1
|
Subramaniam S, Fares-Gusmao R, McGivern DR. Quantification of Hepatitis E Virus ORF2 Protein by a Novel Sandwich ELISA. Viruses 2024; 16:393. [PMID: 38543759 PMCID: PMC10974087 DOI: 10.3390/v16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis E virus (HEV) causes acute hepatitis in humans, which can progress to chronicity in immunosuppressed individuals. Almost all reported HEV infections are caused by Paslahepevirus balayani genotypes 1-4. The structural ORF2 protein is the major antigen detected in the blood of HEV-infected individuals. ELISA assays to detect IgM antibodies to HEV are the first-line diagnostic tests; however, they showed variable performance with frequently discordant results. A qualitative HEV antigen (ORF2) ELISA is currently available for research use. Here, we report a novel quantitative sandwich ELISA to measure HEV ORF2 protein in 3 matrix types. An optimal pair of capture and detection antibodies was selected among 12 unique combinations tested. A sandwich ELISA protocol was developed using these mAbs and biotin-streptavidin technology. The protocol was further optimized to quantify ORF2 antigen in different matrices by interpolating from a standard curve with a linear range of 3.17 to 50.8 femtomoles/mL. Using this method, ORF2 protein was detected in the cell culture medium of Huh7 cells as early as 2-3 days after transfection with HEV genome RNA and in a medium of human hepatocytes infected with HEV. ORF2 antigen was readily detected in the first 2 weeks post-HEV infection in gerbil sera. In immunosuppressed gerbils, ORF2 was detected up to 6 weeks, and the levels were significantly higher between 3 and 6 weeks post-infection. HEV ORF2 antigen levels showed a strong positive correlation with HEV RNA levels in both cell culture medium and gerbil sera. Our novel sandwich ELISA detected at least 7.3 femtomoles/mL ORF2 protein in human plasma spiked with cell culture propagated HEV and detected ORF2 protein in human plasma samples that tested positive for HEV RNA but negative for anti-HEV antibodies. Further, the assay was nonreactive, with negative human plasma, and HBV or HCV-positive human plasma demonstrating specificity. Overall, our ORF2 antigen ELISA will be useful for quantifying ORF2 antigen in cell culture medium, gerbil serum, and human plasma. Further studies are warranted to evaluate its utility in HEV clinical diagnosis.
Collapse
Affiliation(s)
| | | | - David R. McGivern
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (S.S.); (R.F.-G.)
| |
Collapse
|
2
|
Tang ZM, Wen GP, Ying D, Wang SL, Liu C, Tian WK, Wang YB, Fang MJ, Zhou YL, Ge YS, Wu T, Zhang J, Huang SJ, Zheng ZZ, Xia NS. Profile of clinical characteristics and serologic markers of sporadic hepatitis E in a community cohort study. Emerg Microbes Infect 2023; 12:2140613. [PMID: 36314245 PMCID: PMC9769141 DOI: 10.1080/22221751.2022.2140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatitis E virus (HEV) is a pathogen of global significance, but the value of HEV-related markers in the diagnosis of hepatitis E remains controversial. Previous studies on hepatitis E profiles have been mainly cross-sectional and conducted among inpatients in large hospitals, and hepatitis E cases have been primarily defined by limited partial markers. In this community-based study, 4,110 active hepatitis cases from a population of nearly 600,000 were followed over 48 months and serial serum samples were collected. Both HEV pathogen (HEV RNA and antigen) and anti-HEV antibody markers were used to determine HEV infection status and the relationship between hepatitis and HEV infection. In total, 98 hepatitis E patients were identified and all available isolates from 58 patients belonged to HEV genotype 4. The mean age of the patients was 58.14 years, with an overwhelming proportion of males (70.4%). Hepatitis E accounted for 22.86% of active hepatitis cases with alanine aminotransferase levels ≥15.0-fold the upper limit of normal, suggesting the need to include HEV in routine testing for these patients. Ninety-two hepatitis E patients were positive for at least 2 of HEV antigen, anti-HEV IgM, and HEV RNA markers at presentation, and 90.22% of them were positive for HEV antigen and anti-HEV IgM. HEV antigen, HEV RNA, and anti-HEV IgM positivity were observed in 89.80%, 82.65%, and 93.88% of hepatitis E patients at presentation, respectively. However, only 57.14% of anti-HEV IgM positivity occurred in hepatitis E patients. These findings will advance our understanding of hepatitis E and improve diagnosis.
Collapse
Affiliation(s)
- Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Gui-Ping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,School of Life Sciences, Xiamen University, Xiamen, PR People’s Republic of China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Wei-Kun Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Mu-Jin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Yun-Sheng Ge
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China, Shou-Jie Huang ; Zi-Zheng Zheng ; Ning-Shao Xia National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China, Shou-Jie Huang ; Zi-Zheng Zheng ; Ning-Shao Xia National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, PR People’s Republic of China,School of Life Sciences, Xiamen University, Xiamen, PR People’s Republic of China, Shou-Jie Huang ; Zi-Zheng Zheng ; Ning-Shao Xia National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
El-Mokhtar MA, Elkhawaga AA, Ahmed MSH, El-Sabaa EMW, Mosa AA, Abdelmohsen AS, Moussa AM, Salama EH, Aboulfotuh S, Ashmawy AM, Seddik AI, Sayed IM, Ramadan HKA. High Incidence of Acute Liver Failure among Patients in Egypt Coinfected with Hepatitis A and Hepatitis E Viruses. Microorganisms 2023; 11:2898. [PMID: 38138042 PMCID: PMC10745896 DOI: 10.3390/microorganisms11122898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are transmitted through the fecal-oral route. HAV outbreaks and one HEV outbreak have been reported in Egypt. However, the impact of HAV-HEV co-infection is not known. In this study, we assessed HEV markers in acute HAV-infected patients (n = 57) enrolled in Assiut University hospitals. We found that 36.8% of HAV-infected patients were also positive for HEV markers (anti-HEV IgM and HEV RNA), while 63.2% of the patients were HAV mono-infected. Demographic and clinical criteria were comparable in both HAV mono-infected patients and HAV-HEV co-infected patients. Although liver enzymes were not significantly different between the two groups, liver transaminases were higher in the co-infected patients. Six patients developed acute liver failure (ALF); five of them were HAV-HEV-co-infected patients. The relative risk of ALF development was 8.5 times higher in HAV-HEV co-infection compared to mono-infection. Three cases of ALF caused by HAV-HEV co-infection were reported in children (below 18 years) and two cases were reported in adults. All patients developed jaundice, coagulopathy, and encephalopathy; all were living in rural communities. In conclusion: HAV-HEV co-infection can be complicated by ALF. The risk of ALF development in HAV-infected patients is higher when coinfection with HEV is present.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Amal A. Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mona Sedky Hussein Ahmed
- Molecular Biology Researches & Studies Institute (MBRSI), Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Aliaa A. Mosa
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed Shawkat Abdelmohsen
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Abdelmajeed M. Moussa
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Ahmed M. Ashmawy
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed Ismail Seddik
- Pediatric Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
4
|
Younes N, Yassine HM, Nizamuddin PB, Kourentzi K, Tang P, Ayoub HH, Khalili M, Coyle PV, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. Seroprevalence of hepatitis E virus (HEV) among male craft and manual workers in Qatar (2020-2021). Heliyon 2023; 9:e21404. [PMID: 38027884 PMCID: PMC10660033 DOI: 10.1016/j.heliyon.2023.e21404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The rapid growth of Qatar in the last two decades has attracted a large influx of immigrant craft and manual workers (CMWs) seeking employment in jobs associated with food handling, domestic service, and construction. Nearly 60 % of Qatar's population are expatriates CMWs, including many from hyperendemic countries for HEV. Thus, estimating the seroprevalence of HEV in Qatar and understanding its epidemiology is essential for public health efforts to control HEV transmission in Qatar. Methods Blood samples from 2670 CMWs were collected between 2020 and 2021. All samples were tested for HEV-IgG antibodies. Positive HEV-IgG samples were tested for HEV-IgM antibodies, and those positives were also tested for viral antigens using an HEV-Ag ELISA kit and HEV-RNA by RT-PCR to confirm current HEV infections. Results The seroprevalence of HEV-IgG was 27.3 % (729/2670; 95 % CI: 25.6-29.0). Of those HEV-IgG positive, 8.23 % (60/729; 95 % CI: 6.30-10.5) were HEV-IgM positive. Of the IgM-positive samples, 2 were HEV-RNA positive (3.39 %; 95 % CI: 0.40-11.7), and 1 was HEV-Ag positive (1.69 %; 95 % CI: 0.04-9.09). In addition, HEV-IgG seroprevalence was associated with age and nationality, with the highest seroprevalence in participants from Egypt (IgG 60.0 %; IgM 5.56 %), Pakistan (IgG 59.0 %; IgM 2.24 %), Nepal (IgG 29.3 %; IgM 2.70 %), Bangladesh (IgG 27.8 %; IgM 2.45 %), and India (IgG 23.9 %; IgM 2.43 %). Conclusion In this study, we showed that the seroprevalence of HEV among CMWs was slightly higher than what was previously reported among the urban population in Qatar (2013-2016).
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, 2713, Qatar
| | | | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Patrick Tang
- Division of Microbiology, Sidra Medicine, Doha, 26999, Qatar
| | - Houssein H. Ayoub
- Mathematics Program, Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Makiyeh Khalili
- Department of Laboratory Medicine, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Peter V. Coyle
- Department of Pediatrics, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
5
|
El-Mokhtar MA, Kamel AM, El-Sabaa EMW, Mandour SA, Abdelmohsen AS, Moussa AM, Salama EH, Aboulfotuh S, Abdel-Wahid L, Abdel Aziz EM, Azoz NMA, Sayed IM, Elkhawaga AA. Evidence of a Link between Hepatitis E Virus Exposure and Glomerulonephritis Development. Viruses 2023; 15:1379. [PMID: 37376678 DOI: 10.3390/v15061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses can trigger glomerulonephritis (GN) development. Hepatitis viruses, especially Hepatitis C virus and Hepatitis B viruses, are examples of the viruses that trigger GN initiation or progression. However, the proof of a correlation between GN and Hepatitis E virus infection is not clear. Some studies confirmed the development of GN during acute or chronic HEV infections, mainly caused by genotype 3. While others reported that there is no relation between HEV exposure and GN development. A recent study showed that a reduced glomerular filtration rate was developed in 16% of acute HEV genotype 1 (HEV-1) infections that returned to normal during recovery. HEV-1 is endemic in Egypt with a high seroprevalence among villagers and pregnant women. There is no available data about a link between HEV and GN in Egypt. METHODS GN patients (n = 43) and matched healthy subjects (n = 36) enrolled in Assiut University hospitals were included in this study. Blood samples were screened for hepatotropic pathogens. Tests for HEV markers such as HEV RNA and anti-HEV antibodies (IgM and IgG) were performed. Laboratory parameters were compared in HEV-seropositive and HEV-seronegative GN patients. RESULTS Anti-HEV IgG was detected in 26 (60.5%) out of 43 GN patients. HEV seroprevalence was significantly higher in GN than in healthy controls, suggesting that HEV exposure is a risk factor for GN development. None of the GN patients nor the healthy subjects were positive for anti-HEV IgM or HEV RNA. There was no significant difference between seropositive and seronegative GN patients in terms of age, gender, albumin, kidney function profiles, or liver transaminases. However, anti-HEV IgG positive GN patients had higher bilirubin levels than anti-HEV IgG negative GN patients. HEV-seropositive GN patients had a significantly elevated AST level compared to HEV-seropositive healthy subjects. CONCLUSION exposure to HEV infection could be complicated by the development of GN.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ayat M Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M W El-Sabaa
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Sahar A Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Ahmed Shawkat Abdelmohsen
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Abdelmajeed M Moussa
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Eman H Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Essam M Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Mostafa A Azoz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
6
|
Bhise N, Agarwal M, Thakur N, Akshay PS, Cherian S, Lole K. Repurposing of artesunate, an antimalarial drug, as a potential inhibitor of hepatitis E virus. Arch Virol 2023; 168:147. [PMID: 37115342 PMCID: PMC10141844 DOI: 10.1007/s00705-023-05770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Hepatitis E virus (HEV) is endemic in several developing countries of Africa and Asia. It mainly causes self-limiting waterborne infections, in either sporadic or outbreak form. Recently, HEV was shown to cause chronic infections in immunosuppressed individuals. Ribavirin and interferon, the current off-label treatment options for hepatitis E, have several side effects. Hence, there is a need for new drugs. We evaluated the antimalarial drug artesunate (ART) against genotype 1 HEV (HEV-1) and HEV-3 using a virus-replicon-based cell culture system. ART exhibited 59% and 43% inhibition of HEV-1 and HEV-3, respectively, at the highest nontoxic concentration. Computational molecular docking analysis showed that ART can bind to the helicase active site (affinity score, -7.4 kcal/mol), indicating its potential to affect ATP hydrolysis activity. An in vitro ATPase activity assay of the helicase indeed showed 24% and 55% inhibition at 19.5 µM (EC50) and 78 µM concentrations of ART, respectively. Since ATP is a substrate of RNA-dependent RNA polymerase (RdRp) as well, we evaluated the effect of ART on the enzymatic activity of the viral polymerase. Interestingly, ART showed 26% and 40% inhibition of the RdRp polymerase activity at 19.5 µM and 78 µM concentrations of ART, respectively. It could be concluded from these findings that ART inhibited replication of both HEV-1 and HEV-3 by directly targeting the activities of the viral enzymes helicase and RdRp. Considering that ART is known to be safe in pregnant women, we think this antimalarial drug deserves further evaluation in animal models.
Collapse
Affiliation(s)
- Neha Bhise
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Megha Agarwal
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, Dr. Ambedkar Road, Pune, India
| | - Nidhi Thakur
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - P S Akshay
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, India.
| | - Kavita Lole
- Hepatitis Group, ICMR-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
7
|
Gabrielli F, Alberti F, Russo C, Cursaro C, Seferi H, Margotti M, Andreone P. Treatment Options for Hepatitis A and E: A Non-Systematic Review. Viruses 2023; 15:v15051080. [PMID: 37243166 DOI: 10.3390/v15051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis A and hepatitis E are relatively common causes of liver disease. Both viruses are mainly transmitted through the faecal-oral route and, consequently, most outbreaks occur in countries with poor sanitation. An important role of the immune response as the driver of liver injury is also shared by the two pathogens. For both the hepatitis A (HAV) and hepatitis E (HEV) viruses, the clinical manifestations of infection mainly consist of an acute disease with mild liver injury, which results in clinical and laboratory alterations that are self-limiting in most cases. However, severe acute disease or chronic, long-lasting manifestations may occur in vulnerable patients, such as pregnant women, immunocompromised individuals or those with pre-existing liver disease. Specifically, HAV infection rarely results in fulminant hepatitis, prolonged cholestasis, relapsing hepatitis and possibly autoimmune hepatitis triggered by the viral infection. Less common manifestations of HEV include extrahepatic disease, acute liver failure and chronic HEV infection with persistent viraemia. In this paper, we conduct a non-systematic review of the available literature to provide a comprehensive understanding of the state of the art. Treatment mainly consists of supportive measures, while the available evidence for aetiological treatment and additional agents in severe disease is limited in quantity and quality. However, several therapeutic approaches have been attempted: for HAV infection, corticosteroid therapy has shown outcome improvement, and molecules, such as AZD 1480, zinc chloride and heme oxygenase-1, have demonstrated a reduction in viral replication in vitro. As for HEV infection, therapeutic options mainly rely on the use of ribavirin, and some studies utilising pegylated interferon-alpha have shown conflicting results. While a vaccine for HAV is already available and has led to a significant reduction in the prevalence of the disease, several vaccines for HEV are currently being developed, with some already available in China, showing promising results.
Collapse
Affiliation(s)
- Filippo Gabrielli
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Department of Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alberti
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Cristina Russo
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carmela Cursaro
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Hajrie Seferi
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Marzia Margotti
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Pietro Andreone
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Division of Internal Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Postgraduate School of Allergology and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|
8
|
Sayed IM, Abdelwahab SF. Is Hepatitis E Virus a Neglected or Emerging Pathogen in Egypt? Pathogens 2022; 11:1337. [PMID: 36422589 PMCID: PMC9697431 DOI: 10.3390/pathogens11111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Though Egypt ranks among the top countries for viral hepatitis and death-related liver disease, Hepatitis E virus (HEV) is a neglected pathogen. Living in villages and rural communities with low sanitation, use of underground well water and contact with animals are the main risk factors for HEV infection. Domestic animals, especially ruminants and their edible products, are one source of infection. Contamination of water by either human or animal stools is the main route of infection. In addition, HEV either alone or in coinfection with other hepatotropic viruses has been recorded in Egyptian blood donors. HEV seropositivity among Egyptian villagers was 60-80%, especially in the first decade of life. Though HEV seropositivity is the highest among Egyptians, HEV infection is not routinely diagnosed in Egyptian hospitals. The initial manifestations of HEV among Egyptians is a subclinical infection, although progression to fulminant hepatic failure has been recorded. With the improvement in serological and molecular approaches and increasing research on HEV, it is becoming clear that HEV represents a threat for Egyptians and preventive measures should be considered to reduce the infection rate and possible complications.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Characteristics and outcomes of acute hepatitis of unknown etiology in Egypt: first report of adult adenovirus-associated hepatitis. Infection 2022:10.1007/s15010-022-01945-1. [DOI: 10.1007/s15010-022-01945-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Purpose
Several outbreaks of acute hepatitis of unknown etiology (AHUE) in children were reported in 2022 in many countries, with adenovirus identified as the etiological agent in most of them. We aimed to evaluate the characteristics and outcomes of AHUE cases in Egypt.
Methodology
Hospitalized patients with acute hepatitis were included in the study. Drug-induced, alcoholic hepatitis, autoimmune hepatitis, and Wilson’s disease were identified either by medical history or by routine laboratory diagnosis. Molecular and serological approaches were used to investigate common viral causes of hepatitis, such as hepatitis A–E viruses, cytomegalovirus, Epstein–Barr virus, herpes simplex viruses (HSV1/2), adenovirus, parvovirus B19, and coxsackie virus.
Results
A total of 42 patients were recruited and divided into two groups: 24 cases of unknown hepatitis after excluding the common causes and 18 cases of known hepatitis. About two-thirds of the patients were male (61.9%), and the mean age was 34.55 ± 16.27 years. Jaundice, dark urine, abdominal pain and diarrhea were recorded at a higher incidence in group 1, while jaundice and fever were frequent in group 2. Fulminant hepatitis occurred in 28.6% of the cases, but the two groups did not differ significantly in terms of patient outcome, duration of hospitalization, ascites, and development of fulminant hepatitis. Adenovirus was detected in five cases (20.8%) in group 1, and one case co-infecting with hepatitis E virus in group 2. Herpes simplex virus 1/2, coxsackie virus, and parvovirus B19 were not detected in any case, while etiologies of 75% of the cases were still not confirmed. One out of the six adenovirus-infected patients died. The outcome significantly correlated with the severity of the liver disease.
Conclusion
This is the first report describing etiologies and characteristics of AHUE cases in Egypt, and interestingly, adenovirus was detected in adults. Further studies are required to determine the prevalence of this newly emerging viral hepatitis pathogens.
Collapse
|
10
|
El-Mokhtar MA, Sayed IM, Kamel AM, Mesalam AA, Elgohary EA, Khalaf KAB, Adel S, Elfadl AA, Khalifa WA, Ramadan HKA. The First Report of Coxiella burnetii as a Potential Neglected Pathogen of Acute Hepatitis of Unknown Causes in Egypt. Microorganisms 2022; 10:2168. [PMID: 36363760 PMCID: PMC9693106 DOI: 10.3390/microorganisms10112168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 01/13/2024] Open
Abstract
The World Health Organization (WHO) recently alerted the emergence of new pathogens causing acute hepatitis in children across several countries. This new situation directs us to the screening of neglected pathogens that cause acute hepatitis. Q-fever is a zoonotic disease, caused by Coxiella burnetii. Although a high seroprevalence of Coxiella burnetii was recorded in animals present in Egypt, Q-fever is still a neglected disease, and the diagnosis of Q-fever is not routinely performed in Egyptian hospitals. In this study, we performed a retrospective assessment for Coxiella burnetii in cases of hepatitis of unknown causes (HUC) enrolled in Assiut University hospitals, in Egypt. Out of 64 samples of HUC, 54 samples were negative for all hepatitis markers, labeled as acute hepatitis of unknown etiology (AHUE), and 10 samples tested positive for adenovirus and Hepatitis E virus (HEV). Q-fever was detected in 3 out of 54 (5.6%) of AHUE, and one sample was confirmed as coinfection of HEV/Q-fever. Jaundice was the most common clinical symptom developed in the patients. In conclusion, Coxiella burnetii was found to be a potential cause of acute hepatitis in HUC. The diagnosis of Q-fever should be considered in acute hepatitis cases in Egyptian hospitals.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ayat M. Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Cairo 12622, Egypt
| | - Elsayed A. Elgohary
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Khaled Abo bakr Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Sara Adel
- Clinical Pathology Department, Faculty of Medicine Al-Azhar University-Assiut Branch, Assiut 71515, Egypt
| | - Azza Abo Elfadl
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Walaa A. Khalifa
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
11
|
Sayed IM, Karam-Allah Ramadan H, Hafez MHR, Elkhawaga AA, El-Mokhtar MA. Hepatitis E virus (HEV) open reading frame 2: Role in pathogenesis and diagnosis in HEV infections. Rev Med Virol 2022; 32:e2401. [PMID: 36209386 DOI: 10.1002/rmv.2401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Hepatitis E virus (HEV) infection occurs worldwide. The HEV genome includes three to four open reading frames (ORF1-4). ORF1 proteins are essential for viral replication, while the ORF3 protein is an ion channel involved in the exit of HEV from the infected cells. ORF2 proteins form the viral capsid required for HEV invasion and assembly. They also suppress interferon production and inhibit antibody-mediated neutralisation of HEV, allowing the virus to hijack the host immune response. ORF2 is the only detectable viral protein in the human liver during HEV infection and it is secreted in the plasma, stool, and urine of HEV-infected patients, making it a reliable diagnostic marker. The plasma HEV ORF2 antigen level can predict the outcome of HEV infections. Hence, monitoring HEV ORF2 antigen levels may be useful in assessing the efficacy of anti-HEV therapy. The ORF2 antigen is immunogenic and includes epitopes that can induce neutralising antibodies; therefore, it is a potential HEV vaccine candidate. In this review, we highlighted the different forms of HEV ORF2 protein and their roles in HEV pathogenesis, diagnosis, monitoring the therapeutic efficacy, and vaccine development.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud H R Hafez
- International Scholar, African Leadership Academy, Johannesburg, South Africa
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
12
|
Sayed IM, El-Mokhtar MA. Are ruminants and their products potential sources of human hepatitis E virus infection? Future Virol 2021. [DOI: 10.2217/fvl-2021-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
13
|
El-Mokhtar MA, Ramadan HKA, Thabet MM, Abd-Elkader AS, Fouad M, Sallam MM, Elgohary EA, Abd El-Hafeez AA, Mohamed ME, Sayed IM. The Unmet Needs of Hepatitis E Virus Diagnosis in Suspected Drug-Induced Liver Injury in Limited Resource Setting. Front Microbiol 2021; 12:737486. [PMID: 34690979 PMCID: PMC8533821 DOI: 10.3389/fmicb.2021.737486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Currently, there are no specific biomarkers for drug-induced liver injury (DILI), and the diagnosis of DILI is based mainly on the exclusion of other causes of liver dysfunction and the recognition of potential causative drugs. Hepatitis E virus (HEV) diagnosis is not routinely enrolled in many countries, and HEV infection could be misdiagnosed as DILI. Methodology: We retrospectively analyzed plasma samples (n = 80) collected from suspected DILI for HEV markers such as anti-HEV IgM, anti-HEV IgG, and HEV RNA. Anti-HEV antibodies were assessed using commercial ELISA kits. HEV RNA was tested by RT-qPCR targeting HEV ORF2/3, the receiver operating characteristic (ROC) curve was plotted, and a putative threshold for liver function parameters was determined. Results: Out of 80 samples, 12 samples were positive for anti-HEV IgM and anti-HEV IgG, and HEV RNA was detected in seven samples. The median viral load was 3.46 × 103 IU/ml, and the isolated viruses belonged to HEV genotype 1. The level of liver enzymes such as alanine transaminase (ALT) and aspartate transaminase (AST), but not alkaline phosphatase (ALP), was significantly higher in HEV confirmed cases than in non-HEV confirmed cases. We identified a plasma ALT level of at least 415.5 U/L and AST level of at least 332 U/L; ALT/ALP ratio of at least 5.08 could be used as a guide for the patients diagnosed as DILI to be tested for HEV infection. The previous liver function parameters showed high sensitivity and good specificity. Conclusion: Hepatitis E virus was detected in suspected DILI cases. The diagnosis of DILI is not secure until HEV testing is done. Liver function parameters can be used as a guide for HEV testing in suspected DILI cases in countries with limited resources.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Asyut, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Marwa M Thabet
- Department of Clinical pathology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Alaa S Abd-Elkader
- Department of Clinical pathology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Magdy Fouad
- Hepato-Gastroenterology Unit, Tropical Medicine Department, Faculty of Medicine, El-Minia University, Minya, Egypt
| | - Mohammad M Sallam
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed A Elgohary
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mona Embarek Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
14
|
Yadav KK, Kenney SP. Hepatitis E Virus Immunopathogenesis. Pathogens 2021; 10:pathogens10091180. [PMID: 34578211 PMCID: PMC8465319 DOI: 10.3390/pathogens10091180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.
Collapse
|
15
|
Kupke P, Werner JM. Hepatitis E Virus Infection-Immune Responses to an Underestimated Global Threat. Cells 2021; 10:cells10092281. [PMID: 34571931 PMCID: PMC8468229 DOI: 10.3390/cells10092281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for developing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised patients such as transplant recipients with more frequent severe courses. Unfortunately, besides reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is currently no specific anti-viral treatment to prevent disease progression. So far, research on involved immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples especially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain that the outcome of HEV-infected patients correlates with the strength of the proceeding immune response. Several lymphoid cells have been identified in contributing either to disease progression or achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying fulminant courses are poorly understood. However, liver biopsies indicate the involvement of cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid immune response against HEV and point out questions that remain unanswered regarding this underestimated global threat.
Collapse
|
16
|
Sayed IM, Abd Elhameed ZA, Abd El-Kareem DM, Abdel-Malek MAY, Ali ME, Ibrahim MA, Sayed AAR, Khalaf KAB, Abdel-Wahid L, El-Mokhtar MA. Hepatitis E Virus Persistence and/or Replication in the Peripheral Blood Mononuclear Cells of Acute HEV-Infected Patients. Front Microbiol 2021; 12:696680. [PMID: 34335528 PMCID: PMC8322848 DOI: 10.3389/fmicb.2021.696680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) causes about 14 million infections with 300,000 deaths and 5,200 stillbirths worldwide annually. Extrahepatic manifestations are reported with HEV infections, such as renal, neurological, and hematological disorders. Recently, we reported that stool-derived HEV-1 replicates efficiently in human monocytes and macrophages in vitro. However, another study reports the presence of viral RNA but no evidence of replication in the PBMCs of acute hepatitis E (AHE) patients. Therefore, the replication of HEV in PBMCs during AHE infection is not completely understood. METHODS PBMCs were isolated from AHE patients (n = 17) enrolled in Assiut University Hospitals, Egypt. The viral load, positive (+) and negative (-) HEV RNA strands and viral protein were assessed. The gene expression profile of PBMCs from AHE patients was assessed. In addition, the level of cytokines was measured in the plasma of the patients. RESULTS HEV RNA was detected in the PBMCs of AHE patients. The median HEV load in the PBMCs was 1.34 × 103 IU/ml. A negative HEV RNA strand and HEV open reading frame 2 protein were recorded in 4/17 (23.5%) of the PBMCs. Upregulation of inflammatory transcripts and increased plasma cytokines were recorded in the AHE patients compared with healthy individuals with significantly elevated transcripts and plasma cytokines in the AHE with detectable (+) and (-) RNA strands compared with the AHE with the detectable (+) RNA strand only. There was no significant difference in terms of age, sex, and liver function tests between AHE patients with detectable (+) and (-) RNA strands in the PBMCs and AHE patients with the (+) RNA strand only. CONCLUSION Our study shows evidence for in vivo HEV persistence and replication in the PBMCs of AHE patients. The replication of HEV in the PBMCs was associated with an enhanced immune response, which could affect the pathogenesis of HEV.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | | | - Doaa M. Abd El-Kareem
- Department of Clinical Pathology, Faculty of Medicine Assiut University, Assiut, Egypt
| | | | - Mohamed E. Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Maggie A. Ibrahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Khaled Abo bakr Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
17
|
Khuroo MS. Hepatitis E and Pregnancy: An Unholy Alliance Unmasked from Kashmir, India. Viruses 2021; 13:1329. [PMID: 34372535 PMCID: PMC8310059 DOI: 10.3390/v13071329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The adverse relationship between viral hepatitis and pregnancy in developing countries had been interpreted as a reflection of retrospectively biased hospital-based data collection by the West. However, the discovery of hepatitis E virus (HEV) as the etiological agent of an epidemic of non-A, non-B hepatitis in Kashmir, and the documenting of the increased incidence and severity of hepatitis E in pregnancy via a house-to-house survey, unmasked this unholy alliance. In the Hepeviridae family, HEV-genotype (gt)1 from genus Orthohepevirus A has a unique open reading frame (ORF)4-encoded protein which enhances viral polymerase activity and viral replication. The epidemics caused by HEV-gt1, but not any other Orthohepevirus A genotype, show an adverse relationship with pregnancy in humans. The pathogenesis of the association is complex and at present not well understood. Possibly multiple factors play a role in causing severe liver disease in the pregnant women including infection and damage to the maternal-fetal interface by HEV-gt1; vertical transmission of HEV to fetus causing severe fetal/neonatal hepatitis; and combined viral and hormone related immune dysfunction of diverse nature in the pregnant women, promoting viral replication. Management is multidisciplinary and needs a close watch for the development and management of acute liver failure. (ALF). Preliminary data suggest beneficial maternal outcomes by early termination of pregnancy in patients with lower grades of encephalopathy.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
18
|
Hepatitis E Outbreak in the Central Part of Italy Sustained by Multiple HEV Genotype 3 Strains, June-December 2019. Viruses 2021; 13:v13061159. [PMID: 34204376 PMCID: PMC8235070 DOI: 10.3390/v13061159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
In European countries, autochthonous acute hepatitis E cases are caused by Hepatitis E Virus (HEV) genotype 3 and are usually observed as sporadic cases. In mid/late September 2019, a hepatitis E outbreak caused by HEV genotype 3 was recognized by detection of identical/highly similar HEV sequences in some hepatitis E cases from two Italian regions, Abruzzo and Lazio, with most cases from this latter region showing a link with Abruzzo. Overall, 47 cases of HEV infection were finally observed with onsets from 8 June 2019 to 6 December 2019; they represent a marked increase as compared with just a few cases in the same period of time in the past years and in the same areas. HEV sequencing was successful in 35 cases. The phylogenetic analysis of the viral sequences showed 30 of them grouped in three distinct molecular clusters, termed A, B, and C: strains in cluster A and B were of subtype 3e and strains in cluster C were of subtype 3f. No strains detected in Abruzzo in the past years clustered with the strains involved in the present outbreak. The outbreak curve showed partially overlapped temporal distribution of the three clusters. Analysis of collected epidemiological data identified pork products as the most likely source of the outbreak. Overall, the findings suggest that the outbreak might have been caused by newly and almost simultaneously introduced strains not previously circulating in this area, which are possibly harbored by pork products or live animals imported from outside Abruzzo. This possibility deserves further studies in this area in order to monitor the circulation of HEV in human cases as well as in pigs and wild boars.
Collapse
|