1
|
Removal of an abluminal lining improves decellularization of human umbilical arteries. Sci Rep 2020; 10:10556. [PMID: 32601366 PMCID: PMC7324607 DOI: 10.1038/s41598-020-67417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
The decellularization of long segments of tubular tissues such as blood vessels may be improved by perfusing decellularization solution into their lumen. Particularly, transmural flow that may be introduced by the perfusion, if any, is beneficial to removing immunogenic cellular components in the vessel wall. When human umbilical arteries (HUAs) were perfused at a transmural pressure, however, very little transmural flow was observed. We hypothesized that a watertight lining at the abluminal surface of HUAs hampered the transmural flow and tested the hypothesis by subjecting the abluminal surface to enzyme digestion. Specifically, a highly viscous collagenase solution was applied onto the surface, thereby restricting the digestion to the surface. The localized digestion resulted in a water-permeable vessel without damaging the vessel wall. The presence of the abluminal lining and its successful removal were also supported by evidence from SEM, TEM, and mechanical testing. The collagenase-treated HUAs were decellularized with 1% sodium dodecyl sulfate (SDS) solution under either rotary agitation, simple perfusion, or pressurized perfusion. Regardless of decellularization conditions, the decellularization of HUAs was significantly enhanced after the abluminal lining removal. Particularly, complete removal of DNA was accomplished in 24 h by pressurized perfusion of the SDS solution. We conclude that the removal of the abluminal lining can improve the perfusion-assisted decellularization.
Collapse
|
2
|
Cheng B, Gao F, Maissy E, Xu P. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater 2019; 84:378-390. [PMID: 30528604 DOI: 10.1016/j.actbio.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
Suramin (SM), a drug for African sleeping sickness and river blindness therapy, has been investigated in various clinical trials for cancer therapy. However, SM was eventually withdrawn from the market because of its narrow therapeutic window and the side effects associated with multiple targets. In this work, we developed a simple but effective system based on a nontoxic dose of SM combined with a chemotherapeutic agent for the treatment of metastatic triple-negative breast cancer (TNBC). SM and glycol chitosan (GCS) formed nanogels because of the electrostatic effect, whereas doxorubicin (DOX) was incorporated into the system through the hydrophilic and hydrophobic interactions between DOX and GCS as well as the ionic interactions between DOX and SM to yield GCS-SM/DOX nanoparticles (NPs). GCS-SM/DOX NPs have a size of approximately 186 nm and a spherical morphology. In vitro experiments showed that GCS-SM NPs could effectively inhibit cancer cell migration and invasion, as well as angiogenesis. Furthermore, in a TNBC lung metastasis animal model, GCS-SM/DOX NPs significantly reduced tumor burden and extended the lifespan of animals, while not inducing cardio and renal toxicities associated with the DOX and SM, respectively. As all the components used in this system are biocompatible and easy for large-scale fabrication, the GCS-SM/DOX system is highly translatable for the metastatic breast cancer treatment. STATEMENT OF SIGNIFICANCE: The doxorubicin-loaded glycol chitosan-suramin nanoparticle (GCS-SM/DOX) is novel in the following aspects: SM acts as not only a gelator for the first time in the preparation of the nanoparticle but also an active pharmaceutical agent in the dosage form. GCS-SM/DOX NP significantly reduced tumor burden and extended the lifespan of animals with triple-negative breast cancer lung metastasis. GCS-SM/DOX NPs attenuate cardio and renal toxicities associated with the DOX and SM. The GCS-SM/DOX system is highly translatable because of its simple, one-pot, and easy-to-scale-up preparation protocol.
Collapse
|
3
|
Sahni A, Narra HP, Patel J, Sahni SK. MicroRNA-Regulated Rickettsial Invasion into Host Endothelium via Fibroblast Growth Factor 2 and Its Receptor FGFR1. Cells 2018; 7:cells7120240. [PMID: 30513762 PMCID: PMC6315532 DOI: 10.3390/cells7120240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Microvascular endothelial cells (ECs) represent the primary target cells during human rickettsioses and respond to infection via the activation of immediate–early signaling cascades and the resultant induction of gene expression. As small noncoding RNAs dispersed throughout the genome, microRNAs (miRNAs) regulate gene expression post-transcriptionally to govern a wide range of biological processes. Based on our recent findings demonstrating the involvement of fibroblast growth factor receptor 1 (FGFR1) in facilitating rickettsial invasion into host cells and published reports suggesting miR-424 and miR-503 as regulators of FGF2/FGFR1, we measured the expression of miR-424 and miR-503 during R. conorii infection of human dermal microvascular endothelial cells (HMECs). Our results revealed a significant decrease in miR-424 and miR-503 expression in apparent correlation with increased expression of FGF2 and FGFR1. Considering the established phenomenon of endothelial heterogeneity and pulmonary and cerebral edema as the prominent pathogenic features of rickettsial infections, and significant pathogen burden in the lungs and brain in established mouse models of disease, we next quantified miR-424 and miR-503 expression in pulmonary and cerebral microvascular ECs. Again, R. conorii infection dramatically downregulated both miRNAs in these tissue-specific ECs as early as 30 min post-infection in correlation with higher FGF2/FGFR1 expression. Changes in the expression of both miRNAs and FGF2/FGFR1 were next confirmed in a mouse model of R. conorii infection. Furthermore, miR-424 overexpression via transfection of a mimic into host ECs reduced the expression of FGF2/FGFR1 and gave a corresponding decrease in R. conorii invasion, while an inhibitor of miR-424 had the expected opposite effect. Together, these findings implicate the rickettsial manipulation of host gene expression via regulatory miRNAs to ensure efficient cellular entry as the critical requirement to establish intracellular infection.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| |
Collapse
|
4
|
Abstract
To survive the transition to extrauterine life, newborn infants must have lungs that provide an adequate surface area and volume to allow for gas exchange. The dynamic activities of fetal breathing movements and accumulation of lung luminal fluid are key to fetal lung development throughout the various phases of lung development and growth, first by branching morphogenesis, and later by septation. Because effective gas exchange is essential to survival, pulmonary hypoplasia is among the leading findings on autopsies of children dying in the newborn period. Management of infants born prematurely who had disrupted lung development, especially at the pre-glandular or canalicular periods, may be challenging, but limited success has been reported. Growing understanding of stem cell biology and mechanical development of the lung, and how to apply them clinically, may lead to new approaches that will lead to better outcomes for these patients.
Collapse
|
5
|
Abstract
To fulfill the task of gas exchange, the lung possesses a huge inner surface and a tree-like system of conducting airways ventilating the gas exchange area. During lung development, the conducting airways are formed first, followed by the formation and enlargement of the gas exchange area. The latter (alveolarization) continues until young adulthood. During organogenesis, the left and right lungs have their own anlage, an outpouching of the foregut. Each lung bud starts a repetitive process of outgrowth and branching (branching morphogenesis) that forms all of the future airways mainly during the pseudoglandular stage. During the canalicular stage, the differentiation of the epithelia becomes visible and the bronchioalveolar duct junction is formed. The location of this junction stays constant throughout life. Towards the end of the canalicular stage, the first gas exchange may take place and survival of prematurely born babies becomes possible. Ninety percent of the gas exchange surface area will be formed by alveolarization, a process where existing airspaces are subdivided by the formation of new walls (septa). This process requires a double-layered capillary network at the basis of the newly forming septum. However, in parallel to alveolarization, the double-layered capillary network of the immature septa fuses to a single-layered network resulting in an optimized setup for gas exchange. Alveolarization still continues, because, at sites where new septa are lifting off preexisting mature septa, the required second capillary layer will be formed instantly by angiogenesis. The latter confirms a lifelong ability of alveolarization, which is important for any kind of lung regeneration.
Collapse
|
6
|
Islam M, Atmaramani R, Mukherjee S, Ghosh S, Iqbal SM. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips. NANOTECHNOLOGY 2016; 27:415501. [PMID: 27587351 DOI: 10.1088/0957-4484/27/41/415501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.
Collapse
Affiliation(s)
- Muhymin Islam
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA. Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA. Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
7
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Villanueva S, Contreras F, Tapia A, Carreño JE, Vergara C, Ewertz E, Cespedes C, Irarrazabal C, Sandoval M, Velarde V, Vio CP. Basic fibroblast growth factor reduces functional and structural damage in chronic kidney disease. Am J Physiol Renal Physiol 2013; 306:F430-41. [PMID: 24285501 DOI: 10.1152/ajprenal.00720.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by loss of renal function. The pathological processes involved in the progression of this condition are already known, but the molecular mechanisms have not been completely explained. Recent reports have shown the intrinsic capacity of the kidney to undergo repair after acute injury through the reexpression of repairing proteins (Villanueva S, Cespedes C, Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). Stimulation with basic fibroblast growth factor (bFGF) could accelerate this process. However, it is not known whether bFGF can induce this phenomenon in kidney cells affected by CKD. Our aim was to study the evolution of renal damage in animals with CKD treated with bFGF and to relate the amount of repairing proteins with renal damage progression. Male Sprague-Dawley rats were subjected to 5/6 nephrectomy (NPX) and treated with bFGF (30 μg/kg, NPX+bFGF); a control NPX group was treated with saline (NPX+S). Animals were euthanized 35 days after bFGF administration. Functional effects were assessed based on serum creatinine levels; morphological damage was assessed by the presence of macrophages (ED-1), interstitial α-smooth muscle actin (α-SMA), and interstitial collagen through Sirius red staining. The angiogenic factors VEGF and Tie-2 and the epithelial/tubular factors Ncam, bFGF, Pax-2, bone morphogenic protein-7, Noggin, Lim-1, Wnt-4, and Smads were analyzed. Renal stem cells were evaluated by Oct-4. We observed a significant reduction in serum creatinine levels, ED-1, α-SMA, and Sirius red as well as an important induction of Oct-4, angiogenic factors, and repairing proteins in NPX+bFGF animals compared with NPX+S animals. These results open new perspectives toward reducing damage progression in CKD.
Collapse
Affiliation(s)
- Sandra Villanueva
- Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, San Carlos de Apoquindo 2200, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
He D, Ujjal K. Bhawal, Hamada N, Kuboyama N, Abiko Y, Arakawa H. Low Level Fluoride Stimulates Epithelial-Mesenchymal Interaction in Oral Mucosa. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Peplow PV, Chung TY, Baxter GD. Photodynamic Modulation of Wound Healing: A Review of Human and Animal Studies. Photomed Laser Surg 2012; 30:118-48. [DOI: 10.1089/pho.2011.3142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy & Structural Biology, School of Physiotherapy, University of Otago, New Zealand
| | - Tzu-Yun Chung
- Department of Anatomy & Structural Biology, School of Physiotherapy, University of Otago, New Zealand
| | - G. David Baxter
- Centre for Physiotherapy Research, School of Physiotherapy, University of Otago, New Zealand
| |
Collapse
|
11
|
Tu Q, Zhao Y, Xue X, Wang J, Huang N. Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells. Tissue Eng Part A 2010; 16:3635-45. [PMID: 20666613 DOI: 10.1089/ten.tea.2010.0088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A variety of metals have been widely used in construction of cardiovascular implants (CVIs), such as artificial heart valves, ventricular pumps, and vascular stents. Although great effects have been put into rigorous anticoagulation, late thrombosis still occurred due to inferior blood and cell compatibility. Natural endothelium is popularly regarded as the only substance that has long-term anticoagulant ability. So, establishment of a compact endothelial cell (EC) monolayer on CVIs surface is a guarantee for their long-term potency. In the work described here, titanium (Ti) disks were coated with extracellular matrix (ECM) directly secreted by human umbilical vein endothelial cells (HUVECs), so as to help ECs proliferate and migrate and to improve their endothelialization in vivo. Deposition of ECM on Ti disks was detected by immunofluorescence microscopy, diffuse reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface topography and wettability of the Ti disks significantly changed after ECM deposition. Most importantly, it was found that ECM deposition inhibited platelet adhesion, stimulated EC proliferation, increased EC migration speed in vitro, and eventually accelerated the re-cellularization speed of Ti disks in vivo. These important results render it reasonable and feasible to modify CVIs with ECM secreted from ECs for improving their long-term potency.
Collapse
Affiliation(s)
- Qiufen Tu
- Key Laboratory of Advanced Technology of Materials, Education Ministry of China, Southwest Jiaotong University, Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
12
|
Levin RI, Moscatelli DA, Recht PA. Oxalate, a Potential Atherogenic Toxin of Uremia, Inhibits Endothelial Proliferation Induced by Heparin-binding Growth FactorsIn Vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329309102695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Lee TH, Lee HC, Son YS, Kang MA, Park MJ, Nam MJ, Lee SH, Hong SI. Heterogeneity of Capillary Endothelial Cells for Basic Fibroblast Growth Factor-Induced Paracrine Signaling. ACTA ACUST UNITED AC 2009; 13:191-203. [PMID: 16840175 DOI: 10.1080/10623320600760415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, the authors isolated morphologically different capillary endothelial cells, designated as BCE-1 and BCE-2 cells, from bovine adrenal cortex. By a series of experiments involving proliferation, migration, and tubular-like structure formation assays, the authors found that the two BCE clones showed a clearly different response to basic fibroblast growth factor (bFGF). Similar to these results, the ERK-1/2 in the BCE-1 cells was phosphorylated by bFGF or vascular endothelial growth factor (VEGF), whereas that of the BCE-2 cells was phosphorylated only by VEGF. However, when the BCE-2 cells were transfected with FGF receptor 1 cDNA, the ERK-1/2 of these cells was phosphorylated by exogenous bFGF. Receptor binding experiments revealed that BCE-2 cells expressed high-affinity tyrosine-kinase FGF receptors approximately twofold less than BCE-1 cells. Transfection and receptor binding studies suggest a possibility that the poor response of the BCE-2 cells to exogenous bFGF is derived from the limitation of functional availability of high affinity FGF receptors. On the other hand, when both BCE clones were treated with anti-bFGF antibodies, basal formation of tubular-like structure in both clones were strongly inhibited, indicating that endogenous bFGF plays a role in in vitro angiogenesis of both BCE clones. Taken together, these data show that the isolated capillary endothelial cells are heterogeneous for paracrine but not autocrine bFGF signaling, and suggest that the diversity of capillary endothelial cells can occur by angiogenic factors, such as bFGF.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Laboratory of Functional Genomics, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Torio-Padron N, Borges J, Momeni A, Mueller MC, Tegtmeier FT, Stark GB. Implantation of VEGF transfected preadipocytes improves vascularization of fibrin implants on the cylinder chorioallantoic membrane (CAM) model. MINIM INVASIV THER 2009; 16:155-62. [PMID: 17573620 DOI: 10.1080/13645700701384116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The successful substitution or augmentation of soft tissues by implantation of three dimensional cell constructs, consisting of human preadipocytes and fibrin glue as a carrier matrix, requires a rapid and homogeneous vascularization of the whole implant in order to provide a sufficient blood supply of centrally situated cells. Previous investigations have shown that under in vivo conditions primary human preadipocytes induce vascularization of fibrin matrices by secretion of several growth factors, such as VEGF and bFGF. The current study investigates whether vascularization of implants can be improved by transplantation of preadipocytes following transfection with a VEGF-vector. Transfection was performed by electroporation with an pCMX-GFP and pCMX-VEGF165 vector. Transfection efficiency (GFP expression) and VEGF expression were determined in vitro by FACS analysis and VEGF immunoassay, respectively. In vivo investigations to determine the vascularization of the implants were performed on the cylinder chorioallantoic membrane (CAM). Four million VEGF transfected cells were transferred within a fibrin matrix onto the CAM on the 7(th) day of incubation and after 8 days the vascularization of the implant was histologically examined and evaluated by means of a computer-assisted image analysis program. Transfection of preadipocytes with the GFP vector by electroporation yielded transfection efficiencies between 12% and 41% of surviving cells. Results of the VEGF immunoassay demonstrated that VEGF expression was significantly higher following transfection. Investigations on the CAM outlined a significantly higher rate of vascularization in the transfected vs. control population. Our investigations demonstrate that primary human preadipocytes can be successfully transfected by electroporation with a VEGF vector. The enhanced VEGF expression on transfected cells results in an increase of vascularization of the cell constructs on the CAM.
Collapse
Affiliation(s)
- Nestor Torio-Padron
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Vlodavsky I. Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.4. [PMID: 18228298 DOI: 10.1002/0471143030.cb1004s01] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ECM is an organized complex of collagens, proteoglycans, and glycoproteins, all interacting to produce a highly stable structure upon which cells migrate, proliferate, differentiate, and survive in vivo. Cultured bovine corneal endothelial (BCE) cells and PF-HR9 endodermal cells produce underlying ECMs that adhere strongly to plastic and closely resemble subendothelial and subepithelial basement membranes in vivo in their morphology, molecular composition, and biological activities. This unit describes the methods for preparation of these ECMs, their properties, and their cellular effects.
Collapse
Affiliation(s)
- I Vlodavsky
- Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
16
|
Takezawa T, Takeuchi T, Nitani A, Takayama Y, Kino-Oka M, Taya M, Enosawa S. Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. J Biotechnol 2007; 131:76-83. [PMID: 17624459 DOI: 10.1016/j.jbiotec.2007.05.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
We previously succeeded in converting a soft and turbid disk of type-I collagen gel into a strong and transparent vitrigel membrane utilizing a concept for the vitrification of heat-denatured proteins and have demonstrated its protein-permeability and advantage as a scaffold for reconstructing crosstalk models between two different cell types. In this study, we observed the nano-structure of the type-I collagen vitrigel membrane and verified its utility for paracrine assays in vitro and drug delivery systems in vivo. Scanning electron microscopic observation revealed that the vitrigel membrane was a dense network architecture of typical type-I collagen fibrils. In the crosstalk model between PC-12 pheochromocytoma cells and L929 fibroblasts, nerve growth factor (NGF) secreted from L929 cells passed through the collagen vitrigel membrane and induced the neurite outgrowth of PC-12 cells by its paracrine effect. Also, the collagen vitrigel membrane containing vascular endothelial growth factor (VEGF) showed sustained-release of VEGF in vitro and its subcutaneous transplantation into a rat resulted in remarkable angiogenesis. These data suggest that the collagen vitrigel membrane is useful for paracrine assays in vitro and drug delivery systems in vivo.
Collapse
Affiliation(s)
- Toshiaki Takezawa
- Laboratory of Animal Cell Biology (currently, Transgenic Animal Research Center), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kundu S, Cheng J, Maruyama S, Suzuki M, Kawashima H, Saku T. Lymphatic involvement in the histopathogenesis of mucous retention cyst. Pathol Res Pract 2007; 203:89-97. [PMID: 17257778 DOI: 10.1016/j.prp.2006.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/25/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
Mucous retention cyst results from extravasation of saliva. Our intent was to study the role of lymphatics in its pathogenesis. Twenty-three surgical specimens of mucous retention cyst of the lip were examined for involvement of lymphatic vessels by a comparative immunohistochemical demonstration of lymphatic and blood vascular endothelial cells, as well as lymphatic and salivary contents. Mucous retention cysts were histopathologically classified into three stages: early, intermediate, and advanced. In the early stage, there was diffuse extravasation of mucous material in the interstitium of the lamina propria or the submucosal layer of the oral mucosa. In the intermediate stage, lymphatics, which were clearly revealed and immunohistochemically distinguished from blood vessels by monoclonal antibody D2-40, were dilated and finally ruptured, leaving fragments of lymphatic walls in the periphery of mucous pools. In the advanced stage, thick cyst walls of granulation tissue were formed around mucous retention. Lymphatics were no longer involved in the granulation tissue wall, which was actively driven by blood vessel formation. The results suggest that the lymphatic rupture seems to contribute to the enlargement in the pathogenesis of mucous retention cyst.
Collapse
Affiliation(s)
- Sukalyan Kundu
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Jandu N, Richardson M, Singh G, Hirte H, Hatton MWC. Human ovarian cancer ascites fluid contains a mixture of incompletely degraded soluble products of fibrin that collectively possess an antiangiogenic property. Int J Gynecol Cancer 2006; 16:1536-44. [PMID: 16884362 DOI: 10.1111/j.1525-1438.2006.00624.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer ascites fluid (OCAF) displayed an antiangiogenic property in a chick chorioallantoic membrane (CAM) assay. This property was attributed in part to angiostatin although angiostatin-free OCAF retained a net antiangiogenic property. Recently, immunopurified fibrin(ogen) degradation products (FDPs) from malignant effusions of VX2 tumor-burdened rabbits exhibited antiangiogenic activity on the CAM. We questioned whether the FDPs of OCAF were also antiangiogenic. FDPs were immunopurified from individual OCAF samples, characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis /western blots, enzyme-linked immunosorbent assays, and CAM assays. FDPs of OCAFs consisted of soluble high molecular weight (MW) fragments (>200 kd; approximately 40% of total FDPs), D-dimer (approximately 180 kd; approximately 37%), fragment D (approximately 90 kd; approximately 15%), and fragment E (approximately 50 kd; approximately 8%); intact fibrinogen was absent. When applied to CAM surfaces (0.5-1.6 mg/10 mL), purified FDPs significantly reduced the area of chorionic capillaries from 90% (in controls) to 47% over a 48-h period; from CAM sections, capillary density was reduced from 60% (controls) to 26%. FDPs prepared from fibrinogen displayed a similar antiangiogenic effect. Further digestion of OCAF FDPs by human plasmin caused degradation of high MW fragments, releasing additional D-dimer, fragment D, and fragment E. Of the fibrinogen-related components, OCAF contained only soluble FDPs (including incompletely digested fibrin fragments). Collectively, these FDPs contributed to the net antiangiogenic property of ascites fluid.
Collapse
Affiliation(s)
- N Jandu
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Zehe C, Engling A, Wegehingel S, Schäfer T, Nickel W. Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. Proc Natl Acad Sci U S A 2006; 103:15479-84. [PMID: 17030799 PMCID: PMC1622848 DOI: 10.1073/pnas.0605997103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FGF-2 is an unconventionally secreted lectin that transmits proangiogenic signals through a ternary complex with high-affinity FGF receptors and heparan sulfate proteoglycans (HSPGs). Although FGF-2 signal transduction is understood in great detail, its mechanism of release from cells, which is independent of the classical secretory pathway, remains elusive. To test the hypothesis that FGF-2 secretion is linked to its cell-surface ligands, we studied FGF-2 release using mutants defective for HSPG binding and cells with impaired HSPG biosynthesis. Here, we report that a functional interaction between FGF-2 and HSPGs is required for net export of FGF-2 from mammalian cells. FGF-2 release requires extracellular, membrane-proximal HSPGs. We propose that extracellular HSPGs form a molecular trap that drives FGF-2 translocation across the plasma membrane.
Collapse
Affiliation(s)
- Christoph Zehe
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - André Engling
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Tobias Schäfer
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Elbjeirami WM, West JL. Angiogenesis-like activity of endothelial cells co-cultured with VEGF-producing smooth muscle cells. ACTA ACUST UNITED AC 2006; 12:381-90. [PMID: 16548696 DOI: 10.1089/ten.2006.12.381] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of strategies have been investigated to improve therapeutic vascularization of ischemic and bioengineered tissues. In these studies, we genetically modified vascular smooth muscle cells (VSMC) to promote endothelial cell proliferation, migration, and formation of microvascular networks. VSMCs were virally transduced to produce vascular endothelial growth factor (VEGF), which acts as a chemoattractant and mitogen of endothelial cells (EC). VSMCs transduced with VEGF(165) cDNA produced significant levels of the protein (2-4 ng/10(5) cell/day). The proliferation of ECs increased after exposure to VEGF-transfected SMCs or their conditioned media. The chemotactic response of ECs to the VEGF-producing cells was explored in two in vitro systems, the modified Boyden chamber assay and a 2-D fence-style migration assay, and both demonstrated increased migration of ECs in response to VEGF-transfected cells. Furthermore, endothelial cells seeded on top of the VEGF-transfected SMCs formed capillary-like structures. These results suggest that VSMCs genetically modified to produce VEGF could be a potential delivery mechanism to enhance endothelial cell migration and subsequent capillary formation, which in turn could improve vascularization of ischemic or regenerating tissue. Furthermore, this system could potentially be used as an in vitro test bed for evaluation of novel angiogenic and anti-angiogenic compounds.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Coculture Techniques
- Culture Media, Conditioned/chemistry
- DNA, Complementary
- Endothelium, Vascular/cytology
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Humans
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic
- Rats
- Rats, Sprague-Dawley
- Retroviridae/genetics
- Umbilical Veins/cytology
- Vascular Endothelial Growth Factor A/physiology
Collapse
Affiliation(s)
- Wafa M Elbjeirami
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas, USA
| | | |
Collapse
|
21
|
Moldauer I, Velez I, Kuttler S. Upregulation of Basic Fibroblast Growth Factor in Human Periapical Lesions. J Endod 2006; 32:408-11. [PMID: 16631837 DOI: 10.1016/j.joen.2005.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Basic fibroblast growth factor is one of a class of heparin-binding growth factors that stimulates endothelial cell proliferation and migration in vitro and angiogenesis in vivo. The purpose of this study was to investigate the expression of basic fibroblast growth factor in chronic periapical lesions of endodontic origin. Ten chronic inflammatory periapical lesions were examined using immunohistochemical staining. The experimental control group consisted of four specimens of uninflamed periodontal ligament tissue. Two independent observers graded the staining intensity for basic fibroblast growth factor. An immunopositive, cytoplasmic, and nuclear reaction for basic fibroblast growth factor, with varying degrees of upregulation was observed in all 10 chronic periapical lesions. We speculate that the formation of granulation tissue and the activation of epithelial cell rests in chronical apical lesions might be associated with a local rise in the tissue level of basic fibroblast growth factor. Therefore, this growth factor could play an important role in the pathogenesis of chronic apical periodontitis and periapical cysts.
Collapse
Affiliation(s)
- Ivan Moldauer
- Department of Endodontics, Nova Southeastern, University College of Dental Medicine, Fort Lauderdale, FL 33328, USA
| | | | | |
Collapse
|
22
|
Swelam W, Ida-Yonemochi H, Saku T. Angiogenesis in mucous retention cyst: a human in vivo-like model of endothelial cell differentiation in mucous substrate. J Oral Pathol Med 2005; 34:30-8. [PMID: 15610404 DOI: 10.1111/j.1600-0714.2004.00282.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mucous retention cysts contain a mucous pool in the lumina, in which pure angiogenic processes are occasionally observed. By using this unique human material, our aim was to understand the in vivo angiogenic process. METHODS Fifteen surgical tissue samples of mucous retention cysts of the lip were examined for expression of vascular endothelial markers and extracellular matrix molecules by immunohistochemistry and in situ hybridization (ISH). RESULTS Endothelial cells forming new vascular channels showed immunopositivities for CD31, CD34, vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). These newly formed capillaries were surrounded by tenascin-positive matrices and further by a dense infiltration of CD68-positive cells with foamy to epitheloid appearances. Some of these cells were simultaneously positive for CD34, VEGF, and one of its receptors, Flk-1, and they showed definite mRNA as well as protein signals for tenascin. In addition, these cells often tended to be aligned, which suggested tubule formation. CONCLUSION The results suggest that monocyte/macrophage lineage cells are a major source for endothelial cells at least in mucous retention cysts and that tenascin produced by those cells plays an important role in differentiation of endothelial cells.
Collapse
Affiliation(s)
- Wael Swelam
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | |
Collapse
|
23
|
Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, Nickel W. Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci 2004; 117:1727-36. [PMID: 15075234 DOI: 10.1242/jcs.01027] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum/Golgi-dependent protein secretion depends on signal peptides that mediate membrane translocation of nascent secretory proteins into the lumen of the endoplasmic reticulum. Classical secretory proteins are transported across the membrane of the endoplasmic reticulum in an unfolded conformation, which is similar to protein import into mitochondria. This process is mediated by Sec61, the protein-conducting channel of the endoplasmic reticulum. Employing both FACS-based in vivo transport assays and confocal microscopy, we now show that fibroblast growth factor 2 (FGF-2), a pro-angiogenic mediator exported from mammalian cells by an unconventional secretory pathway, does not need to be unfolded in order to be released into the extracellular space. These findings suggest that the molecular apparatus mediating export of FGF-2 is not only distinct from classical translocation machineries in terms of molecular identity but also operates in a mechanistically distinct manner that allows membrane translocation of FGF-2 in a folded conformation.
Collapse
Affiliation(s)
- Rafael Backhaus
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Margosio B, Marchetti D, Vergani V, Giavazzi R, Rusnati M, Presta M, Taraboletti G. Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood 2003; 102:4399-406. [PMID: 12947001 DOI: 10.1182/blood-2003-03-0893] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiangiogenic factor thrombospondin 1 (TSP-1) binds with high affinity to several heparin-binding angiogenic factors, including fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF), and hepatocyte growth factor/scatter factor (HGF/SF). The aim of this study was to investigate whether TSP-1 affects FGF-2 association with the extracellular matrix (ECM) and its bioavailability. TSP-1 prevented the binding of free FGF-2 to endothelial cell ECM. It also promoted the mobilization of matrix-bound FGF-2, generating a TSP-1/FGF-2 complex. The region of TSP-1 responsible for these activities was located within the 140-kDa antiangiogenic and FGF-2 binding fragment, whereas the 25-kDa heparin-binding fragment was inactive. Matrix-released FGF-2/TSP-1 complex had a reduced ability to bind to and induce proliferation of endothelial cells. TSP-1 depleted the ECM laid by FGF-2-overproducing tumor cells of its FGF-2-dependent mitogenic activity for endothelial cells. Besides FGF-2, TSP-1 also inhibited VEGF and HGF/SF binding to the ECM and mobilized them from the ECM. Our study shows that TSP-1 acts as a scavenger for matrix-associated angiogenic factors, affecting their location, bioavailability, and function.
Collapse
Affiliation(s)
- Barbara Margosio
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Schäfer T, Zentgraf H, Zehe C, Brügger B, Bernhagen J, Nickel W. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J Biol Chem 2003; 279:6244-51. [PMID: 14645213 DOI: 10.1074/jbc.m310500200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is a pro-angiogenic mediator that is secreted by both normal and neoplastic cells. Intriguingly, FGF-2 has been shown to be exported by an endoplasmic reticulum/Golgi-independent pathway; however, the molecular machinery mediating this process has remained elusive. Here we introduce a novel in vitro system that functionally reconstitutes FGF-2 secretion. Based on affinity-purified plasma membrane inside-out vesicles, we demonstrate post-translational membrane translocation of FGF-2 as shown by protease protection experiments. This process is blocked at low temperature but apparently does not appear to be driven by ATP hydrolysis. FGF-2 membrane translocation occurs in a unidirectional fashion requiring both integral and peripheral membrane proteins. These findings provide direct evidence that FGF-2 secretion is based on its direct translocation across the plasma membrane of mammalian cells. When galectin-1 and macrophage migration inhibitory factor, other proteins exported by unconventional means, were analyzed for translocation into plasma membrane inside-out vesicles, galectin-1 was found to be transported as efficiently as FGF-2. By contrast, migration inhibitory factor failed to traverse the membrane of inside-out vesicles. These findings establish the existence of multiple distinct secretory routes that are operational in the absence of a functional endoplasmic reticulum/Golgi system.
Collapse
Affiliation(s)
- Tobias Schäfer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Rieck PW, von Stockhausen RM, Metzner S, Hartmann C, Courtois Y. Fibroblast growth factor-2 protects endothelial cells from damage after corneal storage at 4 degrees C. Graefes Arch Clin Exp Ophthalmol 2003; 241:757-64. [PMID: 13680247 DOI: 10.1007/s00417-003-0687-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 03/31/2003] [Accepted: 04/02/2003] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Since the introduction of cold corneoscleral segment storage prior to keratoplasty there have been continuous efforts to ameliorate the preservation media in order to better maintain the quality of the corneal epi- and endothelium. Recent studies have shown that basic fibroblast growth factor (FGF-2) preserves the viability of, for example, retinal ganglion cells and pigment epithelium cells. Therefore, we investigated the effect of different concentrations of FGF-2 added to a modified Optisol storage medium on endothelial damage after corneal storage at 4 degrees C. METHODS . Bovine corneas were stored at 4 degrees C for 14 days and for another 24 h at 34 degrees C. Various FGF-2 concentrations (4, 20 and 40 ng/ml) were added to the medium either at day (D) 1, D14, or both D1 and D14. Quantitative evaluation of corneal damage after 14+1 days of storage was conducted by means of the Janus green photometry assay. Histological and ultrastructural investigations of the preserved endothelium were also performed. Bovine cell culture experiments using the TUNEL assay aimed to elucidate the role of FGF-2 on prevention of endothelial apoptosis. RESULTS The mean endothelial damage in control corneas increased from 4.9 +/- 1.8% (fresh corneas) to 13.4 +/- 2.4% after 14+1 days of storage. FGF-2 at 20 ng/ml or 40 ng/ml added at any of the indicated time points significantly reduced the overall endothelial damage by 5.1-7.3%, corresponding to 38-54% less endothelial damage than in control corneas (P<0.001). Light- and electron microscopic investigations confirmed this protective effect of FGF-2 on corneal endothelial cells. The TUNEL assay revealed a true anti-apoptotic effect of FGF-2 on endothelial cells in culture. CONCLUSION Our study clearly demonstrates the effectiveness of FGF-2 to enhance cell survival of the corneal endothelium after storage at 4 degrees C. A clinical interest could be seen in the potential future application of FGF-2 as an adjuvant to corneal preservation media in order to better maintain endothelial viability during corneal storage.
Collapse
Affiliation(s)
- Peter W Rieck
- Department of Ophthalmology, Charité Medical Faculty, Campus Virchow Hospital, Humboldt University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
In recent years, the basement membrane (BM)--a specialized form of extracellular matrix (ECM)--has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important structural and functional component of blood vessels, constituting an extracellular microenvironment sensor for endothelial cells and pericytes. Vascular BM components have recently been found to be involved in the regulation of tumour angiogenesis, making them attractive candidate targets for potential cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, Dana 514, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
28
|
Srivastava A, Ralhan R, Kaur J. Angiogenesis in cutaneous melanoma: pathogenesis and clinical implications. Microsc Res Tech 2003; 60:208-24. [PMID: 12539175 DOI: 10.1002/jemt.10259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neovacularization is an essential step in the multistage progression of malignant melanoma. The onset of new blood vessel formation is ushered in by the release of VEGF and numerous other angiogenic molecules by the tumor cells. Human melanoma is unique among neoplasms that both avascular (early horizontal growth phase characterized by very slow progression and 99%, 10-year survival) and vascular (late radial and vertical growth phase associated with rapid growth, metastasis and death in many cases), phases are discernible by the naked eye. Although cell biologists have made great strides in unraveling the mechanisms involved in the laying down of tumor vasculature and the factors that inhibit it, clinicians treating melanoma have been rather slow to realize and utilize the full potential of suppressing the tumor blood flow to the best advantage of the patient. We suggest a consorted endeavor by all the melanoma experts across the globe to establish an "angiogenesis database" wherein they pool the blood flow and vascularity information along with Breslow's thickness, Clark's level of invasion, lymphatic and vascular invasion, regression, and outcome of their patients.
Collapse
Affiliation(s)
- Anurag Srivastava
- Department of Surgical Discipline, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India.
| | | | | |
Collapse
|
29
|
Abstract
The goals in tissue engineering include the replacement of damaged, injured or missing body tissues with biological compatible substitutes such as bioengineered tissues. However, due to an initial mass loss after implantation, improved vascularization of the regenerated tissue is essential. Recent advances in understanding the process of blood vessel growth has offered significant tools for therapeutic neovascularization. Several angiogenic growth factors including vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) were used for vascularization of ischemic tissues. Three approaches have been used for vascularization of bioengineered tissue: incorporation of angiogenic factors in the bioengineered tissue, seeding endothelial cells with other cell types and prevascularization of matrices prior to cell seeding. This paper reviews the process of blood vessel growth and tissue vascularization, and discuss strategies for efficient vascularization of engineered tissues.
Collapse
Affiliation(s)
- Masashi Nomi
- Department of Urology, Laboratory for Cellular Therapeutics and Tissue Engineering, Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Ohnuma SI, Mann F, Boy S, Perron M, Harris WA. Lipofection strategy for the study of Xenopus retinal development. Methods 2002; 28:411-9. [PMID: 12507459 DOI: 10.1016/s1046-2023(02)00260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The analysis of gene function during retinal development can be addressed by perturbing gene expression either by inhibition or by overexpression in desired regions and at defined stages of development. An in vivo lipofection strategy has been applied for stage-specific and region-specific expression of genes in Xenopus retina. Due to colipofection efficiency, this strategy enables us to study functional interaction of genes by lipofecting multiple expression constructs. This lipofection technique also allows us to transfect morpholino oligonucleotides into retinoblasts to block gene function. We present here various aspects of this technique, including recent improvements and modifications.
Collapse
Affiliation(s)
- Shin-ichi Ohnuma
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, UK.
| | | | | | | | | |
Collapse
|
31
|
Sengoelge G, Perschl A, Ferrara I, Hörl WH, Sunder-Plassmann G. Surface antigens of human mesangial cells: impact of growth surface or IL-1alpha. TISSUE ANTIGENS 2002; 60:383-95. [PMID: 12492814 DOI: 10.1034/j.1399-0039.2002.600505.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The interactions of mesangial cells (MC) with their environment are important events in glomerular physiology and pathology, yet a detailed characterization of the MC-surface antigens mediating these interactions is still lacking. In this study, a comparative phenotype analysis of primary human MC in culture using 191 monoclonal antibodies directed against 108 antigens was performed by flow-cytometry. The MC were grown on three different surfaces (human matrix, fibronectin, polystyrene) and cultured in the presence or absence of IL-1alpha. Seventy-one antibodies recognizing 35 different antigens (integrins: CD29, 49b, 49c, 49e, 51, 61; immunoglobulin gene family: CD54, 58, 90, 106, 146, 147, 166; growth factor receptors: CD105, 140b; apoptosis related: CD95; hemostatis related: CD141, 142; miscellaneous: CD44, 109, 138, 151, 157, 165, and 11 nonclustered antigens) reacted with mesangial cells. CD58, 109, 146, 147, 151, 157, 165, and 166 are reported for the first time to be present on human mesangial cells. In comparison to growth on polystyrene, CD44, 54, 95, 105, 109, 140b, 146, 147, 157, 165 and 166, were up-regulated on fibronectin, and CD44, 54, 90, 95, 105, 106, 109, 138, 140b, 141, 142, 146, 147, 151, 157, 165 and 166 were up-regulated on human matrix. The stimulation by IL-1alpha up-regulated CD44, 49e, 51, 54, 61, 106 on MC on polystyrene; CD49e, 51, 61, 106, 146, 165 on MC on fibronectin, and CD49e, 51, 54 on MC grown on human matrix. This analysis of surface antigen expression provides new information to enable a better understanding of the role of mesangial cells in glomerular pathophysiology.
Collapse
Affiliation(s)
- G Sengoelge
- Division of Nephrology and Dialysis, Department of Medicine III, University of Vienna, Wien, Austria.
| | | | | | | | | |
Collapse
|
32
|
Adili F, Scholz T, Hille M, Heckenkamp J, Barth S, Engert A, Schmitz-Rixen T. Photodynamic therapy mediated induction of accelerated re-endothelialisation following injury to the arterial wall: implications for the prevention of postinterventional restenosis. Eur J Vasc Endovasc Surg 2002; 24:166-75. [PMID: 12389241 DOI: 10.1053/ejvs.2002.1703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Accelerated re-endothelialisation may inhibit the development of restenosis. Basic Fibroblast Growth Factor (bFGF) plays a key role for early proliferative activity in the artery following injury. Therefore, this study was devised to examine the effect of photodynamic therapy (PDT) on post-injury re-endothelialisation in vivo, and bFGF-mRNA expression in endothelial cells (EC) in vitro. MATERIALS AND METHODS Rat carotid arteries were balloon-injured prior to PDT. Arteries were analysed after 1, 3, 5, 14 and 30 days. Morphometric measurements were undertaken following injection of 0.5% Evans Blue which stains non-endothelialised surfaces only. To identify EC, immunohistochemistry (CD-31) was performed. Proliferation was assessed by fluorescence cell counting. PCR quantification of bFGF-mRNA expression and proliferation were assessed in bovine aortic EC which were plated on isolated, PDT-treated EC-derived extracellular matrix at (12), 24, 48 (72 h). RESULTS Three days following PDT, arteries displayed significantly increased endothelial lining (p = 0.02), which was more pronounced at 5 (p = 0.03) and 14 days (p = 0.02). At 30 days no relevant differences between PDT and control were noted. EC proliferation on PDT-treated matrix was significantly increased at 24, 48, and 72 h (p = 0.0004), whereas bFGF-mRNA expression was significantly increased at 24 h only (p = 0.007). CONCLUSION Post-injury PDT appears to accelerate re-endothelialisation. Expression of bFGF-mRNA, however, although increased shortly after PDT, may not be responsible for a constant stimulation of EC proliferation.
Collapse
Affiliation(s)
- F Adili
- Division of Vascular and Endovascular Surgery, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Presta M, Rusnati M, Dell'Era P, Tanghetti E, Urbinati C, Giuliani R, Leali D. Examining new models for the study of autocrine and paracrine mechanisms of angiogenesis through FGF2-transfected endothelial and tumour cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 476:7-34. [PMID: 10949652 DOI: 10.1007/978-1-4615-4221-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Angiogenesis is the process of generating new capillary blood vessels. Uncontrolled endothelial cell proliferation is observed in tumour neovascularization. Several growth factors and cytokines have been shown to stimulate endothelial cell proliferation in vitro and in vivo and among them FGF2 was one of the first to be characterised. FGF2 is a Mr 18,000 heparin-binding cationic polypeptide that induces proliferation, migration, and protease production in endothelial cells in culture and neovascularization in vivo. FGF2 interacts with endothelial cells through two distinct classes of receptors, the high affinity tyrosine-kinase receptors (FGFRs) and low affinity heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix. Besides experimental evidence for paracrine mode of action for FGF2, some observations raise the hypothesis that FGF2 may also play an autocrine role in endothelial cells. FGF2 may therefore represent a target for anti-angiogenic therapies. In order to assess the angiostatic potential of different classes of compounds, novel experimental models have been developed based on the autocrine and/or the paracrine capacity of FGF2.
Collapse
Affiliation(s)
- M Presta
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Trudel C, Faure-Desire V, Florkiewicz RZ, Baird A. Translocation of FGF2 to the cell surface without release into conditioned media. J Cell Physiol 2000; 185:260-8. [PMID: 11025448 DOI: 10.1002/1097-4652(200011)185:2<260::aid-jcp11>3.0.co;2-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like most cells in culture, stably transfected COS-1 cells (CF18) that constitutively overexpress basic fibroblast growth factor (FGF2) do not release the growth factor into conditioned media. Yet, when cells were biotinylated, 30% of the total cell-associated immunoreactive FGF2 was detected on the cell surface. Under similar conditions, up to 70% of the total immunoreactive FGF2 in transfected endothelial cells (MAE ZIP) or untransfected rat (C6) and human (U87MG) glioblastoma cell lines was detected on their cell surface. When peripheral plasma membrane proteins were removed from the cell surface with 0.1 M sodium carbonate, the amount of exported FGF2 was significantly reduced, whereas cell viability was unaffected. FGF2 then reappeared on the cell surface in a time-dependent manner. Ouabain, a cardenolide previously shown to inhibit the export of FGF2 from transiently transfected COS-1 cells, blocked the appearance of FGF2 onto the surface of transfected CF18 cells and MAE ZIP cells but had no detectable effect on C6 and U87MG cells. The observation that the translocation of FGF2 onto the cell surface is dissociated from its release into conditioned medium is consistent with FGF2's being rarely found in biological fluids but always cell associated and in the extracellular matrix. The findings point to a role played by the protein export pathway in controlling FGF2 activity and the normal physiological function that this growth factor plays in cell growth and differentiation. The widely accepted presumption that the absence of FGF2 in conditioned media reflects its inability to exit the cell needs to be reevaluated.
Collapse
Affiliation(s)
- C Trudel
- Ciblex Corporation, San Diego, California, USA
| | | | | | | |
Collapse
|
35
|
Abstract
In this commentary, we describe a model to explain the mechanism of the embryopathy of thalidomide. We propose that thalidomide affects the following pathway during development: insulin-like growth factor I (IGF-I) and fibroblast growth factor 2 (FGF-2) stimulation of the transcription of alphav and beta3 integrin subunit genes. The resulting alphavbeta3 integrin dimer stimulates angiogenesis in the developing limb bud, which promotes outgrowth of the bud. The promoters of the IGF-I and FGF-2 genes, the genes for their binding proteins and receptors, as well as the alphav and beta3 genes, lack typical TATA boxes, but instead contain multiple GC boxes (GGGCGG). Thalidomide, or a breakdown product of thalidomide, specifically binds to these GC promoter sites, decreasing transcription efficiency of the associated genes. A cumulative decrease interferes with normal angiogenesis, which results in truncation of the limb. Intercalation into G-rich promoter regions of DNA may explain why certain thalidomide analogs are not teratogenic while retaining their anti-tumor necrosis factor-alpha (TNF-alpha) activity, and suggests that we look elsewhere to explain the action of thalidomide on TNF-alpha. On the other hand, the anti-cancer action of thalidomide may be based on its antiangiogenic action, resulting from specific DNA intercalation. The tissue specificity of thalidomide and its effect against only certain neoplasias may be explained by the fact that various developing tissues and neoplasias depend on different angiogenesis or vasculogenesis pathways, only some of which are thalidomide-sensitive.
Collapse
Affiliation(s)
- T D Stephens
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA.
| | | | | |
Collapse
|
36
|
Shemirani B, Crowe DL. Head and neck squamous cell carcinoma lines produce biologically active angiogenic factors. Oral Oncol 2000; 36:61-6. [PMID: 10889921 DOI: 10.1016/s1368-8375(99)00052-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the formation of capillaries from pre-existing blood vessels. Angiogenesis occurs in many developmental, physiologic, and pathologic processes including tumor growth. Previous studies have shown that angiogenesis is required for growth and metastasis of solid tumors. Fibroblast growth factors (FGF-1, -2) and vascular endothelial growth factor (VEGF) are extremely potent angiogenesis inducers by stimulating the proliferation and migration of capillary endothelial cells. Expression of these factors is upregulated in many solid tumors and correlates with high vascularity, lymph node metastasis, and poor clinical prognosis. Few studies have examined whether established head and neck squamous cell carcinoma (SCC) lines produce biologically active angiogenic factors. By immunoprecipitation, we detected FGF and VEGF proteins in cellular lysates of SCC lines. We also detected FGF-1 and -2 proteins in serum-free-conditioned medium from these lines. Conditioned medium from SCC lines significantly increased proliferation of human umbilical vein endothelial cells (HUVEC). This increased proliferation was abrogated by pre-incubation of conditioned medium with neutralizing antibodies to FGFs and VEGF. Conditioned medium from SCC lines also significantly stimulated HUVEC invasion across a reconstituted basement membrane. We concluded that head and neck SCC lines secrete biologically active angiogenic factors.
Collapse
Affiliation(s)
- B Shemirani
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
37
|
Trudel C, Faure-Desire V, Florkiewicz RZ, Baird A. Translocation of FGF2 to the cell surface without release into conditioned media. J Cell Physiol 2000. [DOI: 10.1002/1097-4652(200011)185:2%3c260::aid-jcp11%3e3.0.co;2-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Aigner A, Malerczyk C, Houghtling R, Wellstein A. Tissue distribution and retinoid-mediated downregulation of an FGF-binding protein (FGF-BP) in the rat. Growth Factors 2000; 18:51-62. [PMID: 10831072 DOI: 10.3109/08977190009003233] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We showed previously that a secreted fibroblast growth factor-binding protein (FGF-BP) can mobilize and bioactivate locally-stored FGFs from the extracellular matrix. This FGF-BP is upregulated in various cancers and plays a rate limiting role as an angiogenic switch molecule during tumor growth. In this paper, we describe the cloning and sequence analysis of the rat homologue of FGF-BP and show its expression pattern and retinoid-mediated downregulation in normal adult rat tissues. The rat FGF-BP amino acid sequence is 91% and 70% homologous to mouse and human, respectively, and contains 10 cysteine residues whose position is conserved across species. In Northern blots, FGF-BP mRNA was detected in the gut, eye, thymus, skin, lung and tongue. Immunohistochemistry confirmed this tissue distribution with cerebellar Purkinje cells, the cerebral chorioid plexus and the eye showing the most distinctive staining patterns. Oral treatment of animals with all-trans-retinoic acid for one and two days induced a significant decrease of FGF-BP protein in tissues from stomach, eye and lung suggesting that regulation of FGF-BP can be one effector mechanism through which retinoids affect normal and pathological processes.
Collapse
Affiliation(s)
- A Aigner
- Lombardi Cancer Center and Department of Pharmacology, Georgetown University, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
39
|
Ribatti D, Leali D, Vacca A, Giuliani R, Gualandris A, Roncali L, Nolli ML, Presta M. In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci 1999; 112 ( Pt 23):4213-21. [PMID: 10564640 DOI: 10.1242/jcs.112.23.4213] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro experimental evidences suggest that the proteolytic degradation of the extracellular matrix (ECM) by activation of the urokinase-type plasminogen activator (uPA)/plasmin system may affect growth factor activity and bioavailability. However, no direct in vivo observations were available to support this hypothesis. Here we demonstrate that endothelial GM 7373 cells overexpressing human uPA (uPA-R5 cells) cause the release of (125)I-labeled fibroblast growth factor-2 (FGF2) from endothelial ECM in a plasmin-dependent manner. Accordingly, uPA-R5 cells are angiogenic in vivo when applied on the top of the chorioallantoic membrane (CAM) of the chick embryo. In contrast, mock-transfected Neo2 cells are unable to release ECM-bound (125)I-FGF2 and are poorly angiogenic. Neovascularization elicited by uPA-R5 cells is significantly reduced by neutralizing anti-FGF2 antibodies to values similar to those observed in Neo2 cell-treated CAMs. Accordingly, purified human uPA stimulates neovascularization of the CAM in the absence of an inflammatory response. The angiogenic activity of uPA is significantly inhibited by neutralizing anti-FGF2 antibodies or by pretreatment with phenylmethylsulfonyl fluoride. The non-catalytic, receptor-binding amino-terminal fragment of uPA is instead non angiogenic. Taken together, the data indicate that uPA is able to induce angiogenesis in vivo via a plasmin-dependent degradation of ECM that causes the mobilization of stored endogenous FGF2.
Collapse
Affiliation(s)
- D Ribatti
- Institute of Human Anatomy, University of Bari, Piazza G. Cesare 11, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Statius van Eps RG, Mark LL, Schiereck J, LaMuraglia GM. Photodynamic therapy inhibits the injury-induced fibrotic response of vascular smooth muscle cells. Eur J Vasc Endovasc Surg 1999; 18:417-23. [PMID: 10610830 DOI: 10.1053/ejvs.1999.0911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES excessive deposition of extracellular matrix (ECM) proteins plays a key role in the intervention-related vascular fibroproliferative response, resulting in intimal hyperplasia (IH). Cytokines, such as platelet-derived growth factor (PDGF), released after vascular injury and deposited in the ECM, are known to stimulate production of matrix proteins. Photodynamic therapy (PDT), the combination of light and a photosensitive dye to produce free radicals, is a novel approach to inhibit experimental IH by the local eradication of smooth-muscle cells (SMC) and alteration of ECM. This in vitro study examined whether PDT can inhibit the fibrotic response of vascular SMC. MATERIALS AND METHODS the effect of PDT on important pro-fibrotic factors was determined by performing PDT of isolated ECM, injured SMC and pure PDGF. SMC production of collagen was monitored by cellular [3H]-proline incorporation. RESULTS untreated SMC seeded on ECM demonstrated an increase of 50% in collagen production ( p <0.0001) as compared to SMC on an empty plate. This increase was also seen when SMC was incubated with the conditioned media of mechanically injured SMC, or pure PDGF. However, after PDT of ECM, injured SMC or PDGF, there was an inhibition of 40% ( p <0.05) in SMC-collagen production. CONCLUSIONS these findings indicate that PDT can interfere with factors that lead to the vascular fibrotic response. In this way, PDT, with its cytotoxic and extracellular effects, can promote healing of the vessel wall without the stimulus of fibrosis that can lead to restenosis.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Cattle
- Cells, Cultured
- Collagen/biosynthesis
- Collagen/drug effects
- Collagen/radiation effects
- Culture Media, Conditioned
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/drug effects
- Extracellular Matrix Proteins/radiation effects
- Fibrosis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/radiation effects
- Photochemotherapy/methods
- Photochemotherapy/statistics & numerical data
- Platelet-Derived Growth Factor/drug effects
- Platelet-Derived Growth Factor/radiation effects
Collapse
Affiliation(s)
- R G Statius van Eps
- Division of Vascular Surgery of the General Surgical Services, Wellman Laboratories of Photomedicine, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
41
|
Nissen NN, Shankar R, Gamelli RL, Singh A, DiPietro LA. Heparin and heparan sulphate protect basic fibroblast growth factor from non-enzymic glycosylation. Biochem J 1999; 338 ( Pt 3):637-42. [PMID: 10051433 PMCID: PMC1220097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Non-enzymic glycosylation of basic fibroblast growth factor (bFGF, FGF-2) has recently been demonstrated to decrease the mitogenic activity of intracellular bFGF. Loss of this bioactivity has been implicated in impaired wound healing and microangiopathies of diabetes mellitus. In addition to intracellular localization, bFGF is also widely distributed in the extracellular matrix, primarily bound to heparan sulphate proteoglycans (HSPGs). Nonetheless, it is not clear if non-enzymic glycosylation similarly inactivates matrix-bound bFGF. To investigate this, we measured the effect of non-enzymic glycosylation on bFGF bound to heparin, heparan sulphate and related compounds. Incubation of bFGF with the glycosylating agents glyceraldehyde 3-phosphate (G3P; 25 mM) or fructose (250 mM) resulted in loss of 90% and 40% of the mitogenic activity of bFGF respectively. Treatment with G3P and fructose also decreased the binding of bFGF to a heparin column. If heparin was added to bFGF prior to non-enzymic glycosylation, the mitogenic activity and heparin affinity of bFGF were nearly completely preserved. A similar protective effect was demonstrated by heparan sulphate, low-molecular-mass heparin and the polysaccharide dextran sulphate, but not by chondroitin sulphate. Whereas non-enzymic glycosylation of bFGF with G3P impaired its ability to stimulate c-myc mRNA expression in fibroblasts, no such impairment was noticeable when bFGF was glycosylated in the presence of heparin. Taken together, these results suggest that HSPG-bound bFGF is resistant to non-enzymic glycosylation-induced loss of activity. Therefore, alteration of this pool probably does not contribute to impaired wound healing seen in diabetes mellitus.
Collapse
Affiliation(s)
- N N Nissen
- Department of Surgery and the Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
42
|
Dowd CJ, Cooney CL, Nugent MA. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 1999; 274:5236-44. [PMID: 9988774 DOI: 10.1074/jbc.274.8.5236] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a pluripotent cytokine with a wide range of target cells. Heparan sulfate binds bFGF, and this interaction has been demonstrated to protect bFGF against physical denaturation and protease degradation. The high concentrations of heparan sulfate in basement membranes have implicated these matrices as storage sites for bFGF in vivo. However, the mechanisms by which basement membranes modulate bFGF storage and release is unknown. To gain insight into these mechanisms, we have developed experimental and mathematical models of extracellular growth factor transport through basement membrane. Intact Descemet's membranes isolated from bovine corneas were mounted within customized diffusion cells and growth factor transport was measured under a variety of conditions that decoupled the diffusion process from the heparan sulfate binding phenomenon. Transport experiments were conducted with bFGF and interleukin 1beta. In addition, bFGF-heparan sulfate binding was disrupted in diffusion studies with high ionic strength buffer and buffers containing protamine sulfate. Transport of bFGF was enhanced dramatically when heparan sulfate binding was inhibited. This process was modeled as a problem of diffusion with fast reversible binding. Experimental parameters were incorporated into a mathematical model and independent simulations were run that showed that the experimental data were accurately predicted by the mathematical model. Thus, this study indicated that basement membranes function as dynamic regulators of growth factor transport, allowing for rapid response to changing environmental conditions. The fundamental principles controlling bFGF transport through basement membrane that have been identified here might have applications in understanding how growth factor distribution is regulated throughout an organism during development and in the adult state.
Collapse
Affiliation(s)
- C J Dowd
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
43
|
Hosokawa K, Aharoni D, Dantes A, Shaulian E, Schere-Levy C, Atzmon R, Kotsuji F, Oren M, Vlodavsky I, Amsterdam A. Modulation of Mdm2 expression and p53-induced apoptosis in immortalized human ovarian granulosa cells. Endocrinology 1998; 139:4688-700. [PMID: 9794481 DOI: 10.1210/endo.139.11.6280] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The activity of the tumor suppressor gene p53 is implicated in arrest of the cell cycle and the induction of apoptosis. The mdm2 oncogene is transcriptionally activated by p53, and the protein products of this gene can down-modulate biochemical activities and biological effects of p53 in a cell context-dependent manner. We have established highly steroidogenic human granulosa cell lines expressing the Ha-ras oncogene and a temperature sensitive (ts) mutant of p53 (p53val135) to test the involvement of p53-downstream genes in the modulation of apoptosis in these cells. We find that ras-transformed granulosa cells expressing p53val135 undergo apoptosis following a shift from 37 C to 32 C, a temperature at which p53val135 exerts its wild-type activity. Elevating the cellular content of cAMP at 32 C markedly enhances apoptosis. Basic fibroblast growth factor (bFGF) effectively blocks the p53/cAMP-induced apoptosis, but suppresses steroidogenesis. A naturally produced basement membrane-like extracellular matrix (ECM) containing immobilized bFGF exerts a similar antiapoptotic effect, but unlike soluble bFGF, it enhances steroidogenesis in these cells. While cAMP markedly suppresses the p53-induced Mdm2 expression, bFGF and ECM elevate Mdm2 expression 3-5-fold. These effects on Mdm2 expression are most pronounced 2-4 h after the shift to 32 C, before nuclear fragmentation is detected. Cells grown at 32 C in contact with ECM have a more developed actin cytoskeleton both in the absence and presence of cAMP stimulation, compared with cells grown on plastic dishes. We conclude that bFGF and components of the ECM can cross-talk with p53/cAMP-generated signals for apoptosis. These signals may, at least in part, be coordinated by the modulation of Mdm2 expression, which precedes the biochemical events characteristic of apoptosis. The multicomponent ECM also induced differentiation in these ras-transformed cells, while soluble bFGF inhibited differentiation, suggesting that ECM components other than bFGF stimulate differentiation. Organization of the actin cytoskeleton is likely to play an important role in the cross-talk between p53/cAMP- and bFGF/ECM-generated signals. Because the tumor suppressor gene p53 is implicated with apoptosis of primary granulosa cells and the ECM is involved in the prevention of this process, the newly established cell lines can serve as a useful model for apoptosis in highly luteinized granulosa cells.
Collapse
Affiliation(s)
- K Hosokawa
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998; 141:1659-73. [PMID: 9647657 PMCID: PMC2132998 DOI: 10.1083/jcb.141.7.1659] [Citation(s) in RCA: 629] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Revised: 05/20/1998] [Indexed: 02/08/2023] Open
Abstract
FGF-2 and VEGF are potent angiogenesis inducers in vivo and in vitro. Here we show that FGF-2 induces VEGF expression in vascular endothelial cells through autocrine and paracrine mechanisms. Addition of recombinant FGF-2 to cultured endothelial cells or upregulation of endogenous FGF-2 results in increased VEGF expression. Neutralizing monoclonal antibody to VEGF inhibits FGF-2-induced endothelial cell proliferation. Endogenous 18-kD FGF-2 production upregulates VEGF expression through extracellular interaction with cell membrane receptors; high-Mr FGF-2 (22-24-kD) acts via intracellular mechanism(s). During angiogenesis induced by FGF-2 in the mouse cornea, the endothelial cells of forming capillaries express VEGF mRNA and protein. Systemic administration of neutralizing VEGF antibody dramatically reduces FGF-2-induced angiogenesis. Because occasional fibroblasts or other cell types present in the corneal stroma show no significant expression of VEGF mRNA, these findings demonstrate that endothelial cell-derived VEGF is an important autocrine mediator of FGF-2-induced angiogenesis. Thus, angiogenesis in vivo can be modulated by a novel mechanism that involves the autocrine action of vascular endothelial cell-derived FGF-2 and VEGF.
Collapse
Affiliation(s)
- G Seghezzi
- Department of Surgery, and the Kaplan Cancer Center, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 1998. [PMID: 9391017 DOI: 10.1523/jneurosci.17-24-09624.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After injury to the CNS, extracellular matrix molecules such as tenascin are upregulated around the injury site and may be involved in inhibition of axon growth. In the present study, astrocytes were investigated to determine which cell types, growth factors, or cytokines are responsible for the injury-induced regulation of tenascin. The addition of activated macrophage- or microglial-conditioned medium increased astrocytic expression of tenascin 2.5-fold, as determined by Northern and Western blot analysis and ELISA. Of the cytokines and growth factors examined, only transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) significantly induced an increase in the production of astrocytic tenascin. Examination of macrophage and microglial supernatants showed the presence of TGF-beta1 but not bFGF; however, the TGF-beta1 concentration in supernatants was lower than that expected to induce an increase in astrocytic tenascin similar to that seen with recombinant TGF-beta1. Western blot analysis of astrocytes showed only the presence of bFGF. Compared with the responses of the individual growth factors, tenascin production by astrocytes was dramatically potentiated when grown in the presence of a combination of both TGF-beta1 and bFGF. A similar synergistic effect was observed after the addition of either TGF-beta1 or bFGF to macrophage-conditioned medium. Northern analysis also showed concomitant increases in TGF-beta1, bFGF, and tenascin after CNS injury to animals 14 d of age or older. These results show that the regulation of astrocytic tenascin is mediated by the synergistic action of TGF-beta1 and bFGF in vitro and after injury in vivo.
Collapse
|
46
|
Florkiewicz RZ, Anchin J, Baird A. The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem 1998; 273:544-51. [PMID: 9417114 DOI: 10.1074/jbc.273.1.544] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is one of a select group of proteins that can exit cells through an alternate, endoplasmic reticulum/Golgi apparatus independent exocytic pathway. This alternate pathway has been termed protein export. In an attempt to better understand this process, we have identified a family of related compounds, "cardenolides," that inhibit FGF-2 export. The cardenolides inhibit FGF-2 export in a time and concentration dependent fashion. Inhibition of FGF-2 export is specific in that the cardenolides have no effect on conventional protein secretion as measured by their inability to block release of the secreted protein human chorionic gonadotropin-alpha. Because cardenolides are known to inhibit ion transport activity mediated by Na+,K+-ATPase, we investigated whether there are functional interactions between FGF-2 and their only known molecular target: the alpha-subunit of Na+, K+-ATPase. Export of FGF-2 from COS-1 cells is selectively inhibited when co-transfected with expression vectors encoding the alpha-subunit and FGF-2. Moreover, antibodies to the alpha-subunit specifically co-immunoprecipitate FGF-2 along with the alpha-subunit while conversely, antibodies to FGF-2 specifically co-immunoprecipitate the alpha-subunit along with FGF-2. Finally, the ion transporting activities of the Na+,K+-ATPase can be uncoupled from protein export. Varying the external concentration of K+ has little effect on export of FGF-2. Taken together, these data: 1) identify a novel activity for cardenolides; 2) suggest a previously unknown role for the alpha-subunit of Na+, K+-ATPase in FGF-2 export; and 3) raise the possibility that the alpha-subunit itself may be an integral component of this alternate exocytic pathway mediating translocation of cytosolic FGF-2 to the cell surface.
Collapse
|
47
|
Steffen CL, Ball-Mirth DK, Harding PA, Bhattacharyya N, Pillai S, Brigstock DR. Characterization of cell-associated and soluble forms of connective tissue growth factor (CTGF) produced by fibroblast cells in vitro. Growth Factors 1998; 15:199-213. [PMID: 9570041 DOI: 10.3109/08977199809002117] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Connective tissue growth factor (CTGF) is a mitogenic and chemotactic factor for cultured fibroblasts that has been implicated in wound healing, fibrotic disorders and uterine function. Although the primary translational products of the mouse, human and pig CTGF (mCTGF, hCTGF, pCTGF) genes are predicted to be secreted and of approximate M(r) 38,000, 10 kDa biologically active forms of pCTGF have recently been described. In this report, we show that human foreskin fibroblasts (HFFs) and mouse connective tissue fibroblasts contained 2.4 kb CTGF transcripts, stained positively with an anti-CTGF[81-94] peptide antiserum, and produced a 38 kDa protein that was immunoprecipitated by an anti-CTGF[247-260] peptide antiserum. While 38 kDa CTGF was readily detected in cell lysates, it was non- or barely detectable in conditioned medium. 38 kDa CTGF remained cell-associated for at least 5 days after synthesis and was not releasable by treatment of the cells with trypsin, heparin, 1 M NaCl or low pH. Purification of CTGF from human or mouse fibroblast conditioned medium resulted in the isolation of 10-12 kDa CTGF proteins that were heparin-binding, bioactive, and reactive with anti-CTGF[247-260] on Western blots. Whereas 10 kDa CTGF stimulated DNA synthesis in 3T3 cells to the same extent as platelet-derived growth factor (PDGF)-AA, -AB, or -BB, it did not compete with 125I-PDGF-BB for binding to alpha alpha, alpha beta or beta beta PDGF receptors (PDGF-R), did not stimulate tyrosine phosphorylation of PDGF-alpha-R or -beta-R, and was not antagonized by a neutralizing PDGF-R-alpha antiserum. These data show that, in cultured fibroblasts, 38 kDa CTGF is principally cell-associated whereas low mass forms of CTGF are soluble and biologically active. They further demonstrate that, contrary to the previously proposed properties of 38 kDa CTGF, 10 kDa CTGF does not bind to PDGF-R and stimulates Balb/c 3T3 cell mitosis via a PDGF-R-independent mechanism.
Collapse
Affiliation(s)
- C L Steffen
- Department of Surgery, Ohio State University, Columbus, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gualandris A, Dell’Era P, Rusnati M, Giuliani R, Tanghetti E, Molinari-Tosatti MP, Ziche M, Ribatti D, Presta M. Autocrine Role of Basic Fibroblast Growth Factor (bFGF) in Angiogenesis and Angioproliferative Diseases. Angiogenesis 1998. [DOI: 10.1007/978-1-4757-9185-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Smith GM, Hale JH. Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 1997; 17:9624-33. [PMID: 9391017 PMCID: PMC6573400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
After injury to the CNS, extracellular matrix molecules such as tenascin are upregulated around the injury site and may be involved in inhibition of axon growth. In the present study, astrocytes were investigated to determine which cell types, growth factors, or cytokines are responsible for the injury-induced regulation of tenascin. The addition of activated macrophage- or microglial-conditioned medium increased astrocytic expression of tenascin 2.5-fold, as determined by Northern and Western blot analysis and ELISA. Of the cytokines and growth factors examined, only transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) significantly induced an increase in the production of astrocytic tenascin. Examination of macrophage and microglial supernatants showed the presence of TGF-beta1 but not bFGF; however, the TGF-beta1 concentration in supernatants was lower than that expected to induce an increase in astrocytic tenascin similar to that seen with recombinant TGF-beta1. Western blot analysis of astrocytes showed only the presence of bFGF. Compared with the responses of the individual growth factors, tenascin production by astrocytes was dramatically potentiated when grown in the presence of a combination of both TGF-beta1 and bFGF. A similar synergistic effect was observed after the addition of either TGF-beta1 or bFGF to macrophage-conditioned medium. Northern analysis also showed concomitant increases in TGF-beta1, bFGF, and tenascin after CNS injury to animals 14 d of age or older. These results show that the regulation of astrocytic tenascin is mediated by the synergistic action of TGF-beta1 and bFGF in vitro and after injury in vivo.
Collapse
Affiliation(s)
- G M Smith
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9068, USA
| | | |
Collapse
|
50
|
Tetzke TA, Caton MC, Maher PA, Parandoosh Z. Effect of fibroblast growth factor saporin mitotoxins on human bladder cell lines. Clin Exp Metastasis 1997; 15:620-9. [PMID: 9344046 DOI: 10.1023/a:1018443430904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitotoxins targeted via high-affinity growth factor receptors on the cell surface are a potential means of anticancer therapy. We have evaluated the effect of a chemically conjugated (FGF2-SAP) and a fusion protein (rFGF2-SAP) mitotoxin containing FGF-2 and saporin on normal (FHs 738B1) and malignant bladder cell lines (HT1197, TCCSUP, EJ-6, and RT4). The FGF-saporins demonstrated potent cytotoxicity in malignant bladder cell lines with an ID50 range of 0.13-13.6 nM, whereas cells derived from normal fetal bladder (FHs 738B1) were less sensitive to FGF2-saporins (ID50 > 100 nM). Greater than a 100-fold difference in cytotoxicity between FGF-saporins and unconjugated saporin was observed. Assessment of cellular FGF-2 content and secretion showed that FHs 738B1 and TCCSUP contained and secreted significantly more FGF-2 compared to other cell lines tested. (125)I-FGF-2 receptor binding studies showed the presence of high-affinity (pM) FGF receptors on all bladder cell lines. Cross-linking studies revealed the presence of a major receptor-ligand complex of 90 kDa on FHs 738B1 and 160-170 kDa on the other bladder cell lines. All cell lines studied, except RT4, expressed solely FGFR-1. These studies demonstrate that FGF2-saporins have antiproliferative activity on human bladder cancer cell lines. However, the number of high-affinity FGF receptors, and FGF-2 cellular content and secretion are not absolute determinants of cellular sensitivity to FGF2-saporins.
Collapse
Affiliation(s)
- T A Tetzke
- Prizm Pharmaceuticals Inc., San Diego, California, USA
| | | | | | | |
Collapse
|