1
|
Goddard KE, Fountain SJ. Characterisation of neurogenic lipolytic responses in white adipose tissue ex vivo. Br J Pharmacol 2025. [PMID: 39894466 DOI: 10.1111/bph.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/26/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Dysfunction of the autonomic nervous system is associated with cardiovascular dysfunction, including metabolic syndrome and obesity. Understanding mechanisms of neurogenic control of white adipose tissue is key to understanding adipose physiology and pathophysiology, though there is limited research exploring this in adipose tissue using pharmacological tools, as opposed to genetic knockout models. EXPERIMENTAL APPROACH Inguinal white adipose tissue from C57BL/6J mice was used in this study. We used immunocytochemistry to determine tissue innervation and glycerol release assays to quantify lipolysis in adipose tissue and isolated adipocytes. The voltage-gated Na+ channel opener veratridine was used to stimulate nervous activity in tissue ex vivo. The role of neurotransmitters and receptors mediating veratridine-evoked lipolysis in adipose tissue was pharmacologically characterised. KEY RESULTS Veratridine evoked glycerol release in white adipose tissue but not from isolated adipocytes. This release was abolished by tetrodotoxin and propranolol. Veratridine also induced noradrenaline release from white adipose tissue. Veratridine- and noradrenaline-evoked glycerol release was blocked by the β2-adrenoceptor antagonist ICI-118551 but not by the β1-adrenoceptor antagonist CGP 20712A. Purported β3-adrenoceptor antagonists L-748337 and SR59230A stimulated glycerol release from tissue and from isolated adipocytes. Neither L-748337 or SR59230A antagonised veratridine-evoked glycerol release but SR59230A antagonised noradrenaline-evoked glycerol release. We exclude contributions of sensory neuropeptides and the autonomic neurotransmitters neuropeptide Y and ATP. CONCLUSION AND IMPLICATIONS Neurogenic lipolytic responses can be measured in white adipose tissue ex vivo using veratridine to stimulate nerve activity. The lipolytic responses are mediated by β2-adrenoceptor activation. This study provides the first evidence of neurogenic lipolysis in tissue ex vivo.
Collapse
Affiliation(s)
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
2
|
Ju HY, Song SE, Shin SK, Jeong GS, Cho HC, Im SS, Song DK. Fulvic acid inhibits the differentiation of 3T3-L1 adipocytes by activating the Ca 2+/CaMKⅡ/AMPK pathway. Biochem Biophys Res Commun 2025; 743:151173. [PMID: 39673972 DOI: 10.1016/j.bbrc.2024.151173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Type 2 diabetes increases the risk of developing obesity. Although fulvic acid alleviates back fat thickness in pigs, the mechanism underlying its anti-obesity effect remains unclear. Therefore, we investigated the anti-obesity mechanism of fulvic acid using 3T3-L1 adipocytes. We examined the effects of fulvic acid on adipocyte differentiation, cell viability, and lipid accumulation using molecular techniques. Fulvic acid treatment significantly decreased intracellular lipid accumulation in 3T3-L1 cells during the differentiation compared with that in the control group. Western blotting revealed fulvic acid-induced downregulated expression of the adipocyte differentiation-related markers peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and sterol regulatory element-binding protein 1. The fulvic acid treatment decreased the expression of the lipid uptake-related markers fatty acid-binding protein 4 and the cluster of differentiation 36 in 3T3-L1 cells. Moreover, fulvic acid significantly increased cytosolic Ca2+ concentration via Ca2+ sequestration from the endoplasmic reticulum, enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, and upregulated AMP-activated protein kinase (AMPK), thereby reducing adipocyte differentiation. Conclusively, fulvic acid attenuates adipocyte differentiation by activating the Ca2+/CaMKⅡ/AMPK pathway, suggesting its anti-obesity potential.
Collapse
Affiliation(s)
- Hyeon Yeong Ju
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seung-Eun Song
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehak-ro, Pook-gu, Daegu, 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ho-Chan Cho
- Department of Endocrinology, Internal Medicine, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
3
|
Kumar S, Acharya TK, Kumar S, Mahapatra P, Chang YT, Goswami C. TRPV4 modulation affects mitochondrial parameters in adipocytes and its inhibition upregulates lipid accumulation. Life Sci 2024; 358:123130. [PMID: 39413904 DOI: 10.1016/j.lfs.2024.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Enhanced lipid-droplet formation by adipocytes is a complex process and relevant for obesity. Using knock-out animals, involvement of TRPV4, a thermosensitive ion channel in the obesity has been proposed. However, exact role/s of TRPV4 in adipogenesis and obesity remain unclear and contradictory. Here we used in vitro culture of 3T3L-1 preadipocytes and primary murine-mesenchymal stem cells as model systems, and a series of live-cell-imaging to analyse the direct involvement of TRPV4 exclusively at the adipocytes that are free from other complex signalling as expected in in-vivo condition. Functional TRPV4 is endogenously expressed in pre- and in mature-adipocytes. Pharmacological inhibition of TRPV4 enhances differentiation of preadipocytes to mature adipocytes, increases expression of adipogenic and lipogenic genes, enhances cholesterol, promotes bigger lipid-droplet formation and reduces the lipid droplet temperature. On the other hand, TRPV4 activation enhanced the browning of adipocytes with increased UCP-1 levels. TRPV4 regulates mitochondrial-temperature, Ca2+-load, ATP, superoxides, cardiolipin, membrane potential (ΔΨm), and lipid-mitochondrial contact sites. TRPV4 also regulates the extent of actin fibres, affecting the cells mechanosensing ability. These findings link TRPV4-mediated mitochondrial changes in the context of lipid-droplet formation involved in adipogenesis and confirm the direct involvement of TRPV4 in adipogenesis. These findings may have broad implication in treating adipogenesis and obesity in future.
Collapse
Affiliation(s)
- Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satish Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Xu J, Huang Z, Shi S, Xia J, Chen G, Zhou K, Zhang Y, Bian C, Shen Y, Yin X, Lu L, Gu H. Glial maturation factor-β deficiency prevents oestrogen deficiency-induced bone loss by remodelling the actin network to suppress adipogenesis of bone marrow mesenchymal stem cells. Cell Death Dis 2024; 15:829. [PMID: 39543090 PMCID: PMC11564563 DOI: 10.1038/s41419-024-07234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
An imbalance between the adipogenesis and osteogenesis of bone marrow mesenchymal stem cells (BMSCs) is considered the basic pathogenesis of osteoporosis. Although actin cytoskeleton remodelling plays a crucial role in the differentiation of BMSCs, the role of actin cytoskeleton remodelling in the adipogenesis of BMSCs and postmenopausal osteoporosis (PMOP) has remained elusive. Glia maturation factor-beta (GMFB) has a unique role in remodelling the polymerization/depolymerization cycles of actin. We observed that GMFB expression was increased in bone tissue from both ovariectomized (OVX) rats and PMOP patients. GMFB knockout inhibited the accumulation of bone marrow adipocytes and increased bone mass in the OVX rat model. The inhibition of adipocyte differentiation in GMFB knockout BMSCs was mediated via actin cytoskeleton remodelling and the Ca2+-calcineurin-NFATc2 axis. Furthermore, we found that GMFB shRNA treatment in vivo had favourable effects on osteoporosis induced by OVX. Together, these findings suggest a pathological association of the GMFB with PMOP and highlight the potential of the GMFB as a therapeutic target for osteoporosis patients.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Si Shi
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Jiangni Xia
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yiming Zhang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Chong Bian
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yuqin Shen
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Lixia Lu
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China.
- Department of Biochemistry and Molecular Biology, Tongji University School of medicine, Shanghai, PR China.
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. A multitissue transcriptomic analysis reveals a potential mechanism whereby Brevibacillus laterosporus S62-9 promotes broiler growth. Poult Sci 2024; 103:104050. [PMID: 39106700 PMCID: PMC11343061 DOI: 10.1016/j.psj.2024.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/09/2024] Open
Abstract
Brevibacillus laterosporus S62-9 has been shown to improve broiler growth performance and immunity. In the present study, we aimed to evaluate the effects of B. laterosporus S62-9 on the immunity and lipid metabolism of broilers by means of transcriptomic analysis. A total of 160 1-day-old broilers were randomly allocated to a S62-9 group, the diet of which was supplemented with 106 CFU/g B. laterosporus S62-9 daily, and a control group, which was not. After 42 d of feeding, the broilers in the S62-9 group had higher body mass (7.2%) and feed conversion ratio (5.19%) than the control group. Supplementation with B. laterosporus S62-9 resulted in lower serum total cholesterol and low-density lipoprotein-cholesterol concentrations and higher high-density lipoprotein-cholesterol concentrations. An analysis of the fatty acid composition of the broiler's thigh muscles revealed that the proportions of the unsaturated fatty acids myristoleic acid (C14:1) and arachidonic acid (C20:1) were higher for birds in the S62-9 group. Transcriptomic analysis also showed an upregulation of immunity-related genes in the S62-9 group. Gene Ontology functional enrichment analysis showed that the mitogen-activated protein kinase pathway was enriched in the liver, the defense response was enriched in the duodenum, and immunoglobulin-related entries were enriched in the jejunum of the S62-9 group. Furthermore, the expression of key genes involved in unsaturated fatty acid synthesis (SCD, encoding stearoyl-CoA desaturase) and fatty acid metabolism (HACD2, encoding 3-hydroxyacyl-CoA dehydratase 2) was upregulated in the liver, and the expression of genes associated with fat biosynthesis and accumulation, such as PLIN1, encoding perilipin 1, and FABP4, encoding fatty acid binding protein 4, was upregulated in the ileum of the birds in the S62-9 group. In summary, supplementation with B. laterosporus S62-9 could improve immune defense and the fatty acid metabolism of broiler chickens, thereby enhancing their disease resistance and promoting growth and development.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
6
|
Hanscom M, Morales-Soto W, Watts SW, Jackson WF, Gulbransen BD. Innervation of adipocytes is limited in mouse perivascular adipose tissue. Am J Physiol Heart Circ Physiol 2024; 327:H155-H181. [PMID: 38787382 PMCID: PMC11380956 DOI: 10.1152/ajpheart.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Wilmarie Morales-Soto
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
7
|
Blade SP, Falkowski DJ, Bachand SN, Pagano SJ, Chin L. Mechanobiology of Adipocytes. BIOLOGY 2024; 13:434. [PMID: 38927314 PMCID: PMC11200640 DOI: 10.3390/biology13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The growing obesity epidemic necessitates increased research on adipocyte and adipose tissue function and disease mechanisms that progress obesity. Historically, adipocytes were viewed simply as storage for excess energy. However, recent studies have demonstrated that adipocytes play a critical role in whole-body homeostasis, are involved in cell communication, experience forces in vivo, and respond to mechanical stimuli. Changes to the adipocyte mechanical microenvironment can affect function and, in some cases, contribute to disease. The aim of this review is to summarize the current literature on the mechanobiology of adipocytes. We reviewed over 100 papers on how mechanical stress is sensed by the adipocyte, the effects on cell behavior, and the use of cell culture scaffolds, particularly those with tunable stiffness, to study adipocyte behavior, adipose cell and tissue mechanical properties, and computational models. From our review, we conclude that adipocytes are responsive to mechanical stimuli, cell function and adipogenesis can be dictated by the mechanical environment, the measurement of mechanical properties is highly dependent on testing methods, and current modeling practices use many different approaches to recapitulate the complex behavior of adipocytes and adipose tissue. This review is intended to aid future studies by summarizing the current literature on adipocyte mechanobiology.
Collapse
Affiliation(s)
- Sean P. Blade
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Dylan J. Falkowski
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Sarah N. Bachand
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Steven J. Pagano
- Department of Mechanical Engineering, Widener University, Chester, PA 19013, USA;
| | - LiKang Chin
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| |
Collapse
|
8
|
Leachman J, Creeden J, Turner M, Ahmed N, Dalmasso C, Loria AS. Sex-specific sequels of early life stress on serine/threonine kinase activity in visceral adipose tissue from obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587852. [PMID: 38617246 PMCID: PMC11014506 DOI: 10.1101/2024.04.03.587852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Adverse childhood experiences (ACEs) are an established independent risk factor for chronic disease including obesity and hypertension; however, only women exposed to multiple ACEs show a positive relationship with BMI. Our lab has reported that maternal separation and early weaning (MSEW), a mouse model of early life stress, induces sex-specific mechanisms underlying greater blood pressure response to a chronic high fat diet (HF). Specifically, female MSEW mice fed a HF display exacerbated perigonadal white adipose tissue (pgWAT) expansion and a metabolic syndrome-like phenotype compared to control counterparts, whereas hypertension is caused by sympathoactivation in male MSEW mice. Thus, this study aimed to determine whether there is a sex-specific serine/threonine kinase (STKA) activity in pgWAT adipose tissue associated with early life stress. Frozen pgWAT was collected from MSEW and control, male and female mice fed a HF to assess STKA activity using the Pamstation12 instrument. Overall, MSEW induces significant reduction of 7 phosphokinases (|Z| >=1.5) in females (QIK, MLK, PKCH, MST, STE7, PEK, FRAY) and 5 in males (AKT, SGK, P38, MARK, CDK), while 15 were downregulated in both sexes (DMPK, PKA, PKG, RSK, PLK, DYRK, NMO, CAMK1, JNK, PAKA, RAD53, ERK, PAKB, PKD, PIM, AMPK). This data provides new insights into the sex-specific dysregulation of the molecular network controlling cellular phosphorylation signals in visceral adipose tissue and identifies possible target phosphokinases implicated in adipocyte hypertrophy as a result of exposure to early life stress. Identifying functional metabolic signatures is critical to elucidate the underlying molecular mechanisms behind the sex-specific obesity risk associated with early life stress.
Collapse
Affiliation(s)
- Jacqueline Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY 405362
| | - Justin Creeden
- The Department of Neurosciences at the University of Toledo Medical Center
| | - Meghan Turner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY 405362
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY 405362
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY 405362
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY 405362
| |
Collapse
|
9
|
García-Sancha N, Corchado-Cobos R, Blanco-Gómez A, Cunillera Puértolas O, Marzo-Castillejo M, Castillo-Lluva S, Alonso-López D, De Las Rivas J, Pozo J, Orfao A, Valero-Juan L, Patino-Alonso C, Perera D, Venkitaraman AR, Mao JH, Chang H, Mendiburu-Eliçabe M, González-García P, Caleiras E, Peset I, Cenador MBG, García-Criado FJ, Pérez-Losada J. Cabergoline as a Novel Strategy for Post-Pregnancy Breast Cancer Prevention in Mice and Human. RESEARCH SQUARE 2024:rs.3.rs-3854490. [PMID: 38405932 PMCID: PMC10889045 DOI: 10.21203/rs.3.rs-3854490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.
Collapse
Affiliation(s)
| | | | | | - Oriol Cunillera Puértolas
- Unitat de Suport a la Recerca Metropolitana Sud, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), L'Hospitalet de LL
| | - Mercè Marzo-Castillejo
- Unitat de Suport a la Recerca - IDIAP Jordi Gol. Direcció d'Atenció Primària Costa de Ponent, Institut Català de la Salut
| | | | - Diego Alonso-López
- Cancer Research Center (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL)
| | - Javier De Las Rivas
- Cancer Research Center (IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Cientificas & University of Salamanca
| | - Julio Pozo
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biolog
| | | | - Luis Valero-Juan
- Departamento de Ciencias Biomédicas y del Diagnóstico. Universidad de Salamanca
| | | | - David Perera
- The Medical Research Council Cancer Unit, University of Cambridge
| | | | | | | | | | | | | | - Isabel Peset
- Spanish National Cancer Research Centre (CNIO), Madrid
| | | | | | | |
Collapse
|
10
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Reis HBD, Carvalho ME, Espigolan R, Poleti MD, Ambrizi DR, Berton MP, Ferraz JBS, de Mattos Oliveira EC, Eler JP. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites 2023; 14:6. [PMID: 38276296 PMCID: PMC10818672 DOI: 10.3390/metabo14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
The meat market has enormous importance for the world economy, and the quality of the product offered to the consumer is fundamental for the success of the sector. In this study, we analyzed a database which contained information on 2470 animals from a commercial farm in the state of São Paulo, Brazil. Of this total, 2181 animals were genotyped, using 777,962 single-nucleotide polymorphisms (SNPs). After quality control analysis, 468,321 SNPs provided information on the number of genotyped animals. Genome-wide association analyses (GWAS) were performed for the characteristics of the rib eye area (REA), subcutaneous fat thickness (SFT), shear force at 7 days' ageing (SF7), and intramuscular fat (IMF), with the aid of the single-step genomic best linear unbiased prediction (ssGBLUP) method, with the purpose of identifying possible genomic windows (~1 Mb) responsible for explaining at least 0.5% of the genetic variance of the traits under analysis (≥0.5%). These genomic regions were used in a gene search and enrichment analyses using MeSH terms. The distributed heritability coefficients were 0.14, 0.20, 0.18, and 0.21 for REA, SFT, SF7, and IMF, respectively. The GWAS results indicated significant genomic windows for the traits of interest in a total of 17 chromosomes. Enrichment analyses showed the following significant terms (FDR ≤ 0.05) associated with the characteristics under study: for the REA, heat stress disorders and life cycle stages; for SFT, insulin and nonesterified fatty acids; for SF7, apoptosis and heat shock proteins (HSP27); and for IMF, metalloproteinase 2. In addition, KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis allowed us to highlight important metabolic pathways related to the studied phenotypes, such as the growth hormone synthesis, insulin-signaling, fatty acid metabolism, and ABC transporter pathways. The results obtained provide a better understanding of the molecular processes involved in the expression of the studied characteristics and may contribute to the design of selection strategies and future studies aimed at improving the productivity of Nellore cattle.
Collapse
Affiliation(s)
- Hugo Borges Dos Reis
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Minos Esperândio Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Rafael Espigolan
- Department of Animal Science and Biological Sciences, Federal University of Santa Maria (UFSM), Av. Independencia, 3751, Palmeira das Missões 98300-000, RS, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Dewison Ricardo Ambrizi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Mariana Piatto Berton
- School of Agricultural and Veterinary Studies (FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Elisângela Chicaroni de Mattos Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| |
Collapse
|
12
|
Wu L, Chen J. Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin) 2023; 17:2267416. [PMID: 37818548 PMCID: PMC10569359 DOI: 10.1080/19336950.2023.2267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Hwang J, Jung HW, Kim KM, Jeong D, Lee JH, Hong JH, Jang WY. Regulation of myogenesis and adipogenesis by the electromagnetic perceptive gene. Sci Rep 2023; 13:21167. [PMID: 38036595 PMCID: PMC10689489 DOI: 10.1038/s41598-023-48360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity has been increasing in many regions of the world, including Europe, USA, and Korea. To manage obesity, we should consider it as a disease and apply therapeutic methods for its treatment. Molecular and therapeutic approaches for obesity management involve regulating biomolecules such as DNA, RNA, and protein in adipose-derived stem cells to prevent to be fat cells. Multiple factors are believed to play a role in fat differentiation, with one of the most effective factor is Ca2+. We recently reported that the electromagnetic perceptive gene (EPG) regulated intracellular Ca2+ levels under various electromagnetic fields. This study aimed to investigate whether EPG could serve as a therapeutic method against obesity. We confirmed that EPG serves as a modulator of Ca2+ levels in primary adipose cells, thereby regulating several genes such as CasR, PPARγ, GLU4, GAPDH during the adipogenesis. In addition, this study also identified EPG-mediated regulation of myogenesis that myocyte transcription factors (CasR, MyoG, MyoD, Myomaker) were changed in C2C12 cells and satellite cells. In vivo experiments carried out in this study confirmed that total weight/ fat/fat accumulation were decreased and lean mass was increased by EPG with magnetic field depending on age of mice. The EPG could serve as a potent therapeutic agent against obesity.
Collapse
Affiliation(s)
- Jangsun Hwang
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Kyung Min Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jin Hyuck Lee
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Li G, Xu X, Yang L, Cai Y, Sun Y, Guo J, Lin Y, Hu Y, Chen M, Li H, Wu S. Exploring the association between circRNA expression and pediatric obesity based on a case-control study and related bioinformatics analysis. BMC Pediatr 2023; 23:561. [PMID: 37957626 PMCID: PMC10642011 DOI: 10.1186/s12887-023-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/21/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Our present study utilized case-control research to explore the relationship between specific circRNAs and pediatric obesity through a literature review and bioinformatics and to predict their possible biological functions, providing ideas for epigenetic mechanism studies of pediatric obesity. METHODS CircRNAs related to pediatric obesity were preliminarily screened by a literature review and qRT-PCR. CircRNA expression in children with obesity (n = 75) and control individuals (n = 75) was confirmed with qRT-PCR in a case-control study. This was followed by bioinformatics analyses, such as GO analysis, KEGG pathway analysis, and ceRNA network construction. Multivariate logistic regression was utilized to analyze the effects of circRNAs on obesity. A receiver operating characteristic (ROC) curve was also drawn to explore the clinical application value of circRNAs in pediatric obesity. RESULTS Has_circ_0046367 and hsa_circ_0000284 were separately validated to be statistically downregulated and upregulated, respectively, in the peripheral blood mononuclear cells of children with obesity and revealed as independent indicators of increased CHD risk [hsa_circ_0046367 (OR = 0.681, 95% CI: 0.480 ~ 0.967) and hsa_circ_0000284 (OR = 1.218, 95% CI: 1.041 ~ 1.424)]. The area under the ROC curve in the combined analysis of hsa_circ_0046367 and hsa_circ_0000284 was 0.706 (95% CI: 0.623 ~ 0.789). Enrichment analyses revealed that these circRNAs were actively involved in neural plasticity mechanisms, cell secretion and signal regulation. CONCLUSION The present research revealed that low expression of hsa_circ_0046367 and high expression of hsa_circ_0000284 are risk factors for pediatric obesity and that neural plasticity mechanisms are closely related to obesity.
Collapse
Affiliation(s)
- Guobo Li
- Department of Child Healthcare Centre, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Xingyan Xu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Le Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yingying Cai
- Department of Developmental and Behavioral Pediatrics, Fujian Children's Hospital, Fujian, 350014, China
| | - Yi Sun
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Jianhui Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yawen Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yuduan Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Mingjun Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Jhun J, Moon J, Kim SY, Cho KH, Na HS, Choi J, Jung YJ, Song KY, Min JK, Cho ML. Rebamipide treatment ameliorates obesity phenotype by regulation of immune cells and adipocytes. PLoS One 2022; 17:e0277692. [PMID: 36574392 PMCID: PMC9794058 DOI: 10.1371/journal.pone.0277692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Se-Young Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary’s Hospital, Bucheon si, Gyeonggi-do, Republic of Korea
- * E-mail: (JKM); (MLC)
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (JKM); (MLC)
| |
Collapse
|
17
|
Growth Hormone Improves Adipose Tissue Browning and Muscle Wasting in Mice with Chronic Kidney Disease-Associated Cachexia. Int J Mol Sci 2022; 23:ijms232315310. [PMID: 36499637 PMCID: PMC9740214 DOI: 10.3390/ijms232315310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cachexia associated with chronic kidney disease (CKD) has been linked to GH resistance. In CKD, GH treatment enhances muscular performance. We investigated the impact of GH on cachexia brought on by CKD. CKD was induced by 5/6 nephrectomy in c57BL/6J mice. After receiving GH (10 mg/kg/day) or saline treatment for six weeks, CKD mice were compared to sham-operated controls. GH normalized metabolic rate, increased food intake and weight growth, and improved in vivo muscular function (rotarod and grip strength) in CKD mice. GH decreased uncoupling proteins (UCP)s and increased muscle and adipose tissue ATP content in CKD mice. GH decreased lipolysis of adipose tissue by attenuating expression and protein content of adipose triglyceride lipase and protein content of phosphorylated hormone-sensitive lipase in CKD mice. GH reversed the increased expression of beige adipocyte markers (UCP-1, CD137, Tmem26, Tbx1, Prdm16, Pgc1α, and Cidea) and molecules implicated in adipose tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in CKD mice. Additionally, GH normalized the molecular markers of processes connected to muscle wasting in CKD, such as myogenesis and muscle regeneration. By using RNAseq, we previously determined the top 12 skeletal muscle genes differentially expressed between mice with CKD and control animals. These 12 genes' aberrant expression has been linked to increased muscle thermogenesis, fibrosis, and poor muscle and neuron regeneration. In this study, we demonstrated that GH restored 7 of the top 12 differentially elevated muscle genes in CKD mice. In conclusion, GH might be an effective treatment for muscular atrophy and browning of adipose tissue in CKD-related cachexia.
Collapse
|
18
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
19
|
Rendon CJ, Flood E, Thompson JM, Chirivi M, Watts SW, Contreras GA. PIEZO1 mechanoreceptor activation reduces adipogenesis in perivascular adipose tissue preadipocytes. Front Endocrinol (Lausanne) 2022; 13:995499. [PMID: 36120469 PMCID: PMC9471253 DOI: 10.3389/fendo.2022.995499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood. In non-PVAT depots, mechanical forces can affect adipogenesis and lipogenic stages in preadipocytes. In tissues exposed to high magnitudes of pressure like bone, the activation of the mechanosensor PIEZO1 induces differentiation of progenitor cells towards osteogenic lineages. PVAT's anatomical location continuously exposes it to forces generated by blood flow that could affect adipogenesis in normotensive and hypertensive states. In this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in PVAT preadipocytes. The hypothesis was tested using pharmacological and mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected from 10-wk old male SD rats (n=15) to harvest preadipocytes that were differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10 µM). Mechanical stretch was applied with the FlexCell System at 12% elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis (MS+, mechanical force applied; MS-, no mechanical force used). Yoda1 reduced adipogenesis by 33% compared with CON and, as expected, increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency compared with MS-. When Piezo1 expression was blocked with siRNA [siPiezo1; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was reversed in siPiezo1 cells but not in NC; in contrast, siPiezo1 did not alter the inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1 activation in PVAT reduces adipogenesis and lipogenesis and provides initial evidence for an adaptive response to excessive mechanical forces in PVAT during hypertension.
Collapse
Affiliation(s)
- C. Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Emma Flood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Janice M. Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Qi Z, Lin J, Gao R, Wu W, Zhang Y, Wei X, Xiao X, Wang H, Peng Y, Clark JM, Park Y, Sun Q. Transcriptome analysis provides insight into deltamethrin-induced fat accumulation in 3T3-L1 adipocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105114. [PMID: 35715053 DOI: 10.1016/j.pestbp.2022.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Previously, deltamethrin (a Type-II pyrethroid) has been reported to increase triglyceride (fat) accumulation in adipocytes, while its underlying molecular mechanism is not fully determined. The aim of this study was to further investigate the molecular mechanisms of deltamethrin induced fat accumulation in murine 3T3-L1 adipocytes. Consistent to previous reports, deltamethrin (10 μM) significantly promoted adipogenesis in 3T3-L1 adipocytes. RNA sequencing (RNA-seq) results showed that 721 differentially expressed genes (DEGs) were identified after deltamethrin treatment, involving in 58 Functional groups of Gene Ontology (GO) and 255 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Several key functional groups regulating adipogenesis, such as fat cell differentiation (Igf1, Snai2, Fgf10, and Enpp1) and cytosolic calcium ion concentration (Nos1, Cxcl1, and Ngf) were significantly enriched. Collectively, these results suggest that the promotion of adipogenesis by deltamethrin was attributed to an obesogenic global transcriptomic response, which provides further understanding of the underlying mechanisms of deltamethrin-induced fat accumulation.
Collapse
Affiliation(s)
- Zexiu Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jie Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Weize Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinyuan Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Huili Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
21
|
MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ 2022; 29:670-686. [PMID: 34663908 PMCID: PMC8901757 DOI: 10.1038/s41418-021-00883-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.
Collapse
|
22
|
Liu X, Zhang Z, Song Y, Xie H, Dong M. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne) 2022; 13:1065263. [PMID: 36714578 PMCID: PMC9874101 DOI: 10.3389/fendo.2022.1065263] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yajie Song
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hengchang Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| | - Meng Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| |
Collapse
|
23
|
Kuan CY, Lin YY, Yang IH, Chen CY, Chi CY, Li CH, Chen ZY, Lin LZ, Yang CC, Lin FH. The Synthesis of Europium-Doped Calcium Carbonate by an Eco-Method as Free Radical Generator Under Low-Intensity Ultrasonic Irradiation for Body Sculpture. Front Bioeng Biotechnol 2021; 9:765630. [PMID: 34869278 PMCID: PMC8639516 DOI: 10.3389/fbioe.2021.765630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Body sculpture is a common method to remove excessive fat. The diet and exercise are the first suggestion to keep body shape; however, those are difficult to keep adherence. Ultrasound has been developed for fat ablation; however, it could only serve as the side treatment along with liposuction. In the study, a sonosensitizer of europium-doped calcium carbonate (CaCO3: Eu) would be synthesized by an eco-method and combined with low-intensity ultrasound for lipolysis. The crystal structure of CaCO3: Eu was identified by x-ray diffractometer (XRD). The morphology of CaCO3: Eu was analyzed by scanning electron microscope (SEM). The chemical composition of CaCO3: Eu was evaluated by energy-dispersed spectrophotometer (EDS) and inductively coupled plasma mass spectrometer (ICP-MS). The electronic diffraction pattern was to further check crystal structure of the synthesized individual grain by transmission electron microscope (TEM). The particle size was determined by Zeta-sizer. Water-soluble tetrazolium salt (WST-1) were used to evaluate the cell viability. Chloromethyl-2′,7′-dichlorofluorescein diacetate (CM-H2DCFDA) and live/dead stain were used to evaluate feasibility in vitro. SD-rat was used to evaluate the safety and efficacy in vivo. The results showed that CaCO3: Eu had good biocompatibility and could produce reactive oxygen species (ROS) after treated with low-intensity ultrasound. After 4-weeks, the CaCO3: Eu exposed to ultrasound irradiation on SD rats could significantly decrease body weight, waistline, and subcutaneous adipose tissue. We believe that ROS from sonoluminescence, CO2-bomb and locally increasing Ca2+ level would be three major mechanisms to remove away adipo-tissue and inhibit adipogenesis. We could say that the combination of the CaCO3: Eu and low-intensity ultrasound would be a non-invasive treatment for the body sculpture.
Collapse
Affiliation(s)
- Che-Yung Kuan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Ying Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - I-Hsuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Ying Chi
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Han Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Li-Ze Lin
- Department of Materials Science and Engineering, National United University, Miaoli County, Taiwan
| | - Chun-Chen Yang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
24
|
Ávila DL, Nunes NAM, Almeida PHRF, Gomes JAS, Rosa COB, Alvarez-Leite JI. Signaling Targets Related to Antiobesity Effects of Capsaicin: A Scoping Review. Adv Nutr 2021; 12:2232-2243. [PMID: 34171094 PMCID: PMC8634413 DOI: 10.1093/advances/nmab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
The search for new antiobesogenic agents is increasing because of the current obesity pandemic. Capsaicin (Caps), an exogenous agonist of the vanilloid receptor of transient potential type 1 (TRPV1), has shown promising results in the treatment of obesity. This scoping review aims to verify the pathways mediating the effects of Caps in obesity and the different methods adopted to identify these pathways. The search was carried out using data from the EMBASE, MEDLINE (PubMed), Web of Science, and SCOPUS databases. Studies considered eligible evaluated the mechanisms of action of Caps in obesity models or cell types involved in obesity. Nine studies were included and 100% (n = 6) of the in vivo studies showed a high risk of bias. Of the 9 studies, 66.6% (n = 6) administered Caps orally in the diet and 55.5% (n = 5) used a concentration of Caps of 0.01% in the diet. In vitro, the most tested concentration was 1 μM (88.9%; n = 8). Capsazepine was the antagonist chosen by 66.6% (n = 6) of the studies. Seven studies (77.8%) linked the antiobesogenic effects of Caps to TRPV1 activation and 3 (33.3%) indicated peroxisome proliferator-activated receptor (PPAR) involvement as an upstream connection to TRPV1, rather than a direct metabolic target of Caps. The main secondary effects of Caps were lower weight gain (33.3%; n = 3) or loss (22.2%; n = 2), greater improvement in lipid profile (33.3%; n = 3), lower white adipocyte adipogenesis (33.3%; n = 3), browning process activation (44.4%; n = 4), and higher brown adipocyte activity (33.3%; n = 3) compared with those of the control treatment. Some studies have shown that PPAR agonists modulate TRPV1 activity, and no study has evaluated the simultaneous antagonism of these 2 receptors. Consequently, further studies are necessary to elucidate the role of each of these signaling molecules in the antiobesogenic effects of Caps.
Collapse
Affiliation(s)
- Danielle L Ávila
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia A M Nunes
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo H R F Almeida
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Departamento de Farmácia Social, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A S Gomes
- Instituto de Ciências Biológicas, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla O B Rosa
- Faculdade de Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Perissinotti PP, Martínez-Hernández E, He Y, Koob MD, Piedras-Rentería ES. Genetic Deletion of KLHL1 Leads to Hyperexcitability in Hypothalamic POMC Neurons and Lack of Electrical Responses to Leptin. Front Neurosci 2021; 15:718464. [PMID: 34566565 PMCID: PMC8458657 DOI: 10.3389/fnins.2021.718464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated calcium channels. The KLHL1 knockout (KO) model displays altered calcium channel expression in various brain regions. We analyzed the electrical behavior of hypothalamic POMC (proopiomelanocortin) neurons and their response to leptin. Leptin's effects on POMC neurons include enhanced gene expression, activation of the ERK1/2 pathway and increased electrical excitability. The latter is initiated by activation of the Jak2-PI3K-PLC pathway, which activates TRPC1/5 (Transient Receptor Potential Cation) channels that in turn recruit T-type channel activity resulting in increased excitability. Here we report over-expression of CaV3.1 T-type channels in the hypothalamus of KLHL1 KO mice increased T-type current density and enhanced POMC neuron basal excitability, rendering them electrically unresponsive to leptin. Electrical sensitivity to leptin was restored by partial blockade of T-type channels. The overexpression of hypothalamic T-type channels in POMC neurons may partially contribute to the obese and abnormal feeding phenotypes observed in KLHL1 KO mice.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Elizabeth Martínez-Hernández
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Yungui He
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael D Koob
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
26
|
Torre EC, Bicer M, Cottrell GS, Widera D, Tamagnini F. Time-Dependent Reduction of Calcium Oscillations in Adipose-Derived Stem Cells Differentiating towards Adipogenic and Osteogenic Lineage. Biomolecules 2021; 11:biom11101400. [PMID: 34680033 PMCID: PMC8533133 DOI: 10.3390/biom11101400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval—IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.
Collapse
Affiliation(s)
- Enrico C. Torre
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK; (E.C.T.); (M.B.)
- Neuronal and Cellular Physiology Group, School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
- Biomedicine West Wing, International Centre for Life, Times Square, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Mesude Bicer
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK; (E.C.T.); (M.B.)
- Department of Bioengineering, Sumer Campus, Abdullah Gül University, Kayseri 38080, Turkey
| | - Graeme S. Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading RG6 6LA, UK;
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK; (E.C.T.); (M.B.)
- Correspondence: (D.W.); (F.T.)
| | - Francesco Tamagnini
- Neuronal and Cellular Physiology Group, School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
- Correspondence: (D.W.); (F.T.)
| |
Collapse
|
27
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
29
|
Ren J, Cheng Y, Wen X, Liu P, Zhao F, Xin F, Wang M, Huang H, Wang W. BK Ca channel participates in insulin-induced lipid deposition in adipocytes by increasing intracellular calcium. J Cell Physiol 2021; 236:5818-5831. [PMID: 33432604 DOI: 10.1002/jcp.30266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Storing energy in the form of triglyceride (TG) is one of the basic functions of adipose tissue. Large-conductance calcium-activated potassium channels (BKCa channels) are expressed in adipose tissue and adipocyte-specific BKCa deficiency resists obesity in mice, but the role of BKCa channels in lipid deposition and the underlying mechanisms have not been elucidated. In the present study, we generated BKCa knockout (KO) rats and performed a transcriptome analysis of adipose tissue. We found that the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, which is important for lipid deposition, exhibited the most notable reduction among various signaling pathways in BKCa KO rats compared to wild-type rats. Insulin-induced TG deposition, glucose uptake, and Akt (Ser473) phosphorylation were significantly reduced in cultured adipocytes differentiated from adipose-derived stem cells of BKCa KO rats. Furthermore, we found that the insulin-induced increase of intracellular calcium resulting from extracellular calcium influx was significantly impaired in BKCa KO adipocytes. Finally, insulin activated BKCa currents through PI3K, which was independent of Akt and intracellular calcium. The results of this study suggested that BKCa channels participate in the insulin signaling pathway and promote TG deposition by increasing extracellular calcium influx in adipocytes.
Collapse
Affiliation(s)
- Jie Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinxin Wen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Feng Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fang Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
30
|
Maguire AS, Woodie LN, Judd RL, Martin DR, Greene MW, Graff EC. Whole-slide image analysis outperforms micrograph acquisition for adipocyte size quantification. Adipocyte 2020; 9:567-575. [PMID: 32954932 PMCID: PMC7714435 DOI: 10.1080/21623945.2020.1823139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The distinction between biological processes of adipose tissue expansion is crucial to understanding metabolic derangements, but a robust method for quantifying adipocyte size has yet to be standardized. Here, we compared three methods for histological analysis in situ: one conventional approach using individual micrographs acquired by digital camera, and two with whole-slide image analysis pipelines involving proprietary (Visiopharm) and open-source software (QuPath with a novel ImageJ plugin). We found that micrograph analysis identified 10–40 times fewer adipocytes than whole-slide methods, and this small sample size resulted in high variances that could lead to statistical errors. The agreement of the micrograph method to measure adipocyte area with each of the two whole-slide methods was substantially less (R2 of 0.6644 and 0.7125) than between the two whole-slide methods (R2 of 0.9402). These inconsistencies were more pronounced in samples from high-fat diet fed mice. While the use of proprietary software resulted in the highest adipocyte count, the lower cost, ease of use, and minimal variances of the open-source software provided a distinct advantage for measuring the number and size of adipocytes. In conclusion, we recommend whole-slide image analysis methods to consistently measure adipocyte area and avoid unintentional errors due to small sample sizes.
Collapse
Affiliation(s)
- Anne S Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Lauren N Woodie
- Department of Nutrition, Dietetics, and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert L Judd
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael W Greene
- Department of Nutrition, Dietetics, and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL, USA
| | - Emily C Graff
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
31
|
Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis. Animals (Basel) 2020; 10:ani10112071. [PMID: 33182249 PMCID: PMC7695335 DOI: 10.3390/ani10112071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to identify causative loci and genes enriched in pathways associated with canine obesity using a genome-wide association study (GWAS). The GWAS was first performed to identify candidate single-nucleotide polymorphisms (SNPs) associated with obesity and obesity-related traits including body weight and blood sugar in 18 different breeds of 153 dogs. A total of 10 and 2 SNPs were found to be significantly (p < 3.74 × 10-7) associated with body weight and blood sugar, respectively. None of the SNPs were identified to be significantly associated with obesity trait. We subsequently followed up the GWAS analysis with gene-set enrichment and pathway analyses. A gene-set with 1057, 1409, and 1243 SNPs annotated to 449, 933 and 820 genes for obesity, body weight, and blood sugar, respectively was created by sub-setting the GWAS result at a threshold of p < 0.01 for the gene-set enrichment analysis. In total, 84 GO and 21 KEGG pathways for obesity, 114 GO and 44 KEGG pathways for blood sugar, 120 GO and 24 KEGG pathways for body weight were found to be enriched. Among the pathways and GO terms, we highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) that were found to be shared among all the traits. Our data provide insights into the genes and pathways associated with obesity and obesity-related traits.
Collapse
|
32
|
Sun W, Yu Z, Yang S, Jiang C, Kou Y, Xiao L, Tang S, Zhu T. A Transcriptomic Analysis Reveals Novel Patterns of Gene Expression During 3T3-L1 Adipocyte Differentiation. Front Mol Biosci 2020; 7:564339. [PMID: 33195411 PMCID: PMC7525235 DOI: 10.3389/fmolb.2020.564339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Obesity is characterized by increased adipose tissue mass that results from increased fat cell size (hypertrophy) and number (hyperplasia). The molecular mechanisms that govern the regulation and differentiation of adipocytes play a critical role for better understanding of the pathological mechanism of obesity. However, the mechanism of adipocyte differentiation is still unclear. Objective The present study aims to compare the gene expression changes during adipocyte differentiation in the transcriptomic level, which may help to better understand the mechanism of adipocyte differentiation. Methods RNA sequencing (RNA-seq) technology, GO and KEGG analysis, quantitative RT-PCR, and oil red O staining methods were used in this study. Results A lot of genes were up- or down-regulated between each two differentiation stages of 3T3-L1 cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that lipid metabolism and oxidation–reduction reaction were mainly involved in the whole process of adipocyte differentiation. Decreased immune response and cell cycle adhesion occurred in the late phase of adipocyte differentiation, which was demonstrated by divergent expression pattern analysis. Moreover, quantitative RT-PCR results showed that the mRNA expression levels of Trpv4, Trpm4, Trpm5, and Trpm7 were significantly decreased in the differentiated adipocytes. On the other hand, the mRNA expression levels of Trpv1, Trpv2, Trpv6, and Trpc1 were significantly increased in the differentiated adipocytes. Besides, the mRNA expressions of TRPV2 and TRPM7 were also significantly increased in subcutaneous white adipose tissue from diet-induced mice. In addition, the activation of TRPM7, TRPV1, and TRPV2 suppressed the differentiation of adipocytes. Conclusion These data present the description of transcription profile changes during adipocyte differentiation and provides an in-depth analysis of the possible mechanisms of adipocyte differentiation. These data offer new insight into the understanding of the mechanisms of adipocyte differentiation.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|