1
|
Marsman G, Zheng X, Čerina D, Lacey KA, Liu M, Humme D, Goosmann C, Brinkmann V, Harbort CJ, Torres VJ, Zychlinsky A. Histone H1 kills MRSA. Cell Rep 2024; 43:114969. [PMID: 39546397 DOI: 10.1016/j.celrep.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
The antimicrobial activity of histones was discovered in the 1940s, but their mechanism of action is not fully known. Here we show that methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to histone H1 (H1), even in the presence of divalent cations and serum. Through selective evolution and a genome-wide screen of a transposon library, as well as physiological and pharmacological experiments, we elucidated how H1 kills MRSA. We show that H1 first binds to wall teichoic acids with high affinity. Once bound, H1 requires a potentiated membrane and a metabolically active bacterium to permeabilize the membrane and enter the cell. Upon entry, H1 accumulates intracellularly, in close association with the bacterial DNA. Of note, anti-H1 antibodies inhibit neutrophil extracellular trap killing of MRSA. Moreover, H1 colocalizes with bacterial DNA in abscess samples of MRSA-infected patients, suggesting a role for H1 in combating MRSA in vivo.
Collapse
Affiliation(s)
- Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Dora Čerina
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Menghan Liu
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel Humme
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Goosmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - C J Harbort
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
2
|
Ecard J, Lian YL, Divoux S, Gouveia Z, Vigne E, Perez F, Boncompain G. Lysosomal membrane proteins LAMP1 and LIMP2 are segregated in the Golgi apparatus independently of their clathrin adaptor binding motif. Mol Biol Cell 2024; 35:ar42. [PMID: 38231876 PMCID: PMC10916873 DOI: 10.1091/mbc.e23-06-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Jason Ecard
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
- Large Molecules Research, Sanofi, 94400 Vitry-Sur-Seine, France
| | - Yen-Ling Lian
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Séverine Divoux
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Zelia Gouveia
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | | | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| |
Collapse
|
3
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
4
|
Le TKC, Dao XD, Nguyen DV, Luu DH, Bui TMH, Le TH, Nguyen HT, Le TN, Hosaka T, Nguyen TTT. Insulin signaling and its application. Front Endocrinol (Lausanne) 2023; 14:1226655. [PMID: 37664840 PMCID: PMC10469844 DOI: 10.3389/fendo.2023.1226655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
The discovery of insulin in 1921 introduced a new branch of research into insulin activity and insulin resistance. Many discoveries in this field have been applied to diagnosing and treating diseases related to insulin resistance. In this mini-review, the authors attempt to synthesize the updated discoveries to unravel the related mechanisms and inform the development of novel applications. Firstly, we depict the insulin signaling pathway to explain the physiology of insulin action starting at the receptor sites of insulin and downstream the signaling of the insulin signaling pathway. Based on this, the next part will analyze the mechanisms of insulin resistance with two major provenances: the defects caused by receptors and the defects due to extra-receptor causes, but in this study, we focus on post-receptor causes. Finally, we discuss the recent applications including the diseases related to insulin resistance (obesity, cardiovascular disease, Alzheimer's disease, and cancer) and the potential treatment of those based on insulin resistance mechanisms.
Collapse
Affiliation(s)
- Thi Kim Chung Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Xuan Dat Dao
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Dang Vung Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Duc Huy Luu
- Department of Biopharmaceuticals, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Minh Hanh Bui
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Huong Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Huu Thang Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Ngoan Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Toshio Hosaka
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Thi Thu Thao Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
5
|
Cardoso MH, Hall MJ, Burgoyne T, Fale P, Storm T, Escrevente C, Antas P, Seabra MC, Futter CE. Impaired Lysosome Reformation in Chloroquine-Treated Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 37548963 PMCID: PMC10411645 DOI: 10.1167/iovs.64.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose To model the in vivo effects of chloroquine on the retinal pigment epithelium in experimentally tractable cell culture systems and determine the effects of mild chloroquine treatment on lysosome function and turnover. Methods Effects of low-dose chloroquine treatment on lysosomal function and accessibility to newly endocytosed cargo were investigated in primary and embryonic stem cell-derived RPE cells and ARPE19 cells using fluorescence and electron microscopy of fluorescent and gold-labeled probes. Lysosomal protein expression and accumulation were measured by quantitative PCR and Western blotting. Results Initial chloroquine-induced lysosome neutralization was followed by partial recovery, lysosomal expansion, and accumulation of undegraded endocytic, phagocytic, and autophagic cargo and inhibition of cathepsin D processing. Accumulation of enlarged lysosomes was accompanied by a gradual loss of accessibility of these structures to the endocytic pathway, implying impaired lysosome reformation. Chloroquine-induced accumulation of pro-cathepsin D, as well as the lysosomal membrane protein, LAMP1, was reproduced by treatment with protease inhibitors and preceded changes in lysosomal gene expression. Conclusions Low-dose chloroquine treatment inhibits lysosome reformation, causing a gradual depletion of lysosomes able to interact with cargo-carrying vacuoles and degrade their content. The resulting accumulation of newly synthesized pro-cathepsin D and LAMP1 reflects inhibition of normal turnover of lysosomal constituents and possibly lysosomes themselves. A better understanding of the mechanisms underlying lysosome reformation may reveal new targets for the treatment of chloroquine-induced retinopathy.
Collapse
Affiliation(s)
- M Helena Cardoso
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa; Lisboa, Portugal
| | | | | | - Pedro Fale
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Tina Storm
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa; Lisboa, Portugal
| | - Pedro Antas
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa; Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa; Lisboa, Portugal
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
6
|
Burgoyne T, Futter CE. Gold Particle Analyser: Detection and quantitative assessment of electron microscopy gold probes. PLoS One 2023; 18:e0288811. [PMID: 37506104 PMCID: PMC10381077 DOI: 10.1371/journal.pone.0288811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Gold particle probes are an essential electron microscopy tool to examine protein localisation, as well as protein trafficking. They can be introduced into living cells when conjugated to a protein that is endocytosed or to an antibody against a cell surface protein. Alternatively, gold particles can be introduced into fixed cells or tissue when conjugated to antibodies, immunoglobulin binding molecules or chemical probes applied to permeabilised samples or electron microscopy sections. Colloidal gold particles that have not been enlarged through chemical (gold or silver) enhancement are typically spherical and can be prepared in a range of specific sizes, allowing multiple proteins to be localised within a single sample. The typically homogeneous shape and size of the colloidal gold makes them ideal for computer assisted detection and analysis. Here we demonstrate a program developed to automatically identify two sizes of gold particle and perform a range of analyses that includes (i) distribution and cluster analysis; (ii) selection and analysis of gold particles allocated close to or either side of a membrane; (iii) measurement of organelle size; (iv) estimation of the number of gold particles within an aggregate and (v) the detection of chemically enhanced irregular sized and shaped gold particles. We show this easy-to-use program can greatly assist electron microscopists, to reliably and efficiently analyse gold particles within their images.
Collapse
Affiliation(s)
- Thomas Burgoyne
- UCL Institute of Ophthalmology, London, United Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
7
|
Domingues N, Marques ARA, Calado RDA, Ferreira IS, Ramos C, Ramalho J, Soares MIL, Pereira T, Oliveira L, Vicente JR, Wong LH, Simões ICM, Pinho E Melo TMVD, Peden A, Almeida CG, Futter CE, Puertollano R, Vaz WLC, Vieira OV. Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. Traffic 2023; 24:284-307. [PMID: 37129279 DOI: 10.1111/tra.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rita Diogo Almeida Calado
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Telmo Pereira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José R Vicente
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Inês C M Simões
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Andrew Peden
- Department of Biomedical Science & Center for Membrane Interactions and Dynamics, University of Sheffield, UK
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Srinivas V, Molangiri A, Varma S, Mallepogu A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Maternal omega-3 fatty acid deficiency affects fetal thermogenic development and postnatal musculoskeletal growth in mice. J Nutr Biochem 2023; 112:109218. [PMID: 36375730 DOI: 10.1016/j.jnutbio.2022.109218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Maternal omega-3 (n-3) polyunsaturated fatty acids (PUFAs) deficiency can affect offspring's adiposity and metabolism by modulating lipid and glucose metabolism. However, the impact of n-3 PUFA deficiency on the development of fetal thermogenesis and its consequences is not reported. Using an n-3 PUFA deficient mice, we assessed fetal interscapular brown adipose tissue (iBAT), body fat composition, insulin growth factor-1 (IGF-1), glucose transporters (GLUTs), and expression of lipid storage & metabolic proteins in the offspring. The n-3 PUFA deficiency did not change the pups' calorie intake, organ weight, and body weight. However, the offspring's skeletal growth was altered due to excess fat to lean mass, reduced tibia & femur elongation, dysregulated IGF-1 in the mother and pups (P< .05). Localization of uncoupling protein 1 (UCP1) in iBAT exhibited a reduced expression in the deficient fetus. Further, UCP1, GLUT1, GPR120 were downregulated while FABP3, ADRP, GLUT4 expressions were upregulated in the BAT of the deficient offspring (P< .05). The deficiency decreased endogenous conversion of the n-3 LCPUFAs from their precursors and upregulated SCD1, FASN, and MFSD2A mRNAs in the liver (P< .05). An altered musculoskeletal growth in the offspring is associated with impaired browning of the fetal adipose, dysregulated thermogenesis, growth hormone, and expression of glucose and fatty acid metabolic mediators due to maternal n-3 PUFA deficiency. BAT had higher metabolic sensitivity compared to WAT in n-3 PUFA deficiency. Maternal n-3 PUFA intake may prevent excess adiposity by modulating fetal development of thermogenesis and skeletal growth dynamics in the mice offspring.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Aswani Mallepogu
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Suryam Reddy Kona
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ahamed Ibrahim
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
9
|
Techa S, Thongda W, Bunphimpapha P, Ittarat W, Boonbangyang M, Wilantho A, Ngamphiw C, Pratoomchat B, Nounurai P, Piyapattanakorn S. Isolation and functional identification of secretin family G-protein coupled receptor from Y-organ of the mud crab, Scylla olivacea. Gene X 2023; 848:146900. [DOI: 10.1016/j.gene.2022.146900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
|
10
|
Kloska SM, Pałczyński K, Marciniak T, Talaśka T, Miller M, Wysocki BJ, Davis PH, Soliman GA, Wysocki TA. Queueing theory model of mTOR complexes' impact on Akt-mediated adipocytes response to insulin. PLoS One 2022; 17:e0279573. [PMID: 36574435 PMCID: PMC9794039 DOI: 10.1371/journal.pone.0279573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022] Open
Abstract
A queueing theory based model of mTOR complexes impact on Akt-mediated cell response to insulin is presented in this paper. The model includes several aspects including the effect of insulin on the transport of glucose from the blood into the adipocytes with the participation of GLUT4, and the role of the GAPDH enzyme as a regulator of mTORC1 activity. A genetic algorithm was used to optimize the model parameters. It can be observed that mTORC1 activity is related to the amount of GLUT4 involved in glucose transport. The results show the relationship between the amount of GAPDH in the cell and mTORC1 activity. Moreover, obtained results suggest that mTORC1 inhibitors may be an effective agent in the fight against type 2 diabetes. However, these results are based on theoretical knowledge and appropriate experimental tests should be performed before making firm conclusions.
Collapse
Affiliation(s)
- Sylwester M. Kloska
- Department of Forensic Medicine, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Krzysztof Pałczyński
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Talaśka
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Marissa Miller
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
| | - Beata J. Wysocki
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Ghada A. Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, City University of New York, Graduate School of Public Health and Healthy Policy, New York, NY, United States of America
| | - Tadeusz A. Wysocki
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
| |
Collapse
|
11
|
Inhibitors of RNA and protein synthesis cause Glut4 translocation and increase glucose uptake in adipocytes. Sci Rep 2022; 12:15640. [PMID: 36123369 PMCID: PMC9485115 DOI: 10.1038/s41598-022-19534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022] Open
Abstract
Insulin stimulates glucose uptake in adipocytes by triggering translocation of glucose transporter 4-containg vesicles to the plasma membrane. Under basal conditions, these vesicles (IRVs for insulin-responsive vesicles) are retained inside the cell via a “static” or “dynamic” mechanism. We have found that inhibitors of RNA and protein synthesis, actinomycin D and emetine, stimulate Glut4 translocation and glucose uptake in adipocytes without engaging conventional signaling proteins, such as Akt, TBC1D4, or TUG. Actinomycin D does not significantly affect endocytosis of Glut4 or recycling of transferrin, suggesting that it specifically increases exocytosis of the IRVs. Thus, the intracellular retention of the IRVs in adipocytes requires continuous RNA and protein biosynthesis de novo. These results point out to the existence of a short-lived inhibitor of IRV translocation thus supporting the “static” model.
Collapse
|
12
|
Yuan Y, Kong F, Xu H, Zhu A, Yan N, Yan C. Cryo-EM structure of human glucose transporter GLUT4. Nat Commun 2022; 13:2671. [PMID: 35562357 PMCID: PMC9106701 DOI: 10.1038/s41467-022-30235-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
GLUT4 is the primary glucose transporter in adipose and skeletal muscle tissues. Its cellular trafficking is regulated by insulin signaling. Failed or reduced plasma membrane localization of GLUT4 is associated with diabetes. Here, we report the cryo-EM structures of human GLUT4 bound to a small molecule inhibitor cytochalasin B (CCB) at resolutions of 3.3 Å in both detergent micelles and lipid nanodiscs. CCB-bound GLUT4 exhibits an inward-open conformation. Despite the nearly identical conformation of the transmembrane domain to GLUT1, the cryo-EM structure reveals an extracellular glycosylation site and an intracellular helix that is invisible in the crystal structure of GLUT1. The structural study presented here lays the foundation for further mechanistic investigation of the modulation of GLUT4 trafficking. Our methods for cryo-EM analysis of GLUT4 will also facilitate structural determination of many other small size solute carriers. Small solute carriers remain difficult to study by single particle cryo-EM. Here, the authors report the cryo-EM structure of human insulin-responsive glucose transporter GLUT4 (55 kDa) without rigid soluble domains or binders.
Collapse
Affiliation(s)
- Yafei Yuan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanwen Xu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Angqi Zhu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Vargas JA, Finnemann SC. Probing Photoreceptor Outer Segment Phagocytosis by the RPE In Vivo: Models and Methodologies. Int J Mol Sci 2022; 23:ijms23073661. [PMID: 35409021 PMCID: PMC8998817 DOI: 10.3390/ijms23073661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the vertebrate retina, the light-sensitive photoreceptor rods and cones constantly undergo renewal by generating new portions of the outer segment and shedding their distal, spent tips. The neighboring RPE provides the critical function of engulfing the spent material by phagocytosis. RPE phagocytosis of shed rod outer segment fragments is a circadian process that occurs in a burst of activity shortly after daily light onset with low activity at other times, a rhythm that has been reported for many species and over 50 years. In this review, we compare studies on the rhythm and quantity of RPE phagocytosis using different in vivo model systems and assessment methods. We discuss how measurement methodology impacts the observation and analysis of RPE phagocytosis. Published studies on RPE phagocytosis investigating mice further suggest that differences in genetic background and housing conditions may affect results. Altogether, a comparison between RPE phagocytosis studies performed using differing methodology and strains of the same species is not as straightforward as previously thought.
Collapse
|
14
|
Heckmann M, Klanert G, Sandner G, Lanzerstorfer P, Auer M, Weghuber J. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation. Methods Appl Fluoresc 2022; 10. [PMID: 35008072 DOI: 10.1088/2050-6120/ac4998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Postprandial insulin-stimulated glucose uptake into target tissue is crucial for the maintenance of normal blood glucose homeostasis. This step is rate-limited by the number of facilitative glucose transporters type 4 (GLUT4) present in the plasma membrane. Since insulin resistance and impaired GLUT4 translocation are associated with the development of metabolic disorders such as type 2 diabetes, this transporter has become an important target of antidiabetic drug research. The application of screening approaches that are based on the analysis of GLUT4 translocation to the plasma membrane to identify substances with insulinomimetic properties has gained global research interest in recent years. Here, we review methods that have been implemented to quantitate the translocation of GLUT4 to the plasma membrane. These methods can be broadly divided into two sections: microscopy-based technologies (e.g., immunoelectron, confocal or total internal reflection fluorescence microscopy) and biochemical and spectrometric approaches (e.g., membrane fractionation, photoaffinity labeling or flow cytometry). In this review, we discuss the most relevant approaches applied to GLUT4 thus far, highlighting the advantages and disadvantages of these approaches, and we provide a critical discussion and outlook into new methodological opportunities.
Collapse
Affiliation(s)
- Mara Heckmann
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Gerald Klanert
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, AUSTRIA
| | - Georg Sandner
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Manfred Auer
- Division of Pathway Medicine, University of Edinburgh, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, Edinburgh, EH8 9AB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| |
Collapse
|
15
|
The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nat Commun 2021; 12:6193. [PMID: 34702812 PMCID: PMC8548510 DOI: 10.1038/s41467-021-26517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus bi-component pore-forming leukocidins are secreted toxins that directly target and lyse immune cells. Intriguingly, one of the leukocidins, Leukocidin AB (LukAB), is found associated with the bacterial cell envelope in addition to secreted into the extracellular milieu. Here, we report that retention of LukAB on the bacterial cells provides S. aureus with a pre-synthesized active toxin that kills immune cells. On the bacteria, LukAB is distributed as discrete foci in two distinct compartments: membrane-proximal and surface-exposed. Through genetic screens, we show that a membrane lipid, lysyl-phosphatidylglycerol (LPG), and lipoteichoic acid (LTA) contribute to LukAB deposition and release. Furthermore, by studying non-covalently surface-bound proteins we discovered that the sorting of additional exoproteins, such as IsaB, Hel, ScaH, and Geh, are also controlled by LPG and LTA. Collectively, our study reveals a multistep secretion system that controls exoprotein storage and protein translocation across the S. aureus cell wall.
Collapse
|
16
|
Listeriolysin S: A bacteriocin from Listeria monocytogenes that induces membrane permeabilization in a contact-dependent manner. Proc Natl Acad Sci U S A 2021; 118:2108155118. [PMID: 34599102 PMCID: PMC8501752 DOI: 10.1073/pnas.2108155118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis, a foodborne disease characterized by gastroenteritis, meningitis, bacteremia, and abortions in pregnant women. The most severe human listeriosis outbreaks are associated with a subset of Lm hypervirulent clones that encode the bacteriocin Listeriolysin S (LLS), which modifies the gut microbiota and allows efficient Lm gut colonization and invasion of deeper organs. Our present work identifies the killing mechanism displayed by LLS to outcompete gut commensal bacteria, demonstrating that it induces membrane permeabilization and membrane depolarization of target bacteria. Moreover, we show that LLS is a thiazole/oxazole–modified microcin that displays a contact-dependent inhibition mechanism. Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.
Collapse
|
17
|
Wölffling S, Daddi AA, Imai-Matsushima A, Fritsche K, Goosmann C, Traulsen J, Lisle R, Schmid M, Reines-Benassar MDM, Pfannkuch L, Brinkmann V, Bornschein J, Malfertheiner P, Ordemann J, Link A, Meyer TF, Boccellato F. EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology 2021; 161:623-636.e16. [PMID: 33957136 DOI: 10.1053/j.gastro.2021.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/β-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.
Collapse
Affiliation(s)
- Sarah Wölffling
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alice Anna Daddi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Preemptive Medicine and Lifestyle-Related Diseases Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christian Goosmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Lennart Pfannkuch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Bornschein
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals, Oxford, United Kingdom; Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Jürgen Ordemann
- Department of Bariatric and Metabolic Surgery, Helios Klinikum, Berlin, Germany; Center for Bariatric and Metabolic Surgery, Vivantes Klinikum Spandau, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
18
|
Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, Hopfner KP, Zychlinsky A. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal 2021; 14:14/673/eaax7942. [PMID: 33688080 DOI: 10.1126/scisignal.aax7942] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of chromatin and antimicrobial molecules that are released by neutrophils during a form of regulated cell death called NETosis. NETs trap invading pathogens, promote coagulation, and activate myeloid cells to produce type I interferons (IFNs), proinflammatory cytokines that regulate the immune system. Here, we showed that macrophages and other myeloid cells phagocytosed NETs. Once in phagosomes, NETs translocated to the cytosol, where the DNA backbones of these structures activated the innate immune sensor cyclic GMP-AMP synthase (cGAS) and induced type I IFN production. The NET-associated serine protease neutrophil elastase (NE) mediated the activation of this pathway. We showed that NET induction in mice treated with the lectin concanavalin A, a model of autoimmune hepatitis, resulted in cGAS-dependent stimulation of an IFN response, suggesting that NETs activated cGAS in vivo. Thus, our findings suggest that cGAS is a sensor of NETs, mediating immune cell activation during infection.
Collapse
Affiliation(s)
- Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Liudmila Andreeva
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lorenz Sebastian Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany.,T-Knife GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Robert Streeck
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Karl Frese
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Goosmann
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Karl-Peter Hopfner
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany. .,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
19
|
Edgar JR, Ho AK, Laurá M, Horvath R, Reilly MM, Luzio JP, Roberts RC. A dysfunctional endolysosomal pathway common to two sub-types of demyelinating Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2020; 8:165. [PMID: 33059769 PMCID: PMC7559459 DOI: 10.1186/s40478-020-01043-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant mutations in LITAF are responsible for the rare demyelinating peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). The LITAF protein is expressed in many human cell types and we have investigated the consequences of two different LITAF mutations in primary fibroblasts from CMT1C patients using confocal and electron microscopy. We observed the appearance of vacuolation/enlargement of late endocytic compartments (late endosomes and lysosomes). This vacuolation was also observed after knocking out LITAF from either control human fibroblasts or from the CMT1C patient-derived cells, consistent with it being the result of loss-of-function mutations in the CMT1C fibroblasts. The vacuolation was similar to that previously observed in fibroblasts from CMT4J patients, which have autosomal recessive mutations in FIG4. The FIG4 protein is a component of a phosphoinositide kinase complex that synthesises phosphatidylinositol 3,5-bisphosphate on the limiting membrane of late endosomes. Phosphatidylinositol 3,5-bisphosphate activates the release of lysosomal Ca2+ through the cation channel TRPML1, which is required to maintain the homeostasis of endosomes and lysosomes in mammalian cells. We observed that a small molecule activator of TRPML1, ML-SA1, was able to rescue the vacuolation phenotype of LITAF knockout, FIG4 knockout and CMT1C patient fibroblasts. Our data describe the first cellular phenotype common to two different subtypes of demyelinating CMT and are consistent with LITAF and FIG4 functioning on a common endolysosomal pathway that is required to maintain the homeostasis of late endosomes and lysosomes. Although our experiments were on human fibroblasts, they have implications for our understanding of the molecular pathogenesis and approaches to therapy in two subtypes of demyelinating Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
| |
Collapse
|
20
|
Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch 2020; 472:1155-1175. [PMID: 32591905 PMCID: PMC7462842 DOI: 10.1007/s00424-020-02411-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
The SLC2 genes code for a family of GLUT proteins that are part of the major facilitator superfamily (MFS) of membrane transporters. Crystal structures have recently revealed how the unique protein fold of these proteins enables the catalysis of transport. The proteins have 12 transmembrane spans built from a replicated trimer substructure. This enables 4 trimer substructures to move relative to each other, and thereby alternately opening and closing a cleft to either the internal or the external side of the membrane. The physiological substrate for the GLUTs is usually a hexose but substrates for GLUTs can include urate, dehydro-ascorbate and myo-inositol. The GLUT proteins have varied physiological functions that are related to their principal substrates, the cell type in which the GLUTs are expressed and the extent to which the proteins are associated with subcellular compartments. Some of the GLUT proteins translocate between subcellular compartments and this facilitates the control of their function over long- and short-time scales. The control of GLUT function is necessary for a regulated supply of metabolites (mainly glucose) to tissues. Pathophysiological abnormalities in GLUT proteins are responsible for, or associated with, clinical problems including type 2 diabetes and cancer and a range of tissue disorders, related to tissue-specific GLUT protein profiles. The availability of GLUT crystal structures has facilitated the search for inhibitors and substrates and that are specific for each GLUT and that can be used therapeutically. Recent studies are starting to unravel the drug targetable properties of each of the GLUT proteins.
Collapse
Affiliation(s)
- Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
21
|
Wang X, Weng M, Ke Y, Sapp E, DiFiglia M, Li X. Kalirin Interacts with TRAPP and Regulates Rab11 and Endosomal Recycling. Cells 2020; 9:cells9051132. [PMID: 32375403 PMCID: PMC7291072 DOI: 10.3390/cells9051132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
Coordinated actions of Rab and Rho are necessary for numerous essential cellular processes ranging from vesicle budding to whole cell movement. How Rab and Rho are choreographed is poorly understood. Here, we report a protein complex comprised of kalirin, a Rho guanine nucleotide exchange factor (GEF) activating Rac1, and RabGEF transport protein particle (TRAPP). Kalirin was identified in a mass spectrometry analysis of proteins precipitated by trappc4 and detected on membranous organelles containing trappc4. Acute knockdown of kalirin did not affect trappc4, but significantly reduced overall and membrane-bound levels of trappc9, which specifies TRAPP toward activating Rab11. Trappc9 deficiency led to elevated expression of kalirin in neurons. Co-localization of kalirin and Rab11 occurred at a low frequency in NRK cells under steady state and was enhanced upon expressing an inactive Rab11 mutant to prohibit the dissociation of Rab11 from the kalirin-TRAPP complex. The small RNA-mediated depletion of kalirin diminished activities in cellular membranes for activating Rab11 and resulted in a shift in size of Rab11 positive structures from small to larger ones and tubulation of recycling endosomes. Our study suggests that kalirin and TRAPP form a dual GEF complex to choreograph actions of Rab11 and Rac1 at recycling endosomes.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Y.K.)
| | - Meiqian Weng
- Mucosal Immunology Lab combined program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Y.K.)
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (E.S.); (M.D.)
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (E.S.); (M.D.)
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (E.S.); (M.D.)
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Y.K.)
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (E.S.); (M.D.)
- Correspondence: or ; Tel.: +86-21-34204737
| |
Collapse
|
22
|
Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - Size is not everything! Curr Opin Cell Biol 2020; 65:28-34. [PMID: 32182545 DOI: 10.1016/j.ceb.2020.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.
Collapse
Affiliation(s)
- Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
23
|
Jongsma ML, Bakker J, Cabukusta B, Liv N, van Elsland D, Fermie J, Akkermans JL, Kuijl C, van der Zanden SY, Janssen L, Hoogzaad D, van der Kant R, Wijdeven RH, Klumperman J, Berlin I, Neefjes J. SKIP-HOPS recruits TBC1D15 for a Rab7-to-Arl8b identity switch to control late endosome transport. EMBO J 2020; 39:e102301. [PMID: 32080880 PMCID: PMC7073467 DOI: 10.15252/embj.2019102301] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or “late” endosomes are designated by small membrane‐bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub‐compartment through an ordered Rab7‐to‐Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.
Collapse
Affiliation(s)
- Marlieke Lm Jongsma
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Bakker
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daphne van Elsland
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Job Fermie
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jimmy Ll Akkermans
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Coenraad Kuijl
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Denise Hoogzaad
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rik van der Kant
- Center for Neurogenomics and Cognitive Research, Faculty of Sciences, VU Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
25
|
Factors affecting the fate of the canine corpus luteum: Potential contributors to pregnancy and non-pregnancy. Theriogenology 2020; 150:339-346. [PMID: 32089321 DOI: 10.1016/j.theriogenology.2020.01.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
The fate of the canine corpus luteum (CL) differs from that of other domestic species: beyond the extended luteal regression observed in both pregnant and non-pregnant cycles, active luteolysis is observed only in pregnant dogs. Luteal regression in the absence of pregnancy lacks a luteolytic trigger. The CL lifespan during pregnancy is around 60 days, as long as that of the cyclic CL. Although they are already available in the first half of diestrus, LH and especially prolactin (PRL) play a decisive luteotropic role from approximately day 25 post-ovulation onwards. Nevertheless, many locally-produced factors are orchestrated to ensure a fully functional CL, which in the bitch produces progesterone (P4), 17b-estradiol, and other local regulators. Recently, insulin has been described as another luteotropic factor in this species, able to increase glucose uptake in luteal cells and contribute to steroid biosynthesis. The locally-produced PGE2 is also a potent luteotropic factor in the first half of diestrus, promoting STAR expression, as are also proliferating, vasoactive- and immunomodulatory factors. These, in turn, all contribute to the formation and maintenance of the canine CL. Meanwhile PGF2a, produced by the utero-placental compartment, participates actively in triggering pre-partum luteolysis. Cytokines play different roles, either contributing as luteotropic or as acute inflammation molecules. So far, the one clinically most efficient mechanism of interrupting a pregnancy in the dog is to block P4 receptors, using an antigestagen (e.g., aglepristone) in the second half of diestrus. To enhance the chances of pregnancy, however, several luteotropic factors could be used.
Collapse
|
26
|
McConell GK, Sjøberg KA, Ceutz F, Gliemann L, Nyberg M, Hellsten Y, Frøsig C, Kiens B, Wojtaszewski JFP, Richter EA. Insulin-induced membrane permeability to glucose in human muscles at rest and following exercise. J Physiol 2020; 598:303-315. [PMID: 31696935 DOI: 10.1113/jp278600] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Increased insulin action is an important component of the health benefits of exercise, but its regulation is complex and not fully elucidated. Previous studies of insulin-stimulated GLUT4 translocation to the skeletal muscle membrane found insufficient increases to explain the increases in glucose uptake. By determination of leg glucose uptake and interstitial muscle glucose concentration, insulin-induced muscle membrane permeability to glucose was calculated 4 h after one-legged knee-extensor exercise during a submaximal euglycaemic-hyperinsulinaemic clamp. It was found that during submaximal insulin stimulation, muscle membrane permeability to glucose in humans increases twice as much in previously exercised vs. rested muscle and outstrips the supply of glucose, which then becomes limiting for glucose uptake. This methodology can now be employed to determine muscle membrane permeability to glucose in people with diabetes, who have reduced insulin action, and in principle can also be used to determine membrane permeability to other substrates or metabolites. ABSTRACT Increased insulin action is an important component of the health benefits of exercise, but the regulation of insulin action in vivo is complex and not fully elucidated. Previously determined increases in skeletal muscle insulin-stimulated GLUT4 translocation are inconsistent and mostly cannot explain the increases in insulin action in humans. Here we used leg glucose uptake (LGU) and interstitial muscle glucose concentration to calculate insulin-induced muscle membrane permeability to glucose, a variable not previously possible to quantify in humans. Muscle membrane permeability to glucose, measured 4 h after one-legged knee-extensor exercise, increased ∼17-fold during a submaximal euglycaemic-hyperinsulinaemic clamp in rested muscle (R) and ∼36-fold in exercised muscle (EX). Femoral arterial infusion of NG -monomethyl l-arginine acetate or ATP decreased and increased, respectively, leg blood flow (LBF) in both legs but did not affect membrane glucose permeability. Decreasing LBF reduced interstitial glucose concentrations to ∼2 mM in the exercised but only to ∼3.5 mM in non-exercised muscle and abrogated the augmented effect of insulin on LGU in the EX leg. Increasing LBF by ATP infusion increased LGU in both legs with uptake higher in the EX leg. We conclude that it is possible to measure functional muscle membrane permeability to glucose in humans and it increases twice as much in exercised vs. rested muscle during submaximal insulin stimulation. We also show that muscle perfusion is an important regulator of muscle glucose uptake when membrane permeability to glucose is high and we show that the capillary wall can be a significant barrier for glucose transport.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute for Health and Sport, Victoria University, Footscray, Melbourne, Australia
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Frøsig
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Olsen JM, Åslund A, Bokhari MH, Hutchinson DS, Bengtsson T. Acute β-adrenoceptor mediated glucose clearance in brown adipose tissue; a distinct pathway independent of functional insulin signaling. Mol Metab 2019; 30:240-249. [PMID: 31767175 PMCID: PMC6838983 DOI: 10.1016/j.molmet.2019.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective β-adrenoceptor mediated activation of brown adipose tissue (BAT) has been associated with improvements in metabolic health in models of type 2 diabetes and obesity due to its unique ability to increase whole body energy expenditure, and rate of glucose and free fatty acid disposal. While the thermogenic arm of this phenomenon has been studied in great detail, the underlying mechanisms involved in β-adrenoceptor mediated glucose uptake in BAT are relatively understudied. As β-adrenoceptor agonist administration results in increased hepatic gluconeogenesis that can consequently result in secondary pancreatic insulin release, there is uncertainty regarding the importance of insulin and the subsequent activation of its downstream effectors in mediating β-adrenoceptor stimulated glucose uptake in BAT. Therefore, in this study, we made an effort to discriminate between the two pathways and address whether the insulin signaling pathway is dispensable for the effects of β-adrenoceptor activation on glucose uptake in BAT. Methods Using a specific inhibitor of phosphoinositide 3-kinase α (PI3Kα), which effectively inhibits the insulin signaling pathway, we examined the effects of various β-adrenoceptor agonists, including the physiological endogenous agonist norepinephrine on glucose uptake and respiration in mouse brown adipocytes in vitro and on glucose clearance in mice in vivo. Results PI3Kα inhibition in mouse primary brown adipocytes in vitro, did not inhibit β-adrenoceptor stimulated glucose uptake, GLUT1 synthesis, GLUT1 translocation or respiration. Furthermore, β-adrenoceptor mediated glucose clearance in vivo did not require insulin or Akt activation but was attenuated upon administration of a β3-adrenoceptor antagonist. Conclusions We conclude that the β-adrenergic pathway is still functionally intact upon the inhibition of PI3Kα, showing that the activation of downstream insulin effectors is not required for the acute effects of β-adrenoceptor agonists on glucose homeostasis or thermogenesis. PI3Kα/Akt are dispensable for β-AR mediated glucose clearance in vivo. PI3Kα inhibition in brown adipocytes does not inhibit GLUT1 synthesis/translocation. Acute β-AR induced thermogenesis in brown adipocytes is independent of PI3Kα/Akt. Glucose uptake in brown adipocytes does not require a functional insulin pathway.
Collapse
Affiliation(s)
- Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Alice Åslund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
28
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
29
|
Pan X, Meriin A, Huang G, Kandror KV. Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Mol Biol Cell 2019; 30:1536-1543. [PMID: 30943117 PMCID: PMC6724691 DOI: 10.1091/mbc.e18-12-0792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In fat and skeletal muscle cells, insulin-responsive amino peptidase (IRAP) along with glucose transporter 4 (Glut4) and sortilin, represents a major component protein of the insulin-responsive vesicles (IRVs). Here, we show that IRAP, similar to Glut4 and sortilin, is retrieved from endosomes to the trans-Golgi network by retromer. Unlike Glut4, retrograde transport of IRAP does not require sortilin, as retromer can directly bind to the cytoplasmic tail of IRAP. Ablation of IRAP in 3T3-L1 adipocytes shifts the endosomal pool of Glut4 to more acidic endosomes, but does not affect IRV targeting, stability, and insulin responsiveness of Glut4.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Anatoli Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Guanrong Huang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Konstantin V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118,*Address correspondence to: K. V. Kandror ()
| |
Collapse
|
30
|
Tobler K, Senn C, Schraner EM, Ackermann M, Fraefel C, Wild P. The herpes simplex virus 1 Us3 kinase is involved in assembly of membranes needed for viral envelopment and in distribution of glycoprotein K. F1000Res 2019; 8:727. [PMID: 31448105 PMCID: PMC6681629 DOI: 10.12688/f1000research.19194.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in cell nuclei, released into the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope. Alternatively, capsids gain access to the cytoplasm via dilated nuclear pores. They are enveloped by Golgi membranes. Us3 is a non-essential viral kinase that is involved in nucleus-to-cytoplasm translocation, preventing apoptosis and regulation of phospholipid-biosynthesis. Us3-deletion mutants (HSV-1∆Us3) accumulate in the perinuclear space. Nuclear and Golgi membranes proliferate, and homogeneous, proteinaceous structures of unknown identity are deposited in nuclei and cytoplasm. Glycoprotein K (gK), a highly hydrophobic viral protein, is essential for production of infectious progeny virus but, according to the literature, exclusively vital for envelopment of capsids by Golgi membranes. In the absence of Us3, virions remain stuck in the perinuclear space but mature to infectivity without reaching Golgi membranes, suggesting further function of gK than assumed. Methods: We constructed a HSV-1∆Us3 mutant designated CK177∆Us3gK-HA, in which gK was hemagglutinin (HA) epitope-tagged in order to localize gK by immunolabeling using antibodies against HA for light and electron microscopy. Results: CK177∆Us3gK-HA-infected Vero cells showed similar alterations as those reported for other HSV-1∆Us3, including accumulation of virions in the perinuclear space, overproduction of nuclear and Golgi membranes containing electron dense material with staining property of proteins. Immunolabeling using antibodies against HA revealed that gK is overproduced and localized at nuclear membranes, perinuclear virions stuck in the perinuclear space, Golgi membranes and on protein deposits in cytoplasm and nuclei. Conclusions: Us3 is involved in proper assembly of membranes needed for envelopment and incorporation of gK. Without Us3, virions derived by budding at nuclear membranes remain stuck in the perinuclear space but incorporate gK into their envelope to gain infectivity.
Collapse
Affiliation(s)
- Kurt Tobler
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Claudia Senn
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | | | - Mathias Ackermann
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Peter Wild
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
31
|
Metal-Tagging Transmission Electron Microscopy and Immunogold Labeling on Tokuyasu Cryosections to Image Influenza A Virus Ribonucleoprotein Transport and Packaging. Methods Mol Biol 2019; 1836:281-301. [PMID: 30151579 DOI: 10.1007/978-1-4939-8678-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Transmission electron microscopy (TEM) has been instrumental for studying viral infections. In particular, methods for labeling macromolecules at the ultrastructural level, by integrating biochemistry, molecular biology, and morphology, have allowed to study the functions of viral macromolecular complexes within the cellular context. Here, we describe a strategy for imaging influenza virus ribonucleoproteins in infected cells with two complementary labeling methods, metal-tagging transmission electron microscopy or METTEM, a highly sensitive technique based on the use of a metal-binding protein as a clonable tag, and immunogold labeling on thawed cryosections, a very specific labeling method that allows to study the distribution of different proteins simultaneously. The combination of both labeling methods offers new possibilities for TEM analysis of viral components in cells.
Collapse
|
32
|
Hypoxia-induced human deoxyribonuclease I is a cellular restriction factor of hepatitis B virus. Nat Microbiol 2019; 4:1196-1207. [PMID: 30936483 DOI: 10.1038/s41564-019-0405-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Numerous human APOBEC3 cytidine deaminases have proven to be, inter alia, host cell restriction factors for retroviruses and hepadnaviruses. Although they can bind to genomic RNA and become encapsidated, they are only catalytically active on single-stranded DNA. As there are many cellular deoxyribonucleases (DNases), we hypothesized that a parallel could be struck between APOBEC3 and DNases. For human hepatitis B virus (HBV), we show that DNase I can considerably reduce the virion genome copy number from a variety of transfected or infected cells. DNASE1 is overexpressed and encapsidated in HBV particles in vitro in hypoxic environments and in vivo in cirrhotic patient livers as well as in the serum of infected patients. The use of CoCl2 and dimethyloxalylglycine, mimetic agents used to induce hypoxia by inhibiting prolyl hydroxylase enzymes that stabilize hypoxia-inducible factor (HIF)-1α, showed that the formation of HIF-1α/HIF-1β heterodimers results in the induction of DNASE1. Indeed, transfection with HIF-1α and HIF-1β expression constructs upregulated DNASE1. These findings suggest that human DNase I can impact HBV replication through the catabolism of the DNA genome within the capsid. The activity of DNases in general may explain in part the high frequency of empty or 'light' hepatitis B virions observed in vivo.
Collapse
|
33
|
Yurchenko OV, Kalachev AV. Morphology of nutrient storage cells in the gonadal area of the Pacific oyster, Crassostrea gigas (Thunberg, 1793). Tissue Cell 2019; 56:7-13. [DOI: 10.1016/j.tice.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/23/2018] [Indexed: 11/25/2022]
|
34
|
Brewer PD, Romenskaia I, Mastick CC. A high-throughput chemical-genetics screen in murine adipocytes identifies insulin-regulatory pathways. J Biol Chem 2018; 294:4103-4118. [PMID: 30591588 DOI: 10.1074/jbc.ra118.006986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the β-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Irina Romenskaia
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| |
Collapse
|
35
|
Recruitment of LC3 to damaged Golgi apparatus. Cell Death Differ 2018; 26:1467-1484. [PMID: 30349077 DOI: 10.1038/s41418-018-0221-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
LC3 is a protein that can associate with autophagosomes, autolysosomes, and phagosomes. Here, we show that LC3 can also redistribute toward the damaged Golgi apparatus where it clusters with SQSTM1/p62 and lysosomes. This organelle-specific relocation, which did not involve the generation of double-membraned autophagosomes, could be observed after Golgi damage was induced by various strategies, namely (i) laser-induced localized cellular damage, (ii) local expression of peroxidase and exposure to peroxide and diaminobenzidine, (iii) treatment with the Golgi-tropic photosensitizer redaporfin and light, (iv) or exposure to the Golgi-tropic anticancer peptidomimetic LTX-401. Mechanistic exploration led to the conclusion that both reactive oxygen species-dependent and -independent Golgi damage induces a similar phenotype that depended on ATG5 yet did not depend on phosphatidylinositol-3-kinase catalytic subunit type 3 and Beclin-1. Interestingly, knockout of ATG5 sensitized cells to Golgi damage-induced cell death, suggesting that the pathway culminating in the relocation of LC3 to the damaged Golgi may have a cytoprotective function.
Collapse
|
36
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
37
|
Mejlvang J, Olsvik H, Svenning S, Bruun JA, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T, Stenmark H, Johansen T. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 2018; 217:3640-3655. [PMID: 30018090 PMCID: PMC6168274 DOI: 10.1083/jcb.201711002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023] Open
Abstract
Mejlvang et al. show that amino acid starvation of human fibroblasts and a lung cancer cell line induces a rapid and selective degradation of a subset of proteins, including autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4, that is independent from mTOR and canonical macroautophagy but dependent on endosomal microautophagy. It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2–3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Olsvik
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Steingrim Svenning
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom E Hansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanne Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Pharmacy, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
38
|
Abstract
Adipose tissue plays an important role in energy metabolism. Adipose dysfunction is closely related to obesity and type II diabetes. Glucose uptake is the key step for fat synthesis in adipocyte. miRNAs have been proven to play a crucial role in adipocyte differentiation, adipogenesis and glucose homeostasis. In this paper, we firstly reported that miR-146b decreased glucose consumption by up-regulating miR-146b in a porcine primary adipocyte model, while the inhibitor of endogenous miR-146b rescued the reduction. Then, miR-146b was predicated to target IRS1 by bioinformatics analysis, and a dual-luciferase reporter assay validated this predication. Western blot analyses indicated both IRS1 and glucose transporter type 4 (GLUT4) were down-regulated by miR-146b overexpression. Our study demonstrated that miR-146b regulated glucose homeostasis in porcine primary pre-adipocyte by targeting IRS1, and provided new understandings on regulations of lipogenesis by miRNAs.
Collapse
|
39
|
Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, Santoso S, Bindereif A. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 2018; 7:1424473. [PMID: 29359036 PMCID: PMC5769804 DOI: 10.1080/20013078.2018.1424473] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs present in all eukaryotic cells investigated so far and generated by a special mode of alternative splicing of pre-mRNAs. Thereby, single exons, or multiple adjacent and spliced exons, are released in a circular form. CircRNAs are cell-type specifically expressed, are unusually stable, and can be found in various body fluids such as blood and saliva. Here we analysed circRNAs and the corresponding linear splice isoforms from human platelets, where circRNAs are particularly abundant, compared with other hematopoietic cell types. In addition, we isolated extracellular vesicles from purified and in vitro activated human platelets, using density-gradient centrifugation, followed by RNA-seq analysis for circRNA detection. We could demonstrate that circRNAs are packaged and released within both types of vesicles (microvesicles and exosomes) derived from platelets. Interestingly, we observed a selective release of circRNAs into the vesicles, suggesting a specific sorting mechanism. In sum, circRNAs represent yet another class of extracellular RNAs that circulate in the body and may be involved in signalling pathways. Since platelets are essential for central physiological processes such as haemostasis, wound healing, inflammation and cancer metastasis, these findings should greatly extend the potential of circRNAs as prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Christian Preußer
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Silke Schreiner
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Martin Hardt
- Biomedical Research Centre Seltersberg, Imaging Unit, Justus Liebig University of Giessen, Giessen, Germany
| | - Anna Moebus
- Biomedical Research Centre Seltersberg, Imaging Unit, Justus Liebig University of Giessen, Giessen, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
40
|
Burgoyne T, Lane A, Laughlin WE, Cheetham ME, Futter CE. Correlative light and immuno-electron microscopy of retinal tissue cryostat sections. PLoS One 2018; 13:e0191048. [PMID: 29315318 PMCID: PMC5760081 DOI: 10.1371/journal.pone.0191048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
Correlative light-electron microscopy (CLEM) is a powerful technique allowing localisation of specific macromolecules within fluorescence microscopy (FM) images to be mapped onto corresponding high-resolution electron microscopy (EM) images. Existing methods are applicable to limited sample types and are technically challenging. Here we describe novel methods to perform CLEM and immuno-electron microscopy (iEM) on cryostat sections utilising the popular FM embedding solution, optimal cutting temperature (OCT) compound. Utilising these approaches, we have (i) identified the same phagosomes by FM and EM in the retinal pigment epithelium (RPE) of retinal tissue (ii) shown the correct localisation of rhodopsin on photoreceptor outer segment disc like-structures in iPSC derived optic cups and (iii) identified a novel interaction between peroxisomes and melanosomes as well as phagosomes in the RPE. These data show that cryostat sections allow easy characterisation of target macromolecule localisation within tissue samples, thus providing a substantial improvement over many conventional methods that are limited to cultured cells. As OCT embedding is routinely used for FM this provides an easily accessible and robust method for further analysis of existing samples by high resolution EM.
Collapse
Affiliation(s)
- Thomas Burgoyne
- Institute of Ophthalmology, University College London, London, United Kingdom
- Primary Ciliary Dyskinesia Service, Electron Microscopy Unit, Department of Paediatrics, Royal Brompton Hospital, Sydney Street, London, United Kingdom
| | - Amelia Lane
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - William E. Laughlin
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michael E. Cheetham
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Clare E. Futter
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
41
|
HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model. EBioMedicine 2017; 27:258-274. [PMID: 29269042 PMCID: PMC5828370 DOI: 10.1016/j.ebiom.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.
Collapse
|
42
|
Translocation and Redistribution of GLUT4 Using a Dual-Labeled Reporter Assay. Methods Mol Biol 2017. [PMID: 29218525 DOI: 10.1007/978-1-4939-7507-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is crucial to determine the regulation of GLUT4 translocation and redistribution to the plasma membrane. The HA-GLUT4-GFP dual-reporter construct has become an important tool in the assessment of GLUT4 recycling in cultured adipocytes and myocytes. Through the use of light microscopy, this reporter construct allows for visualization of GLUT4 specifically at the cell surface or GLUT4 that has recycled from the cell surface while simultaneously marking the total GLUT4 pool. Here, we discuss and outline the general application of this reporter construct and its use in evaluating GLUT4 translocation within cultured adipocytes.
Collapse
|
43
|
Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal Bioanal Chem 2017; 410:791-800. [PMID: 29214530 DOI: 10.1007/s00216-017-0741-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Abstract
Recent breakthroughs in organ-on-a-chip and related technologies have highlighted the extraordinary potential for microfluidics to not only make lasting impacts in the understanding of biological systems but also to create new and important in vitro culture platforms. Adipose tissue (fat), in particular, is one that should be amenable to microfluidic mimics of its microenvironment. While the tissue was traditionally considered important only for energy storage, it is now understood to be an integral part of the endocrine system that secretes hormones and responds to various stimuli. As such, adipocyte function is central to the understanding of pathological conditions such as obesity, diabetes, and metabolic syndrome. Despite the importance of the tissue, only recently have significant strides been made in studying dynamic function of adipocytes or adipose tissues on microfluidic devices. In this critical review, we highlight new developments in the special class of microfluidic systems aimed at culture and interrogation of adipose tissue, a sub-field of microfluidics that we contend is only in its infancy. We close by reflecting on these studies as we forecast a promising future, where microfluidic technologies should be capable of mimicking the adipose tissue microenvironment and provide novel insights into its physiological roles in the normal and diseased states. Graphical abstract This critical review focuses on recent developments and challenges in applying microfluidic systems to the culture and analysis of adipocytes and adipose tissue.
Collapse
|
44
|
Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun 2017; 8:1396. [PMID: 29123131 PMCID: PMC5680169 DOI: 10.1038/s41467-017-01557-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/27/2017] [Indexed: 12/05/2022] Open
Abstract
Transport of neo-synthesized influenza A virus (IAV) viral ribonucleoproteins (vRNPs) from the nucleus to the plasma membrane involves Rab 11 but the precise mechanism remains poorly understood. We used metal-tagging and immunolabeling to visualize viral proteins and cellular endomembrane markers by electron microscopy of IAV-infected cells. Unexpectedly, we provide evidence that the vRNP components and the Rab11 protein are present at the membrane of a modified, tubulated endoplasmic reticulum (ER) that extends all throughout the cell, and on irregularly coated vesicles (ICVs). Some ICVs are found very close to the ER and to the plasma membrane. ICV formation is observed only in infected cells and requires an active Rab11 GTPase. Against the currently accepted model in which vRNPs are carried onto Rab11-positive recycling endosomes across the cytoplasm, our findings reveal that the endomembrane organelle that is primarily involved in the transport of vRNPs is the ER. Transport of neo-synthesized influenza A virus viral ribonucleoproteins (vRNPs) from the nucleus to the plasma membrane involves Rab 11 but the mechanism is unclear. Here the authors show that vRNPs are transported through a modified Rab11-positive endoplasmic reticulum and Rab11-dependent vesicles.
Collapse
|
45
|
Li R, Tian JZ, Wang MR, Zhu LN, Sun JS. EsGLUT4 and CHHBP are involved in the regulation of glucose homeostasis in the crustacean Eriocheir sinensis. Biol Open 2017; 6:1279-1289. [PMID: 28751307 PMCID: PMC5612244 DOI: 10.1242/bio.027532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucose is an essential energy source for both vertebrates and invertebrates. In mammals, glucose uptake is mediated primarily by glucose transporters (GLUTs), members of the major facilitator superfamily (MFS) of passive transporters. Among the GLUTs, GLUT4 is the main glucose transporter in muscles and adipocytes. In skeletal muscle cells, GLUT4 interacts with the lipid raft protein flotillin to transport glucose upon stimulation by insulin. Although several studies have examined GLUT4 function in mammals, few have been performed in crustaceans, which also use glucose as their main energy source. Crustacean hyperglycemic hormone (CHH) is a multifunctional neurohormone found only in arthropods, and one of its roles is to regulate glucose homeostasis. However, the molecular mechanism that underlies CHH regulation and whether GLUT4 is involved in its regulation in crustaceans remain unclear. In the present study, we identified a full-length GLUT4 cDNA sequence (defined herein as EsGLUT4) from the Chinese mitten crab Eriocheir sinensis and analyzed its tissue distribution and cellular localization. By the ForteBio Octet system, two large hydrophilic regions within EsGLUT4 were found to interact with the CHH binding protein (CHHBP), an E. sinensis flotillin-like protein. Interestingly, live-cell imaging indicated that EsGLUT4 and CHHBP responded simultaneously upon stimulation by CHH, resulting in glucose release. In contrast to insulin-dependent GLUT4, however, EsGLUT4 and CHHBP were present within cytoplasmic vesicles, both translocating to the plasma membrane upon CHH stimulation. In conclusion, our results provide new evidence for the involvement of EsGLUT4 and CHHBP in the regulation of glucose homeostasis in crustacean carbohydrate metabolism. Summary: Here we identified that Glucose transporter 4 (GLUT4) could interact with CHH binding protein (CHHBP) to regulate CHH-stimulated glucose release in Eriocheir sinensis.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jin-Ze Tian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Mo-Ran Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Department of Fisheries Science, Tianjin Agricultural University, Tianjin 300384, People's Republic of China
| | - Li-Na Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jin-Sheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China .,Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin 300221, People's Republic of China
| |
Collapse
|
46
|
Wei C, Bajpai R, Sharma H, Heitmeier M, Jain AD, Matulis SM, Nooka AK, Mishra RK, Hruz PW, Schiltz GE, Shanmugam M. Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur J Med Chem 2017; 139:573-586. [PMID: 28837922 DOI: 10.1016/j.ejmech.2017.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells consume more glucose to fuel metabolic programs fundamental to sustaining their survival, growth and proliferation. Among the fourteen SLC2A family members, GLUTs 1 and 4 are high-affinity glucose transporters. GLUT4 (SLC2A4) is highly expressed in muscle and adipose tissue. Basally retained within the cell, GLUT4 traffics to the plasma membrane (PM) in response to insulin and exercise-stimulation. The plasma cell malignancy multiple myeloma (MM) exhibits increased constitutive expression of GLUT4 on the PM, co-opting use of GLUT4 for survival and proliferation. GLUT4 inhibition by knockdown or treatment with the FDA-approved HIV protease inhibitor ritonavir leads to cytostatic and/or cytotoxic and chemosensitizing effects in tumor cells both in vitro and in vivo. We recently reported our generation of GLUT4 homology models and virtual high-throughput screening (vHTS) to identify multiple series of novel GLUT4 antagonists. In this report, we describe our initial hit-to-lead optimization to synthesize new analogs with improved potency and selectivity for GLUT4, and the biological characterization of these compounds in a variety of assays. We show that our lead compound (compound 20) decreases glucose uptake and cell proliferation as well as inhibits the expression of pro-survival MCL-1 in MM similar to the effect observed via knockdown of GLUT4 expression. Compound 20 is also effective at chemosensitizing multiple myeloma cell lines and patient samples to venetoclax, dexamethasone and melphalan. In sum, we report development of selective GLUT4 inhibitors lacking inhibitory activity against GLUT1 and GLUT8. We show that selective pharmacological inhibition of GLUT4 is feasible and this may represent a novel strategy for the treatment and chemosensitization of multiple myeloma to standard therapeutics.
Collapse
Affiliation(s)
- Changyong Wei
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Richa Bajpai
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Horrick Sharma
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Monique Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Shannon M Matulis
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Ezpeleta J, Boudet-Devaud F, Pietri M, Baudry A, Baudouin V, Alleaume-Butaux A, Dagoneau N, Kellermann O, Launay JM, Schneider B. Protective role of cellular prion protein against TNFα-mediated inflammation through TACE α-secretase. Sci Rep 2017; 7:7671. [PMID: 28794434 PMCID: PMC5550509 DOI: 10.1038/s41598-017-08110-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Although cellular prion protein PrPC is well known for its implication in Transmissible Spongiform Encephalopathies, its functions remain elusive. Combining in vitro and in vivo approaches, we here show that PrPC displays the intrinsic capacity to protect neuronal cells from a pro-inflammatory TNFα noxious insult. Mechanistically, PrPC coupling to the NADPH oxidase-TACE α-secretase signaling pathway promotes TACE-mediated cleavage of transmembrane TNFα receptors (TNFRs) and the release of soluble TNFR, which limits the sensitivity of recipient cells to TNFα. We further show that PrPC expression is necessary for TACE α-secretase to stay at the plasma membrane in an active state for TNFR shedding. Such PrPC control of TACE localization depends on PrPC modulation of β1 integrin signaling and downstream activation of ROCK-I and PDK1 kinases. Loss of PrPC provokes TACE internalization, which in turn cancels TACE-mediated cleavage of TNFR and renders PrPC-depleted neuronal cells as well as PrPC knockout mice highly vulnerable to pro-inflammatory TNFα insult. Our work provides the prime evidence that in an inflammatory context PrPC adjusts the response of neuronal cells targeted by TNFα through TACE α-secretase. Our data also support the view that abnormal TACE trafficking and activity in prion diseases originate from a-loss-of-PrPC cytoprotective function.
Collapse
Affiliation(s)
- Juliette Ezpeleta
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - François Boudet-Devaud
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Mathéa Pietri
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Aurélie Alleaume-Butaux
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Nathalie Dagoneau
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Jean-Marie Launay
- AP-HP, INSERM UMR-S 942, Hôpital Lariboisière, F-75010, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd, CH4070, Basel, Switzerland
| | - Benoit Schneider
- INSERM, UMR-S 1124, F-75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France.
| |
Collapse
|
48
|
Agrawal SA, Burgoyne T, Eblimit A, Bellingham J, Parfitt DA, Lane A, Nichols R, Asomugha C, Hayes MJ, Munro PM, Xu M, Wang K, Futter CE, Li Y, Chen R, Cheetham ME. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum Mol Genet 2017; 26:2667-2677. [PMID: 28475715 PMCID: PMC5808736 DOI: 10.1093/hmg/ddx149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Smriti A. Agrawal
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Aiden Eblimit
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Matthew J. Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yumei Li
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Rui Chen
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
49
|
Hatakeyama H, Kanzaki M. Heterotypic endosomal fusion as an initial trigger for insulin-induced glucose transporter 4 (GLUT4) translocation in skeletal muscle. J Physiol 2017; 595:5603-5621. [PMID: 28556933 DOI: 10.1113/jp273985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. ABSTRACT Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
50
|
Pan X, Zaarur N, Singh M, Morin P, Kandror KV. Sortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes. Mol Biol Cell 2017; 28:1667-1675. [PMID: 28450454 PMCID: PMC5469609 DOI: 10.1091/mbc.e16-11-0777] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/11/2022] Open
Abstract
Sortilin is a multiligand sorting receptor responsible for the anterograde transport of lysosomal enzymes and substrates. Here we demonstrate that sortilin is also involved in retrograde protein traffic. In cultured 3T3-L1 adipocytes, sortilin together with retromer rescues Glut4 from degradation in lysosomes and retrieves it to the TGN, where insulin--responsive vesicles are formed. Mechanistically, the luminal Vps10p domain of sortilin interacts with the first luminal loop of Glut4, and the cytoplasmic tail of sortilin binds to retromer. Ablation of the retromer does not affect insulin signaling but decreases the stability of sortilin and Glut4 and blocks their entry into the small vesicular carriers. As a result, Glut4 cannot reach the insulin-responsive compartment, and insulin-stimulated glucose uptake in adipocytes is suppressed. We suggest that sortilin- and retromer-mediated Glut4 retrieval from endosomes may represent a step in the Glut4 pathway vulnerable to the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Maneet Singh
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Peter Morin
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730
| | - Konstantin V Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|