which also influences immune mechanisms. Together, the evidence presented in this review from animal and human studies indicates that changes in dietary protein source have profound effects on the gut microbiota, microbiota-derived metabolites, gene expression, immune cell activation, the production of cytokines and other factors, and the development of SS hypertension and kidney damage.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
18
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Epigenetic Aberrations in Major Psychiatric Diseases Related to Diet and Gut Microbiome Alterations. Genes (Basel) 2023; 14:1506. [PMID: 37510410 PMCID: PMC10379841 DOI: 10.3390/genes14071506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02218, USA
| |
Collapse
|
19
|
Feng Y, Zhang M, Liu Y, Yang X, Wei F, Jin X, Liu D, Guo Y, Hu Y. Quantitative microbiome profiling reveals the developmental trajectory of the chicken gut microbiota and its connection to host metabolism. IMETA 2023; 2:e105. [PMID: 38868437 PMCID: PMC10989779 DOI: 10.1002/imt2.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/14/2024]
Abstract
Revealing the assembly and succession of the chicken gut microbiota is critical for a better understanding of its role in chicken physiology and metabolism. However, few studies have examined dynamic changes of absolute chicken gut microbes using the quantitative microbiome profiling (QMP) method. Here, we revealed the developmental trajectory of the broiler chicken gut bacteriome and mycobiome by combining high-throughput sequencing with a microbial load quantification assay. We showed that chicken gut microbiota abundance and diversity reached a plateau at 7 days posthatch (DPH), forming segment-specific community types after 1 DPH. The bacteriome was more impacted by deterministic processes, and the mycobiome was more affected by stochastic processes. We also observed stage-specific microbes in different gut segments, and three microbial occurrence patterns including "colonization," "disappearance," and "core" were defined. The microbial co-occurrence networks were very different among gut segments, with more positive associations than negative associations. Furthermore, we provided links between the absolute changes in chicken gut microbiota and their serum metabolite variations. Time-course untargeted metabolomics revealed six metabolite clusters with different changing patterns of abundance. The foregut microbiota had more connections with chicken serum metabolites, and the gut microbes were closely related to chicken lipid and amino acid metabolism. The present study provided a full landscape of chicken gut microbiota development in a quantitative manner, and the associations between gut microbes and chicken serum metabolites further highlight the impact of gut microbiota in chicken growth and development.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev 2023; 149:105143. [PMID: 36990372 DOI: 10.1016/j.neubiorev.2023.105143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a main public health concern, with increasing prevalence and growingly premature onset in children, in spite of emerging and successful therapeutic options. T2DM promotes brain aging, and younger age at onset is associated with a higher risk of subsequent dementia. Preventive strategies should address predisposing conditions, like obesity and metabolic syndrome, and be started from very early and even prenatal life. Gut microbiota is an emerging target in obesity, diabetes and neurocognitive diseases, which could be safely modulated since pregnancy and infancy. Many correlative studies have supported its involvement in disease pathophysiology. Faecal material transplantation (FMT) studies have been conducted in clinical and preclinical settings to deliver cause-effect proof and mechanistic insights. This review provides a comprehensive overview of studies in which FMT was used to cure or cause obesity, metabolic syndrome, T2DM, cognitive decline and Alzheimer's disease, including the evidence available in early life. Findings were analysed to dissect consolidated from controversial results, highlighting gaps and possible future directions.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
21
|
Ghorbani Y, Schwenger KJP, Sharma D, Jung H, Yadav J, Xu W, Lou W, Poutanen S, Hota SS, Comelli EM, Philpott D, Jackson TD, Okrainec A, Gaisano HY, Allard JP. Effect of faecal microbial transplant via colonoscopy in patients with severe obesity and insulin resistance: A randomized double-blind, placebo-controlled Phase 2 trial. Diabetes Obes Metab 2023; 25:479-490. [PMID: 36239189 DOI: 10.1111/dom.14891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
AIM To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Divya Sharma
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hyejung Jung
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Jitender Yadav
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wendy Lou
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Susan Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Sinai Health System, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Susy S Hota
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Infection Prevention and Control Department, University Health Network, Toronto, Ontario, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Liver-Gut-Interaction: Role of Microbiome Transplantation in the Future Treatment of Metabolic Disease. J Pers Med 2023; 13:jpm13020220. [PMID: 36836454 PMCID: PMC9958640 DOI: 10.3390/jpm13020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The association between shifts in gut microbiome composition and metabolic disorders is a well-recognized phenomenon. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Fecal microbiome transplantation (FMT) is a method to alter a person's microbiome composition. Although this method allowed for the establishment of proof of concept for using microbiome modulation to treat metabolic disorders, the method is not yet ready for broad application. It is a resource-intensive method that also carries some procedural risks and whose effects are not always reproducible. This review summarizes the current knowledge on FMT to treat metabolic diseases and gives an outlook on open research questions. Further research is undoubtedly required to find applications that are less resource-intensive, such as oral encapsulated formulations, and have strong and predictable results. Furthermore, a clear commitment from all stakeholders is necessary to move forward in the direction of developing live microbial agents, next-generation probiotics, and targeted dietary interventions.
Collapse
|
23
|
Hamamah S, Gheorghita R, Lobiuc A, Sirbu IO, Covasa M. Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Front Med (Lausanne) 2022; 9:1060581. [PMID: 36569149 PMCID: PMC9773399 DOI: 10.3389/fmed.2022.1060581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplant (FMT) is a therapeutic method that aims to restore normal gut microbial composition in recipients. Currently, FMT is approved in the USA to treat recurrent and refractory Clostridioides difficile infection and has been shown to have great efficacy. As such, significant research has been directed toward understanding the potential role of FMT in other conditions associated with gut microbiota dysbiosis such as obesity, type 2 diabetes mellitus, metabolic syndrome, neuropsychiatric disorders, inflammatory bowel disease, irritable bowel syndrome, decompensated cirrhosis, cancers and graft-versus-host disease. This review examines current updates and efficacy of FMT in treating conditions other than Clostridioides difficile infection. Further, protocols for administration of FMT are also discussed including storage of fecal samples in stool banks, inclusion/exclusion criteria for donors, fecal sample preparation and methods of treatment administration. Overall, understanding the mechanisms by which FMT can manipulate gut microbiota to provide therapeutic benefit as well as identifying potential adverse effects is an important step in clarifying its long-term safety and efficacy in treating multiple conditions in the future.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Gheorghita
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania,Center for Complex Network Science, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States,Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,*Correspondence: Mihai Covasa,
| |
Collapse
|
24
|
Mattson DL, Dasinger JH, Abais-Battad JM. Gut-Immune-Kidney Axis: Influence of Dietary Protein in Salt-Sensitive Hypertension. Hypertension 2022; 79:2397-2408. [PMID: 35983758 PMCID: PMC9790111 DOI: 10.1161/hypertensionaha.122.18556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans with salt-sensitive hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Substantial evidence from humans and animals has also demonstrated the role of dietary components other than salt to modulate hypertension. Evidence presented in this review provides support for the view that immunity and inflammation serve to amplify the development of salt-sensitive hypertension and leads to malignant disease accompanied by end-organ damage. Interestingly, salt-sensitive disease is modulated by changes in dietary protein intake, which also influences immune mechanisms. Together, the evidence presented in this review from animal and human studies indicates that changes in dietary protein source have profound effects on the gut microbiota, microbiota-derived metabolites, DNA methylation, gene expression, immune cell activation, the production of cytokines and other factors, and the development of salt-sensitive hypertension and related disease phenotypes.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | | |
Collapse
|
25
|
Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells 2022; 11:cells11193091. [PMID: 36231053 PMCID: PMC9563262 DOI: 10.3390/cells11193091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Health is influenced by how the gut microbiome develops as a result of external and internal factors, such as nutrition, the environment, medication use, age, sex, and genetics. Alpha and beta diversity metrics and (enterotype) clustering methods are commonly employed to perform population studies and to analyse the effects of various treatments, yet, with the continuous development of (new) sequencing technologies, and as various omics fields as a result become more accessible for investigation, increasingly sophisticated methodologies are needed and indeed being developed in order to disentangle the complex ways in which the gut microbiome and health are intertwined. Diseases of affluence, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD), are commonly linked to species associated with the Bacteroides enterotype(s) and a decline of various (beneficial) complex microbial trophic networks, which are in turn linked to the aforementioned factors. In this review, we (1) explore the effects that some of the most common internal and external factors have on the gut microbiome composition and how these in turn relate to T2D and CVD, and (2) discuss research opportunities enabled by and the limitations of some of the latest technical developments in the microbiome sector, including the use of artificial intelligence (AI), strain tracking, and peak to trough ratios.
Collapse
|
26
|
Nigam M, Panwar AS, Singh RK. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:961569. [PMID: 36212607 PMCID: PMC9535080 DOI: 10.3389/fmedt.2022.961569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been proved to be an effective treatment for gastrointestinal disorders caused due to microbial disbalance. Nowadays, this approach is being used to treat extragastrointestinal conditions like metabolic and neurological disorders, which are considered to have their provenance in microbial dysbiosis in the intestine. Even though case studies and clinical trials have demonstrated the potential of FMT in treating a variety of ailments, safety and ethical concerns must be answered before the technique is widely used to the community's overall benefit. From this perspective, it is not unexpected that techniques for altering gut microbiota may represent a form of medication whose potential has not yet been thoroughly addressed. This review intends to gather data on recent developments in FMT and its safety, constraints, and ethical considerations.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| |
Collapse
|
27
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
28
|
van der Vossen EWJ, de Goffau MC, Levin E, Nieuwdorp M. Recent insights into the role of microbiome in the pathogenesis of obesity. Therap Adv Gastroenterol 2022; 15:17562848221115320. [PMID: 35967920 PMCID: PMC9373125 DOI: 10.1177/17562848221115320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a risk factor for many chronic diseases and its rising prevalence the last couple of decades is a healthcare concern in many countries. Obesity is a multifactorial problem that is not only limited in its causation by diet and lack of exercise. Genetics but also environmental factors such as the gut microbiome should similarly be taken into account. A plethora of articles have been published, that from various different angles, attempt to disentangle the complex interaction between gut microbiota and obesity. Examples range from the effect of the gut microbiota on the host immune system to the pathophysiological pathways in which microbial-derived metabolites affect obesity. Various discordant gut microbiota findings are a result of this complexity. In this review, in addition to summarizing the classical role of the gut microbiome in the pathogenesis of obesity, we attempt to view both the healthy and obesogenic effects of the gut microbiota as a consequence of the presence or absence of collective guilds/trophic networks. Lastly, we propose avenues and strategies for the future of gut microbiome research concerning obesity.
Collapse
Affiliation(s)
- Eduard W. J. van der Vossen
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marcus C. de Goffau
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands
| | - Evgeni Levin
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands,Horaizon BV, Delft, The Netherlands
| | | |
Collapse
|
29
|
Mannens MMAM, Lombardi MP, Alders M, Henneman P, Bliek J. Further Introduction of DNA Methylation (DNAm) Arrays in Regular Diagnostics. Front Genet 2022; 13:831452. [PMID: 35860466 PMCID: PMC9289263 DOI: 10.3389/fgene.2022.831452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Methylation tests have been used for decades in regular DNA diagnostics focusing primarily on Imprinting disorders or specific loci annotated to specific disease associated gene promotors. With the introduction of DNA methylation (DNAm) arrays such as the Illumina Infinium HumanMethylation450 Beadchip array or the Illumina Infinium Methylation EPIC Beadchip array (850 k), it has become feasible to study the epigenome in a timely and cost-effective way. This has led to new insights regarding the complexity of well-studied imprinting disorders such as the Beckwith Wiedemann syndrome, but it has also led to the introduction of tests such as EpiSign, implemented as a diagnostic test in which a single array experiment can be compared to databases with known episignatures of multiple genetic disorders, especially neurodevelopmental disorders. The successful use of such DNAm tests is rapidly expanding. More and more disorders are found to be associated with discrete episignatures which enables fast and definite diagnoses, as we have shown. The first examples of environmentally induced clinical disorders characterized by discrete aberrant DNAm are discussed underlining the broad application of DNAm testing in regular diagnostics. Here we discuss exemplary findings in our laboratory covering this broad range of applications and we discuss further use of DNAm tests in the near future.
Collapse
|
30
|
Li D, Li Y, Yang S, Lu J, Jin X, Wu M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed Pharmacother 2022; 153:113290. [PMID: 35724509 DOI: 10.1016/j.biopha.2022.113290] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
The prevalence of metabolic diseases, including obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), is a severe burden in human society owing to the ensuing high morbidity and mortality. Various factors linked to metabolic disorders, particularly environmental factors (such as diet and gut microbiota) and epigenetic modifications, contribute to the progression of metabolic diseases. Dietary components and habits regulate alterations in gut microbiota; in turn, microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), are influenced by diet. Interestingly, diet-derived microbial metabolites appear to produce substrates and enzymatic regulators for epigenetic modifications (such as DNA methylation, histone modifications, and non-coding RNA expression). Epigenetic changes mediated by microbial metabolites participate in metabolic disorders via alterations in intestinal permeability, immune responses, inflammatory reactions, and insulin resistance. In addition, microbial metabolites can trigger inflammatory immune responses and microbiota dysbiosis by directly binding to G-protein-coupled receptors (GPCRs). Hence, diet-gut microbiota-epigenetics may play a role in metabolic diseases. However, their complex relationships with metabolic diseases remain largely unknown and require further investigation. This review aimed to elaborate on the interactions among diet, gut microbiota, and epigenetics to uncover the mechanisms and therapeutics of metabolic diseases.
Collapse
Affiliation(s)
- Dan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
31
|
de Krijger M, Hageman IL, Li Yim AYF, Verhoeff J, Garcia Vallejo JJ, van Hamersveld PHP, Levin E, Hakvoort TBM, Wildenberg ME, Henneman P, Ponsioen CY, de Jonge WJ. Epigenetic Signatures Discriminate Patients With Primary Sclerosing Cholangitis and Ulcerative Colitis From Patients With Ulcerative Colitis. Front Immunol 2022; 13:840935. [PMID: 35371111 PMCID: PMC8965896 DOI: 10.3389/fimmu.2022.840935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease affecting the intra- and extrahepatic bile ducts, and is strongly associated with ulcerative colitis (UC). In this study, we explored the peripheral blood DNA methylome and its immune cell composition in patients with PSC-UC, UC, and healthy controls (HC) with the aim to develop a predictive assay in distinguishing patients with PSC-UC from those with UC alone. Methods The peripheral blood DNA methylome of male patients with PSC and concomitant UC, UC and HCs was profiled using the Illumina HumanMethylation Infinium EPIC BeadChip (850K) array. Differentially methylated CpG position (DMP) and region (DMR) analyses were performed alongside gradient boosting classification analyses to discern PSC-UC from UC patients. As observed differences in the DNA methylome could be the result of differences in cellular populations, we additionally employed mass cytometry (CyTOF) to characterize the immune cell compositions. Results Genome wide methylation analysis did not reveal large differences between PSC-UC and UC patients nor HCs. Nonetheless, using gradient boosting we were capable of discerning PSC-UC from UC with an area under the receiver operator curve (AUROC) of 0.80. Four CpG sites annotated to the NINJ2 gene were found to strongly contribute to the predictive performance. While CyTOF analyses corroborated the largely similar blood cell composition among patients with PSC-UC, UC and HC, a higher abundance of myeloid cells was observed in UC compared to PSC-UC patients. Conclusion DNA methylation enables discerning PSC-UC from UC patients, with a potential for biomarker development.
Collapse
Affiliation(s)
- Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ishtu L Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Horaizon BV, Delft, Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, University Clinic of Bonn, Bonn, Germany
| |
Collapse
|