1
|
Cao ZJ, You J, Fan YM, Yang JY, Sun J, Ma X, Zhang J, Li Z, Wang X, Feng YX. Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells. SCIENCE ADVANCES 2025; 11:eads5434. [PMID: 39792663 PMCID: PMC11721608 DOI: 10.1126/sciadv.ads5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells. The enhanced Hedgehog pathway represses CD8+ T cell activation and inhibits its cytotoxic effects. Consequently, overexpression of CREB3L2 not only promotes tumor growth but also causes resistance to immune checkpoint blockade (ICB). Inhibition of the Hedgehog pathway impedes the growth of CREB3L2-overexpressed tumors and sensitizes them to ICB therapy. In summary, we identified a previously unidentified mechanism by which the UPR pathway dictates cross-talk between cancer cells and immune cells, providing important anticancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zi-Jian Cao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Meng Fan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia-Ying Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- K2 Oncology Co., Ltd., Beijing, China
| | - Jirui Sun
- Department of Pathology, First Central Hospital of Baoding, Baoding, China
- Hebei Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor, Baoding, China
| | - Xiuli Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinku Zhang
- Department of Pathology, First Central Hospital of Baoding, Baoding, China
- Hebei Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor, Baoding, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| | - Xiang Wang
- Zhejiang Key Laboratory of Integrated Oncology and Intelligent Medicine, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
VanWinkle PE, Lee E, Wynn B, Nawara TJ, Thomas H, Parant J, Alvarez C, Serra R, Sztul E. Disruption of the creb3l1 gene causes defects in caudal fin regeneration and patterning in zebrafish Danio rerio. Dev Dyn 2024; 253:1106-1129. [PMID: 39003620 PMCID: PMC11609917 DOI: 10.1002/dvdy.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.
Collapse
Affiliation(s)
- Peyton E. VanWinkle
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bridge Wynn
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tomasz J. Nawara
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Holly Thomas
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John Parant
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Cecilia Alvarez
- CIBICI‐CONICET, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
| | - Rosa Serra
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Gao YP, Hu C, Hu M, Dong WS, Li K, Ye YJ, Hu YX, Zhang X. CREB3 protein family: the promising therapeutic targets for cardiovascular and metabolic diseases. Cell Biol Toxicol 2024; 40:103. [PMID: 39581923 PMCID: PMC11586310 DOI: 10.1007/s10565-024-09939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Significant advancements in cardiovascular and metabolic disease research have been made with the CREB3 protein family. Studies have revealed that members of this family are crucial in the development of these diseases, contributing to the regulation of lipid metabolism, inflammation, and vascular function. These studies provide useful information for future therapeutic strategies in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Yi-Peng Gao
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Hu
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Sheng Dong
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Zhang
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Wang Y, Liu J, Du LY, Wyss JL, Farrell JA, Schier AF. Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish. Dev Cell 2024:S1534-5807(24)00634-8. [PMID: 39591963 DOI: 10.1016/j.devcel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/30/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
During differentiation, cells become structurally and functionally specialized, but comprehensive views of the underlying remodeling processes are elusive. Here, we leverage single-cell RNA sequencing (scRNA-seq) developmental trajectories to reconstruct differentiation using two secretory tissues as models-the zebrafish notochord and hatching gland. First, we integrated expression and functional similarities to identify gene modules, revealing dozens of modules representing known and newly associated differentiation processes and their dynamics. Second, we focused on the unfolded protein response (UPR) transducer module to study how general versus cell-type-specific secretory functions are regulated. Profiling loss- and gain-of-function embryos identified that the UPR transcription factors creb3l1, creb3l2, and xbp1 are master regulators of a general secretion program. creb3l1/creb3l2 additionally activate an extracellular matrix secretion program, while xbp1 partners with bhlha15 to activate a gland-like secretion program. Our study presents module identification via multi-source integration for reconstructing differentiation (MIMIR) and illustrates how transcription factors confer general and specialized cellular functions.
Collapse
Affiliation(s)
- Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Jialin Liu
- Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Jannik L Wyss
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Saito A, Omura I, Imaizumi K. CREB3L1/OASIS: cell cycle regulator and tumor suppressor. FEBS J 2024; 291:4853-4866. [PMID: 38215153 DOI: 10.1111/febs.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Cell cycle checkpoints detect DNA errors, eventually arresting the cell cycle to promote DNA repair. Failure of such cell cycle arrest causes aberrant cell proliferation, promoting the pathogenesis of multiple diseases, including cancer. Endoplasmic reticulum (ER) stress transducers activate the unfolded protein response, which not only deals with unfolded proteins in ER lumen but also orchestrates diverse physiological phenomena such as cell differentiation and lipid metabolism. Among ER stress transducers, cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1) [also known as old astrocyte specifically induced substance (OASIS)] is an ER-resident transmembrane transcription factor. This molecule is cleaved by regulated intramembrane proteolysis, followed by activation as a transcription factor. OASIS is preferentially expressed in specific cells, including astrocytes and osteoblasts, to regulate their differentiation. In accordance with its name, OASIS was originally identified as being upregulated in long-term-cultured astrocytes undergoing cell cycle arrest because of replicative stress. In the context of cell cycle regulation, previously unknown physiological roles of OASIS have been discovered. OASIS is activated as a transcription factor in response to DNA damage to induce p21-mediated cell cycle arrest. Although p21 is directly induced by the master regulator of the cell cycle, p53, no crosstalk occurs between p21 induction by OASIS or p53. Here, we summarize previously unknown cell cycle regulation by ER-resident transcription factor OASIS, particularly focusing on commonalities and differences in cell cycle arrest between OASIS and p53. This review also mentions tumorigenesis caused by OASIS dysfunctions, and OASIS's potential as a tumor suppressor and therapeutic target.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
7
|
Ma Y, Li Q, Tang Y, Zhang Z, Liu R, Luo Q, Wang Y, Hu J, Chen Y, Li Z, Zhao C, Ran Y, Mu Y, Li Y, Xu X, Gong Y, He Z, Ba Y, Guo K, Dong K, Li X, Tan W, Zhu Y, Xiang Z, Xu H. The architecture of silk-secreting organs during the final larval stage of silkworms revealed by single-nucleus and spatial transcriptomics. Cell Rep 2024; 43:114460. [PMID: 38996068 DOI: 10.1016/j.celrep.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Natural silks are renewable proteins with impressive mechanical properties and biocompatibility that are useful in various fields. However, the cellular and spatial organization of silk-secreting organs remains unclear. Here, we combined single-nucleus and spatially resolved transcriptomics to systematically map the cellular and spatial composition of the silk glands (SGs) of mulberry silkworms late in larval development. This approach allowed us to profile SG cell types and cell state dynamics and identify regulatory networks and cell-cell communication related to efficient silk protein synthesis; key markers were validated via transgenic approaches. Notably, we demonstrated the indispensable role of the ecdysone receptor (ultraspiracle) in regulating endoreplication in SG cells. Our atlas presents the results of spatiotemporal analysis of silk-secreting organ architecture late in larval development; this atlas provides a valuable reference for elucidating the mechanism of efficient silk protein synthesis and developing sustainable products made from natural silk.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qingjun Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiyun Tang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Zhang
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jie Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuqin Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiwei Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chen Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiting Ran
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yinghao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqing Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuyan Gong
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Zihan He
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Kaiqi Guo
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Keshu Dong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Tan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yumeng Zhu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
9
|
Ignatyeva M, Patel AKM, Ibrahim A, Albiheyri RS, Zari AT, Bahieldin A, Bronner C, Sabir JSM, Hamiche A. Identification and Characterization of HIRIP3 as a Histone H2A Chaperone. Cells 2024; 13:273. [PMID: 38334665 PMCID: PMC10854748 DOI: 10.3390/cells13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.
Collapse
Affiliation(s)
- Maria Ignatyeva
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdul Kareem Mohideen Patel
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Raed S. Albiheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali T. Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christian Bronner
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
| |
Collapse
|
10
|
Peng D, Jackson D, Palicha B, Kernfeld E, Laughner N, Shoemaker A, Celniker SE, Loganathan R, Cahan P, Andrew DJ. Organogenetic transcriptomes of the Drosophila embryo at single cell resolution. Development 2024; 151:dev202097. [PMID: 38174902 PMCID: PMC10820837 DOI: 10.1242/dev.202097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorian Jackson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bianca Palicha
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Kernfeld
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathaniel Laughner
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashleigh Shoemaker
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajprasad Loganathan
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Wang Y, Liu J, Du LY, Wyss JL, Farrell JA, Schier AF. Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573643. [PMID: 38234833 PMCID: PMC10793473 DOI: 10.1101/2023.12.29.573643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
During differentiation, cells become structurally and functionally specialized, but comprehensive views of the underlying remodeling processes are elusive. Here, we leverage scRNA-seq developmental trajectories to reconstruct differentiation using two secretory tissues as a model system - the zebrafish notochord and hatching gland. First, we present an approach to integrate expression and functional similarities for gene module identification, revealing dozens of gene modules representing known and newly associated differentiation processes and their temporal ordering. Second, we focused on the unfolded protein response (UPR) transducer module to study how general versus cell-type specific secretory functions are regulated. By profiling loss- and gain-of-function embryos, we found that the UPR transcription factors creb3l1, creb3l2, and xbp1 are master regulators of a general secretion program. creb3l1/creb3l2 additionally activate an extracellular matrix secretion program, while xbp1 partners with bhlha15 to activate a gland-specific secretion program. Our study offers a multi-source integrated approach for functional gene module identification and illustrates how transcription factors confer general and specialized cellular functions.
Collapse
Affiliation(s)
- Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Jialin Liu
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Lucia Y. Du
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Jannik L. Wyss
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
- Lead contact
| |
Collapse
|
12
|
Lin X, Zhang H, Gao H, Yuan X, Liu Z. The transcription factor CREB3-2 regulated neutral lipase gene expression in ovary of Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105632. [PMID: 37945264 DOI: 10.1016/j.pestbp.2023.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The cyclic AMP-responsive element-binding protein 3 (CREB3) members have unique regulatory roles in cellular lipid metabolism as transcription factors. Two CREB3 proteins in Nilaparvata lugens were identified and analyzed. In ovary, when silencing NlCREB3-2, triacylglycerol (TAG) content dramatically increased but glycerol and free fatty acid (FFA) significantly decreased, which implicated that NlCREB3-2 was involved in the lipase-related TAG metabolism. In N. lugens, five neutral lipases with complete features for TAG hydrolytic activity and high expression in ovary were focused. Among them, the expression levels of three neutral lipase genes were significantly down-regulated by NlCREB3-2 RNAi. The direct regulation of NlCREB3-2 towards the three neutral lipase genes was evidenced by the dual-luciferase reporter assay. After jointly silencing three neutral lipase genes, TAG and glycerol contents displayed similar changes as NlCREB3-2 RNAi. The study proved that NlCREB3-2 participated in TAG metabolism in ovary via the direct activation towards the ovary-specific neutral lipase genes.
Collapse
Affiliation(s)
- Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
13
|
Perez-Garcia J, Pino-Yanes M, Plender EG, Everman JL, Eng C, Jackson ND, Moore CM, Beckman KB, Medina V, Sharma S, Winnica DE, Holguin F, Rodríguez-Santana J, Villar J, Ziv E, Seibold MA, Burchard EG. Epigenomic response to albuterol treatment in asthma-relevant airway epithelial cells. Clin Epigenetics 2023; 15:156. [PMID: 37784136 PMCID: PMC10546710 DOI: 10.1186/s13148-023-01571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.
Collapse
Grants
- R01 ES015794 NIEHS NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01ES015794, R21ES24844 NIEHS NIH HHS
- UM1 HG008901 NHGRI NIH HHS
- R01MD010443, R56MD013312 NIMHD NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R21 ES024844 NIEHS NIH HHS
- R01 HL117626 NHLBI NIH HHS
- R56 MD013312 NIMHD NIH HHS
- R01 MD010443 NIMHD NIH HHS
- R01 HL155024 NHLBI NIH HHS
- R01HL155024-01, HHSN268201600032I, 3R01HL-117626-02S1, HHSN268201800002I, 3R01HL117004-02S3, 3R01HL-120393-02S1, R01HL117004, R01HL128439, R01HL135156, X01HL134589 NHLBI NIH HHS
- HHSN268201600032C NHLBI NIH HHS
- U24 HG008956 NHGRI NIH HHS
- Ministerio de Universidades
- Ministerio de Ciencia e Innovación
- Instituto de Salud Carlos III
- National Heart, Lung, and Blood Institute
- National Human Genome Research Institute
- National Institute of Environmental Health Sciences
- National Institute on Minority Health and Health Disparities
- The Centers for Common Disease Genomics of the Genome Sequencing Program
- Tobacco-Related Disease Research Program
- Sandler Family Foundation
- American Asthma Foundation
- Amos Medical Faculty Development Program from the Robert Wood Johnson Foundation
- Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain.
| | - Elizabeth G Plender
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center (UMNGC), Minneapolis, MN, USA
| | | | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Efrain Winnica
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, ON, Canada
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
14
|
Yuxiong W, Faping L, Bin L, Yanghe Z, Yao L, Yunkuo L, Yishu W, Honglan Z. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother 2023; 166:115335. [PMID: 37595431 DOI: 10.1016/j.biopha.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The CREB3 family of proteins, encompassing CREB3 and its four homologs (CREB3L1, CREB3L2, CREB3L3, and CREB3L4), exerts pivotal control over cellular protein metabolism in response to unfolded protein reactions. Under conditions of endoplasmic reticulum stress, activation of the CREB3 family occurs through regulated intramembrane proteolysis within the endoplasmic reticulum membrane. Perturbations in the function and expression of the CREB3 family have been closely associated with the development of diverse diseases, with a particular emphasis on cancer. Recent investigations have shed light on the indispensable role played by CREB3 family members in modulating the onset and progression of various human cancers. This comprehensive review endeavors to provide an in-depth examination of the involvement of CREB3 family members in distinct human cancer types, accentuating their significance in the pathogenesis of cancer and the manifestation of malignant phenotypes.
Collapse
Affiliation(s)
- Wang Yuxiong
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Li Faping
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Liu Bin
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Zhang Yanghe
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yunkuo
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Wang Yishu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China.
| | - Zhou Honglan
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China,.
| |
Collapse
|
15
|
Bai Y, Di G, Ge H, Li B, Zhang K, Zhang D, Wang D, Chen P. Regulation of Axon Guidance by Slit2 and Netrin-1 Signaling in the Lacrimal Gland of Aqp5 Knockout Mice. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37707834 PMCID: PMC10506685 DOI: 10.1167/iovs.64.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III β-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.
Collapse
Affiliation(s)
- Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dianqiang Wang
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Tang Y, Hu YW, Wang SH, Zhou M, Ding YJ, Cai SQ, Tang B, Wang SG. RNAi-mediated CrebA silencing inhibits reproduction and immunity in Locusta migratoria manilensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104711. [PMID: 37062456 DOI: 10.1016/j.dci.2023.104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Locusta migratoria manilensis is a major agricultural pest that causes severe direct and indirect damage to several crops. Thus, to provide a theoretical foundation for pest control, the role of CrebA in the reproduction and immune regulation of L. migratoria was investigated. CrebA is a bZIP transcription factor that critically regulates intracellular protein secretion. In this study, CrebA was widely expressed in the brain, fat body, integument, midgut, and reproductive tissues of different maturity stages of adult locusts, especially in the female fat body. RNA interfering (RNAi)-mediated silencing of CrebA inhibited locusts ovarian development, and key reproduction gene expressions, Vgs, VgRs, Chico, and JHAMT were downregulated. After the locusts were injected with Micrococcus luteus or Escherichia coli, M. luteus activated lysozyme expression, while the E. coli activated both phenol oxidase cascade and lysozyme expression. Furthermore, both bacteria stimulated the upregulation of the antimicrobial peptide genes DEF3 and DEF4. However, CrebA silencing is fatal to locusts infection with E. coli, with a mortality rate of up to 96.3%, and resulted in a significant decrease in the expression of DEF3 and DEF4 and changes in the activities of phenol oxidase and lysozyme of locusts infected by bacteria. Collectively, CrebA may be involved in diverse biological processes, including reproduction and immunity. CrebA inhibited locusts reproduction by regulating JH signaling pathway and inhibits the expression of immune genes TLR6, IMD, and AMPs. These results demonstrate CrebA seems to play a crucial role in reproduction and innate immunity.
Collapse
Affiliation(s)
- Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Yao-Wen Hu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Shao-Hua Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Yan-Juan Ding
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Si-Qi Cai
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| |
Collapse
|
17
|
Bhuiyan SH, Bordet G, Bamgbose G, Tulin AV. The Drosophila gene encoding JIG protein (CG14850) is critical for CrebA nuclear trafficking during development. Nucleic Acids Res 2023; 51:5647-5660. [PMID: 37144466 PMCID: PMC10287909 DOI: 10.1093/nar/gkad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Coordination of mitochondrial and nuclear processes is key to the cellular health; however, very little is known about the molecular mechanisms regulating nuclear-mitochondrial crosstalk. Here, we report a novel molecular mechanism controlling the shuttling of CREB (cAMP response element-binding protein) protein complex between mitochondria and nucleoplasm. We show that a previously unknown protein, herein termed as Jig, functions as a tissue-specific and developmental timing-specific coregulator in the CREB pathway. Our results demonstrate that Jig shuttles between mitochondria and nucleoplasm, interacts with CrebA protein and controls its delivery to the nucleus, thus triggering CREB-dependent transcription in nuclear chromatin and mitochondria. Ablating the expression of Jig prevents CrebA from localizing to the nucleoplasm, affecting mitochondrial functioning and morphology and leads to Drosophila developmental arrest at the early third instar larval stage. Together, these results implicate Jig as an essential mediator of nuclear and mitochondrial processes. We also found that Jig belongs to a family of nine similar proteins, each of which has its own tissue- and time-specific expression profile. Thus, our results are the first to describe the molecular mechanism regulating nuclear and mitochondrial processes in a tissue- and time-specific manner.
Collapse
|
18
|
Hosseinzadeh S, Hasanpur K. Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress. Front Genet 2023; 14:1102136. [PMID: 37205120 PMCID: PMC10185895 DOI: 10.3389/fgene.2023.1102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Heat stress in poultry houses, especially in warm areas, is one of the main environmental factors that restrict the growth of broilers or laying performance of layers, suppresses the immune system, and deteriorates egg quality and feed conversion ratio. The molecular mechanisms underlying the response of chicken to acute heat stress (AHS) have not been comprehensively elucidated. Therefore, the main object of the current work was to investigate the liver gene expression profile of chickens under AHS in comparison with their corresponding control groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway enrichment, WGCNA, machine-learning, and eGWAS analyses were performed. The results revealed 77 meta-genes that were mainly related to protein biosynthesis, protein folding, and protein transport between cellular organelles. In other words, under AHS, the expression of genes involving in the structure of rough reticulum membrane and in the process of protein folding was adversely influenced. In addition, genes related to biological processes such as "response to unfolded proteins," "response to reticulum stress" and "ERAD pathway" were differentially regulated. We introduce here a couple of genes such as HSPA5, SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS, which could be used as bio-signatures of AHS. Besides the mentioned genes, the main findings of the current work may shed light to the identification of the effects of AHS on gene expression profiling of domestic chicken as well as the adaptive response of chicken to environmental stresses.
Collapse
|
19
|
Pittari D, Dalla Torre M, Borini E, Hummel B, Sawarkar R, Semino C, van Anken E, Panina-Bordignon P, Sitia R, Anelli T. CREB3L1 and CREB3L2 control Golgi remodelling during decidualization of endometrial stromal cells. Front Cell Dev Biol 2022; 10:986997. [PMID: 36313580 PMCID: PMC9608648 DOI: 10.3389/fcell.2022.986997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.
Collapse
Affiliation(s)
- Daniele Pittari
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Dalla Torre
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elena Borini
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, United Kingdom
| | - Claudia Semino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tiziana Anelli
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
21
|
Greenwood M, Gillard BT, Farrukh R, Paterson A, Althammer F, Grinevich V, Murphy D, Greenwood MP. Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells. Mol Metab 2022; 63:101542. [PMID: 35803572 PMCID: PMC9294333 DOI: 10.1016/j.molmet.2022.101542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Dynamic changes to neuropeptide hormone synthesis and secretion by hypothalamic neuroendocrine cells is essential to ensure metabolic homeostasis. The specialised molecular mechanisms that allow neuroendocrine cells to synthesise and secrete vast quantities of neuropeptides remain ill defined. The objective of this study was to identify novel genes and pathways controlled by transcription factor and endoplasmic reticulum stress sensor Creb3l1 which is robustly activated in hypothalamic magnocellular neurones in response to increased demand for protein synthesis. METHODS We adopted a multiomic strategy to investigate specific roles of Creb3l1 in rat magnocellular neurones. We first performed chromatin immunoprecipitation followed by genome sequencing (ChIP-seq) to identify Creb3l1 genomic targets and then integrated this data with RNA sequencing data from physiologically stimulated and Creb3l1 knockdown magnocellular neurones. RESULTS The data converged on Creb3l1 targets that code for ribosomal proteins and endoplasmic reticulum proteins crucial for the maintenance of cellular proteostasis. We validated genes that compose the PERK arm of the unfolded protein response pathway including Eif2ak3, Eif2s1, Atf4 and Ddit3 as direct Creb3l1 targets. Importantly, knockdown of Creb3l1 in the hypothalamus led to a dramatic depletion in neuropeptide synthesis and secretion. The physiological outcomes from studies of paraventricular and supraoptic nuclei Creb3l1 knockdown animals were changes to food and water consumption. CONCLUSION Collectively, our data identify Creb3l1 as a comprehensive controller of the PERK signalling pathway in magnocellular neurones in response to physiological stimulation. The broad regulation of neuropeptide synthesis and secretion by Creb3l1 presents a new therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Rizwan Farrukh
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Ferdinand Althammer
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| |
Collapse
|
22
|
Wood RK, Flory AR, Mann MJ, Talbot LJ, Hendershot LM. Secretory defects in pediatric osteosarcoma result from downregulation of selective COPII coatomer proteins. iScience 2022; 25:104100. [PMID: 35402877 PMCID: PMC8983387 DOI: 10.1016/j.isci.2022.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Pediatric osteosarcomas (OS) exhibit extensive genomic instability that has complicated the identification of new targeted therapies. We found the vast majority of 108 patient tumor samples and patient-derived xenografts (PDXs), which display an unusually dilated endoplasmic reticulum (ER), have reduced expression of four COPII vesicle components that trigger aberrant accumulation of procollagen-I protein within the ER. CRISPR activation technology was used to increase the expression of two of these, SAR1A and SEC24D, to physiological levels. This was sufficient to resolve the dilated ER morphology, restore collagen-I secretion, and enhance secretion of some extracellular matrix (ECM) proteins. However, orthotopic xenograft growth was not adversely affected by restoration of only SAR1A and SEC24D. Our studies reveal the mechanism responsible for the dilated ER that is a hallmark characteristic of OS and identify a highly conserved molecular signature for this genetically unstable tumor. Possible relationships of this phenotype to tumorigenesis are discussed.
Collapse
Affiliation(s)
- Rachael K. Wood
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lindsay J. Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
23
|
Loganathan R, Levings DC, Kim JH, Wells MB, Chiu H, Wu Y, Slattery M, Andrew DJ. Ribbon boosts ribosomal protein gene expression to coordinate organ form and function. J Cell Biol 2022; 221:213030. [PMID: 35195669 PMCID: PMC9237840 DOI: 10.1083/jcb.202110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cell growth is well defined for late (postembryonic) stages of development, but evidence for early (embryonic) cell growth during postmitotic morphogenesis is limited. Here, we report early cell growth as a key characteristic of tubulogenesis in the Drosophila embryonic salivary gland (SG) and trachea. A BTB/POZ domain nuclear factor, Ribbon (Rib), mediates this early cell growth. Rib binds the transcription start site of nearly every SG-expressed ribosomal protein gene (RPG) and is required for full expression of all RPGs tested. Rib binding to RPG promoters in vitro is weak and not sequence specific, suggesting that specificity is achieved through cofactor interactions. Accordingly, we demonstrate Rib’s ability to physically interact with each of the three known regulators of RPG transcription. Surprisingly, Rib-dependent early cell growth in another tubular organ, the embryonic trachea, is not mediated by direct RPG transcription. These findings support a model of early cell growth customized by transcriptional regulatory networks to coordinate organ form and function.
Collapse
Affiliation(s)
| | - Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Ji Hoon Kim
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Hannah Chiu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Yifan Wu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
24
|
Taracena M, Hunt C, Pennington P, Andrew D, Jacobs-Lorena M, Dotson E, Wells M. Effective Oral RNA Interference (RNAi) Administration to Adult Anopheles gambiae Mosquitoes. J Vis Exp 2022:10.3791/63266. [PMID: 35311819 PMCID: PMC9810275 DOI: 10.3791/63266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA interference has been a heavily utilized tool for reverse genetic analysis for two decades. In adult mosquitoes, double-stranded RNA (dsRNA) administration has been accomplished primarily via injection, which requires significant time and is not suitable for field applications. To overcome these limitations, here we present a more efficient method for robust activation of RNAi by oral delivery of dsRNA to adult Anopheles gambiae. Long dsRNAs were produced in Escherichia coli strain HT115 (DE3), and a concentrated suspension of heat-killed dsRNA-containing bacteria in 10% sucrose was offered on cotton balls ad-libitum to adult mosquitoes. Cotton balls were replaced every 2 days for the duration of the treatment. Use of this method to target doublesex (a gene involved in sex differentiation) or fork head (which encodes a salivary gland transcription factor) resulted in reduced target gene expression and/or protein immunofluorescence signal, as measured by quantitative Real-Time PCR (qRT-PCR) or fluorescence confocal microscopy, respectively. Defects in salivary gland morphology were also observed. This highly flexible, user-friendly, low-cost, time-efficient method of dsRNA delivery could be broadly applicable to target genes important for insect vector physiology and beyond.
Collapse
Affiliation(s)
- Mabel Taracena
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention; Department of Entomology, Cornell University;
| | - Catherine Hunt
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention
| | - Pamela Pennington
- Centro de Estudios en Biotecnologia, Universidad del Valle de Guatemala
| | - Deborah Andrew
- Department of Cell Biology, Johns Hopkins School of Medicine; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Malaria Research Institute
| | - Ellen Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention
| | - Michael Wells
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health; Department of Cell Biology, Johns Hopkins School of Medicine; Biomedical Sciences Department, Idaho College of Osteopathic Medicine;
| |
Collapse
|
25
|
He H, Li Z, Lu J, Qiang W, Jiang S, Xu Y, Fu W, Zhai X, Zhou L, Qian M, Du J. Single-cell RNA-seq reveals clonal diversity and prognostic genes of relapsed multiple myeloma. Clin Transl Med 2022; 12:e757. [PMID: 35297204 PMCID: PMC8926895 DOI: 10.1002/ctm2.757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a clinically and biologically heterogeneous plasma-cell malignancy. Despite extensive research, disease heterogeneity and relapse remain a big challenge in MM therapeutics. We tried to dissect this disease and identify novel biomarkers for patient stratification and treatment outcome prediction by applying single-cell technology. METHODS We performed single-cell RNA sequencing (scRNA-seq) and variable-diversity-joining regions-targeted sequencing (scVDJ-seq) concurrently on bone marrow samples from a cohort of 18 patients with newly diagnosed MM (NDMM; n = 12) or refractory/relapsed MM (RRMM; n = 6). We analysed the malignant clonotypes using scVDJ-seq data and conducted data integration and cell-type annotation through the CCA algorithm based on gene expression profiling. Furthermore, we identified disease status-specific genes and modules by comparison of NDMM and RRMM datasets and explored the findings in a larger MM cohort from the MMRF CoMMpass study. RESULTS We found that all the myeloma cells in either diagnosed or relapsed samples were dominated by a major clone, with a few subclones in several samples (n = 5). Next, we investigated the universal transcriptional features of myeloma cells and identified eight meta-programs correlated with this disease, especially meta-programs 1 and 8 (M1 and M8), which were the most significant and related to cell cycle and stress response, respectively. Furthermore, we classified the malignant plasma cells into eight clusters and found that the cell numbers in clusters 2/6/7 were exclusively higher in relapsed samples. Besides, we identified several attractive candidates for biomarkers (e.g. SMAD1 and STMN1) associated with disease progression and relapse in our dataset and related to overall survival in the CoMMpass dataset. CONCLUSIONS Our data provide insights into the heterogeneity of MM as well as highlight the relevance of intra-tumour heterogeneity and discover novel biomarkers that might be a potent therapy.
Collapse
Affiliation(s)
- Haiyan He
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zifeng Li
- Institute of Pediatrics and Department of Hematology and OncologyChildren's Hospital of Fudan UniversityNational Children's Medical CenterShanghaiChina
| | - Jing Lu
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Wanting Qiang
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Sihan Jiang
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yaochen Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weijun Fu
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiaowen Zhai
- Institute of Pediatrics and Department of Hematology and OncologyChildren's Hospital of Fudan UniversityNational Children's Medical CenterShanghaiChina
| | - Lin Zhou
- Department of Laboratory MedicineChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and OncologyChildren's Hospital of Fudan UniversityNational Children's Medical CenterShanghaiChina
| | - Juan Du
- Department of HematologyMyeloma & Lymphoma CenterChangzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
26
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
28
|
Sampieri L, Funes Chabán M, Di Giusto P, Rozés-Salvador V, Alvarez C. CREB3L2 Modulates Nerve Growth Factor-Induced Cell Differentiation. Front Mol Neurosci 2021; 14:650338. [PMID: 34421533 PMCID: PMC8370844 DOI: 10.3389/fnmol.2021.650338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Nerve growth factor (NGF) stimulates numerous cellular physiological processes, including growth, differentiation, and survival, and maintains the phenotype of several neuronal types. Most of these NGF-induced processes require adaptation of the secretory pathway since they involve extensive remodeling of membranes and protein redistribution along newly formed neuritic processes. CREB3 transcription factors have emerged as signaling hubs for the regulation of numerous genes involved in the secretory pathway and Golgi homeostasis, integrating stimuli from multiple sources to control secretion, posttranslational modifications and trafficking of proteins. Although recent studies have focused on their role in the central nervous system, little is known about their participation in cell differentiation. Therefore, we aimed to analyze the expression and signaling mechanism of CREB3 transcription factor family members, using the NGF-induced PC12 cell differentiation model. Results show that NGF treatment causes Golgi enlargement and a parallel increased expression of proteins and mRNAs encoding for proteins required for membrane transport (transport factors). Additionally, a significant increase in CREB3L2 protein and mRNA levels is detected in response to NGF. Both MAPK and cAMP signaling pathways are required for this response. Interestingly, CREB3L2 overexpression hampers the NGF-induced neurite outgrowth while its inhibition enhances the morphological changes driven by NGF. In agreement, CREB3L2 overexpressing cells display higher immunofluorescence intensity of Rab5 GTPase (a negative regulator of PC12 differentiation) than control cells. Also, Rab5 immunofluorescence levels decrease in CREB3L2-depleted cells. Taken together, our findings imply that CREB3L2 is an important downstream effector of NGF-activated pathways, leading to neuronal differentiation.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Funes Chabán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
29
|
Johnson DM, Wells MB, Fox R, Lee JS, Loganathan R, Levings D, Bastien A, Slattery M, Andrew DJ. CrebA increases secretory capacity through direct transcriptional regulation of the secretory machinery, a subset of secretory cargo, and other key regulators. Traffic 2021; 21:560-577. [PMID: 32613751 DOI: 10.1111/tra.12753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Specialization of many cells, including the acinar cells of the salivary glands and pancreas, milk-producing cells of mammary glands, mucus-secreting goblet cells, antibody-producing plasma cells, and cells that generate the dense extracellular matrices of bone and cartilage, requires scaling up both secretory machinery and cell-type specific secretory cargo. Using tissue-specific genome-scale analyses, we determine how increases in secretory capacity are coordinated with increases in secretory load in the Drosophila salivary gland (SG), an ideal model for gaining mechanistic insight into the functional specialization of secretory organs. Our findings show that CrebA, a bZIP transcription factor, directly binds genes encoding the core secretory machinery, including protein components of the signal recognition particle and receptor, ER cargo translocators, Cop I and Cop II vesicles, as well as the structural proteins and enzymes of these organelles. CrebA directly binds a subset of SG cargo genes and CrebA binds and boosts expression of Sage, a SG-specific transcription factor essential for cargo expression. To further enhance secretory output, CrebA binds and activates Xbp1 and Tudor-SN. Thus, CrebA directly upregulates the machinery of secretion and additional factors to increase overall secretory capacity in professional secretory cells; concomitant increases in cargo are achieved both directly and indirectly.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael B Wells
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Rajprasad Loganathan
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Abigail Bastien
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
31
|
Comparative Analysis of CREB3 and CREB3L2 Protein Expression in HEK293 Cells. Int J Mol Sci 2021; 22:ijms22052767. [PMID: 33803345 PMCID: PMC7967177 DOI: 10.3390/ijms22052767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
We performed a comparative analysis of two ER-resident CREB3 family proteins, CREB3 and CREB3L2, in HEK293 cells using pharmacological and genome editing approaches and identified several differences between the two. Treatment with brefeldin A (BFA) and monensin induced the cleavage of full-length CREB3 and CREB3L2; however, the level of the full-length CREB3 protein, but not CREB3L2 protein, was not noticeably reduced by the monensin treatment. On the other hand, treatment with tunicamycin (Tm) shifted the molecular weight of the full-length CREB3L2 protein downward but abolished CREB3 protein expression. Thapsigargin (Tg) significantly increased the expression of only full-length CREB3L2 protein concomitant with a slight increase in the level of its cleaved form. Treatment with cycloheximide and MG132 revealed that both endogenous CREB3 and CREB3L2 are proteasome substrates. In addition, kifunensine, an α-mannosidase inhibitor, significantly increased the levels of both full-length forms. Consistent with these findings, cells lacking SEL1L, a crucial ER-associated protein degradation (ERAD) component, showed increased expression of both full-length CREB3 and CREB3L2; however, cycloheximide treatment downregulated full-length CREB3L2 protein expression more rapidly in SEL1L-deficient cells than the full-length CREB3 protein. Finally, we investigated the induction of the expression of several CREB3 and CREB3L2 target genes by Tg and BFA treatments and SEL1L deficiency. In conclusion, this study suggests that both endogenous full-length CREB3 and CREB3L2 are substrates for ER-associated protein degradation but are partially regulated by distinct mechanisms, each of which contributes to unique cellular responses that are distinct from canonical ER signals.
Collapse
|
32
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
33
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
34
|
Park JH, Chung CG, Seo J, Lee BH, Lee YS, Kweon JH, Lee SB. C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons. Mol Cells 2020; 43:821-830. [PMID: 32975212 PMCID: PMC7528685 DOI: 10.14348/molcells.2020.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- These authors contributed equally to this work
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- These authors contributed equally to this work
| | - Jinsoo Seo
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
| | - Byung-Hoon Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Young-Sam Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 2988, Korea
| | - Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 4988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 2988, Korea
| |
Collapse
|
35
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
36
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
37
|
Greenwood M, Paterson A, Rahman PA, Gillard BT, Langley S, Iwasaki Y, Murphy D, Greenwood MP. Transcription factor Creb3l1 regulates the synthesis of prohormone convertase enzyme PC1/3 in endocrine cells. J Neuroendocrinol 2020; 32:e12851. [PMID: 32319174 PMCID: PMC7359860 DOI: 10.1111/jne.12851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Transcription factor cAMP responsive element-binding protein 3 like 1 (Creb3l1) is a non-classical endoplasmic reticulum stress molecule that is emerging as an important component for cellular homeostasis, particularly within cell types with high peptide secretory capabilities. We have previously shown that Creb3l1 serves an important role in body fluid homeostasis through its transcriptional control of the gene coding for antidiuretic hormone arginine vasopressin in the neuropeptide-rich magnocellular neurones of the supraoptic nucleus. In response to osmotic stimuli such as dehydration, vasopressin magnocellular neurones undergo remarkable transcriptome changes, including increased Creb3l1 expression, to ensure that the supply of vasopressin meets demand. To determine where else Creb3l1 fits into the secretory cell supply chain, we performed RNA-sequencing of Creb3l1 knockdown anterior pituitary mouse corticotroph cell line AtT20. The target chosen for further investigation was Pcsk1, which encodes proprotein convertase enzyme 1 (PC1/3). PC1/3 is crucial for processing of neuropeptides and peptide hormones such as pro-opiomelanocortin (POMC), proinsulin, proglucagon, vasopressin and oxytocin. Viral manipulations in supraoptic nuclei by over-expression of Creb3l1 increased Pcsk1, whereas Creb3l1 knockdown decreased Pcsk1 expression. In vitro promoter activity and binding studies showed that Creb3l1 was a transcription factor of the Pcsk1 gene binding directly to a G-box motif in the promoter. In the dehydrated rat anterior pituitary, Creb3l1 and Pcsk1 expression decreased in parallel compared to control, supporting our findings from manipulations in AtT20 cells and the supraoptic nucleus. No relationship was observed between Creb3l1 and Pcsk1 expression in the neurointermediate lobe of the pituitary, indicating a different mechanism of PC1/3 synthesis by these POMC-synthesising cells. Therefore, Creb3l1, by regulating the expression of Pcsk1, does not control the processing of POMC peptides in the intermediate lobe.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Alex Paterson
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | | | | - Sydney Langley
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | | - David Murphy
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | |
Collapse
|
38
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
39
|
Hu Y, Chu L, Liu J, Yu L, Song SB, Yang H, Han F. Knockdown of CREB3 activates endoplasmic reticulum stress and induces apoptosis in glioblastoma. Aging (Albany NY) 2019; 11:8156-8168. [PMID: 31612863 PMCID: PMC6814623 DOI: 10.18632/aging.102310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma is a highly malignant type of central nervous system tumor. In the present study, the results of RNA sequencing indicated that cAMP responsive element binding protein 3 (CREB3) was upregulated in tumor tissues from patients with GBM. The cAMP responsive element binding protein 3 (CREB3) pathway is a major contributor to the malignant progression of glioblastoma. In this study, we explored the mechanisms by which CREB3 regulates the proliferation, invasion and apoptosis of glioblastoma. Pairs of glioblastoma and normal tissues were subjected to RNA sequencing. Then, qRT-PCR and Western blotting were used to detect CREB3 levels in glioblastoma tissues and cell lines, respectively. CREB3 was upregulated in glioblastoma tissues and cell lines. Overexpression of CREB3 promoted the proliferation and invasion of SHG-44 cells, while downregulation of CREB3 inhibited the invasion of U251MG cells. Knockdown of CREB3 also induced apoptosis in U251MG cells and increased the protein levels of BAX, active caspase 3, p-PERK, p-eIF2α and ATF4. An in vivo study in nude mice bearing U251MG cell xenografts confirmed these results. Our findings indicate that CREB3 functions as a tumor promoter in glioblastoma, and thus could serve as a treatment target in glioblastoma patients.
Collapse
Affiliation(s)
- Yaxin Hu
- Department of Prenatal Diagnosis, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Liangzhao Chu
- Department of Cerebral Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jian Liu
- Department of Cerebral Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Yu
- Department of Gynecology and Obstetrics, Guiyang Maternal and Child Health Hospital, Guiyang, Guizhou 550003, China
| | - Shi-Bin Song
- Department of Cerebral Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hua Yang
- Department of Cerebral Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Feng Han
- Department of Cerebral Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
40
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
41
|
Johnson DM, Andrew DJ. Role of tbc1 in Drosophila embryonic salivary glands. BMC Mol Cell Biol 2019; 20:19. [PMID: 31242864 PMCID: PMC6595604 DOI: 10.1186/s12860-019-0198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND CG4552/tbc1 was identified as a downstream target of Fork head (Fkh), the single Drosophila member of the FoxA family of transcription factors and a major player in salivary gland formation and homeostasis. Tbc1 and its orthologues have been implicated in phagocytosis, the innate immune response, border cell migration, cancer and an autosomal recessive form of non-degenerative Pontocerebellar hypoplasia. Recently, the mammalian Tbc1 orthologue, Tbc1d23, has been shown to bind both the conserved N-terminal domains of two Golgins (Golgin-97 and Golgin-245) and the WASH complex on endosome vesicles. Through this activity, Tbc1d23 has been proposed to link endosomally-derived vesicles to their appropriate target membrane in the trans Golgi (TGN). RESULTS In this paper, we provide an initial characterization of Drosophila orthologue, we call tbc1. We show that, like its mammalian orthologue, Tbc1 localizes to the trans Golgi. We show that it also colocalizes with a subset of Rabs associated with both early and recycling endosomes. Animals completely missing tbc1 survive, but females have fertility defects. Consistent with the human disease, loss of tbc1 reduces optic lobe size and increases response time to mechanical perturbation. Loss and overexpression of tbc1 in the embryonic salivary glands leads to secretion defects and apical membrane irregularities. CONCLUSIONS These findings support a role for tbc1 in endocytic/membrane trafficking, consistent with its activities in other systems.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
42
|
Khan HA, Margulies CE. The Role of Mammalian Creb3-Like Transcription Factors in Response to Nutrients. Front Genet 2019; 10:591. [PMID: 31293620 PMCID: PMC6598459 DOI: 10.3389/fgene.2019.00591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Our ability to overcome the challenges behind metabolic disorders will require a detailed understanding of the regulation of responses to nutrition. The Creb3 transcription factor family appears to have a unique regulatory role that links cellular secretory capacity with development, nutritional state, infection, and other stresses. This role in regulating individual secretory capacity genes could place this family of transcription factors at an important regulatory intersection mediating an animal’s responses to nutrients and other environmental challenges. Interestingly, in both humans and mice, individuals with mutations in Creb3L3/CrebH, one of the Creb3 family members, exhibit hypertriglyceridemia (HTG) thus linking this transcription factor to lipid metabolism. We are beginning to understand how Creb3L3 and related family members are regulated and to dissect the potential redundancy and cross talk between distinct family members, thereby mediating both healthy and pathological responses to the environment. Here, we review the current knowledge on the regulation of Creb3 family transcription factor activity, their target genes, and their role in metabolic disease.
Collapse
Affiliation(s)
- Haris A Khan
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla E Margulies
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
43
|
Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis. Proc Natl Acad Sci U S A 2019; 116:11776-11785. [PMID: 31123148 DOI: 10.1073/pnas.1814480116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cytoplasmic coat protein complex-II (COPII) is evolutionarily conserved machinery that is essential for efficient trafficking of protein and lipid cargos. How the COPII machinery is regulated to meet the metabolic demand in response to alterations of the nutritional state remains largely unexplored, however. Here, we show that dynamic changes of COPII vesicle trafficking parallel the activation of transcription factor X-box binding protein 1 (XBP1s), a critical transcription factor in handling cellular endoplasmic reticulum (ER) stress in both live cells and mouse livers upon physiological fluctuations of nutrient availability. Using live-cell imaging approaches, we demonstrate that XBP1s is sufficient to promote COPII-dependent trafficking, mediating the nutrient stimulatory effects. Chromatin immunoprecipitation (ChIP) coupled with high-throughput DNA sequencing (ChIP-seq) and RNA-sequencing analyses reveal that nutritional signals induce dynamic XBP1s occupancy of promoters of COPII traffic-related genes, thereby driving the COPII-mediated trafficking process. Liver-specific disruption of the inositol-requiring enzyme 1α (IRE1α)-XBP1s signaling branch results in diminished COPII vesicle trafficking. Reactivation of XBP1s in mice lacking hepatic IRE1α restores COPII-mediated lipoprotein secretion and reverses the fatty liver and hypolipidemia phenotypes. Thus, our results demonstrate a previously unappreciated mechanism in the metabolic control of liver protein and lipid trafficking: The IRE1α-XBP1s axis functions as a nutrient-sensing regulatory nexus that integrates nutritional states and the COPII vesicle trafficking.
Collapse
|
44
|
Caracci MO, Fuentealba LM, Marzolo MP. Golgi Complex Dynamics and Its Implication in Prevalent Neurological Disorders. Front Cell Dev Biol 2019; 7:75. [PMID: 31134199 PMCID: PMC6514153 DOI: 10.3389/fcell.2019.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Coupling of protein synthesis with protein delivery to distinct subcellular domains is essential for maintaining cellular homeostasis, and defects thereof have consistently been shown to be associated with several diseases. This function is particularly challenging for neurons given their polarized nature and differential protein requirements in synaptic boutons, dendrites, axons, and soma. Long-range trafficking is greatly enhanced in neurons by discrete mini-organelles resembling the Golgi complex (GC) referred to as Golgi outposts (GOPs) which play an essential role in the development of dendritic arborization. In this context, the morphology of the GC is highly plastic, and the polarized distribution of this organelle is necessary for neuronal migration and polarized growth. Furthermore, synaptic components are readily trafficked and modified at GOP suggesting a function for this organelle in synaptic plasticity. However, little is known about GOPs properties and biogenesis and the role of GOP dysregulation in pathology. In this review, we discuss current literature supporting a role for GC dynamics in prevalent neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and epilepsy, and examine the association of these disorders with the wide-ranging effects of GC function on common cellular pathways regulating neuronal excitability, polarity, migration, and organellar stress. First, we discuss the role of Golgins and Golgi-associated proteins in the regulation of GC morphology and dynamics. Then, we consider abnormal GC arrangements observed in neurological disorders and associations with common neuronal defects therein. Finally, we consider the cell signaling pathways involved in the modulation of GC dynamics and argue for a master regulatory role for Reelin signaling, a well-known regulator of neuronal polarity and migration. Determining the cellular pathways involved in shaping the Golgi network will have a direct and profound impact on our current understanding of neurodevelopment and neuropathology and aid the development of novel therapeutic strategies for improved patient care and prognosis.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Sager G, Gabaglio S, Sztul E, Belov GA. Role of Host Cell Secretory Machinery in Zika Virus Life Cycle. Viruses 2018; 10:E559. [PMID: 30326556 PMCID: PMC6213159 DOI: 10.3390/v10100559] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs.
Collapse
Affiliation(s)
- Garrett Sager
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - Samuel Gabaglio
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
46
|
Lissner MM, Schneider DS. The physiological basis of disease tolerance in insects. CURRENT OPINION IN INSECT SCIENCE 2018; 29:133-136. [PMID: 30551820 DOI: 10.1016/j.cois.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
Immunology textbooks teach us about the ways hosts can recognize and kill microbes but leave out something important: the mechanisms used to survive infections. Survival depends on more than simply detecting and eliminating microbes; it requires that we prevent and repair the damage caused by pathogens and the immune response. Recent work in insects is helping to build our understanding of this aspect of pathology, called disease tolerance. Here we discuss papers that explore disease tolerance using theoretical, population genetics, and mechanistic approaches.
Collapse
Affiliation(s)
- Michelle M Lissner
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - David S Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
47
|
Penney J, Taylor T, MacLusky N, Lu R. LUMAN/CREB3 Plays a Dual Role in Stress Responses as a Cofactor of the Glucocorticoid Receptor and a Regulator of Secretion. Front Mol Neurosci 2018; 11:352. [PMID: 30337854 PMCID: PMC6179040 DOI: 10.3389/fnmol.2018.00352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Abstract
LUMAN/CREB3, originally identified through its interaction with a cell cycle regulator HCFC1, is a transcription factor involved in the unfolded protein response during endoplasmic reticulum stress. Previously using gene knockout mouse models, we have shown that LUMAN modulates the glucocorticoid (GC) response leading to enhanced glucocorticoid receptor (GR) activity and lower circulating GC levels. Consequently, the stress response is dysregulated, leading to a blunted stress response in the Luman-deficient mice. One question that remained was how LUMAN deficiency affected the stress response at the cellular level leading to the changes in the physiological stress response. Here, we found that LUMAN interacts with GR through a putative nuclear receptor box site and can activate GR in the absence of a ligand. Further investigation showed that, when activated, LUMAN binds to the glucocorticoid response element (GRE), increasing the activity of GR exponentially compared to GR-ligand binding alone. On the other hand, we also found that in the absence of LUMAN, cells were more sensitive to cellular stress, exhibiting decreased secretory capacity. Hence our current data suggest that LUMAN may function both as a transcriptional cofactor of GR and a hormone secretion regulator, and through this, plays a role in stress sensitivity and reactivity to stress.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Tiegh Taylor
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Neil MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
48
|
Chung CG, Kwon MJ, Jeon KH, Hyeon DY, Han MH, Park JH, Cha IJ, Cho JH, Kim K, Rho S, Kim GR, Jeong H, Lee JW, Kim T, Kim K, Kim KP, Ehlers MD, Hwang D, Lee SB. Golgi Outpost Synthesis Impaired by Toxic Polyglutamine Proteins Contributes to Dendritic Pathology in Neurons. Cell Rep 2018; 20:356-369. [PMID: 28700938 DOI: 10.1016/j.celrep.2017.06.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/28/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022] Open
Abstract
Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ) toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs) and a decreased supply of plasma membrane (PM) in Drosophila class IV dendritic arborization (da) (C4 da) neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP)-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP), which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Min Jee Kwon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Keun Hye Jeon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea; Department of Family Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Do Young Hyeon
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Republic of Korea
| | - Myeong Hoon Han
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - In Jun Cha
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jae Ho Cho
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Kunhyung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Sangchul Rho
- Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Gyu Ree Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, Institute of Natural Science, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Keetae Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
49
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
50
|
Howley BV, Link LA, Grelet S, El-Sabban M, Howe PH. A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene 2018; 37:1308-1325. [PMID: 29249802 PMCID: PMC5844805 DOI: 10.1038/s41388-017-0023-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
In order to better understand the process of breast cancer metastasis, we have generated a mammary epithelial progression series of increasingly aggressive cell lines that metastasize to lung. Here we demonstrate that upregulation of an endoplasmic reticulum (ER) to Golgi trafficking gene signature in metastatic cells enhances transport kinetics, which promotes malignant progression. We observe increased ER-Golgi trafficking, an altered secretome and sensitivity to the retrograde transport inhibitor brefeldin A (BFA) in cells that metastasize to lung. CREB3 was identified as a transcriptional regulator of upregulated ER-Golgi trafficking genes ARF4, COPB1, and USO1, and silencing of these genes attenuated the metastatic phenotype in vitro and lung colonization in vivo. Furthermore, high trafficking gene expression significantly correlated with increased risk of distant metastasis and reduced relapse-free and overall survival in breast cancer patients, suggesting that modulation of ER-Golgi trafficking plays an important role in metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Laura A Link
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Simon Grelet
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Maya El-Sabban
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|