1
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Rentsch J, Bandstra S, Sezen B, Sigrist P, Bottanelli F, Schmerl B, Shoichet S, Noé F, Sadeghi M, Ewers H. Sub-membrane actin rings compartmentalize the plasma membrane. J Cell Biol 2024; 223:e202310138. [PMID: 38252080 PMCID: PMC10807028 DOI: 10.1083/jcb.202310138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.
Collapse
Affiliation(s)
- Jakob Rentsch
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Selle Bandstra
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Batuhan Sezen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Philipp Sigrist
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Francesca Bottanelli
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bettina Schmerl
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Zhang W, Fu Y, Peng L, Ogawa Y, Ding X, Rasband A, Zhou X, Shelly M, Rasband MN, Zou P. Immunoproximity biotinylation reveals the axon initial segment proteome. Nat Commun 2023; 14:8201. [PMID: 38081810 PMCID: PMC10713531 DOI: 10.1038/s41467-023-44015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal compartment required for action potential generation and neuronal polarity. However, understanding the mechanisms regulating AIS structure and function has been hindered by an incomplete knowledge of its molecular composition. Here, using immuno-proximity biotinylation we further define the AIS proteome and its dynamic changes during neuronal maturation. Among the many AIS proteins identified, we show that SCRIB is highly enriched in the AIS both in vitro and in vivo, and exhibits a periodic architecture like the axonal spectrin-based cytoskeleton. We find that ankyrinG interacts with and recruits SCRIB to the AIS. However, loss of SCRIB has no effect on ankyrinG. This powerful and flexible approach further defines the AIS proteome and provides a rich resource to elucidate the mechanisms regulating AIS structure and function.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yu Fu
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Luxin Peng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Anne Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xinyue Zhou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, New York, NY, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
4
|
Gilloteaux J, De Swert K, Suain V, Nicaise C. Thalamic Neuron Resilience during Osmotic Demyelination Syndrome (ODS) Is Revealed by Primary Cilium Outgrowth and ADP-ribosylation factor-like protein 13B Labeling in Axon Initial Segment. Int J Mol Sci 2023; 24:16448. [PMID: 38003639 PMCID: PMC10671465 DOI: 10.3390/ijms242216448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
- Department of Anatomical Sciences, St George’s University School of Medicine, Newcastle upon Tyne NE1 JG8, UK
| | - Kathleen De Swert
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| | - Valérie Suain
- Laboratoire d’Histologie Générale, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium;
| | - Charles Nicaise
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| |
Collapse
|
5
|
Le LTHL, Lee J, Im D, Park S, Hwang K, Lee JH, Jiang Y, Lee Y, Suh YH, Kim HI, Lee MJ. Self-Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302035. [PMID: 37594721 PMCID: PMC10582461 DOI: 10.1002/advs.202302035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Indexed: 08/19/2023]
Abstract
In tauopathy conditions, such as Alzheimer's disease (AD), highly soluble and natively unfolded tau polymerizes into an insoluble filament; however, the mechanistic details of this process remain unclear. In the brains of AD patients, only a minor segment of tau forms β-helix-stacked protofilaments, while its flanking regions form disordered fuzzy coats. Here, it is demonstrated that the tau AD nucleation core (tau-AC) sufficiently induced self-aggregation and recruited full-length tau to filaments. Unexpectedly, phospho-mimetic forms of tau-AC (at Ser324 or Ser356) show markedly reduced oligomerization and seeding propensities. Biophysical analysis reveal that the N-terminus of tau-AC facilitates the fibrillization kinetics as a nucleation motif, which becomes sterically shielded through phosphorylation-induced conformational changes in tau-AC. Tau-AC oligomers are efficiently internalized into cells via endocytosis and induced endogenous tau aggregation. In primary hippocampal neurons, tau-AC impaired axon initial segment plasticity upon chronic depolarization and is mislocalized to the somatodendritic compartments. Furthermore, it is observed significantly impaired memory retrieval in mice intrahippocampally injected with tau-AC fibrils, which corresponds to the neuropathological staining and neuronal loss in the brain. These findings identify tau-AC species as a key neuropathological driver in AD, suggesting novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
| | - Jeeyoung Lee
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoul03080South Korea
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792South Korea
| | - Dongjoon Im
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Sunha Park
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
| | - Kyoung‐Doo Hwang
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
- Department of PhysiologySeoul National University College of MedicineSeoul03080South Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoul03080South Korea
| | - Yanxialei Jiang
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoul03080South Korea
- School of MedicineLinyi UniversityLinyi276000China
| | - Yong‐Seok Lee
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
- Department of PhysiologySeoul National University College of MedicineSeoul03080South Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Young Ho Suh
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoul03080South Korea
- Ischemic/Hypoxic Disease Institute, Convergence Research Center for DementiaSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
6
|
Townsend LN, Clarke H, Maddison D, Jones KM, Amadio L, Jefferson A, Chughtai U, Bis DM, Züchner S, Allen ND, Van der Goes van Naters W, Peters OM, Smith GA. Cdk12 maintains the integrity of adult axons by suppressing actin remodeling. Cell Death Discov 2023; 9:348. [PMID: 37730761 PMCID: PMC10511712 DOI: 10.1038/s41420-023-01642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The role of cyclin-dependent kinases (CDKs) that are ubiquitously expressed in the adult nervous system remains unclear. Cdk12 is enriched in terminally differentiated neurons where its conical role in the cell cycle progression is redundant. We find that in adult neurons Cdk12 acts a negative regulator of actin formation, mitochondrial dynamics and neuronal physiology. Cdk12 maintains the size of the axon at sites proximal to the cell body through the transcription of homeostatic enzymes in the 1-carbon by folate pathway which utilize the amino acid homocysteine. Loss of Cdk12 leads to elevated homocysteine and in turn leads to uncontrolled F-actin formation and axonal swelling. Actin remodeling further induces Drp1-dependent fission of mitochondria and the breakdown of axon-soma filtration barrier allowing soma restricted cargos to enter the axon. We demonstrate that Cdk12 is also an essential gene for long-term neuronal survival and loss of this gene causes age-dependent neurodegeneration. Hyperhomocysteinemia, actin changes, and mitochondrial fragmentation are associated with several neurodegenerative conditions such as Alzheimer's disease and we provide a candidate molecular pathway to link together such pathological events.
Collapse
Affiliation(s)
- L N Townsend
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Clarke
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D Maddison
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K M Jones
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - L Amadio
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - A Jefferson
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - U Chughtai
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D M Bis
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - S Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - N D Allen
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - O M Peters
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - G A Smith
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
7
|
Angelin A. Cyclin-dependent kinases regulate the adult nervous system via the one-carbon-metabolism. Cell Death Dis 2023; 14:429. [PMID: 37452015 PMCID: PMC10349070 DOI: 10.1038/s41419-023-05950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Gu S, Tzingounis AV, Lykotrafitis G. Differential Control of Small-conductance Calcium-activated Potassium Channel Diffusion by Actin in Different Neuronal Subcompartments. FUNCTION 2023; 4:zqad018. [PMID: 37168495 PMCID: PMC10165553 DOI: 10.1093/function/zqad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Small-conductance calcium-activated potassium (SK) channels show a ubiquitous distribution on neurons, in both somatodendritic and axonal regions. SK channels are associated with neuronal activity regulating action potential frequency, dendritic excitability, and synaptic plasticity. Although the physiology of SK channels and the mechanisms that control their surface expression levels have been investigated extensively, little is known about what controls SK channel diffusion in the neuronal plasma membrane. This aspect is important, as the diffusion of SK channels at the surface may control their localization and proximity to calcium channels, hence increasing the likelihood of SK channel activation by calcium. In this study, we successfully investigated the diffusion of SK channels labeled with quantum dots on human embryonic kidney cells and dissociated hippocampal neurons by combining a single-particle tracking method with total internal reflection fluorescence microscopy. We observed that actin filaments interfere with SK mobility, decreasing their diffusion coefficient. We also found that during neuronal maturation, SK channel diffusion was gradually inhibited in somatodendritic compartments. Importantly, we observed that axon barriers formed at approximately days in vitro 6 and restricted the diffusion of SK channels on the axon initial segment (AIS). However, after neuron maturation, SK channels on the AIS were strongly immobilized, even after disruption of the actin network, suggesting that crowding may cause this effect. Altogether, our work provides insight into how SK channels diffuse on the neuronal plasma membrane and how actin and membrane crowding impacts SK channel diffusion.
Collapse
Affiliation(s)
- Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Anastasios V Tzingounis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
10
|
Theory of Weakly Polydisperse Cytoskeleton Filaments. Polymers (Basel) 2022; 14:polym14102042. [PMID: 35631924 PMCID: PMC9145005 DOI: 10.3390/polym14102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cytoskeleton filaments have the extraordinary ability to change conformations dynamically in response to alterations of the number density of actins/tubulin, the number density and type of binding agents, and the electrolyte concentration. This property is crucial for eukaryotic cells to achieve specific biological functions in different cellular compartments. Conventional approaches to biopolymers’ solution break down for cytoskeleton filaments because they entail several approximations to treat their polyelectrolyte and mechanical properties. In this article, we introduce a novel density functional theory for polydisperse, semiflexible cytoskeleton filaments. The approach accounts for the equilibrium polymerization kinetics, length and orientation filament distributions, as well as the electrostatic interaction between filaments and the electrolyte. This is essential for cytoskeleton polymerization in different cell compartments generating filaments of different lengths, sometimes long enough to become semiflexible. We characterized the thermodynamics properties of actin filaments in electrolyte aqueous solutions. We calculated the free energy, pressure, chemical potential, and second virial coefficient for each filament conformation. We also calculated the phase diagram of actin filaments’ solution and compared with the corresponding results in in vitro experiments.
Collapse
|
11
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
12
|
Tjiang N, Zempel H. A mitochondria cluster at the proximal axon initial segment controls axodendritic TAU trafficking in rodent primary and human iPSC-derived neurons. Cell Mol Life Sci 2022; 79:120. [PMID: 35119496 PMCID: PMC8816743 DOI: 10.1007/s00018-022-04150-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
Loss of neuronal polarity and missorting of the axonal microtubule-associated-protein TAU are hallmarks of Alzheimer’s disease (AD) and related tauopathies. Impairment of mitochondrial function is causative for various mitochondriopathies, but the role of mitochondria in tauopathies and in axonal TAU-sorting is unclear. The axon-initial-segment (AIS) is vital for maintaining neuronal polarity, action potential generation, and—here important—TAU-sorting. Here, we investigate the role of mitochondria in the AIS for maintenance of TAU cellular polarity. Using not only global and local mitochondria impairment via inhibitors of the respiratory chain and a locally activatable protonophore/uncoupler, but also live-cell-imaging and photoconversion methods, we specifically tracked and selectively impaired mitochondria in the AIS in primary mouse and human iPSC-derived forebrain/cortical neurons, and assessed somatic presence of TAU. Global application of mitochondrial toxins efficiently induced tauopathy-like TAU-missorting, indicating involvement of mitochondria in TAU-polarity. Mitochondria show a biased distribution within the AIS, with a proximal cluster and relative absence in the central AIS. The mitochondria of this cluster are largely immobile and only sparsely participate in axonal mitochondria-trafficking. Locally constricted impairment of the AIS-mitochondria-cluster leads to detectable increases of somatic TAU, reminiscent of AD-like TAU-missorting. Mechanistically, mitochondrial impairment sufficient to induce TAU-missorting results in decreases of calcium oscillation but increases in baseline calcium, yet chelating intracellular calcium did not prevent mitochondrial impairment-induced TAU-missorting. Stabilizing microtubules via taxol prevented TAU-missorting, hinting towards a role for impaired microtubule dynamics in mitochondrial-dysfunction-induced TAU-missorting. We provide evidence that the mitochondrial distribution within the proximal axon is biased towards the proximal AIS and that proper function of this newly described mitochondrial cluster may be essential for the maintenance of TAU polarity. Mitochondrial impairment may be an upstream event in and therapeutic target for AD/tauopathy.
Collapse
Affiliation(s)
- Noah Tjiang
- Institute of Human Genetics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
13
|
Ultrafast population coding and axo-somatic compartmentalization. PLoS Comput Biol 2022; 18:e1009775. [PMID: 35041645 PMCID: PMC8797191 DOI: 10.1371/journal.pcbi.1009775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Populations of cortical neurons respond to common input within a millisecond. Morphological features and active ion channel properties were suggested to contribute to this astonishing processing speed. Here we report an exhaustive study of ultrafast population coding for varying axon initial segment (AIS) location, soma size, and axonal current properties. In particular, we studied their impact on two experimentally observed features 1) precise action potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost under slowly fluctuating correlated input. While the density of axonal channels and their distance from the soma had a very small impact on bandwidth, it could be moderately improved by increasing soma size. When the voltage sensitivity of axonal currents was increased we observed ultrafast coding and high-frequency boost. We conclude that these computationally relevant features are strongly dependent on axonal ion channels’ voltage sensitivity, but not their number or exact location. We point out that ion channel properties, unlike dendrite size, can undergo rapid physiological modification, suggesting that the temporal accuracy of neuronal population encoding could be dynamically regulated. Our results are in line with recent experimental findings in AIS pathologies and establish a framework to study structure-function relations in AIS molecular design. In large nervous systems, a signal often diverges to hundreds or thousands of neurons. This population’s spike rate can track changes in this common input for frequencies up to several hundred Hertz. This ultrafast population response is experimentally well established and critically impacts cortical information processing. Its underlying biophysical determinants, however, are not understood. Experiments suggest that the ion channels at the axon initial segment strongly contribute to the ultrafast response, but recent theoretical studies emphasize the importance of neuron morphology and the resulting resistive coupling between axon and somato-dendritic compartments. We provide an exhaustive analysis of the population response of a simplified multi-compartment model. We vary the axo-somatic interaction and also active axonal properties and compare models at equivalent working points, avoiding bias. This approach provides a guideline for future experimental and theoretical studies. In this framework, the population response is closely associated with the AP generation speed at the AP initiation site, which is mostly determined by axonal ion channel voltage sensitivity. The resistive axo-somatic coupling has an additional modulatory influence. These insights are expected to hold for encoding mechanisms of more sophisticated models, suggesting that physiological changes to axonal ion channels could modulate the population response rapidly.
Collapse
|
14
|
Zhang W, Ciorraga M, Mendez P, Retana D, Boumedine-Guignon N, Achón B, Russier M, Debanne D, Garrido JJ. Formin Activity and mDia1 Contribute to Maintain Axon Initial Segment Composition and Structure. Mol Neurobiol 2021; 58:6153-6169. [PMID: 34458961 PMCID: PMC8639558 DOI: 10.1007/s12035-021-02531-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 10/29/2022]
Abstract
The axon initial segment (AIS) is essential for maintaining neuronal polarity, modulating protein transport into the axon, and action potential generation. These functions are supported by a distinctive actin and microtubule cytoskeleton that controls axonal trafficking and maintains a high density of voltage-gated ion channels linked by scaffold proteins to the AIS cytoskeleton. However, our knowledge of the mechanisms and proteins involved in AIS cytoskeleton regulation to maintain or modulate AIS structure is limited. In this context, formins play a significant role in the modulation of actin and microtubules. We show that pharmacological inhibition of formins modifies AIS actin and microtubule characteristics in cultured hippocampal neurons, reducing F-actin density and decreasing microtubule acetylation. Moreover, formin inhibition diminishes sodium channels, ankyrinG and βIV-spectrin AIS density, and AIS length, in cultured neurons and brain slices, accompanied by decreased neuronal excitability. We show that genetic downregulation of the mDia1 formin by interference RNAs also decreases AIS protein density and shortens AIS length. The ankyrinG decrease and AIS shortening observed in pharmacologically inhibited neurons and neuron-expressing mDia1 shRNAs were impaired by HDAC6 downregulation or EB1-GFP expression, known to increase microtubule acetylation or stability. However, actin stabilization only partially prevented AIS shortening without affecting AIS protein density loss. These results suggest that mDia1 maintain AIS composition and length contributing to the stability of AIS microtubules.
Collapse
Affiliation(s)
- Wei Zhang
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Present Address: College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | - Michaël Russier
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
15
|
The largest isoform of Ankyrin-G is required for lattice structure of the axon initial segment. Biochem Biophys Res Commun 2021; 578:28-34. [PMID: 34534742 DOI: 10.1016/j.bbrc.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disease and a common dementia in elderly individuals. Previous studies found a strong correlation between axon initial segment (AIS) defects and AD, but it remains unclear whether AD itself changes the arrangement of AIS components, and the mechanisms by which adaptor proteins and ion channels in the AIS are disturbed in AD are not well understood. With super-resolution structured illumination microscopy (SIM) revealing axonal structures, here we imaged the lattice structure of completely assembled AIS in APP/PS1 neurons. By analyzing the images with Gaussian fitting and 1D mean autocorrelation, we found dual spacings (∼200 nm and ∼370 nm) of Ankyrin-G (AnkG), Nav1.2 and βIV-spectrin in AD model APP/PS1 mice due to the low-expressed 480-kDa AnkG. To identify the roles of each AnkG isoform, two isoforms were separately expressed in neurons from AnkG conditional knockout mice. Mice rescued with 270-kDa AnkG displayed dual spacings of AnkG components in cultured neurons and impaired in spatial memory, while transgenic mice expressing 480-kDa AnkG showed a normal molecular distribution in the AIS and normal cognitive performance. Our findings provide new insight into the mechanisms underlying impaired cognition associated with neurodegenerative diseases such as AD.
Collapse
|
16
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081320. [PMID: 34452281 PMCID: PMC8399715 DOI: 10.3390/pharmaceutics13081320] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of diabetic retinopathy as a microvascular disease has evolved and is now considered a more complex diabetic complication in which neurovascular unit impairment plays an essential role and, therefore, can be considered as a main therapeutic target in the early stages of the disease. However, neurodegeneration is not always the apparent primary event in the natural story of diabetic retinopathy, and a phenotyping characterization is recommendable to identify those patients in whom neuroprotective treatment might be of benefit. In recent years, a myriad of treatments based on neuroprotection have been tested in experimental models, but more interestingly, there are drugs with a dual activity (neuroprotective and vasculotropic). In this review, the recent evidence concerning the therapeutic approaches targeting neurovascular unit impairment will be presented, along with a critical review of the scientific gaps and problems which remain to be overcome before our knowledge can be transferred to clinical practice.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence:
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
17
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
18
|
Quistgaard EM, Nissen JD, Hansen S, Nissen P. Mind the Gap: Molecular Architecture of the Axon Initial Segment - From Fold Prediction to a Mechanistic Model of Function? J Mol Biol 2021; 433:167176. [PMID: 34303720 DOI: 10.1016/j.jmb.2021.167176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is a distinct neuronal domain, which is responsible for initiating action potentials, and therefore of key importance to neuronal signaling. To determine how it functions, it is necessary to establish which proteins reside there, how they are organized, and what the dynamic features are. Great strides have been made in recent years, and it is now clear that several AIS cytoskeletal and membrane proteins interact to form a higher-order periodic structure. Here we briefly describe AIS function, protein composition and molecular architecture, and discuss perspectives for future structural characterization, and if structure predictions will be able to model complex higher-order assemblies.
Collapse
Affiliation(s)
- Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Josephine Dannersø Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Sean Hansen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
19
|
Putting the axonal periodic scaffold in order. Curr Opin Neurobiol 2021; 69:33-40. [PMID: 33450534 DOI: 10.1016/j.conb.2020.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Neurons rely on a unique organization of their cytoskeleton to build, maintain and transform their extraordinarily intricate shapes. After decades of research on the neuronal cytoskeleton, it is exciting that novel assemblies are still discovered thanks to progress in cellular imaging methods. Indeed, super-resolution microscopy has revealed that axons are lined with a periodic scaffold of actin rings, spaced every 190nm by spectrins. Determining the architecture, composition, dynamics, and functions of this membrane-associated periodic scaffold is a current conceptual and technical challenge, as well as a very active area of research. This short review aims at summarizing the latest research on the axonal periodic scaffold, highlighting recent progress and open questions.
Collapse
|
20
|
Wilson C, Cáceres A. New insights on epigenetic mechanisms supporting axonal development: histone marks and miRNAs. FEBS J 2020; 288:6353-6364. [PMID: 33332753 DOI: 10.1111/febs.15673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Mechanisms supporting axon growth and the establishment of neuronal polarity have remained largely disconnected from their genetic and epigenetic fundamentals. Recently, post-transcriptional modifications of histones involved in chromatin folding and transcription, and microRNAs controlling translation have emerged as regulators of axonal specification, growth, and guidance. In this article, we review novel evidence supporting the concept that epigenetic mechanisms work at both transcriptional and post-transcriptional levels to shape axons. We also discuss the role of splicing on axonal growth, as one of the most (if not the most) powerful post-transcriptional mechanism to diversify genetic information. Overall, we think exploring the gap between epigenetics and axonal growth raises new questions and perspectives to the development of axons in physiological and pathological contexts.
Collapse
Affiliation(s)
- Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina.,Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC), Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina
| |
Collapse
|
21
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
22
|
Kuznetsov IA, Kuznetsov AV. Modeling tau transport in the axon initial segment. Math Biosci 2020; 329:108468. [PMID: 32920097 DOI: 10.1016/j.mbs.2020.108468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to microtubules creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
23
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Abouelezz A, Stefen H, Segerstråle M, Micinski D, Minkeviciene R, Lahti L, Hardeman EC, Gunning PW, Hoogenraad CC, Taira T, Fath T, Hotulainen P. Tropomyosin Tpm3.1 Is Required to Maintain the Structure and Function of the Axon Initial Segment. iScience 2020; 23:101053. [PMID: 32344377 PMCID: PMC7186529 DOI: 10.1016/j.isci.2020.101053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS. Tropomyosin isoform Tpm3.1 co-localizes with the actin cytoskeleton in the AIS Tpm3.1 inhibition led to a less organized AIS actin cytoskeleton Perturbation of Tpm3.1 function reduced the accumulation of AIS scaffolding proteins Tpm3.1 inhibition compromised cargo sorting and rapidly reduced firing frequency
Collapse
Affiliation(s)
- Amr Abouelezz
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; HiLIFE - Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Holly Stefen
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mikael Segerstråle
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - David Micinski
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Rimante Minkeviciene
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lauri Lahti
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Tomi Taira
- Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Thomas Fath
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
26
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Mechanistic insights into the interactions of dynein regulator Ndel1 with neuronal ankyrins and implications in polarity maintenance. Proc Natl Acad Sci U S A 2019; 117:1207-1215. [PMID: 31889000 DOI: 10.1073/pnas.1916987117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ankyrin-G (AnkG), a highly enriched scaffold protein in the axon initial segment (AIS) of neurons, functions to maintain axonal polarity and the integrity of the AIS. At the AIS, AnkG regulates selective intracellular cargo trafficking between soma and axons via interaction with the dynein regulator protein Ndel1, but the molecular mechanism underlying this binding remains elusive. Here we report that Ndel1's C-terminal coiled-coil region (CT-CC) binds to giant neuron-specific insertion regions present in both AnkG and AnkB with 2:1 stoichiometry. The high-resolution crystal structure of AnkB in complex with Ndel1 CT-CC revealed the detailed molecular basis governing the AnkB/Ndel1 complex formation. Mechanistically, AnkB binds with Ndel1 by forming a stable 5-helix bundle dominated by hydrophobic interactions spread across 6 distinct interaction layers. Moreover, we found that AnkG is essential for Ndel1 accumulation at the AIS. Finally, we found that cargo sorting at the AIS can be disrupted by blocking the AnkG/Ndel1 complex formation using a peptide designed based on our structural data. Collectively, the atomic structure of the AnkB/Ndel1 complex together with studies of cargo sorting through the AIS establish the mechanistic basis for AnkG/Ndel1 complex formation and for the maintenance of axonal polarity. Our study will also be valuable for future studies of the interaction between AnkB and Ndel1 perhaps at distal axonal cargo transport.
Collapse
|
28
|
Vassilopoulos S, Gibaud S, Jimenez A, Caillol G, Leterrier C. Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nat Commun 2019; 10:5803. [PMID: 31862971 PMCID: PMC6925202 DOI: 10.1038/s41467-019-13835-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Recent super-resolution microscopy studies have unveiled a periodic scaffold of actin rings regularly spaced by spectrins under the plasma membrane of axons. However, ultrastructural details are unknown, limiting a molecular and mechanistic understanding of these enigmatic structures. Here, we combine platinum-replica electron and optical super-resolution microscopy to investigate the cortical cytoskeleton of axons at the ultrastructural level. Immunogold labeling and correlative super-resolution/electron microscopy allow us to unambiguously resolve actin rings as braids made of two long, intertwined actin filaments connected by a dense mesh of aligned spectrins. This molecular arrangement contrasts with the currently assumed model of actin rings made of short, capped actin filaments. Along the proximal axon, we resolved the presence of phospho-myosin light chain and the scaffold connection with microtubules via ankyrin G. We propose that braided rings explain the observed stability of the actin-spectrin scaffold and ultimately participate in preserving the axon integrity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France.
| | - Solène Gibaud
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Angélique Jimenez
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | | |
Collapse
|
29
|
Shaw GA, Dupree JL, Neigh GN. Adolescent maturation of the prefrontal cortex: Role of stress and sex in shaping adult risk for compromise. GENES BRAIN AND BEHAVIOR 2019; 19:e12626. [DOI: 10.1111/gbb.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
- Research ServiceHunter Holmes McGuire VA Medical Center Richmond Virginia
| | - Gretchen N. Neigh
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| |
Collapse
|
30
|
Sohn PD, Huang CTL, Yan R, Fan L, Tracy TE, Camargo CM, Montgomery KM, Arhar T, Mok SA, Freilich R, Baik J, He M, Gong S, Roberson ED, Karch CM, Gestwicki JE, Xu K, Kosik KS, Gan L. Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis. Neuron 2019; 104:458-470.e5. [PMID: 31542321 PMCID: PMC6880876 DOI: 10.1016/j.neuron.2019.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/02/2019] [Accepted: 08/03/2019] [Indexed: 01/08/2023]
Abstract
Dysregulation of neuronal excitability underlies the pathogenesis of tauopathies, including frontotemporal dementia (FTD) with tau inclusions. A majority of FTD-causing tau mutations are located in the microtubule-binding domain, but how these mutations alter neuronal excitability is largely unknown. Here, using CRISPR/Cas9-based gene editing in human pluripotent stem cell (iPSC)-derived neurons and isogenic controls, we show that the FTD-causing V337M tau mutation impairs activity-dependent plasticity of the cytoskeleton in the axon initial segment (AIS). Extracellular recordings by multi-electrode arrays (MEAs) revealed that the V337M tau mutation in human neurons leads to an abnormal increase in neuronal activity in response to chronic depolarization. Stochastic optical reconstruction microscopy of human neurons with this mutation showed that AIS plasticity is impaired by the abnormal accumulation of end-binding protein 3 (EB3) in the AIS submembrane region. These findings expand our understanding of how FTD-causing tau mutations dysregulate components of the neuronal cytoskeleton, leading to network dysfunction.
Collapse
Affiliation(s)
- Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cindy Tzu-Ling Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical Center, New York, NY10021, USA
| | - Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carolina M Camargo
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kelly M Montgomery
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Rebecca Freilich
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Justin Baik
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manni He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical Center, New York, NY10021, USA
| | - Erik D Roberson
- Departments of Neurology and Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Sabharwal V, Koushika SP. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 2019; 13:470. [PMID: 31708745 PMCID: PMC6823667 DOI: 10.3389/fncel.2019.00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon's narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
Collapse
Affiliation(s)
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
32
|
Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proc Natl Acad Sci U S A 2019; 116:19717-19726. [PMID: 31451636 PMCID: PMC6765234 DOI: 10.1073/pnas.1909989116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Axon initial segments of vertebrate neurons integrate thousands of dendritic inputs and generate a single outgoing action potential. Giant ankyrin-G associates with most of the molecular components of axon initial segments and is required for their assembly. This study identified 3 human mutations of giant ankyrin-G resulting in impaired neurodevelopment in compound heterozygotes. These mutations prevent transition of giant ankyrin-G from a closed to an open conformation, which normally is regulated by phosphorylation of giant ankyrin-G during maturation of axon initial segments. Giant ankyrin-G thus functions in a signaling pathway that may contribute to activity-dependent plasticity of the axon initial segment as well as provide a therapeutic target for treatment of patients bearing giant ankyrin-G mutations. Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and β4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of β4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of β4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of β4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.
Collapse
|
33
|
Liu CH, Rasband MN. Axonal Spectrins: Nanoscale Organization, Functional Domains and Spectrinopathies. Front Cell Neurosci 2019; 13:234. [PMID: 31191255 PMCID: PMC6546920 DOI: 10.3389/fncel.2019.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Spectrin cytoskeletons are found in all metazoan cells, and their physical interactions between actin and ankyrins establish a meshwork that provides cellular structural integrity. With advanced super-resolution microscopy, the intricate spatial organization and associated functional properties of these cytoskeletons can now be analyzed with unprecedented clarity. Long neuronal processes like peripheral sensory and motor axons may be subject to intense mechanical forces including bending, stretching, and torsion. The spectrin-based cytoskeleton is essential to protect axons against these mechanical stresses. Additionally, spectrins are critical for the assembly and maintenance of axonal excitable domains including the axon initial segment and the nodes of Ranvier (NoR). These sites facilitate rapid and efficient action potential initiation and propagation in the nervous system. Recent studies revealed that pathogenic spectrin variants and diseases that protealyze and breakdown spectrins are associated with congenital neurological disorders and nervous system injury. Here, we review recent studies of spectrins in the nervous system and focus on their functions in axonal health and disease.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Neil Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
34
|
Zhang Y, Tzingounis AV, Lykotrafitis G. Modeling of the axon plasma membrane structure and its effects on protein diffusion. PLoS Comput Biol 2019; 15:e1007003. [PMID: 31048841 PMCID: PMC6497228 DOI: 10.1371/journal.pcbi.1007003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/03/2019] [Indexed: 11/30/2022] Open
Abstract
The axon plasma membrane consists of the membrane skeleton, which comprises ring-like actin filaments connected to each other by spectrin tetramers, and the lipid bilayer, which is tethered to the skeleton via, at least, ankyrin. Currently it is unknown whether this unique axon plasma membrane skeleton (APMS) sets the diffusion rules of lipids and proteins in the axon. To answer this question, we developed a coarse-grain molecular dynamics model for the axon that includes the APMS, the phospholipid bilayer, transmembrane proteins (TMPs), and integral monotopic proteins (IMPs) in both the inner and outer lipid layers. We first showed that actin rings limit the longitudinal diffusion of TMPs and the IMPs of the inner leaflet but not of the IMPs of the outer leaflet. To reconcile the experimental observations, which show restricted diffusion of IMPs of the outer leaflet, with our simulations, we conjectured the existence of actin-anchored proteins that form a fence which restricts the longitudinal diffusion of IMPs of the outer leaflet. We also showed that spectrin filaments could modify transverse diffusion of TMPs and IMPs of the inner leaflet, depending on the strength of the association between lipids and spectrin. For instance, in areas where spectrin binds to the lipid bilayer, spectrin filaments would restrict diffusion of proteins within the skeleton corrals. In contrast, in areas where spectrin and lipids are not associated, spectrin modifies the diffusion of TMPs and IMPs of the inner leaflet from normal to confined-hop diffusion. Overall, we showed that diffusion of axon plasma membrane proteins is deeply anisotropic, as longitudinal diffusion is of different type than transverse diffusion. Finally, we investigated how accumulation of TMPs affects diffusion of TMPs and IMPs of both the inner and outer leaflets by changing the density of TMPs. We showed that the APMS structure acts as a fence that restricts the diffusion of TMPs and IMPs of the inner leaflet within the membrane skeleton corrals. Our findings provide insight into how the axon skeleton acts as diffusion barrier and maintains neuronal polarity. The axon plasma membrane skeleton consists of repeated periodic actin ring-like structures along its length connected via spectrin tetramers and anchored to the lipid bilayer at least via ankyrin. However, it is currently unclear whether this structure controls diffusion of lipids and proteins in the axon. Here, we developed a coarse-grain molecular dynamics computational model for the axon plasma membrane that comprises minimal representations for the APMS and the lipid bilayer. In a departure from current models, we found that actin rings limit diffusion of proteins only in the inner membrane leaflet. Then, we showed that actin anchored proteins likely act as “fences” confining diffusion of proteins in the outer leaflet. Our simulations, unexpectedly, also revealed that spectrin filaments could impede transverse diffusion in the inner leaflet of the axon and in some conditions modify diffusion from normal to abnormal. We predicted that diffusion of axon plasma membrane proteins is anisotropic as longitudinal diffusion is of different type than transverse (azimuthal) diffusion. We conclude that the periodic structure of the axon plays a critical role in controlling diffusion of proteins and lipids in the axon plasma membrane.
Collapse
Affiliation(s)
- Yihao Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Anastasios V. Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|
35
|
TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment. J Neurosci 2019; 39:4864-4873. [PMID: 30967428 DOI: 10.1523/jneurosci.3105-18.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.
Collapse
|
36
|
Abouelezz A, Micinski D, Lipponen A, Hotulainen P. Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin. Biol Chem 2019; 400:1141-1146. [DOI: 10.1515/hsz-2019-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 11/15/2022]
Abstract
Abstract
The axon initial segment (AIS) comprises a sub-membranous lattice containing periodic actin rings. The overall AIS structure is insensitive to actin-disrupting drugs, but the effects of actin-disrupting drugs on actin rings lack consensus. We examined the effect of latrunculin A and B on the actin cytoskeleton of neurons in culture and actin rings in the AIS. Both latrunculin A and B markedly reduced the overall amount of F-actin in treated neurons in a dose-dependent manner, but the periodicity of actin rings remained unaffected. The insensitivity of AIS actin rings to latrunculin suggests they are relatively stable.
Collapse
Affiliation(s)
- Amr Abouelezz
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U , Tukholmankatu 8 , 00290 Helsinki , Finland
- HiLIFE – Neuroscience Center , University of Helsinki , Haartmaninkatu 8 , 00290 Helsinki , Finland
| | - David Micinski
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U , Tukholmankatu 8 , 00290 Helsinki , Finland
| | - Aino Lipponen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U , Tukholmankatu 8 , 00290 Helsinki , Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U , Tukholmankatu 8 , 00290 Helsinki , Finland
| |
Collapse
|
37
|
Mechanisms of Axonal Sorting of Tau and Influence of the Axon Initial Segment on Tau Cell Polarity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:69-77. [DOI: 10.1007/978-981-32-9358-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Lazarov E, Dannemeyer M, Feulner B, Enderlein J, Gutnick MJ, Wolf F, Neef A. An axon initial segment is required for temporal precision in action potential encoding by neuronal populations. SCIENCE ADVANCES 2018; 4:eaau8621. [PMID: 30498783 PMCID: PMC6261658 DOI: 10.1126/sciadv.aau8621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Central neurons initiate action potentials (APs) in the axon initial segment (AIS), a compartment characterized by a high concentration of voltage-dependent ion channels and specialized cytoskeletal anchoring proteins arranged in a regular nanoscale pattern. Although the AIS was a key evolutionary innovation in neurons, the functional benefits it confers are not clear. Using a mutation of the AIS cytoskeletal protein βIV-spectrin, we here establish an in vitro model of neurons with a perturbed AIS architecture that retains nanoscale order but loses the ability to maintain a high NaV density. Combining experiments and simulations, we show that a high NaV density in the AIS is not required for axonal AP initiation; it is, however, crucial for a high bandwidth of information encoding and AP timing precision. Our results provide the first experimental demonstration of axonal AP initiation without high axonal channel density and suggest that increasing the bandwidth of the neuronal code and, hence, the computational efficiency of network function, was a major benefit of the evolution of the AIS.
Collapse
Affiliation(s)
- Elinor Lazarov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- University Medical Center Göttingen, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Melanie Dannemeyer
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- III. Institute of Physics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Barbara Feulner
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
| | - Jörg Enderlein
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- III. Institute of Physics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Michael J. Gutnick
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
- Institute for Nonlinear Dynamics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A, 37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Hermann Rein St. 3, 37075 Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
- Institute for Nonlinear Dynamics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A, 37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Hermann Rein St. 3, 37075 Göttingen, Germany
| |
Collapse
|
39
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
40
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Balasanyan V, Watanabe K, Dempsey WP, Lewis TL, Trinh LA, Arnold DB. Structure and Function of an Actin-Based Filter in the Proximal Axon. Cell Rep 2018; 21:2696-2705. [PMID: 29212018 DOI: 10.1016/j.celrep.2017.11.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022] Open
Abstract
The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI.
Collapse
Affiliation(s)
- Varuzhan Balasanyan
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaori Watanabe
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - William P Dempsey
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tommy L Lewis
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Le A Trinh
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Don B Arnold
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
42
|
Unsain N, Stefani FD, Cáceres A. The Actin/Spectrin Membrane-Associated Periodic Skeleton in Neurons. Front Synaptic Neurosci 2018; 10:10. [PMID: 29875650 PMCID: PMC5974029 DOI: 10.3389/fnsyn.2018.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/04/2018] [Indexed: 11/28/2022] Open
Abstract
Neurons are the most asymmetric cell types, with their axons commonly extending over lengths that are thousand times longer than the diameter of the cell soma. Fluorescence nanoscopy has recently unveiled that actin, spectrin and accompanying proteins form a membrane-associated periodic skeleton (MPS) that is ubiquitously present in mature axons from all neuronal types evaluated so far. The MPS is a regular supramolecular protein structure consisting of actin “rings” separated by spectrin tetramer “spacers”. Although the MPS is best organized in axons, it is also present in dendrites, dendritic spine necks and thin cellular extensions of non-neuronal cells such as oligodendrocytes and microglia. The unique organization of the actin/spectrin skeleton has raised the hypothesis that it might serve to support the extreme physical and structural conditions that axons must resist during the lifespan of an organism. Another plausible function of the MPS consists of membrane compartmentalization and subsequent organization of protein domains. This review focuses on what we know so far about the structure of the MPS in different neuronal subdomains, its dynamics and the emerging evidence of its impact in axonal biology.
Collapse
Affiliation(s)
- Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.,Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.,Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| |
Collapse
|
43
|
Papandréou MJ, Leterrier C. The functional architecture of axonal actin. Mol Cell Neurosci 2018; 91:151-159. [PMID: 29758267 DOI: 10.1016/j.mcn.2018.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton builds and supports the complex architecture of neurons. It orchestrates the specification, growth, and compartmentation of the axon: axon initial segment, axonal shaft, presynapses. The cytoskeleton must then maintain this intricate architecture for the whole life of its host, but also drive its adaptation to new network demands and changing physiological conditions. Microtubules are readily visible inside axon shafts by electron microscopy, whereas axonal actin study has long been focused on dynamic structures of the axon such as growth cones. Super-resolution microscopy and live-cell imaging have recently revealed new actin-based structures in mature axons: rings, hotspots and trails. This has caused renewed interest for axonal actin, with efforts underway to understand the precise organization and cellular functions of these assemblies. Actin is also present in presynapses, where its arrangement is still poorly defined, and its functions vigorously debated. Here we review the organization of axonal actin, focusing on recent advances and current questions in this rejuvenated field.
Collapse
|
44
|
Huang CYM, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 2018; 1420:46-61. [PMID: 29749636 DOI: 10.1111/nyas.13718] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is located at the proximal axon and is the site of action potential initiation. This reflects the high density of ion channels found at the AIS. Adaptive changes to the location and length of the AIS can fine-tune the excitability of neurons and modulate plasticity in response to activity. The AIS plays an important role in maintaining neuronal polarity by regulating the trafficking and distribution of proteins that function in somatodendritic or axonal compartments of the neuron. In this review, we provide an overview of the AIS cytoarchitecture, mechanism of assembly, and recent studies revealing mechanisms of differential transport at the AIS that maintain axon and dendrite identities. We further discuss how genetic mutations in AIS components (i.e., ankyrins, ion channels, and spectrins) and injuries may cause neurological disorders.
Collapse
Affiliation(s)
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Gumy LF, Hoogenraad CC. Local mechanisms regulating selective cargo entry and long-range trafficking in axons. Curr Opin Neurobiol 2018; 51:23-28. [PMID: 29510294 DOI: 10.1016/j.conb.2018.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
The polarized long-distance transport of neuronal cargoes depends on the presence of functional and structural axonal subcompartments. Given the heterogeneity of neuronal cargoes, selective sorting and entry occurs in the proximal axon where multiple subcellular specializations such as the axon initial segment, the pre-axonal exclusion zone, the MAP2 pre-axonal filtering zone and the Tau diffusion barrier provide different levels of regulation. Cargoes allowed to pass through the proximal axon spread into the more distal parts. Recent findings show that diverse cargo distributions along the axon depend on the compartmentalized organization of the cytoskeleton and the local regulation of multiple motor proteins by microtubule associated proteins. In this review, we focus on the local mechanisms that control cargo motility and discuss how they play a role in the overall circulation of axonal cargoes.
Collapse
Affiliation(s)
- Laura F Gumy
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
46
|
The Axon Initial Segment: An Updated Viewpoint. J Neurosci 2018; 38:2135-2145. [PMID: 29378864 DOI: 10.1523/jneurosci.1922-17.2018] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the base of axons sits a unique compartment called the axon initial segment (AIS). The AIS generates and shapes the action potential before it is propagated along the axon. Neuronal excitability thus depends crucially on the AIS composition and position, and these adapt to developmental and physiological conditions. The AIS also demarcates the boundary between the somatodendritic and axonal compartments. Recent studies have brought insights into the molecular architecture of the AIS and how it regulates protein trafficking. This Viewpoints article summarizes current knowledge about the AIS and highlights future challenges in understanding this key actor of neuronal physiology.
Collapse
|
47
|
|
48
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
González-Cabrera C, Meza R, Ulloa L, Merino-Sepúlveda P, Luco V, Sanhueza A, Oñate-Ponce A, Bolam JP, Henny P. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol 2017; 525:3529-3542. [PMID: 28734032 DOI: 10.1002/cne.24288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
The axon initial segment (AIS) is the site of initiation of action potentials and influences action potential waveform, firing pattern, and rate. In view of the fundamental aspects of motor function and behavior that depend on the firing of substantia nigra pars compacta (SNc) dopaminergic neurons, we identified and characterized their AIS in the mouse. Immunostaining for tyrosine hydroxylase (TH), sodium channels (Nav ) and ankyrin-G (Ank-G) was used to visualize the AIS of dopaminergic neurons. Reconstructions of sampled AIS of dopaminergic neurons revealed variable lengths (12-60 μm) and diameters (0.2-0.8 μm), and an average of 50% reduction in diameter between their widest and thinnest parts. Ultrastructural analysis revealed submembranous localization of Ank-G at nodes of Ranvier and AIS. Serial ultrathin section analysis and 3D reconstructions revealed that Ank-G colocalized with TH only at the AIS. Few cases of synaptic innervation of the AIS of dopaminergic neurons were observed. mRNA in situ hybridization of brain-specific Nav subunits revealed the expression of Nav 1.2 by most SNc neurons and a small proportion expressing Nav 1.6. The presence of sodium channels, along with the submembranous location of Ank-G is consistent with the role of AIS in action potential generation. Differences in the size of the AIS likely underlie differences in firing pattern, while the tapering diameter of AIS may define a trigger zone for action potentials. Finally, the conspicuous expression of Nav 1.2 by the majority of dopaminergic neurons may explain their high threshold for firing and their low discharge rate.
Collapse
Affiliation(s)
- Cristian González-Cabrera
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Meza
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Ulloa
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Merino-Sepúlveda
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Luco
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Sanhueza
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Paul Bolam
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Fernius J, Starkenberg A, Thor S. Bar-coding neurodegeneration: identifying subcellular effects of human neurodegenerative disease proteins using Drosophila leg neurons. Dis Model Mech 2017; 10:1027-1038. [PMID: 28615189 PMCID: PMC5560063 DOI: 10.1242/dmm.029637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic, biochemical and histological studies have identified a number of different proteins as key drivers of human neurodegenerative diseases. Although different proteins are typically involved in different diseases, there is also considerable overlap. Addressing disease protein dysfunction in an in vivo neuronal context is often time consuming and requires labor-intensive analysis of transgenic models. To facilitate the rapid, cellular analysis of disease protein dysfunction, we have developed a fruit fly (Drosophila melanogaster) adult leg neuron assay. We tested the robustness of 41 transgenic fluorescent reporters and identified a number that were readily detected in the legs and could report on different cellular events. To test these reporters, we expressed a number of human proteins involved in neurodegenerative disease, in both their mutated and wild-type versions, to address the effects on reporter expression and localization. We observed strikingly different effects of the different disease proteins upon the various reporters with, for example, Aβ1-42 being highly neurotoxic, tau, parkin and HTT128Q affecting mitochondrial distribution, integrity or both, and Aβ1-42, tau, HTT128Q and ATX182Q affecting the F-actin network. This study provides proof of concept for using the Drosophila adult leg for inexpensive and rapid analysis of cellular effects of neurodegenerative disease proteins in mature neurons.
Collapse
Affiliation(s)
- Josefin Fernius
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| |
Collapse
|