1
|
Zhou H, Fick K, Patel V, Hilton LR, Kim HW, Bagi Z, Weintraub NL, Chen W. AGPAT3 deficiency impairs adipocyte differentiation and leads to a lean phenotype in mice. Am J Physiol Endocrinol Metab 2024; 327:E69-E80. [PMID: 38717361 PMCID: PMC11390115 DOI: 10.1152/ajpendo.00012.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kendra Fick
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Lisa Renee Hilton
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ha Won Kim
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Malik MA, Saqib MAN, Mientjes E, Acharya A, Alam MR, Wallaard I, Schrauwen I, Bamshad MJ, Santos-Cortez RLP, Elgersma Y, Leal SM, Ansar M. A loss of function variant in AGPAT3 underlies intellectual disability and retinitis pigmentosa (IDRP) syndrome. Eur J Hum Genet 2023; 31:1447-1454. [PMID: 37821758 PMCID: PMC10689475 DOI: 10.1038/s41431-023-01475-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Intellectual disability (ID) and retinal dystrophy (RD) are the frequently found features of multiple syndromes involving additional systemic manifestations. Here, we studied a family with four members presenting severe ID and retinitis pigmentosa (RP). Using genome wide genotyping and exome sequencing, we identified a nonsense variant c.747 C > A (p.Tyr249Ter) in exon 7 of AGPAT3 which co-segregates with the disease phenotype. Western blot analysis of overexpressed WT and mutant AGPAT3 in HEK293T cells showed the absence of AGPAT3, suggesting instability of the truncated protein. Knockdown of Agpat3 in the embryonic mouse brain caused marked deficits in neuronal migration, strongly suggesting that reduced expression of AGPAT3 affects neuronal function. Altogether, our data indicates that AGPAT3 activity is essential for neuronal functioning and loss of its activity probably causes intellectual disability and retinitis pigmentosa (IDRP) syndrome.
Collapse
Affiliation(s)
- Madiha Amin Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Edwin Mientjes
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Muhammad Rizwan Alam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilse Wallaard
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave. NE, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
4
|
Ke P, Bao X, Liu C, Zhou B, Huo M, Chen Y, Wang X, Wu D, Ma X, Liu D, Chen S. LPCAT3 is a potential prognostic biomarker and may be correlated with immune infiltration and ferroptosis in acute myeloid leukemia: a pan-cancer analysis. Transl Cancer Res 2022; 11:3491-3505. [PMID: 36388050 PMCID: PMC9641088 DOI: 10.21037/tcr-22-985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 09/21/2023]
Abstract
BACKGROUND Recent studies have highlighted the critical role of lysophosphatidylcholine acyltransferase 3 (LPCAT3) during cancer development. However, the abnormal expression and prognostic significance of pan-cancer have not been determined. METHODS We explored the expression level and prognostic value of LPCAT3 in 33 cancers by bioinformatics techniques, and comprehensively studied the biological function and immune infiltration based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases as well as many online websites. RESULTS LPCAT3 is significantly upregulated in many cancers, and it is associated with prognosis. Pan-cancer Cox regression analysis indicated that the high expression of LPCAT3 was associated with poor prognosis in acute myeloid leukemia (AML), lower-grade glioma (LGG), ovarian cancer (OV), and uveal melanoma (UVM), while better prognosis in kidney renal clear cell carcinoma (KIRC) (all P<0.05). Further analysis indicated that higher LPCAT3 expression in most cancers markedly decreased the infiltration of immune cells, except diffuse large B-cell lymphoma (DLBC), AML, LGG, stomach adenocarcinoma (STAD), and UVM. In contrast, the expression level of LPCAT3 was positively correlated with most immune checkpoints in colon adenocarcinoma (COAD), DLBC, LGG, liver hepatocellular carcinoma (LIHC), and UVM. Additionally, LPCAT3 expression was associated with tumor mutational burden (TMB) in 4 cancer types, while microsatellite instability (MSI) was in 3 cancer types. Functional enrichment analysis showed LPCAT3 upregulation was highly associated with lipid metabolism and ferroptosis processes. In addition, the result of prediction drug response suggested that B-cell lymphoma 2 (BCL2) inhibitors and Midostaurin may be a potential treatment option for AML with low-LPCAT3 expression. CONCLUSIONS LPCAT3 expression is increased in multiple cancers. Overexpression of LPCAT3 is associated with poor prognosis and tumor immune microenvironment in many cancers, especially in AML. Our results showed that the oncogene of LPCAT3 may serve as a potential prognostic biomarker and/or therapeutic target in AML patients.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chenxi Liu
- Department of General Practice, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Huo
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Yanxin Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xing Wang
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dan Liu
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Stone SJ. Mechanisms of intestinal triacylglycerol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159151. [PMID: 35296424 DOI: 10.1016/j.bbalip.2022.159151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.
Collapse
Affiliation(s)
- Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
6
|
Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1327-1343. [PMID: 34982825 DOI: 10.1093/jxb/erab504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid acyltransferases (LPAATs) might be critical for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4, and 5) were identified in Arabidopsis thaliana. These AtLPAATs display a specific enzymatic activity converting lysophosphatidic acid to PA and are located in the endomembrane system. We investigate a putative role for AtLPAATs 3, 4, and 5 in the secretory pathway of root cells through genetical (knockout mutants), biochemical (activity inhibitor, lipid analyses), and imaging (live and immuno-confocal microscopy) approaches. Treating a lpaat4;lpaat5 double mutant with the LPAAT inhibitor CI976 produced a significant decrease in primary root growth. The trafficking of the auxin transporter PIN2 was disturbed in this lpaat4;lpaat5 double mutant treated with CI976, whereas trafficking of H+-ATPases was unaffected. The lpaat4;lpaat5 double mutant is sensitive to salt stress, and the trafficking of the aquaporin PIP2;7 to the plasma membrane in the lpaat4;lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the lpaat4;lpaat5 double mutant treated with CI976, suggesting that the protein trafficking impairment was due to a critical PA concentration threshold.
Collapse
Affiliation(s)
- Valérie Wattelet-Boyer
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Marina Le Guédard
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Yohann Boutté
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
7
|
Karagiota A, Chachami G, Paraskeva E. Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs). Cancers (Basel) 2022; 14:cancers14010228. [PMID: 35008394 PMCID: PMC8750616 DOI: 10.3390/cancers14010228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Rapidly proliferating cancer cells reprogram lipid metabolism to keep the balance between fatty acid uptake, synthesis, consumption, and storage as triacylglycerides (TAG). Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer. In this review, we present an overview of lipid metabolism reprogramming in cancer cells and give insight into the expression of AGPAT isoforms as well as their association with cancers, parameters of tumor biology, patient classification, and prognosis. Abstract Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
- Correspondence:
| |
Collapse
|
8
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Bozelli JC, Epand RM. Specificity of Acyl Chain Composition of Phosphatidylinositols. Proteomics 2020; 19:e1900138. [PMID: 31381272 DOI: 10.1002/pmic.201900138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/30/2019] [Indexed: 01/15/2023]
Abstract
Phosphatidylinositol (PI) lipids have a predominance of a single molecular species present through the organism. In healthy mammals this molecular species is 1-stearoyl-2-arachidonoyl (18:0/20:4) PI. Although the importance of PI lipids for cell physiology has long been appreciated, less is known about the biological role of enriching PI lipids with 18:0/20:4 acyl chains. In conditions with dysfunctional lipid metabolism, the predominance of 18:0/20:4 acyl chains is lost. Recently, molecular mechanisms underpinning the enrichment or alteration of these acyl chains in PI lipids have begun to emerge. In the majority of the cases a common feature is the presence of enzymes bearing substrate acyl chain specificity. However, in cancer cells, it has been shown that one (not the only) of the mechanisms responsible for the loss in this acyl chain enrichment is mutation on the transcription factor p53 gene, which is one of the most highly mutated genes in cancers. There is a compelling need for a global picture of the specificity of the acyl chain composition of PIs. This can be possible once high-resolution spatio-temporal information is gathered in a cellular context; which can ultimately lead to potential novel targets to combat conditions with altered PI acyl chain profiles.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
10
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
11
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
12
|
Wang Y, Mousley CJ, Lete MG, Bankaitis VA. An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems. Curr Opin Cell Biol 2019; 59:58-72. [PMID: 31039522 DOI: 10.1016/j.ceb.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Recent years have witnessed the evolution of the cell biology of lipids into an extremely active area of investigation. Deciphering the involvement of lipid metabolism and lipid signaling in membrane trafficking pathways defines a major nexus of contemporary experimental activity on this front. Significant effort in that direction is invested in understanding the trans-Golgi network/endosomal system where unambiguous connections between membrane trafficking and inositol lipid and phosphatidylcholine metabolism were first discovered. However, powered by new advances in contemporary cell biology, the march of science is rapidly expanding that window of inquiry to include ever more diverse arms of the lipid metabolome, and to include other compartments of the secretory pathway as well.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
13
|
Spatiotemporal Control of Lipid Conversion, Actin-Based Mechanical Forces, and Curvature Sensors during Clathrin/AP-1-Coated Vesicle Biogenesis. Cell Rep 2018; 20:2087-2099. [PMID: 28854360 DOI: 10.1016/j.celrep.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023] Open
Abstract
Clathrin/adaptor protein-1-coated carriers connect the secretory and the endocytic pathways. Carrier biogenesis relies on distinct protein networks changing membrane shape at the trans-Golgi network, each regulating coat assembly, F-actin-based mechanical forces, or the biophysical properties of lipid bilayers. How these different hubs are spatiotemporally coordinated remains largely unknown. Using in vitro reconstitution systems, quantitative proteomics, and lipidomics, as well as in vivo cell-based assays, we characterize the protein networks controlling membrane lipid composition, membrane shape, and carrier scission. These include PIP5K1A and phospholipase C-beta 3 controlling the conversion of PI[4]P into diacylglycerol. PIP5K1A binding to RAC1 provides a link to F-actin-based mechanical forces needed to tubulate membranes. Tubular membranes then recruit the BAR-domain-containing arfaptin-1/2 guiding carrier scission. These findings provide a framework for synchronizing the chemical/biophysical properties of lipid bilayers, F-actin-based mechanical forces, and the activity of proteins sensing membrane shape during clathrin/adaptor protein-1-coated carrier biogenesis.
Collapse
|
14
|
Abstract
Membrane biology seeks to understand how lipids and proteins within bilayers assemble into large structures such as organelles and the plasma membranes. Historically, lipids were thought to merely provide structural support for bilayer formation and membrane protein function. Research has now revealed that phospholipid metabolism regulates nearly all cellular processes. Sophisticated techniques helped identify >10,000 lipid species suggesting that lipids support many biological processes. Here, we highlight the synthesis of the most abundant glycerophospholipid classes and their distribution in organelles. We review vesicular and nonvesicular transport pathways shuttling lipids between organelles and discuss lipid regulators of membrane trafficking and second messengers in eukaryotic cells.
Collapse
Affiliation(s)
- Yanbo Yang
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Minhyoung Lee
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Gregory D Fairn
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, .,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and.,the Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
15
|
Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S, Waugh MG. The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem 2018; 448:275-286. [PMID: 29450800 PMCID: PMC6182735 DOI: 10.1007/s11010-018-3332-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
Fatty acid uptake and metabolism are often dysregulated in cancer cells. Fatty acid activation is a critical step that allows these biomolecules to enter cellular metabolic pathways such as mitochondrial β-oxidation for ATP generation or the lipogenic routes that generate bioactive lipids such as the inositol phospholipids. Fatty acid activation by the addition of coenzyme A is catalysed by a family of enzymes called the acyl CoA synthetase ligases (ACSL). Furthermore, enhanced expression of particular ACSL isoforms, such as ACSL4, is a feature of some more aggressive cancers and may contribute to the oncogenic phenotype. This study focuses on ACSL3 and ACSL4, closely related structural homologues that preferentially activate palmitate and arachidonate fatty acids, respectively. In this study, immunohistochemical screening of multiple soft tissue tumour arrays revealed that ACSL3 and ACSL4 were highly, but differentially, expressed in a subset of leiomyosarcomas, fibrosarcomas and rhabdomyosarcomas, with consistent cytoplasmic and granular stainings of tumour cells. The intracellular localisations of endogenously expressed ACSL3 and ACSL4 were further investigated by detailed subcellular fractionation analyses of HT1080 fibrosarcoma and MCF-7 breast cancer cells. ACSL3 distribution closely overlapped with proteins involved in trafficking from the trans-Golgi network and endosomes. In contrast, the ACSL4 localisation pattern more closely followed that of calnexin which is an endoplasmic reticulum resident chaperone. Confocal immunofluorescence imaging of MCF-7 cells confirmed the intracellular localisations of both enzymes. These observations reveal new information regarding the compartmentation of fatty acid metabolism in cancer cells.
Collapse
Affiliation(s)
- Yassmeen Radif
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Haarith Ndiaye
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Vasiliki Kalantzi
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Ruth Jacobs
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust and UCL Institute for Liver and Digestive Health, University College London, London, UK
| | - Shane Minogue
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Mark G Waugh
- Lipid & Membrane Biology Group, University College London, Floor U3, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
16
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
The Role of Lysophospholipid Acyltransferases in the Golgi Complex. Methods Mol Biol 2016. [PMID: 27632011 DOI: 10.1007/978-1-4939-6463-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Determining the abundance of phospholipids and neutral lipids in cellular membranes is paramount to understanding their biological functions. Many lipid-modifying enzymes have yet to be characterized due to limitations in substrate-product measurements and purification of membrane-bound enzymes. The method described here uses radiolabeled phospholipid substrates and cell-purified organelles to quantify phospholipid metabolism using thin-layer chromatography. This assay has the benefits of being specific and adaptable for numerous applications and systems.
Collapse
|
18
|
Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, Turacchio G, Marzullo VM, Mandrich L, Zhukovsky MA, Formiggini F, Polishchuk RS, Corda D, Luini A. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun 2016; 7:12148. [PMID: 27401954 PMCID: PMC4945875 DOI: 10.1038/ncomms12148] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Lucia Laura Giordano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Guiling Li
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Diego Circolo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Manuel Marzullo
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mikhail A. Zhukovsky
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
19
|
Ganesan S, Shabits BN, Zaremberg V. Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast. Lipid Insights 2016; 8:75-85. [PMID: 27081314 PMCID: PMC4824325 DOI: 10.4137/lpi.s31781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.
Collapse
Affiliation(s)
| | - Brittney N Shabits
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Abstract
The Golgi complex is the Grand Central Station of intracellular membrane trafficking in the secretory and endocytic pathways. Anterograde and retrograde export of cargo from the Golgi complex involves a complex interplay between the formation of coated vesicles and membrane tubules, although much less is known about tubule-mediated trafficking. Recent advances using in vitro assays have identified several cytoplasmic phospholipase A2 (PLA2) enzymes that are required for the biogenesis of membrane tubules and their roles in the functional organization of the Golgi complex. In this chapter we describe methods for the cell-free reconstitution of PLA2-dependent Golgi membrane tubule formation. These methods should facilitate the identification of other proteins that regulate this process.
Collapse
|
21
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with no cure at present. Cholesterol metabolism is closely associated with AD at several stages. ACAT1 converts free cholesterol to cholesteryl esters, and plays important roles in cellular cholesterol homeostasis. Recent studies show that in a mouse model, blocking ACAT1 provides multiple beneficial effects on AD. Here we review the current evidence that implicates ACAT1 as a therapeutic target for AD. We also discuss the potential usage of various ACAT inhibitors currently available to treat AD.
Collapse
|
22
|
Methods for analyzing the role of phospholipase A₂ enzymes in endosome membrane tubule formation. Methods Cell Biol 2015. [PMID: 26360034 DOI: 10.1016/bs.mcb.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cargo export from mammalian endosomal compartments often involves membrane tubules, into which soluble and membrane-bound cargos are segregated for subsequent intracellular transport. These membrane tubules are highly dynamic and their formation is mediated by a variety of endosome-associated proteins. However, little is known about how these membrane tubules are temporally or spatially regulated, so other tubule-associated proteins are likely to be discovered and analyzed. Therefore, methods to examine the biogenesis and regulation of endosome membrane tubules will prove to be valuable for cell biologists. In this chapter, we describe methods for studying this process using both cell-free, in vitro reconstitution assays, and in vivo image analysis tools.
Collapse
|
23
|
The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochem Soc Trans 2015; 42:1453-9. [PMID: 25233431 DOI: 10.1042/bst20140178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the early secretory pathway, membrane flow in the anterograde direction from the endoplasmic reticulum (ER) to the Golgi complex needs to be tightly co-ordinated with retrograde flow to maintain the size, composition and functionality of these two organelles. At least two mechanisms of transport move material in the retrograde direction: one regulated by the cytoplasmic coatomer protein I complex (COPI), and a second COPI-independent pathway utilizing the small GTP-binding protein Rab6. Although the COPI-independent pathway was discovered 15 years ago, it remains relatively poorly characterized, with only a handful of machinery molecules associated with its operation. One feature that makes this pathway somewhat unusual, and potentially difficult to study, is that the transport carriers predominantly seem to be tubular rather than vesicular in nature. This suggests that the regulatory machinery is likely to be different from that associated with vesicular transport pathways controlled by conventional coat complexes. In the present mini-review, we have highlighted the key experiments that have characterized this transport pathway so far and also have discussed the challenges that lie ahead with respect to its further characterization.
Collapse
|
24
|
Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer's disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiol Aging 2015; 36:2248-2259. [PMID: 25930235 DOI: 10.1016/j.neurobiolaging.2015.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/12/2015] [Accepted: 04/01/2015] [Indexed: 01/07/2023]
Abstract
Patients with Alzheimer's disease (AD) display amyloidopathy and tauopathy. In mouse models of AD, pharmacological inhibition using small molecule enzyme inhibitors or genetic inactivation of acyl-coenzyme A (Acyl-CoA):cholesterol acyltransferase 1 (ACAT1) diminished amyloidopathy and restored cognitive deficits. In microglia, ACAT1 blockage increases autophagosome formation and stimulates amyloid β peptide1-42 degradation. Here, we hypothesize that in neurons ACAT1 blockage augments autophagy and increases autophagy-mediated degradation of P301L-tau protein. We tested this possibility in murine neuroblastoma cells ectopically expressing human tau and in primary neurons isolated from triple transgenic AD mice that express mutant forms of amyloid precursor protein, presenilin-1, and human tau. The results show that ACAT1 blockage increases autophagosome formation and decreases P301L-tau protein content without affecting endogenous mouse tau protein content. In vivo, lacking Acat1 decreases P301L-tau protein content in the brains of young triple transgenic AD mice but not in those of old mice, where extensive hyperphosphorylations and aggregation of P301L-tau take place. These results suggest that, in addition to ameliorating amyloidopathy in both young and old AD mice, ACAT1 blockage may benefit AD by reducing tauopathy at early stage.
Collapse
|
25
|
Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T. Glycerophosphate/Acylglycerophosphate acyltransferases. BIOLOGY 2014; 3:801-30. [PMID: 25415055 PMCID: PMC4280512 DOI: 10.3390/biology3040801] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022]
Abstract
Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT) are involved in the de novo synthesis of triacylglycerol (TAG) and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/pathological roles in the metabolism of glycerolipids have been described and discussed in this review.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yasuhiro Hayashi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Naoki Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yoko Nemoto-Sasaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Saori Oka
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takayuki Sugiura
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| |
Collapse
|
26
|
Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development. Parasitol Res 2014; 113:4165-76. [DOI: 10.1007/s00436-014-4092-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
27
|
Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 2014; 55:799-807. [PMID: 24646950 PMCID: PMC3995458 DOI: 10.1194/jlr.r046094] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | |
Collapse
|
28
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
29
|
Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013; 65:978-987. [PMID: 23973638 DOI: 10.1016/j.freeradbiomed.2013.08.163] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Peroxidation of polyunsaturated fatty acids is intensified in cells subjected to oxidative stress and results in the generation of various bioactive compounds, of which 4-hydroxyalkenals are prominent. During the progression of type 2 diabetes mellitus, the ensuing hyperglycemia promotes the generation of reactive oxygen species (ROS) that contribute to the development of diabetic complications. It has been suggested that ROS-induced lipid peroxidation and the resulting 4-hydroxyalkenals markedly contribute to the development and progression of these pathologies. Recent findings, however, also suggest that noncytotoxic levels of 4-hydroxyalkenals play important signaling functions in the early phase of diabetes and act as hormetic factors to induce adaptive and protective responses in cells, enabling them to function in the hyperglycemic milieu. Our studies and others' have proposed such regulatory functions for 4-hydroxynonenal and 4-hydroxydodecadienal in insulin secreting β-cells and vascular endothelial cells, respectively. This review presents and discusses the mechanisms regulating the generation of 4-hydroxyalkenals under high glucose conditions and the molecular interactions underlying the reciprocal transition from hormetic to cytotoxic agents.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel
| | - Yael Riahi
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel
| | - Valentina Sunda
- Lipinutragen srl, Lipidomic Laboratory, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Simone Deplano
- Lipinutragen srl, Lipidomic Laboratory, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | | | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Nurit Kaiser
- Endocrinology & Metabolism Service, The Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel.
| |
Collapse
|
30
|
Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol 2013; 140:407-21. [PMID: 23996193 DOI: 10.1007/s00418-013-1138-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 01/12/2023]
Abstract
The brefeldin A ADP-ribosylated substrate, a member of the C-terminal-binding protein family that is referred to as CtBP1/BARS, is a dual-function protein that acts as a transcriptional co-repressor in the nucleus and as an inducer of membrane fission in the cytoplasm. In this review, we first discuss the mechanisms that enable CtBP1/BARS to shift between the nuclear transcriptional co-repressor and the cytosolic fission-inducing activities. Then, we focus on the role of CtBP1/BARS in membrane fission. CtBP1/BARS controls several fission events including macropinocytosis, fluid-phase endocytosis, COPI-coated vesicle formation, basolaterally directed post-Golgi carrier formation, and Golgi partitioning in mitosis. We report on recent advances in our understanding of the CtBP1/BARS membrane fission machineries that operate at the trans-side and at the cis-side of the Golgi complex. Specifically, we discuss how these machineries are assembled and regulated, and how they operate in the formation of the basolaterally directed post-Golgi carriers.
Collapse
|
31
|
Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 2013; 154:21-8. [DOI: 10.1093/jb/mvt048] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Wu JHY, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, Kabagambe EK, Djousse L, Siscovick D, Fretts AM, Johnson C, King IB, Psaty BM, McKnight B, Rich SS, Chen YDI, Nettleton JA, Tang W, Bandinelli S, Jacobs DR, Browning BL, Laurie CC, Gu X, Tsai MY, Steffen LM, Ferrucci L, Fornage M, Mozaffarian D. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:171-83. [PMID: 23362303 PMCID: PMC3891054 DOI: 10.1161/circgenetics.112.964619] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND- Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and monounsaturated fatty acids that affect cellular signaling and metabolic pathways. They are synthesized via de novo lipogenesis and are the main saturated and monounsaturated fatty acids in the diet. Levels of these fatty acids have been linked to diseases including type 2 diabetes mellitus and coronary heart disease. METHODS AND RESULTS- Genome-wide association studies were conducted in 5 population-based cohorts comprising 8961 participants of European ancestry to investigate the association of common genetic variation with plasma levels of these 4 fatty acids. We identified polymorphisms in 7 novel loci associated with circulating levels of ≥1 of these fatty acids. ALG14 (asparagine-linked glycosylation 14 homolog) polymorphisms were associated with higher 16:0 (P=2.7×10(-11)) and lower 18:0 (P=2.2×10(-18)). FADS1 and FADS2 (desaturases) polymorphisms were associated with higher 16:1n-7 (P=6.6×10(-13)) and 18:1n-9 (P=2.2×10(-32)) and lower 18:0 (P=1.3×10(-20)). LPGAT1 (lysophosphatidylglycerol acyltransferase) polymorphisms were associated with lower 18:0 (P=2.8×10(-9)). GCKR (glucokinase regulator; P=9.8×10(-10)) and HIF1AN (factor inhibiting hypoxia-inducible factor-1; P=5.7×10(-9)) polymorphisms were associated with higher 16:1n-7, whereas PKD2L1 (polycystic kidney disease 2-like 1; P=5.7×10(-15)) and a locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7 (P=4.1×10(-8)). CONCLUSIONS- Our findings provide novel evidence that common variations in genes with diverse functions, including protein-glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of 4 fatty acids in the de novo lipogenesis pathway. These results expand our knowledge of genetic factors relevant to de novo lipogenesis and fatty acid biology.
Collapse
Affiliation(s)
- Jason H Y Wu
- Department of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baba T, Yamamoto A, Tagaya M, Tani K. A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p. Mol Cell Biochem 2013; 376:151-61. [PMID: 23378048 DOI: 10.1007/s11010-013-1563-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/18/2013] [Indexed: 01/30/2023]
Abstract
CI-976 is a lysophospholipid acyltransferase antagonist that is known to affect secretory and endocytic membrane-trafficking pathways likely by increasing the lysophospholipid content in membranes. Our previous study suggested that lysophospholipids formed through the action of an intracellular phospholipase A(1), KIAA0725p (also known as DDHD2 and iPLA(1)γ), may be important for the association of this enzyme with membranes. In this study, we examined the effect of CI-976 on the membrane association of KIAA0725p. While in HeLa cells KIAA0725p is localized in the Golgi and cytosol, in mouse embryonic fibroblasts (MEFs), it was found to be principally localized in the cytosol with some on post-endoplasmic reticulum compartments including the cis-Golgi. Treatment of MEFs with CI-976 induced the redistribution of KIAA0725p to membrane tubules, which were in vicinity to fragmented mitochondria. These tubules were not decorated with canonical organelle markers including Golgi proteins. A human KIAA0725p mutant, which exhibits decreased membrane-binding ability, was also redistributed to membrane structures upon CI-976 treatment. Our data suggest that the association of KIAA0725p with membranes is regulated by lipid metabolism, and that CI-976 may create unique membrane structures that can be marked by KIAA0725p.
Collapse
Affiliation(s)
- Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2013; 23:886-95. [PMID: 23153485 DOI: 10.1016/j.devcel.2012.10.009] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | |
Collapse
|
36
|
Bechler ME, Brown WJ. PAFAH Ib phospholipase A2 subunits have distinct roles in maintaining Golgi structure and function. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:595-601. [PMID: 23262398 DOI: 10.1016/j.bbalip.2012.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Hashimoto T, Segawa H, Okuno M, Kano H, Hamaguchi HO, Haraguchi T, Hiraoka Y, Hasui S, Yamaguchi T, Hirose F, Osumi T. Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. J Cell Sci 2012; 125:6127-36. [PMID: 23108672 DOI: 10.1242/jcs.113084] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The regulation of lipolysis in adipocytes involves coordinated actions of many lipid droplet (LD)-associated proteins such as perilipin, hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), and its activator protein, CGI-58. Here, we describe the cellular origin and physiological significance of micro LDs (mLDs) that emerge in the cytoplasm during active lipolysis, as well as the roles of key lipolytic proteins on mLDs in differentiated 3T3-L1 adipocytes. Multiplex coherent anti-Stokes Raman scattering (CARS) microscopy demonstrated that mLDs receive the fatty acid (FA) moiety of triglyceride from pre-existing LDs during lipolysis. However, when FA re-esterification was blocked, mLDs did not emerge. Time-lapse imaging of GFP-tagged LD-associated proteins and immunocytochemical analyses showed that particulate structures carrying LD-associated proteins emerged throughout the cells upon lipolytic stimulation, but not when FA re-esterification was blocked. Overall lipolysis, as estimated by glycerol release, was significantly lowered by blocking re-esterification, whereas release of free FAs was enhanced. ATGL was co-immunoprecipitated with CGI-58 from the homogenates of lipolytically stimulated cells. Following CGI-58 knockdown or ATGL inhibition with bromoenol lactone, release of both glycerol and FA was significantly lowered. AICAR, an activator of AMP-activated protein kinase, significantly increased FA release, in accordance with increased expression of ATGL, even in the absence of CGI-58. These results suggest that, besides on the surface of pre-existing central LDs, LD-associated proteins are actively involved in lipolysis on mLDs that are formed by FA re-esterification. Regulation of mLDs and LD-associated proteins may be an attractive therapeutic target against lipid-associated metabolic diseases.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The striking morphology of the Golgi complex has fascinated cell biologists since its discovery over 100 years ago. Yet, despite intense efforts to understand how membrane flow relates to Golgi form and function, this organelle continues to baffle cell biologists and biochemists alike. Fundamental questions regarding Golgi function, while hotly debated, remain unresolved. Historically, Golgi function has been described from a protein-centric point of view, but we now appreciate that conceptual frameworks for how lipid metabolism is integrated with Golgi biogenesis and function are essential for a mechanistic understanding of this fascinating organelle. It is from a lipid-centric perspective that we discuss the larger question of Golgi dynamics and membrane trafficking. We review the growing body of evidence for how lipid metabolism is integrally written into the engineering of the Golgi system and highlight questions for future study.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | |
Collapse
|
39
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
40
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
41
|
Shin HW, Takatsu H, Nakayama K. Mechanisms of membrane curvature generation in membrane traffic. MEMBRANES 2012; 2:118-33. [PMID: 24957965 PMCID: PMC4021884 DOI: 10.3390/membranes2010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.
Collapse
Affiliation(s)
- Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
42
|
A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol 2012; 14:343-54. [PMID: 22366688 DOI: 10.1038/ncb2445] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.
Collapse
|
43
|
Abstract
Ribbon synapses continuously transmit graded membrane potential changes into changes of synaptic vesicle exocytosis and rely on intense synaptic membrane trafficking. The synaptic ribbon is considered central to this process. In the present study we asked whether tonically active ribbon synapses are associated with the generation of certain lipids, specifically the highly active signaling phospholipid phosphatidic acid (PA). Using PA-sensor proteins, we demonstrate that PA is enriched at mouse retinal ribbon synapses in close vicinity to the synaptic ribbon in situ. As shown by heterologous expression, RIBEYE, a main component of synaptic ribbons, is responsible for PA binding at synaptic ribbons. Furthermore, RIBEYE is directly involved in the synthesis of PA. Using various independent substrate binding and enzyme assays, we demonstrate that the B domain of RIBEYE possesses lysophosphatidic acid (LPA) acyltransferase (LPAAT) activity, which leads to the generation of PA from LPA. Since an LPAAT-deficient RIBEYE mutant does not recruit PA-binding proteins to artificial synaptic ribbons, whereas wild-type RIBEYE supports PA binding, we conclude that the LPAAT activity of the RIBEYE(B) domain is a physiologically relevant source of PA generation at the synaptic ribbon. We propose that PA generated at synaptic ribbons likely facilitates synaptic vesicle trafficking.
Collapse
|
44
|
Anitei M, Hoflack B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 2011; 14:11-9. [PMID: 22193159 DOI: 10.1038/ncb2409] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | |
Collapse
|
45
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15232;
| |
Collapse
|
47
|
Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care 2011; 14:520-6. [PMID: 21849895 DOI: 10.1097/mco.0b013e32834ad966] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This study highlights two aspects of the concept of lipotoxicity. First, the metabolic consequences following ectopic fat accumulation are not only determined by the amount of lipid accumulated, but also the quality of lipid species. Second, the existence of allostatic mechanisms operating at cellular and tissue levels, which counterbalance the negative effects of lipid overload. RECENT FINDINGS The development of lipidomics has allowed the isolation and identification of a wide range of lipid species. Some are highly reactive and capable of inducing undesirable toxic effects. Here we focus on recent information related to pathways involved in the production of these reactive lipid species, their sites of generation and tropism for specific organelles and the molecular mechanisms through which they exert toxic effects. We describe how cell membranes and the lipid species forming their bilayer constitute the main platform from which reactive lipid species are generated. We propose that strategies aimed at maintaining membrane lipid homeostasis are fundamental to preventing the initiation of metabolically relevant lipotoxicity. SUMMARY It is essential to understand the qualitative component of lipid species involved in cellular toxicity and the molecular mechanisms mediating these toxic effects to identify new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge, Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
48
|
Abstract
A variety of secretory cargoes move through the Golgi, but the pathways and mechanisms of this traffic are still being debated. Here, we evaluate the strengths and weaknesses of five current models for Golgi traffic: (1) anterograde vesicular transport between stable compartments, (2) cisternal progression/maturation, (3) cisternal progression/maturation with heterotypic tubular transport, (4) rapid partitioning in a mixed Golgi, and (5) stable compartments as cisternal progenitors. Each model is assessed for its ability to explain a set of key observations encompassing multiple cell types. No single model can easily explain all of the observations from diverse organisms. However, we propose that cisternal progression/maturation is the best candidate for a conserved core mechanism of Golgi traffic, and that some cells elaborate this core mechanism by means of heterotypic tubular transport between cisternae.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
49
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
50
|
Koeberle A, Shindou H, Harayama T, Yuki K, Shimizu T. Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J 2011; 26:169-80. [DOI: 10.1096/fj.11-184879] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Koeberle
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, University of Tokyo Tokyo Japan
| | - Hideo Shindou
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, University of Tokyo Tokyo Japan
| | - Takeshi Harayama
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, University of Tokyo Tokyo Japan
| | - Koichi Yuki
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, University of Tokyo Tokyo Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, University of Tokyo Tokyo Japan
| |
Collapse
|