1
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
2
|
Ruan J, Kang M, Nirwane A, Yao Y. A dispensable role of mural cell-derived laminin- α5 in intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:1677-1690. [PMID: 39053486 PMCID: PMC11418671 DOI: 10.1177/0271678x241264083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Although most laminin isoforms are neuroprotective in stroke, mural cell-derived laminin-α5 plays a detrimental role in an ischemia-reperfusion model. To determine whether this deleterious effect is an intrinsic feature of mural cell-derived laminin-α5 or unique to ischemic stroke, we performed loss-of-function studies using middle-aged mice with laminin-α5 deficiency in mural cells (α5-PKO) in an intracerebral hemorrhage (ICH) model. Control and α5-PKO mice exhibited comparable changes in all parameters examined, including hematoma size, neuronal death, neurological function, blood-brain barrier integrity, and reactive gliosis. These findings highlight a minimal role of mural cell-derived laminin-α5 in ICH. Together with the detrimental role of mural cell-derived laminin-α5 in ischemic stroke, these negative results in ICH model suggest that mural cell-derived laminin-α5 may exert distinct functions in different diseases.
Collapse
Affiliation(s)
- Jingsong Ruan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Yan Y, Quan H, Guo C, Qin Z, Quan T. Alterations of Matrisome Gene Expression in Naturally Aged and Photoaged Human Skin In Vivo. Biomolecules 2024; 14:900. [PMID: 39199288 PMCID: PMC11352887 DOI: 10.3390/biom14080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The main component of human skin is a collagen-rich extracellular matrix (ECM), known as the matrisome. The matrisome is essential for maintaining the structural integrity and mechanical properties of the skin. Recently, we reported notable decreases in matrisome proteins in natural aging and photoaging human skin. This study aims to investigate the mRNA expression of the core matrisome proteins in human skin, comparing young versus aged and sun-protected versus sun-exposed skin by quantitative real-time PCR and immunostaining. Our findings reveal a notable decrease in core matrisome transcription in aged skin. The mRNA expression of the core matrisome, such as collagen 1A1 (COL1A1), decorin, and dermatopontin, is significantly reduced in aged skin compared to its young skin. Yet, the majority of collagen mRNA expression levels of aged sun-exposed skin are similar to those found in young sun-exposed skin. This discrepancy is primarily attributable to a substantial decrease in collagen transcription in young sun-exposed skin, suggesting early molecular changes in matrisome transcription due to sun exposure, which preceded the emergence of clinical signs of photoaging. These findings shed light on the mRNA transcript profile of major matrisome proteins and their alterations in naturally aged and photoaged human skin, offering valuable insights into skin matrisome biology.
Collapse
Affiliation(s)
- Yan Yan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Hehui Quan
- Lenox Hill Hospital, 100 E 77th St., New York, NY 10075, USA;
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| |
Collapse
|
4
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Huo D, Liu S, Zhang L, Yang H, Sun L. Importance of the ECM-receptor interaction for adaptive response to hypoxia based on integrated transcription and translation analysis. Mol Ecol 2024:e17352. [PMID: 38624130 DOI: 10.1111/mec.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Low dissolved oxygen (LO) conditions represent a major environmental challenge to marine life, especially benthic animals. For these organisms, drastic declines in oxygen availability (hypoxic events) can trigger mass mortality events and thus, act as agents of selection influencing the evolution of adaptations. In sea cucumbers, one of the most successful groups of benthic invertebrates, the exposure to hypoxic conditions triggers adaptive adjustments in metabolic rates and behaviour. It is unclear, however, how these adaptive responses are regulated and the genetic mechanisms underpinning them. Here, we addressed this knowledge gap by assessing the genetic regulation (transcription and translation) of hypoxia exposure in the sea cucumber Apostichopus japonicus. Transcriptional and translational gene expression profiles under short- and long-term exposure to low oxygen conditions are tightly associated with extracellular matrix (ECM)-receptor interaction in which laminin and collagen likely have important functions. Finding revealed that genes with a high translational efficiency (TE) had a relatively short upstream open reading frame (uORF) and a high uORF normalized minimal free energy, suggesting that sea cucumbers may respond to hypoxic stress via altered TE. These results provide valuable insights into the regulatory mechanisms that confer adaptive capacity to holothurians to survive oxygen deficiency conditions and may also be used to inform the development of strategies for mitigating the harmful effects of hypoxia on other marine invertebrates facing similar challenges.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| |
Collapse
|
6
|
Fu Z, Qi Y, Xue LF, Xu YX, Yue J, Zhao JZ, Li C, Xiao W. LAMA5: A new pathogenic gene for non-syndromic cleft lip with or without cleft palate. Biomed J 2024; 47:100627. [PMID: 37390938 PMCID: PMC10957387 DOI: 10.1016/j.bj.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of LAMA5 on palatal development in mice. METHODS The palatine process of C57BL/6 J fetal mice on the embryonic day 13.5 (E13.5) was cultured in vitro via the rotating culture method. The LAMA5-shRNA adenovirus vector was constructed, then transfected into the palatal process of E13.5 for 48 h in vitro. A fluorescence microscope was used to visualize the fusion of palates. The expression of LAMA5 was also detected. The expression of ki67, cyclin D1, caspase 3, E-cadherin, vimentin and SHH signaling pathway-related signaling factors in the blank control group, the negative control group, and the LAMA5 interference group were detected after virus transfection. RESULTS The bilateral palates in the LAMA5 interference group were not fused after virus transfection. PCR and WB showed that the mRNA and protein expressions of LAMA5 were decreased in the LAMA5 interference group. Furthermore, the mRNA and protein expressions of ki67, cyclin D1 and gli1 were decreased in the LAMA5 interference group, while the mRNA and protein expressions of caspase 3 were increased. However, the mRNA and protein expression of E-cadherin, vimentin, Shh and ptch1 did not significantly change in the LAMA5 interference group. CONCLUSIONS LAMA5 silencing causes cleft palate by inhibiting the proliferation of mouse palatal cells and promoting apoptosis, which may not be involved in EMT. LAMA5 silencing can also cause cleft palate by interfering with the SHH signaling pathway.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yan Qi
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenlin Xiao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Nirwane A, Kang M, Adithan A, Maharaj V, Nguyen F, Santaella Aguilar E, Nasrollahi A, Yao Y. Endothelial and mural laminin-α5 contributes to neurovascular integrity maintenance. Fluids Barriers CNS 2024; 21:18. [PMID: 38383451 PMCID: PMC10882802 DOI: 10.1186/s12987-024-00521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Laminin-α5, a major component of the basal lamina, is predominantly synthesized by endothelial and mural cells (pericytes and vascular smooth muscle cells) in the CNS. Loss of laminin-α5 in either population fails to induce any abnormalities due to functional redundancy. Thus, the functional significance of laminin-α5 in neurovascular integrity remains unknown. Here, we hypothesize that ablation of laminin-α5 in both endothelial and mural cells increases neurovascular permeability. METHODS The compound knockout mice were generated by crossing laminin-α5 floxed mice with Tie2-Cre and PDGFRβ-Cre, which target endothelial cells and mural cells, respectively. Neurovascular permeability in these mutants was determined with both exogenous and endogenous tracers. Endothelial paracellular and transcellular permeability was assessed by examining the expression of tight junction proteins and transcytosis-associated proteins. In addition, transmission electron microscopy (TEM) was used to visualize tight junction ultrastructure and endothelial caveolae vesicles. Defects in pericytes and astrocytes were investigated by examining pericyte coverage/contact and astrocyte polarity. RESULTS Elevated neurovascular permeability was observed in the mutants. Subsequent studies found increased Caveolin-1 and decreased major facilitator superfamily domain-containing protein 2a (MFSD2A) expression, but unaltered Claudin-5 or zonula occludens-1 (ZO-1) expression. Consistent with these results, mutant mice exhibited increased endothelial caveolae vesicle number with intact tight junction structure under TEM. Additionally, pericyte coverage and contact were also decreased in the mutant mice, while astrocyte polarity was unaffected. CONCLUSIONS These results strongly indicate that endothelial and mural cell-derived laminin-α5 actively maintains neurovascular integrity via the transcellular rather than paracellular mechanism.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Aravinthan Adithan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Vrishni Maharaj
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Felicia Nguyen
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Elliot Santaella Aguilar
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Ava Nasrollahi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA.
| |
Collapse
|
8
|
Jacobson KR, Saleh AM, Lipp SN, Tian C, Watson AR, Luetkemeyer CM, Ocken AR, Spencer SL, Kinzer-Ursem TL, Calve S. Extracellular matrix protein composition dynamically changes during murine forelimb development. iScience 2024; 27:108838. [PMID: 38303699 PMCID: PMC10831947 DOI: 10.1016/j.isci.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The extracellular matrix (ECM) is an integral part of multicellular organisms, connecting different cell layers and tissue types. During morphogenesis and growth, tissues undergo substantial reorganization. While it is intuitive that the ECM remodels in concert, little is known regarding how matrix composition and organization change during development. Here, we quantified ECM protein dynamics in the murine forelimb during appendicular musculoskeletal morphogenesis (embryonic days 11.5-14.5) using tissue fractionation, bioorthogonal non-canonical amino acid tagging, and mass spectrometry. Our analyses indicated that ECM protein (matrisome) composition in the embryonic forelimb changed as a function of development and growth, was distinct from other developing organs (brain), and was altered in a model of disease (osteogenesis imperfecta murine). Additionally, the tissue distribution for select matrisome was assessed via immunohistochemistry in the wild-type embryonic and postnatal musculoskeletal system. This resource will guide future research investigating the role of the matrisome during complex tissue development.
Collapse
Affiliation(s)
- Kathryn R. Jacobson
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Aya M. Saleh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- The Indiana University Medical Scientist/Engineer Training Program, Indiana University, Indianapolis, IN 46202, USA
| | - Chengzhe Tian
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Research Center for Molecular Medicine (CEMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Audrey R. Watson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Callan M. Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Alexander R. Ocken
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sabrina L. Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Tamara L. Kinzer-Ursem
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Calve
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
10
|
Wang X, Zhang Q, Ren Y, Liu C, Gao H. Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia. Curr Protein Pept Sci 2024; 25:527-538. [PMID: 38561606 DOI: 10.2174/0113892037284176240302052521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qi Zhang
- Department of Pharmacy, Shandong First Medical University, Jinan, Shandong, China
| | - Yi Ren
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Liu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
11
|
Halder SK, Sapkota A, Milner R. The importance of laminin at the blood-brain barrier. Neural Regen Res 2023; 18:2557-2563. [PMID: 37449589 DOI: 10.4103/1673-5374.373677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is a unique property of central nervous system blood vessels that protects sensitive central nervous system cells from potentially harmful blood components. The mechanistic basis of this barrier is found at multiple levels, including the adherens and tight junction proteins that tightly bind adjacent endothelial cells and the influence of neighboring pericytes, microglia, and astrocyte endfeet. In addition, extracellular matrix components of the vascular basement membrane play a critical role in establishing and maintaining blood-brain barrier integrity, not only by providing an adhesive substrate for blood-brain barrier cells to adhere to, but also by providing guidance cues that strongly influence vascular cell behavior. The extracellular matrix protein laminin is one of the most abundant components of the basement membrane, and several lines of evidence suggest that it plays a key role in directing blood-brain barrier behavior. In this review, we describe the basic structure of laminin and its receptors, the expression patterns of these molecules in central nervous system blood vessels and how they are altered in disease states, and most importantly, how genetic deletion of different laminin isoforms or their receptors reveals the contribution of these molecules to blood-brain barrier function and integrity. Finally, we discuss some of the important unanswered questions in the field and provide a "to-do" list of some of the critical outstanding experiments.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
12
|
Feng L, Zhao T, Xu H, Shi X, Li C, Hsia KJ, Zhang S. Physical forces guide curvature sensing and cell migration mode bifurcating. PNAS NEXUS 2023; 2:pgad237. [PMID: 37680491 PMCID: PMC10482382 DOI: 10.1093/pnasnexus/pgad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
The ability of cells to sense and adapt to curvy topographical features has been implicated in organ morphogenesis, tissue repair, and tumor metastasis. However, how individual cells or multicellular assemblies sense and differentiate curvatures remains elusive. Here, we reveal a curvature sensing mechanism in which surface tension can selectively activate either actin or integrin flows, leading to bifurcating cell migration modes: focal adhesion formation that enables cell crawling at convex front edges and actin cable assembly that pulls cells forward at concave front edges. The molecular flows and curved front morphogenesis are sustained by coordinated cellular tension generation and transmission. We track the molecular flows and mechanical force transduction pathways by a phase-field model, which predicts that multicellular curvature sensing is more efficient than individual cells, suggesting collective intelligence of cells. The unique ability of cells in curvature sensing and migration mode bifurcating may offer insights into emergent collective patterns and functions of living active systems at different length scales.
Collapse
Affiliation(s)
- Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Hongmei Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuechen Shi
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Li L, Wu L, Kensiski A, Zhao J, Shirkey MW, Song Y, Piao W, Zhang T, Mei Z, Gavzy SJ, Ma B, Saxena V, Lee YS, Xiong Y, Li X, Fan X, Abdi R, Bromberg JS. FRC transplantation restores lymph node conduit defects in laminin α4-deficient mice. JCI Insight 2023; 8:e167816. [PMID: 37092548 PMCID: PMC10243809 DOI: 10.1172/jci.insight.167816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) play important roles in tolerance by producing laminin α4 (Lama4) and altering lymph node (LN) structure and function. The present study revealed the specific roles of extracellular matrix Lama4 in regulating LN conduits using FRC-specific KO mouse strains. FRC-derived Lama4 maintained conduit fiber integrity, as its depletion altered conduit morphology and structure and reduced homeostatic conduit flow. Lama4 regulated the lymphotoxin β receptor (LTβR) pathway, which is critical for conduit and LN integrity. Depleting LTβR in FRCs further reduced conduits and impaired reticular fibers. Lama4 was indispensable for FRC generation and survival, as FRCs lacking Lama4 displayed reduced proliferation but upregulated senescence and apoptosis. During acute immunization, FRC Lama4 deficiency increased antigen flow through conduits. Importantly, adoptive transfer of WT FRCs to FRC Lama4-deficient mice rescued conduit structure, ameliorated Treg and chemokine distribution, and restored transplant allograft acceptance, which were all impaired by FRC Lama4 depletion. Single-cell RNA sequencing analysis of LN stromal cells indicated that the laminin and collagen signaling pathways linked crosstalk among FRC subsets and endothelial cells. This study demonstrated that FRC Lama4 is responsible for maintaining conduits by FRCs and can be harnessed to potentiate FRC-based immunomodulation.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison Kensiski
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina W. Shirkey
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Samuel J. Gavzy
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vikas Saxena
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young S. Lee
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanbao Xiong
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Wan HY, Chen JCH, Xiao Q, Wong CW, Yang B, Cao B, Tuan RS, Nilsson SK, Ho YP, Raghunath M, Kamm RD, Blocki A. Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding. Biomater Res 2023; 27:32. [PMID: 37076899 PMCID: PMC10116810 DOI: 10.1186/s40824-023-00375-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND There is great interest to engineer in vitro models that allow the study of complex biological processes of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, pure MVNs suffer from a short-lived stability. METHODS Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on macromolecules occupying space, thus increasing the effective concentration of other components and thereby accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN with improved functionality. RESULTS MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in vivo microvasculature. CONCLUSION Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach to stabilize engineered microvessels under simulated physiological conditions.
Collapse
Affiliation(s)
- Ho-Ying Wan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun Hin Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy Wingtung Wong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Boguang Yang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Susan K Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Yi-Ping Ho
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Roger D Kamm
- Department of Biology and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
16
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
18
|
Morgner J, Bornes L, Hahn K, López-Iglesias C, Kroese L, Pritchard CEJ, Vennin C, Peters PJ, Huijbers I, van Rheenen J. A Lamb1Dendra2 mouse model identifies basement-membrane-producing origins and dynamics in PyMT breast tumors. Dev Cell 2023; 58:535-549.e5. [PMID: 36905927 DOI: 10.1016/j.devcel.2023.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/20/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The basement membrane (BM) around tumor lobes forms a barrier to prevent cancer cells from invading the surrounding tissue. Although myoepithelial cells are key producers of the healthy mammary epithelium BM, they are nearly absent in mammary tumors. To study the origin and dynamics of the BM, we developed and imaged a laminin beta1-Dendra2 mouse model. We show that the turnover of laminin beta1 is faster in the BMs that surround the tumor lobes than in the BMs that surround the healthy epithelium. Moreover, we find that epithelial cancer cells and tumor-infiltrating endothelial cells synthesize laminin beta1 and that this production is temporarily and locally heterogeneous, leading to local discontinuity of the BM laminin beta1. Collectively, our data draw a new paradigm for tumor BM turnover in which the disassembly happens at a constant rate, and a local misbalance of compensating production leads to reduction or even complete disappearance of the BM.
Collapse
Affiliation(s)
- Jessica Morgner
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands.
| | - Laura Bornes
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Kerstin Hahn
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Lona Kroese
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Claire Vennin
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands.
| |
Collapse
|
19
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
20
|
Sivakumar S, Lieber S, Librizzi D, Keber C, Sommerfeld L, Finkernagel F, Roth K, Reinartz S, Bartsch JW, Graumann J, Müller‐Brüsselbach S, Müller R. Basal cell adhesion molecule promotes metastasis-associated processes in ovarian cancer. Clin Transl Med 2023; 13:e1176. [PMID: 36647260 PMCID: PMC9842900 DOI: 10.1002/ctm2.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Basal cell adhesion molecule (BCAM) is a laminin α5 (LAMA5) binding membrane-bound protein with a putative role in cancer. Besides full-length BCAM1, an isoform lacking most of the cytoplasmic domain (BCAM2), and a soluble form (sBCAM) of unknown function are known. In ovarian carcinoma (OC), all BCAM forms are abundant and associated with poor survival, yet BCAM's contribution to peritoneal metastatic spread remains enigmatic. METHODS Biochemical, omics-based and real-time cell assays were employed to identify the source of sBCAM and metastasis-related functions of different BCAM forms. OC cells, explanted omentum and a mouse model of peritoneal colonisation were used in loss- and gain-of-function experiments. RESULTS We identified ADAM10 as a major BCAM sheddase produced by OC cells and identified proteolytic cleavage sites proximal to the transmembrane domain. Recombinant soluble BCAM inhibited single-cell adhesion and migration identically to membrane-bound isoforms, confirming its biological activity in OC. Intriguingly, this seemingly anti-tumorigenic potential of BCAM contrasts with a novel pro-metastatic function discovered in the present study. Thus, all queried BCAM forms decreased the compactness of tumour cell spheroids by inhibiting LAMA5 - integrin β1 interactions, promoted spheroid dispersion in a three-dimensional collagen matrix, induced clearance of mesothelial cells at spheroid attachment sites in vitro and enhanced invasion of spheroids into omental tissue both ex vivo and in vivo. CONCLUSIONS Membrane-bound BCAM as well as sBCAM shed by ADAM10 act as decoys rather than signalling receptors to modulate metastasis-related functions. While BCAM appears to have tumour-suppressive effects on single cells, it promotes the dispersion of OC cell spheroids by regulating LAMA5-integrin-β1-dependent compaction and thereby facilitating invasion of metastatic target sites. As peritoneal dissemination is majorly mediated by spheroids, these findings offer an explanation for the association of BCAM with a poor clinical outcome of OC, suggesting novel therapeutic options.
Collapse
Affiliation(s)
- Suresh Sivakumar
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Sonja Lieber
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Damiano Librizzi
- Small Animal Imaging Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Corinna Keber
- Institute for PathologyPhilipps UniversityMarburgGermany
| | - Leah Sommerfeld
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Florian Finkernagel
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
- Bioinformatics Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Katrin Roth
- Cell Imaging Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Silke Reinartz
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | | | - Johannes Graumann
- Biomolecular Mass SpectrometryMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
- Institute for Translational ProteomicsPhilipps UniversityMarburgGermany
| | - Sabine Müller‐Brüsselbach
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Rolf Müller
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| |
Collapse
|
21
|
Fu Z, Yue J, Xue L, Xu Y, Ding Q, Xiao W. Using whole exome sequencing to identify susceptibility genes associated with nonsyndromic cleft lip with or without cleft palate. Mol Genet Genomics 2023; 298:107-118. [PMID: 36322204 DOI: 10.1007/s00438-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cleft lip and palate is a common congenital birth defect in humans. Its incidence rate in China is as high as 1.82%, and is now a frequent deformity observed among the Chinese population; moreover, it varies across regions. Although the etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) has been widely investigated, the results are inconsistent. The specific genes and mechanisms responsible for NSCL/P have not been fully understood. Whole exome sequencing (WES) is a new strategy for studying pathogenic genes. WES studies on NSCL/P have not been conducted in East China. Therefore, the aim of this study was to screen candidate genes of NSCL/P in East China using WES and analyze the temporal and spatial expressions of the candidate genes during embryonic palatal development. WES was performed in 30 children with NSCL/P from East China to screen candidate genes. A bioinformatics analysis was performed using commercially available software. Variants detected by WES were validated by immunohistochemistry and western blotting. After WES, 506,144 single-nucleotide variant sites were found. The results of database comparison, functional analysis, and mass spectrometry revealed that only the laminin alpha 5 (LAMA5) gene (site: rs145192286) was associated with NSCL/P. Immunohistochemistry results showed that LAMA5 expression in the medial edge epithelium changed with formation, lifting, and contact during palatogenesis. Almost no LAMA5 expression was detected in the palatal mesenchyme or after palatal fusion. Western blotting and immunohistochemistry results showed consistent trends. In conclusion, the WES results shows that the mutation at the site (rs145192286) of LAMA5 is associated with NSCL/P. The temporal and spatial expressions of LAMA5 during palatal development further demonstrate the involvement of this gene. Therefore, we speculate that LAMA5 is a new candidate pathogenic gene of NSCL/P. The identification of new pathogenic genes would help elucidate the pathogenesis of NSCL/P and provide a scientific basis for the prenatal diagnosis, prevention, and treatment of NSCL/P.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jin Yue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lingfa Xue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yaoxiang Xu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qian Ding
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wenlin Xiao
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China. .,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China. .,Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
22
|
Kaimori JY, Kikkawa Y, Motooka D, Namba-Hamano T, Takuwa A, Okazaki A, Kobayashi K, Tanigawa A, Kotani Y, Uno Y, Yoshimi K, Hattori K, Asahina Y, Kajimoto S, Doi Y, Oka T, Sakaguchi Y, Mashimo T, Sekiguchi K, Nakaya A, Nomizu M, Isaka Y. A heterozygous LAMA5 variant may contribute to slowly progressive, vinculin-enhanced familial FSGS and pulmonary defects. JCI Insight 2022; 7:158378. [PMID: 36173685 PMCID: PMC9746903 DOI: 10.1172/jci.insight.158378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause a systemic developmental syndrome including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic diseases have remained unclear. We performed whole-exome sequencing analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis, and we identified what we believe to be a novel probable pathogenic variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 laminin globular 4-5 (LG4-5) domain. Heterozygous and homozygous knockin mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels, which suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Reexaminations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, and,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Takuwa
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Atsuko Okazaki
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | | | - Yuko Kotani
- Institute of Experimental Animal Sciences and
| | | | - Kazuto Yoshimi
- Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science
| | - Koki Hattori
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences and,Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science;,Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research; and
| | - Akihiro Nakaya
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
23
|
Laminin-111 mutant studies reveal a hierarchy within laminin-111 genes in their requirement for basal epithelial tissue folding. Dev Biol 2022; 492:172-186. [DOI: 10.1016/j.ydbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
|
24
|
Genome-Wide Identification of Laminin Family Related to Follicular Pseudoplacenta Development in Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2022; 23:ijms231810523. [PMID: 36142434 PMCID: PMC9504374 DOI: 10.3390/ijms231810523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
As major elements of the basement membrane, laminins play a significant role in angiogenesis, migration, and adhesion of various cells. Sebastes schlegelii is a marine viviparous teleost of commercial importance. Previous research has reported abundant blood vessels and connective tissue in the ovary during gestation. In this study, 14 laminin genes of the α, β, and γ subfamilies from genomic data were identified based on zebrafish and human laminins, distributed on 9 chromosomes in S. schlegelii. Analysis of structural domains showed that coiled-coil regions and EGF domains existed in all laminin genes. Moreover, via qPCR, we found that the expression of laminin genes, including lama4, lama5, lamb4, lamc1, and lamc3, gradually increased from the phase III ovary stage and peaked in the early stage of gestation, especially lama4 and lama5 which showed dramatically increased expression at the blastula stage. Accordingly, in situ hybridization of lama4 was conducted. The results revealed that signals became stronger following the phase IV ovary stage, and the strongest signals were located on the follicular pseudoplacenta at the blastula stage. These results suggest that the high expression of laminin genes, especially lama4 after fertilization, may drive cell proliferation, migration, and tissue expansion in the S. schlegelii ovary and ultimately promote follicular pseudoplacenta formation.
Collapse
|
25
|
Janardhan HP, Dresser K, Hutchinson L, Trivedi CM. Pathological MAPK activation-mediated lymphatic basement membrane disruption causes lymphangiectasia that is treatable with ravoxertinib. JCI Insight 2022; 7:153033. [PMID: 36073544 PMCID: PMC9536262 DOI: 10.1172/jci.insight.153033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphangiectasia, an anomalous dilation of lymphatic vessels first described in the 17th century, is frequently associated with chylous effusion, respiratory failure, and high mortality in young patients, yet the underlying molecular pathogenesis and effective treatments remain elusive. Here, we identify an unexpected causal link between MAPK activation and defective development of the lymphatic basement membrane that drives lymphangiectasia. Human pathological tissue samples from patients diagnosed with lymphangiectasia revealed sustained MAPK activation within lymphatic endothelial cells. Endothelial KRASG12D-mediated sustained MAPK activation in newborn mice caused severe pulmonary and intercostal lymphangiectasia, accumulation of chyle in the pleural space, and complete lethality. Pathological activation of MAPK in murine vasculature inhibited the Nfatc1-dependent genetic program required for laminin interactions, collagen crosslinking, and anchoring fibril formation, driving defective development of the lymphatic basement membrane. Treatment with ravoxertinib, a pharmacological inhibitor of MAPK, reverses nuclear-to-cytoplasmic localization of Nfatc1, basement membrane development defects, lymphangiectasia, and chyle accumulation, ultimately improving survival of endothelial KRAS mutant neonatal mice. These results reveal defective lymphatic basement membrane assembly and composition as major causes of thoracic lymphangiectasia and provide a potential treatment.
Collapse
Affiliation(s)
| | | | | | - Chinmay M Trivedi
- Division of Cardiovascular Medicine.,Department of Medicine.,Department of Molecular, Cell, and Cancer Biology, and.,Li-Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
26
|
Halder SK, Sapkota A, Milner R. The impact of genetic manipulation of laminin and integrins at the blood-brain barrier. Fluids Barriers CNS 2022; 19:50. [PMID: 35690759 PMCID: PMC9188059 DOI: 10.1186/s12987-022-00346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessels in the central nervous system (CNS) are unique in having high electrical resistance and low permeability, which creates a selective barrier protecting sensitive neural cells within the CNS from potentially harmful components in the blood. The molecular basis of this blood–brain barrier (BBB) is found at the level of endothelial adherens and tight junction protein complexes, extracellular matrix (ECM) components of the vascular basement membrane (BM), and the influence of adjacent pericytes and astrocyte endfeet. Current evidence supports the concept that instructive cues from the BBB ECM are not only important for the development and maturation of CNS blood vessels, but they are also essential for the maintenance of vascular stability and BBB integrity. In this review, we examine the contributions of one of the most abundant ECM proteins, laminin to BBB integrity, and summarize how genetic deletions of different laminin isoforms or their integrin receptors impact BBB development, maturation, and stability.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
27
|
Jayadev R, Morais MRPT, Ellingford JM, Srinivasan S, Naylor RW, Lawless C, Li AS, Ingham JF, Hastie E, Chi Q, Fresquet M, Koudis NM, Thomas HB, O’Keefe RT, Williams E, Adamson A, Stuart HM, Banka S, Smedley D, Sherwood DR, Lennon R. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. SCIENCE ADVANCES 2022; 8:eabn2265. [PMID: 35584218 PMCID: PMC9116610 DOI: 10.1126/sciadv.abn2265] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Mychel R. P. T. Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jamie M. Ellingford
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sandhya Srinivasan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Richard W. Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anna S. Li
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jack F. Ingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Genomics England Research Consortium
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Genomics England, London, UK
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
28
|
Luo S, Liu ZG, Wang J, Luo JX, Ye XG, Li X, Zhai QX, Liu XR, Wang J, Gao LD, Liu FL, Ye ZL, Li H, Gao ZF, Guo QH, Li BM, Yi YH, Liao WP. Recessive LAMA5 Variants Associated With Partial Epilepsy and Spasms in Infancy. Front Mol Neurosci 2022; 15:825390. [PMID: 35663266 PMCID: PMC9162154 DOI: 10.3389/fnmol.2022.825390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The LAMA5 gene encodes the laminin subunit α5, the most abundant laminin α subunit in the human brain. It forms heterotrimers with the subunit β1/β2 and γ1/γ3 and regulates neurodevelopmental processes. Genes encoding subunits of the laminin heterotrimers containing subunit α5 have been reported to be associated with human diseases. Among LAMAs encoding the laminin α subunit, LAMA1-4 have also been reported to be associated with human disease. In this study, we investigated the association between LAMA5 and epilepsy. Methods Trios-based whole-exome sequencing was performed in a cohort of 118 infants suffering from focal seizures with or without spasms. Protein modeling was used to assess the damaging effects of variations. The LAMAs expression was analyzed with data from the GTEX and VarCards databases. Results Six pairs of compound heterozygous missense variants in LAMA5 were identified in six unrelated patients. All affected individuals suffered from focal seizures with mild developmental delay, and three patients presented also spasms. These variants had no or low allele frequencies in controls and presented statistically higher frequency in the case cohort than in controls. The recessive burden analysis showed that recessive LAMA5 variants identified in this cohort were significantly more than the expected number in the East Asian population. Protein modeling showed that at least one variant in each pair of biallelic variants affected hydrogen bonds with surrounding amino acids. Among the biallelic variants in cases with only focal seizures, two variants of each pair were located in different structural domains or domains/links, whereas in the cases with spasms, the biallelic variants were constituted by two variants in the identical functional domains or both with hydrogen bond changes. Conclusion Recessive LAMA5 variants were potentially associated with infant epilepsy. The establishment of the association between LAMA5 and epilepsy will facilitate the genetic diagnosis and management in patients with infant epilepsy.
Collapse
Affiliation(s)
- Sheng Luo
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Gang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Juan Wang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Xing-Guang Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xin Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiong-Xiang Zhai
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fu-Li Liu
- Department of Neurology, The First People’s Hospital of Foshan, Foshan, China
| | - Zi-Long Ye
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zai-Fen Gao
- Epilepsy Center, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei-Ping Liao,
| |
Collapse
|
29
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
30
|
Laham BJ, Gould E. How Stress Influences the Dynamic Plasticity of the Brain’s Extracellular Matrix. Front Cell Neurosci 2022; 15:814287. [PMID: 35145379 PMCID: PMC8821883 DOI: 10.3389/fncel.2021.814287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse and structured extracellular matrix (ECM) comprise ∼20% of the brain’s volume and play important roles in development and adult plasticity. Perineuronal nets (PNNs), specialized ECM structures that surround certain types of neurons in the brain, emerge during the postnatal period, making their development and maintenance potentially sensitive to experience. Recent studies have shown that stress affects diffuse ECM as well as PNNs, and that such effects are dependent on life stage and brain region. Given that the ECM participates in synaptic plasticity, the generation of neuronal oscillations, and synchronous firing across brain regions, all of which have been linked to cognition and emotional regulation, ECM components may be candidate therapeutic targets for stress-induced neuropsychiatric disease. This review considers the influence of stress over diffuse and structured ECM during postnatal life with a focus on functional outcomes and the potential for translational relevance.
Collapse
|
31
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
32
|
Sunwoo Y, Choi N, Min J, Kim J, Ahn YH, Kang HG. Case report: Genetic defects in laminin α5 cause infantile steroid-resistant nephrotic syndrome. Front Pediatr 2022; 10:1054082. [PMID: 36714636 PMCID: PMC9875137 DOI: 10.3389/fped.2022.1054082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Single gene pathogenic mutations have been implicated in up to 30% of pediatric steroid-resistant nephrotic syndrome (SRNS) cases, mostly in infantile patients. Among them is LAMA5, which has been recently discovered and encodes the laminin α5 chain. The laminin α5β2γ1 heterotrimer is an essential component of the glomerular basement membrane and is necessary for embryogenesis and immune modulation. Biallelic LAMA5 variants have been identified in one adult and ten pediatric nephrotic syndromes (NS) patients with variable phenotypes. Biallelic truncating mutations in this gene have recently been proven to cause SRNS. Here, we present another case of infantile SRNS related to novel compound heterozygous variations of LAMA5 (c.3434G > A, p.Cys1145Tyr and c.6883C > T, p.Gln2295*), the first reported case with one missense and one nonsense allele. A 10-month-old female patient presented with eyelid edema and massive proteinuria without any extrarenal symptoms or family history. The patient was diagnosed with SRNS. Renal biopsy revealed focal segmental glomerulosclerosis with widely effaced epithelial foot processes and a "moth-eaten" appearance. She progressed to end stage kidney disease (ESKD), requiring dialysis at 31 months of age, and underwent a deceased-donor kidney transplant at 6 years of age. Four months after transplantation, she developed Ebstein-Barr Virus (EBV) infection related to post-transplantation lymphoproliferative disorder (PTLD). After chemotherapy, the patient remained healthy with adequate renal function without disease recurrence for the past 7 years. We also identified previous cases of biallelic LAMA5 variants associated with the nephrotic phenotype and analyzed the available clinical and genetic information. All reported patients had an onset of NS ranging from 3 months to 8 years, with no other syndromic features. Response to therapy and renal outcomes varied greatly; most patients exhibited steroid resistance, five progressed to ESKD, and two received kidney transplantation (KT). There was one report of PTLD. Our patient's phenotype was markedly more severe than those with biallelic missense variants and somewhat less severe than those with two truncating variants. LAMA5 defects may also play a role in PTLD, though no conclusions can be made with such limited cases. LAMA5 should be considered a candidate gene for SRNS and should be actively tested in cases with no other genetic diagnosis.
Collapse
Affiliation(s)
- Yoon Sunwoo
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| | - Naye Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeesu Min
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Jihyun Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Yang ZS, Pan HY, Shi WW, Chen ST, Wang Y, Li MY, Zhang HY, Yang C, Liu AX, Yang ZM. Regulation and Function of Laminin A5 during Mouse and Human Decidualization. Int J Mol Sci 2021; 23:199. [PMID: 35008625 PMCID: PMC8745792 DOI: 10.3390/ijms23010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023] Open
Abstract
Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.
Collapse
Affiliation(s)
- Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Chen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| |
Collapse
|
34
|
Kim EJY, Sorokin L, Hiiragi T. ECM-integrin signalling instructs cellular position-sensing to pattern the early mouse embryo. Development 2021; 149:273721. [PMID: 34908109 PMCID: PMC8881741 DOI: 10.1242/dev.200140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM), which eventually forms the embryo itself. Yet, the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here, we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters the subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical-to-basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and is required for correct EPI/PrE patterning. Thus, our findings highlight the significance of ECM-integrin adhesion in enabling position sensing by cells to achieve tissue patterning. Summary: The importance of patterned cell-extracellular matrix (ECM) interactions in early mouse development: ECM signals can modulate both cell fate and the relative spatial arrangement between cells.
Collapse
Affiliation(s)
- Esther Jeong Yoon Kim
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Universität Heidelberg, Heidelberg, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Muenster, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Elmore SA, Cochran RZ, Bolon B, Lubeck B, Mahler B, Sabio D, Ward JM. Histology Atlas of the Developing Mouse Placenta. Toxicol Pathol 2021; 50:60-117. [PMID: 34872401 PMCID: PMC8678285 DOI: 10.1177/01926233211042270] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of the mouse as a model organism is common in translational research. This mouse-human similarity holds true for placental development as well. Proper formation of the placenta is vital for development and survival of the maturing embryo. Placentation involves sequential steps with both embryonic and maternal cell lineages playing important roles. The first step in placental development is formation of the blastocyst wall (approximate embryonic days [E] 3.0-3.5). After implantation (∼E4.5), extraembryonic endoderm progressively lines the inner surface of the blastocyst wall (∼E4.5-5.0), forming the yolk sac that provides histiotrophic support to the embryo; subsequently, formation of the umbilical vessels (∼E8.5) supports transition to the chorioallantoic placenta and hemotrophic nutrition. The fully mature ("definitive") placenta is established by ∼E12.5. Abnormal placental development often leads to embryonic mortality, with the timing of death depending on when placental insufficiency takes place and which cells are involved. This comprehensive macroscopic and microscopic atlas highlights the key features of normal and abnormal mouse placental development from E4.5 to E18.5. This in-depth overview of a transient (and thus seldom-analyzed) developmental tissue should serve as a useful reference to aid researchers in identifying and describing mouse placental changes in engineered, induced, and spontaneous disease models.
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robert Z Cochran
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Beth Lubeck
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Jerrold M Ward
- Global Vet Pathology, Montgomery Village, MD, USA *Co-first authors
| |
Collapse
|
36
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
37
|
Taniguchi Y, Nagano C, Sekiguchi K, Tashiro A, Sugawara N, Sakaguchi H, Umeda C, Aoto Y, Ishiko S, Rossanti R, Sakakibara N, Horinouchi T, Yamamura T, Kondo A, Nagai S, Nagase H, Iijima K, Miner JH, Nozu K. Clear Evidence of LAMA5 Gene Biallelic Truncating Variants Causing Infantile Nephrotic Syndrome. KIDNEY360 2021; 2:1968-1978. [PMID: 35419533 PMCID: PMC8986055 DOI: 10.34067/kid.0004952021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023]
Abstract
Background Pathogenic variants in single genes encoding podocyte-associated proteins have been implicated in about 30% of steroid-resistant nephrotic syndrome (SRNS) patients in children. However, LAMA5 gene biallelic variants have been identified in only seven patients so far, and most are missense variants of unknown significance. Furthermore, no functional analysis had been conducted for all but one of these variants. Here, we report three patients with LAMA5 gene biallelic truncating variants manifesting infantile nephrotic syndrome, and one patient with SRNS with biallelic LAMA5 missense variants. Methods We conducted comprehensive gene screening of Japanese patients with severe proteinuria. With the use of targeted next-generation sequencing, 62 podocyte-related genes were screened in 407 unrelated patients with proteinuria. For the newly discovered LAMA5 variants, we conducted in vitro heterotrimer formation assays. Results Biallelic truncating variants in the LAMA5 gene (NM_005560) were detected in three patients from two families. All patients presented with proteinuria within 6 months of age. Patients 1 and 2 were siblings possessing a nonsense variant (c.9232C>T, p.[Arg3078*]) and a splice site variant (c.1282 + 1G>A) that led to exon 9 skipping and a frameshift. Patient 3 had a remarkable irregular contour of the glomerular basement membrane. She was subsequently found to have a nonsense variant (c.8185C>T, p.[Arg2720*]) and the same splice site variant in patients 1 and 2. By in vitro heterotrimer formation assays, both truncating variants produced smaller laminin α5 proteins that nevertheless formed trimers with laminin β1 and γ1 chains. Patient 4 showed SRNS at the age of 8 years, and carried compound heterozygous missense variants (c.1493C>T, p.[Ala498Val] and c.8399G>A, p.[Arg2800His]). Conclusions Our patients showed clear evidence of biallelic LAMA5 truncating variants causing infantile nephrotic syndrome. We also discerned the clinical and pathologic characteristics observed in LAMA5-related nephropathy. LAMA5 variant screening should be performed in patients with congenital/infantile nephrotic syndrome.
Collapse
Affiliation(s)
- Yukimasa Taniguchi
- Division of Matrixome Research and Application, Osaka University, Osaka, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Osaka University, Osaka, Japan
| | - Atsushi Tashiro
- Department of Pediatrics, Japan Community Health Care Organization Chukyo Hospital, Aichi, Japan
| | - Noriko Sugawara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhide Sakaguchi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Umeda
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Sadayuki Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children’s Hospital, Hyogo, Japan,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
38
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
39
|
Shaw L, Sugden CJ, Hamill KJ. Laminin Polymerization and Inherited Disease: Lessons From Genetics. Front Genet 2021; 12:707087. [PMID: 34456976 PMCID: PMC8388930 DOI: 10.3389/fgene.2021.707087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
The laminins (LM) are a family of basement membranes glycoproteins with essential structural roles in supporting epithelia, endothelia, nerves and muscle adhesion, and signaling roles in regulating cell migration, proliferation, stem cell maintenance and differentiation. Laminins are obligate heterotrimers comprised of α, β and γ chains that assemble intracellularly. However, extracellularly these heterotrimers then assemble into higher-order networks via interaction between their laminin N-terminal (LN) domains. In vitro protein studies have identified assembly kinetics and the structural motifs involved in binding of adjacent LN domains. The physiological importance of these interactions has been identified through the study of pathogenic point mutations in LN domains that lead to syndromic disorders presenting with phenotypes dependent on which laminin gene is mutated. Genotype-phenotype comparison between knockout and LN domain missense mutations of the same laminin allows inferences to be drawn about the roles of laminin network assembly in terms of tissue function. In this review, we will discuss these comparisons in terms of laminin disorders, and the therapeutic options that understanding these processes have allowed. We will also discuss recent findings of non-laminin mediators of laminin network assembly and their implications in terms of basement membrane structure and function.
Collapse
Affiliation(s)
| | | | - Kevin J. Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Reuten R, Zendehroud S, Nicolau M, Fleischhauer L, Laitala A, Kiderlen S, Nikodemus D, Wullkopf L, Nielsen SR, McNeilly S, Prein C, Rafaeva M, Schoof EM, Furtwängler B, Porse BT, Kim H, Won KJ, Sudhop S, Zornhagen KW, Suhr F, Maniati E, Pearce OMT, Koch M, Oddershede LB, Van Agtmael T, Madsen CD, Mayorca-Guiliani AE, Bloch W, Netz RR, Clausen-Schaumann H, Erler JT. Basement membrane stiffness determines metastases formation. NATURE MATERIALS 2021; 20:892-903. [PMID: 33495631 DOI: 10.1038/s41563-020-00894-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.
Collapse
Affiliation(s)
- Raphael Reuten
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Sina Zendehroud
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Monica Nicolau
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for Nanoscience-CeNS, Munich, Germany
| | - Anu Laitala
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Kiderlen
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for Nanoscience-CeNS, Munich, Germany
| | - Denise Nikodemus
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lena Wullkopf
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Sarah McNeilly
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for Nanoscience-CeNS, Munich, Germany
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Maria Rafaeva
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M Schoof
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Furtwängler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hyobin Kim
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Frank Suhr
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Eleni Maniati
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Oliver M T Pearce
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Chris D Madsen
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | | | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for Nanoscience-CeNS, Munich, Germany
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Organization of the laminin polymer node. Matrix Biol 2021; 98:49-63. [PMID: 34029691 DOI: 10.1016/j.matbio.2021.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Laminin polymerization is a key step of basement membrane assembly that depends on the binding of α, β and γ N-terminal LN domains to form a polymer node. Nodal assembly can be divided into two steps consisting of β- and γ-LN dimerization followed by calcium-dependent addition of the α-LN domain. The assembly and structural organization of laminin-111 LN-LEa segments was examined by size-exclusion chromatography (SEC) and electron microscopy. Triskelion-like structures were observed in negatively-stained images of purified α1/β1/γ1 LN-LEa trimers. Image averaging of these revealed a heel-to-toe organization of the LN domains with angled outward projections of the LEa stem-like domains. A series of single-amino acid substitutions was introduced into the polymerization faces of the α1, β1 and γ1 LN domains followed by SEC analysis to distinguish between loss of β-γ mediated dimerization and loss of α-dependent trimerization (with intact β-γ dimers). Dimer-blocking mutations were confined to the γ1-toe and the β1-heel, whereas the trimer-only-blocking mutations mapped to the γ1-heel, β1-toe and the α1-toe and heel. Thus, in the polymer node the γ1-toe pairs with the β1-heel, the β1-toe pairs with the α1-heel, and the α1-toe pairs with the γ1-heel.
Collapse
|
42
|
Bu T, Wang L, Wu X, Li L, Mao B, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. A laminin-based local regulatory network in the testis that supports spermatogenesis. Semin Cell Dev Biol 2021; 121:40-52. [PMID: 33879391 DOI: 10.1016/j.semcdb.2021.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.
Collapse
Affiliation(s)
- Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, La Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| |
Collapse
|
43
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
44
|
Tasadduq R, Ajmal L, Batool F, Zafar T, Babar A, Riasat A, Shakoori AR. Interplay of immune components and their association with recurrent pregnancy loss. Hum Immunol 2021; 82:162-169. [PMID: 33581927 DOI: 10.1016/j.humimm.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Maintenance and progression of pregnancy is an intricate process governed by a variety of developmental cues. Recurrent pregnancy loss (RPL) is a complication experienced by expecting mothers that is defined as three or more consecutive pregnancy losses. This review focuses on the dysfunctions of the immune system as one of the key contributors towards RPL. The current data suggests that the alloimmune and autoimmune factors contribute to the loss of fetus. Such causes despite being recognized as a definitive reason for recurrent pregnancy loss, are still under extensive investigation with new parameters being discovered and scrutinized for their association with RPLs. More in-depth and high throughput studies are required for devising better diagnostic tools and management strategies for the affected female so that they can carry their pregnancy to term.
Collapse
Affiliation(s)
- Raazia Tasadduq
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan.
| | - Laiba Ajmal
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan
| | - Farhat Batool
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan
| | - Tehniyat Zafar
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan
| | - Aleena Babar
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan
| | - Amna Riasat
- Department of Biochemistry, Kinnaird College for Women, 93 Jail Road, G.O.R-1, Lahore, Pakistan
| | | |
Collapse
|
45
|
Kurek M, Åkesson E, Yoshihara M, Oliver E, Cui Y, Becker M, Alves-Lopes JP, Bjarnason R, Romerius P, Sundin M, Norén Nyström U, Langenskiöld C, Vogt H, Henningsohn L, Petersen C, Söder O, Guo J, Mitchell RT, Jahnukainen K, Stukenborg JB. Spermatogonia Loss Correlates with LAMA 1 Expression in Human Prepubertal Testes Stored for Fertility Preservation. Cells 2021; 10:241. [PMID: 33513766 PMCID: PMC7911157 DOI: 10.3390/cells10020241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Fertility preservation for male childhood cancer survivors not yet capable of producing mature spermatozoa, relies on experimental approaches such as testicular explant culture. Although the first steps in somatic maturation can be observed in human testicular explant cultures, germ cell depletion is a common obstacle. Hence, understanding the spermatogonial stem cell (SSC) niche environment and in particular, specific components such as the seminiferous basement membrane (BM) will allow progression of testicular explant cultures. Here, we revealed that the seminiferous BM is established from 6 weeks post conception with the expression of laminin alpha 1 (LAMA 1) and type IV collagen, which persist as key components throughout development. With prepubertal testicular explant culture we found that seminiferous LAMA 1 expression is disrupted and depleted with culture time correlating with germ cell loss. These findings highlight the importance of LAMA 1 for the human SSC niche and its sensitivity to culture conditions.
Collapse
Affiliation(s)
- Magdalena Kurek
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology Care Sciences & Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- The R & D Unit, Stockholms Sjukhem, 112 19 Stockholm, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden;
| | - Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Yanhua Cui
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Department of Women’s and Children’s Health, Karolinska Institutet, Centre for Psychiatry Research, Region Stockholm and Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 64 Solna, Sweden;
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Ragnar Bjarnason
- Children’s Medical Center, Landspítali University Hospital, 101 Reykjavik, Iceland;
- Department of Paediatrics Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Patrik Romerius
- Department of Paediatric Oncology and Haematology, Clinical Sciences, Lund University, Barn-och Ungdomssjukhuset Lund, Skånes Universitetssjukhus, 221 85 Lund, Sweden;
| | - Mikael Sundin
- Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
- Pediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ulrika Norén Nyström
- Division of Paediatrics, Department of Clinical Science, Umeå University, 901 87 Umeå, Sweden;
| | - Cecilia Langenskiöld
- Department of Paediatric Oncology, The Queen Silvia Children’s Hospital, 416 50 Gothenburg, Sweden;
| | - Hartmut Vogt
- Crown Princess Victoria’s Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Lars Henningsohn
- Division of Urology, Institution for Clinical Science Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Cecilia Petersen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Rod T. Mitchell
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
- Edinburgh Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
- Division of Haematology-Oncology and Stem Cell Transplantation, Children’s Hospital, University of Helsinki, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| |
Collapse
|
46
|
Abstract
Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
Collapse
|
47
|
Lee S, Lee DS, Jang JH. Recombinant laminin α5 LG1-3 domains support the stemness of human mesenchymal stem cells. Exp Ther Med 2020; 21:166. [PMID: 33456533 DOI: 10.3892/etm.2020.9597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix components laminin and elastin serve key roles in stem cell therapy. Elastin-like polypeptides (ELPs), derived from a soluble form of elastin, affect the proliferation and differentiation of various types of cells. In the present study, a novel protein was designed containing globular domains 1-3 of laminin α5 (Lα5LG1-3) fused to ELPs (Lα5LG1-3/ELP). Lα5LG1-3/ELP was expressed in Escherichia coli and displayed a molecular size of ~70 kDa on 12% SDS-polyacrylamide gels. The cellular activities, such as cellular adhesion (adhesion assay) and proliferation (MTT cytotoxicity assay), of human mesenchymal stem cells (hMSCs) treated with 1 µg/ml of Lα5LG1-3/ELP were enhanced compared with those of untreated cells. Additionally, the number of undifferentiated hMSCs and their degree of stemness were assessed based on the gene expression levels of the stem cell markers cluster differentiation 90 (CD90), endoglin (CD105) and CD73. The expression levels of these markers were upregulated by 2.42-, 2.29- and 1.92-fold, respectively, in the hMSCs treated with Lα5LG1-3/ELP compared with the levels in untreated controls. Thus, Lα5LG1-3/ELP may be used to enhance the viability of hMSCs and preserve their undifferentiated state, whereby the clinical applications of hMSCs may be improved.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
48
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
49
|
Barad M, Csukasi F, Bosakova M, Martin JH, Zhang W, Paige Taylor S, Lachman RS, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 2020; 62:103075. [PMID: 33242826 PMCID: PMC7695969 DOI: 10.1016/j.ebiom.2020.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. Funding Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Collapse
Affiliation(s)
- Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Wenjuan Zhang
- Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States
| | - S Paige Taylor
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Deborah Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Jessica X Chong
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, United States.
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, Málaga 29590, Spain
| |
Collapse
|
50
|
Halfter W, Moes S, Halfter K, Schoenenberger MS, Monnier CA, Kalita J, Asgeirsson D, Binggeli T, Jenoe P, Scholl HPN, Henrich PB. The human Descemet's membrane and lens capsule: Protein composition and biomechanical properties. Exp Eye Res 2020; 201:108326. [PMID: 33147472 DOI: 10.1016/j.exer.2020.108326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes. LC-MS/MS was used to determine the proteomes of both BMs. Biomechanical measurements were conducted by atomic force microscopy (AFM) in force spectroscopy mode, and complemented with immunofluorescence microscopy. Proteome analysis showed that all six existing collagen IV chains represent 70% of all LC-protein, and are thus the dominant components of the LC. The DM on the other hand is predominantly composed of a single protein, TGF-induced protein, which accounted for around 50% of all DM-protein. Four collagen IV-family members in DM accounted for only 10% of the DM protein. Unlike the retinal vascular BMs, the LC and DM do not undergo significant changes in their protein compositions during diabetes. Nanomechanical measurements showed that the endothelial/epithelial sides of both BMs are stiffer than their respective stromal/anterior-chamber sides, and both endothelial and stromal sides of the DM were stiffer than the epithelial and anterior-chamber sides of the LC. Long-term diabetes did not change the stiffness of the DM and LC. In summary, our analyses show that the protein composition and biomechanical properties of the DM and LC are different, i.e., the LC is softer than DM despite a significantly higher concentration of collagen IV family members. This finding is unexpected, as collagen IV members are presumed to be responsible for BM stiffness. Diabetes had no significant effect on the protein composition and the biomechanical properties of both the DM and LC.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland.
| | - Suzette Moes
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany.
| | | | | | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Daphne Asgeirsson
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.
| | | | - Paul Jenoe
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MA, USA.
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|