1
|
Yan T, Luo M, He J, Wang M, Ma Z, Zhao Z, Xiong H, Mei Z. Artemisia argyi volatile oil ameliorates allergic contact dermatitis via modulating TRPA1/CGRP signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118580. [PMID: 39019419 DOI: 10.1016/j.jep.2024.118580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Artemisia argyi Levl.et Vant. have a long history of being used to treat skin diseases such as pruritus and dermatitis in China, but the therapeutic effect on allergic contact dermatitis (ACD) is still unclear. AIM OF THE STUDY To investigate the effect and molecular mechanisms of the volatile oil of A. argyi leaves (abbreviated as 'AO') in the treatment of ACD. MATERIALS AND METHODS The main components in AO were analyzed using GC-MS. The effect of AO on channel currents in hTRPA1-transfected HEK293T cells was studied by whole-cell patch clamp. Subsequently, chloroquine-evoked acute itch and squaraine dibutyl ester (SADBE)-induced ACD chronic itch model was established to evaluate the antipruritic effect through counting scratching behavior, and the anti-inflammatory effects on ACD mice were measured using histological analysis. Meanwhile, the changes of CGRP, the infiltration of nerve fibers and the recruitment of dendritic cells, the expression of Il-23 and Il-17 mRNA in skin lesions, the phosphorylation of ERK and p38 in dorsal root ganglion (DRG), were evaluated by molecular biological methods. Then the inhibitory effect of AO on AITC- or SADBE-activated TRPA1 channels in primary DRG neurons of C57BL/6, Trpa1-/- or Trpv1-/- mice was elucidated by Ca2+ imaging and immunofluorescence. RESULTS AO treatment inhibited the activation of TRPA1 in HEK293T cells and alleviated acute itch caused by chloroquine, but this effect was lacking in Trpa1-/- mice. Furthermore, administration of AO attenuated scratching behavior in SADBE-induced ACD mice. AO also inhibited the increase of nerve fibers and recruitment of dendritic cells, and down-regulated the expression of CGRP and the levels of Il-23 and Il-17 mRNA. Meanwhile, AO reduced the expression of p-p38 and p-ERK in the lesioned skin and DRG of SADBE-induced ACD mice. Additionally, AO blocked the activation of TRPA1 channels and decreased the levels of CGRP, p-p38, and p-ERK in DRG neurons. CONCLUSION AO could inhibit TRPA1 channels in sensory neurons, thereby reducing the release of CGRP and exerting anti-pruritic and anti-inflammatory effect. These findings also provide a new strategy for exploring the role of A. argyi in treating ACD.
Collapse
Affiliation(s)
- Ting Yan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Miao Luo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinfeng He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Mengling Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhiliang Ma
- Qinghai Tibetan Medicine Research Institute, Qinghai Province Key Laboratory of Tibetan Medicine Research and Development, Xining, 810016, China
| | | | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Li T, Liu M, Yu F, Yang S, Bu W, Liu K, Yang J, Ni H, Yang M, Yin H, Hong R, Li D, Zhao H, Zhou J. Pathologically relevant aldoses and environmental aldehydes cause cilium disassembly via formyl group-mediated mechanisms. J Mol Cell Biol 2024; 16:mjad079. [PMID: 38059869 PMCID: PMC11245732 DOI: 10.1093/jmcb/mjad079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Carbohydrate metabolism disorders (CMDs), such as diabetes, galactosemia, and mannosidosis, cause ciliopathy-like multiorgan defects. However, the mechanistic link of cilia to CMD complications is still poorly understood. Herein, we describe significant cilium disassembly upon treatment of cells with pathologically relevant aldoses rather than the corresponding sugar alcohols. Moreover, environmental aldehydes are able to trigger cilium disassembly by the steric hindrance effect of their formyl groups. Mechanistic studies reveal that aldehydes stimulate extracellular calcium influx across the plasma membrane, which subsequently activates the calmodulin-Aurora A-histone deacetylase 6 pathway to deacetylate axonemal microtubules and triggers cilium disassembly. In vivo experiments further show that Hdac6 knockout mice are resistant to aldehyde-induced disassembly of tracheal cilia and sperm flagella. These findings reveal a previously unrecognized role for formyl group-mediated cilium disassembly in the complications of CMDs.
Collapse
Affiliation(s)
- Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin 300462, China
| | - Fan Yu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Song Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwen Bu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Ni
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mulin Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanxiao Yin
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Renjie Hong
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Zhang C, Tong F, Zhou B, He M, Liu S, Zhou X, Ma Q, Feng T, Du WJ, Yang H, Xu H, Xiao L, Xu ZZ, Zhu C, Wu R, Wang YQ, Han Q. TMC6 functions as a GPCR-like receptor to sense noxious heat via Gαq signaling. Cell Discov 2024; 10:66. [PMID: 38886367 PMCID: PMC11183229 DOI: 10.1038/s41421-024-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Abstract
Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Fang Tong
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Bin Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Mingdong He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Shuai Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xiaomeng Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qiang Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyu Feng
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wan-Jie Du
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Huan Yang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hao Xu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Wu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Qingjian Han
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Moccia F, Montagna D. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as a Sensor of Oxidative Stress in Cancer Cells. Cells 2023; 12:cells12091261. [PMID: 37174661 PMCID: PMC10177399 DOI: 10.3390/cells12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Li Z, Gan Y, Kang T, Zhao Y, Huang T, Chen Y, Liu J, Ke B. Camphor Attenuates Hyperalgesia in Neuropathic Pain Models in Mice. J Pain Res 2023; 16:785-795. [PMID: 36925623 PMCID: PMC10013580 DOI: 10.2147/jpr.s398607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Background The treatment of neuropathic pain is still a major troublesome clinical problem. The existing therapeutic drugs have limited analgesic effect and obvious adverse reactions, which presents opportunities and challenges for the development of new analgesic drugs. Camphor, a kind of monoterpene, has been shown anti-inflammatory and analgesic effects in traditional Chinese medicine. But we know little about its effect in neuropathic pain. In this article, We have verified the reliable analgesic effect of camphor in the neuropathic pain model caused by different predispositions. Methods The nociceptive response of mice was induced by transient receptor potential A1 (TRPA1) agonist to verify the effect of camphor on the nociceptive response. Multiple paclitaxel (PTX) injection models, Single oxaliplatin (OXA) injection models, Chronic constriction injury (CCI) models and Streptozotocin-induced (STZ) diabetic neuropathic pain models were used in this study. We verified the analgesic effect of camphor in mice by acetone test and conditioned place aversion test. At the same time, comparing the adverse reaction of nervous system between camphor and pregabalin at equivalent dose in locomotor activity test and rotarod test. Using patch clamp to verify the effect of camphor on dorsal root ganglion (DRG) excitability. Results In behavioral test, compared with vehicle group, camphor significantly reduced the spontaneous nociception caused by TRPA1 agonist-formalina and allyl isothiocyanate (AITC). Compared with vehicle group, camphor significantly reduced the flinching and licking time in neuropathic pain model mice, including PTX, OXA, STZ and CCI induced peripheral neuralgia models. Compared with vehicle group, pregabalin significantly increased the resting time and reduced the average speed without resting and distance in locomotor activity test, reduced the time stayed on rotarod in rotarod test. In patch clamp test, compared with vehicle group, camphor significantly reduced the action potential (AP) firing frequency of DRG. Conclusion Camphor can alleviate the symptoms of hyperalgesia in various neuropathic pain models, and has no obvious adverse reactions compared with pregabalin. This effect is related to the down-regulation of DRG neuron excitability.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yi Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Tianguang Huang
- Frontiers Science Center for Disease-Related Molecular Network, Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuhao Chen
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Noori T, Dehpour AR, Alavi SD, Hosseini SZ, Korani S, Sureda A, Esmaeili J, Shirooie S. Synthesis and evaluation of the effects of solid lipid nanoparticles of ivermectin and ivermectin on cuprizone-induced demyelination via targeting the TRPA1/NF-kB/GFAP signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1272-1282. [PMID: 37886003 PMCID: PMC10598811 DOI: 10.22038/ijbms.2023.71309.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 10/28/2023]
Abstract
Objectives Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) and its cause is unknown. Several environmental and genetic factors may have roles in the pathogenesis of MS. The synthesis of solid lipid nanoparticles (SLNs) for ivermectin (IVM) loading was performed to increase its efficiency and bioavailability and evaluate its ability in improving the behavioral and histopathological changes induced by cuprizone (CPZ) in the male C57BL/6 mice. Materials and Methods Four groups of 7 adult C57BL/6 mice including control (normal diet), CPZ, IVM, and nano-IVM groups were chosen. After synthesis of nano-ivermectin, demyelination was induced by adding 0.2% CPZ to animal feed for 6 weeks. IVM and nano-IVM (1 mg/kg/day, IP) were given for the final 14 days of the study. At last, behavioral tests, histochemical assays, and immunohistochemistry of TRPA1, NF-kB p65, and GFAP were done. Results The time of immobility of mice in the IVM and nano-IVM groups was reduced compared to the CPZ group. Histopathological examination revealed demyelination in the CPZ group, which was ameliorated by IVM and nano-IVM administration. In IVM and nano-IVM groups corpus callosum levels of TRPA1, NF-kB p65, and GFAP were decreased compared to the CPZ group. In the IVM and nano-IVM groups, the levels of MBP were significantly higher than in the CPZ group. Conclusion The results evidenced that IVM and nano-IVM administration is capable of reducing demyelination in mice.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental medicine research center, Tehran University of medical sciences, Tehran, Iran
| | - Seyede Darya Alavi
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyede Zahra Hosseini
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Korani
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Wang Y, Huang R, Chai Z, Wang C, Du X, Hang Y, Xu Y, Li J, Jiang X, Wu X, Qiao Z, Li Y, Liu B, Zhang X, Cao P, Zhu F, Zhou Z. Ca 2+ -independent transmission at the central synapse formed between dorsal root ganglion and dorsal horn neurons. EMBO Rep 2022; 23:e54507. [PMID: 36148511 PMCID: PMC9638852 DOI: 10.15252/embr.202154507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 09/25/2023] Open
Abstract
A central principle of synaptic transmission is that action potential-induced presynaptic neurotransmitter release occurs exclusively via Ca2+ -dependent secretion (CDS). The discovery and mechanistic investigations of Ca2+ -independent but voltage-dependent secretion (CiVDS) have demonstrated that the action potential per se is sufficient to trigger neurotransmission in the somata of primary sensory and sympathetic neurons in mammals. One key question remains, however, whether CiVDS contributes to central synaptic transmission. Here, we report, in the central transmission from presynaptic (dorsal root ganglion) to postsynaptic (spinal dorsal horn) neurons in vitro, (i) excitatory postsynaptic currents (EPSCs) are mediated by glutamate transmission through both CiVDS (up to 87%) and CDS; (ii) CiVDS-mediated EPSCs are independent of extracellular and intracellular Ca2+ ; (iii) CiVDS is faster than CDS in vesicle recycling with much less short-term depression; (iv) the fusion machinery of CiVDS includes Cav2.2 (voltage sensor) and SNARE (fusion pore). Together, an essential component of activity-induced EPSCs is mediated by CiVDS in a central synapse.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Changhe Wang
- Department of NeurologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xingyu Du
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yongxin Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Xiaohan Jiang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yinglin Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | | | - Peng Cao
- National Institute of Biological SciencesBeijingChina
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| |
Collapse
|
11
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
12
|
Li S, Li Z, Yang J, Ha Y, Zhou X, He C. Inhibition of Sympathetic Activation by Delivering Calcium Channel Blockers from a 3D Printed Scaffold to Promote Bone Defect Repair. Adv Healthc Mater 2022; 11:e2200785. [PMID: 35666701 DOI: 10.1002/adhm.202200785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Indexed: 01/24/2023]
Abstract
Enhancing osteogenesis by promoting neural network reconstruction and neuropeptide release is considered to be an attractive strategy for repairing of critical size bone defects. However, traumatic bone defects often activate the damaged sympathetic nervous system (SNS) in the defect area and release excessive catecholamine to hinder bone defect repair. Herein, a 3D printed scaffold loaded with the calcium channel blocker-nifedipine is proposed to reduce the concentration of catecholamine present in the bone defect region and to accelerate bone healing. To this end, nifedipine-loaded ethosome and laponite are added into a mixed solution containing sodium alginate, methacrylated gelatin, and bone mesenchymal stem cells (BMSCs) to prepare a cell-laden scaffold using 3D bioprinting. The released nifedipine is able to close the calcium channels of nerve cells, thereby blocking sympathetic activation and ultimately inhibiting the release of catecholamine by sympathetic nerve cells, which further promotes the osteogenic differentiation and migration of BMSCs, inhibits osteoclastogenesis in vitro, and effectively improves bone regeneration in a rat critical-size calvarial defect model. Therefore, the results suggest that sustained release of nifedipine from the scaffold can effectively block SNS activation, providing promising strategies for future treatment of bone defects.
Collapse
Affiliation(s)
- Shikai Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhihui Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jin Yang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yujie Ha
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Dysregulation of Immune Response Mediators and Pain-Related Ion Channels Is Associated with Pain-like Behavior in the GLA KO Mouse Model of Fabry Disease. Cells 2022; 11:cells11111730. [PMID: 35681422 PMCID: PMC9179379 DOI: 10.3390/cells11111730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022] Open
Abstract
Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206+ macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1+ DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.
Collapse
|
14
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal Cation Channels and Lung Disease. Cells 2022; 11:304. [PMID: 35053420 PMCID: PMC8773812 DOI: 10.3390/cells11020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| | - Aicha Jeridi
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Meshal Ansari
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Ali Önder Yildirim
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Herbert B. Schiller
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
16
|
Wu Y, Xu M, Wang P, Syeda AKR, Huang P, Dong XP. Lysosomal potassium channels. Cell Calcium 2022; 102:102536. [PMID: 35016151 DOI: 10.1016/j.ceca.2022.102536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The lysosome is an important membrane-bound acidic organelle that is regarded as the degradative center as well as multifunctional signaling hub. It digests unwanted macromolecules, damaged organelles, microbes, and other materials derived from endocytosis, autophagy, and phagocytosis. To function properly, the ionic homeostasis and membrane potential of the lysosome are strictly regulated by transporters and ion channels. As the most abundant cation inside the cell, potassium ions (K+) are vital for lysosomal membrane potential and lysosomal calcium (Ca2+) signaling. However, our understanding about how lysosomal K+homeostasis is regulated and what are the functions of K+in the lysosome is very limited. Currently, two lysosomal K+channels have been identified: large-conductance Ca2+-activated K+channel (BK) and transmembrane Protein 175 (TMEM175). In this review, we summarize recent development in our understanding of K+ homeostasis and K+channels in the lysosome. We hope to guide the readers into a more in-depth discussion of lysosomal K+ channels in lysosomal physiology and human diseases.
Collapse
Affiliation(s)
- Yi Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Peng Huang
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada.
| |
Collapse
|
17
|
Gan N, Jiang Y. Structural biology of cation channels important for lysosomal calcium release. Cell Calcium 2022; 101:102519. [PMID: 34952412 PMCID: PMC8752501 DOI: 10.1016/j.ceca.2021.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023]
Abstract
Calcium is one of the most important second messengers in cells. The uptake and release of calcium ions are conducted by channels and transporters. Inside a eukaryotic cell, calcium is stored in intracellular organelles including the endoplasmic reticulum (ER), mitochondrion, and lysosome. Lysosomes are acid membrane-bounded organelles serving as the crucial degradation and recycling center of the cell. Lysosomes involve in multiple important signaling events, including nutrient sensing, lipid metabolism, and trafficking. Hitherto, two lysosomal cation channel families have been suggested to function as calcium release channels, namely the Two-pore Channel (TPC) family, and the Transient Receptor Potential Channel Mucolipin (TRPML) family. Additionally, a few plasma membrane calcium channels have also been found in the lysosomal membrane under certain circumstances. In this review, we will discuss the structural mechanism of the cation channels that may be important for lysosomal calcium release, primarily focusing on the TPCs and TRPMLs.
Collapse
Affiliation(s)
- Ninghai Gan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
18
|
Kim YJ, Granstein RD. Roles of calcitonin gene-related peptide in the skin, and other physiological and pathophysiological functions. Brain Behav Immun Health 2021; 18:100361. [PMID: 34746878 PMCID: PMC8551410 DOI: 10.1016/j.bbih.2021.100361] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Skin immunity is regulated by many mediator molecules. One is the neuropeptide calcitonin gene-related peptide (CGRP). CGRP has roles in regulating the function of components of the immune system including T cells, B cells, dendritic cells (DCs), endothelial cells (ECs), and mast cells (MCs). Herein we discuss actions of CGRP in mediating inflammatory and vascular effects in various cutaneous models and disorders. CGRP can help to recruit immune cells through endothelium-dependent vasodilation. CGRP plays an important role in the pathogenesis of neurogenic inflammation. Functions of many components in the immune system are influenced by CGRP. CGRP regulates various inflammatory processes in human skin by affecting different cell-types.
Collapse
Affiliation(s)
- Yee Jung Kim
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| | - Richard D Granstein
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| |
Collapse
|
19
|
Majhi RK, Mohanty S, Kamolvit W, White JK, Scheffschick A, Brauner H, Brauner A. Metformin strengthens uroepithelial immunity against E. coli infection. Sci Rep 2021; 11:19263. [PMID: 34584119 PMCID: PMC8479095 DOI: 10.1038/s41598-021-98223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infection frequently caused by E. coli is one of the most common bacterial infections. Increasing antibiotic resistance jeopardizes successful treatment and alternative treatment strategies are therefore mandatory. Metformin, an oral antidiabetic drug, has been shown to activate macrophages in the protection against certain infecting microorganisms. Since epithelial cells often form the first line of defense, we here investigated the effect on uroepithelial cells during E. coli infection. Metformin upregulated the human antimicrobial peptides cathelicidin LL-37 and RNase7 via modulation of the TRPA1 channel and AMPK pathway. Interestingly, metformin stimulation enriched both LL-37 and TRPA1 in lysosomes. In addition, metformin specifically increased nitric oxide and mitochondrial, but not cytosolic ROS. Moreover, metformin also triggered mRNA expression of the proinflammatory cytokines IL1B, CXCL8 and growth factor GDF15 in human uroepithelial cells. The GDF15 peptide stimulated macrophages increased LL-37 expression, with increased bacterial killing. In conclusion, metformin stimulation strengthened the innate immunity of uroepithelial cells inducing enhanced extracellular and intracellular bacterial killing suggesting a favorable role of metformin in the host defense.
Collapse
Affiliation(s)
- Rakesh Kumar Majhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Kerr White
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Hanna Brauner
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Dermatology and Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden. .,Division of Clinical Microbiology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
20
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
21
|
Shin SM, Itson-Zoske B, Cai Y, Qiu C, Pan B, Stucky CL, Hogan QH, Yu H. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain 2021; 16:1744806920925425. [PMID: 32484015 PMCID: PMC7268132 DOI: 10.1177/1744806920925425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund’s adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
22
|
Lysosomal Calcium Channels in Autophagy and Cancer. Cancers (Basel) 2021; 13:cancers13061299. [PMID: 33803964 PMCID: PMC8001254 DOI: 10.3390/cancers13061299] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a cellular self-eating process that uses lysosome, the waste disposal system of the cell, to degrade and recycle intracellular materials to maintain cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Calcium is an important cellular messenger that regulates the survival of all animal cells. Alterations to calcium homoeostasis are associated with cancer. While it has long been considered as cellular recycling center, the lysosome is now widely known as an intracellular calcium store that regulates autophagy and cancer progression by releasing calcium via some ion channels residing in the lysosomal membrane. In this review, we summarize existing mechanisms of autophagy regulation by lysosomal calcium channels and their implications in cancer development. We hope to guide readers toward a more in-depth understanding of the importance of lysosomal calcium channels in cancer, and potentially facilitate the development of new therapeutics for some cancers. Abstract Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.
Collapse
|
23
|
Gebhardt LA, Kichko TI, Fischer MJM, Reeh PW. TRPA1-dependent calcium transients and CGRP release in DRG neurons require extracellular calcium. J Cell Biol 2021; 219:151799. [PMID: 32434221 PMCID: PMC7265312 DOI: 10.1083/jcb.201702151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/14/2018] [Accepted: 08/20/2019] [Indexed: 02/08/2023] Open
Abstract
Shang et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201603081) reported that activation of lysosomal TRPA1 channels led to intracellular calcium transients and CGRP release from DRG neurons. We argue that both findings are more likely due to influx of insufficiently buffered extracellular calcium rather than lysosomal release.
Collapse
Affiliation(s)
- Lisa A Gebhardt
- Institute of Physiology & Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tetyana I Kichko
- Institute of Physiology & Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Peter W Reeh
- Institute of Physiology & Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Liu B, Younus M, Sun S, Li Y, Wang Y, Wu X, Sun X, Shang S, Wang C, Zhu MX, Zhou Z. Reply to "TRPA1-dependent calcium transients and CGRP release in DRG neurons require extracellular calcium". J Cell Biol 2021; 219:151797. [PMID: 32434222 PMCID: PMC7265323 DOI: 10.1083/jcb.202004017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/22/2022] Open
Abstract
In this issue, Gebhardt et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201702151) express interest in our recently published work (Shang et al. 2016. J. Cell Biol.https://doi.org/10.1083/jcb.201603081). Here, we would like to address their concerns regarding the lysosomal TRPA1-mediated intracellular calcium transients in dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yiman Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiaoxuan Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shujiang Shang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
25
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
26
|
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11:714. [PMID: 32873774 PMCID: PMC7463000 DOI: 10.1038/s41419-020-02892-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from cannabis sativa that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis. However, CBD binds to several receptors and enzymes and, therefore, its mode of action remains elusive. In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF). These effects were pronounced under inflammatory conditions by activating transient receptor potential ankyrin (TRPA1), and by opening of the mitochondrial permeability transition pore. Changes in intracellular calcium and cell viability were determined by using the fluorescent dyes Cal-520/PoPo3 together with cell titer blue and the luminescent dye RealTime-glo. Cell-based impedance measurements were conducted with the XCELLigence system and TRPA1 protein was detected by flow cytometry. Cytokine production was evaluated by ELISA. CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF. Concomitant incubation of CBD with the TRPA1 antagonist A967079 but not the TRPV1 antagonist capsazepine reduced the effects of CBD on calcium and PoPo3 uptake. In addition, an inhibitor of the mitochondrial permeability transition pore, cyclosporin A, also blocked the effects of CBD on cell viability and IL-8 production. PoPo3 uptake was inhibited by the voltage-dependent anion-selective channel inhibitor DIDS and Decynium-22, an inhibitor for all organic cation transporter isoforms. CBD increases intracellular calcium levels, reduces cell viability, and IL-6/IL-8/MMP-3 production of RASF by activating TRPA1 and mitochondrial targets. This effect was enhanced by pre-treatment with TNF suggesting that CBD preferentially targets activated, pro-inflammatory RASF. Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany.
| | - Ren Tingting
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Julia Zurmahr
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Tim Classen
- Klinik für Orthopädie/Orthopädische Rheumatologie, St. Elisabeth-Hospital Meerbusch-Lank, D-40668, Meerbusch, Germany
| | - Matthias Schneider
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| |
Collapse
|
27
|
Schecterson LC, Pazevic AA, Yang R, Matulef K, Gordon SE. TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3. Mol Vis 2020; 26:576-587. [PMID: 32863706 PMCID: PMC7438417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.
Collapse
|
28
|
Schecterson LC, Pazevic AA, Yang R, Matulef K, Gordon SE. TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3. Mol Vis 2020; 26:392-404. [PMID: 38860239 PMCID: PMC11163611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/11/2020] [Indexed: 06/12/2024] Open
Abstract
Purpose The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.
Collapse
Affiliation(s)
- Leslayann C Schecterson
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Alexander A Pazevic
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Ruian Yang
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Kimberly Matulef
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
29
|
Thakore P, Pritchard HAT, Griffin CS, Yamasaki E, Drumm BT, Lane C, Sanders KM, Feng Earley Y, Earley S. TRPML1 channels initiate Ca 2+ sparks in vascular smooth muscle cells. Sci Signal 2020; 13:13/637/eaba1015. [PMID: 32576680 DOI: 10.1126/scisignal.aba1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel localized to the membranes of endosomes and lysosomes and is not present or functional on the plasma membrane. Ca2+ released from endosomes and lysosomes into the cytosol through TRPML1 channels is vital for trafficking, acidification, and other basic functions of these organelles. Here, we investigated the function of TRPML1 channels in fully differentiated contractile vascular smooth muscle cells (SMCs). In live-cell confocal imaging studies, we found that most endosomes and lysosomes in freshly isolated SMCs from cerebral arteries were essentially immobile. Using nanoscale super-resolution microscopy, we found that TRPML1 channels present in late endosomes and lysosomes formed stable complexes with type 2 ryanodine receptors (RyR2) on the sarcoplasmic reticulum (SR). Spontaneous Ca2+ signals resulting from the release of SR Ca2+ through RyR2s ("Ca2+ sparks") and corresponding Ca2+-activated K+ channel activity are critically important for balancing vasoconstriction. We found that these signals were essentially absent in SMCs from TRPML1-knockout (Mcoln1-/- ) mice. Using ex vivo pressure myography, we found that loss of this critical signaling cascade exaggerated the vasoconstrictor responses of cerebral and mesenteric resistance arteries. In vivo radiotelemetry studies showed that Mcoln1-/- mice were spontaneously hypertensive. We conclude that TRPML1 is crucial for the initiation of Ca2+ sparks in SMCs and the regulation of vascular contractility and blood pressure.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Caoimhin S Griffin
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Conor Lane
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
30
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Antunes FTT, Angelo SG, Dallegrave E, Picada JN, Marroni NP, Schemitt E, Ferraz AG, Gomez MV, de Souza AH. Recombinant peptide derived from the venom the Phoneutria nigriventer spider relieves nociception by nerve deafferentation. Neuropeptides 2020; 79:101980. [PMID: 31711615 DOI: 10.1016/j.npep.2019.101980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
The avulsion of nerve roots of the brachial plexus that is commonly seen in motorcycle accidents is a type of neuropathy due to deafferentation. This type of pain is clinically challenging since therapeutical protocols fail or have severe side effects. Thus, it is proposed to evaluate the antinociceptive activity of the recombinant CTK 01512-2 peptide that is derived from the venom of the Phoneutria nigriventer spider, as a future new therapeutical option. The neuropathic pain was surgically induced by avulsion of the upper brachial plexus trunk in groups of male Wistar rats and after 17 days, they were treated intrathecally with morphine, ziconotide, and CTK 01512-2. Behavioral tests were performed to evaluate mechanical and thermal hyperalgesia, cold allodynia, the functional activity of the front paw, and exploratory locomotion after the treatments. The peripheral blood samples were collected 6 h after the treatments and a comet assay was performed. The spinal cord was removed for the lipoperoxidation dosing of the membranes. The cerebrospinal fluid was analyzed for the dosage of glutamate. The recombinant peptide showed an antinociceptive effect when compared to the other drugs, without affecting the locomotor activity of the animals. Mechanical and thermal hyperalgesia, as well as cold allodynia, were reduced in the first hours of treatment. The levels of glutamate and the damage by membrane lipoperoxidation were shown to be improved, and genotoxicity was not demonstrated. In a scenario of therapeutical failures in the treatment of this type of pain, CTK 01512-2 was shown as a new effective alternative protocol. However, further testing is required to determine pharmacokinetics.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Eliane Dallegrave
- Department of Pharmacoscience, University Federal of Science of Health of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Norma Possa Marroni
- Laboratory of Oxidative Stress and Antioxidants, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Elizangela Schemitt
- Laboratory of Oxidative Stress and Antioxidants, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alice Gomes Ferraz
- Laboratory of Pharmacology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Marcus Vinicius Gomez
- Nucleus of Postgraduation, Institute of Teaching and Research of Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Alessandra Hubner de Souza
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| |
Collapse
|
32
|
Chao YK, Chang SY, Grimm C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev Physiol Biochem Pharmacol 2020; 185:259-276. [PMID: 32748124 DOI: 10.1007/112_2020_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.
Collapse
Affiliation(s)
- Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
33
|
Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J, Wan J. The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges. Front Pharmacol 2019; 10:1253. [PMID: 31680989 PMCID: PMC6813932 DOI: 10.3389/fphar.2019.01253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a calcium-permeable nonselective cation channel in the plasma membrane that belongs to the transient receptor potential (TRP) channel superfamily. Recent studies have suggested that the TRPA1 channel plays an essential role in the development and progression of several cardiovascular conditions, such as atherosclerosis, heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, arrhythmia, vasodilation, and hypertension. Activation of the TRPA1 channel has a protective effect against the development of atherosclerosis. Furthermore, TRPA1 channel activation elicits peripheral vasodilation and induces a biphasic blood pressure response. However, loss of channel expression or blockade of its activation suppressed heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, and arrhythmia. In this paper, we review recent research progress on the TRPA1 channel and discuss its potential role in the cardiovascular system.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
34
|
Ca 2+-independent but voltage-dependent quantal catecholamine secretion (CiVDS) in the mammalian sympathetic nervous system. Proc Natl Acad Sci U S A 2019; 116:20201-20209. [PMID: 31530723 DOI: 10.1073/pnas.1902444116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Action potential-induced vesicular exocytosis is considered exclusively Ca2+ dependent in Katz's Ca2+ hypothesis on synaptic transmission. This long-standing concept gets an exception following the discovery of Ca2+-independent but voltage-dependent secretion (CiVDS) and its molecular mechanisms in dorsal root ganglion sensory neurons. However, whether CiVDS presents only in sensory cells remains elusive. Here, by combining multiple independent recordings, we report that [1] CiVDS robustly presents in the sympathetic nervous system, including sympathetic superior cervical ganglion neurons and slice adrenal chromaffin cells, [2] uses voltage sensors of Ca2+ channels (N-type and novel L-type), and [3] contributes to catecholamine release in both homeostatic and fight-or-flight like states; [4] CiVDS-mediated catecholamine release is faster than that of Ca2+-dependent secretion at the quantal level and [5] increases Ca2+ currents and contractility of cardiac myocytes. Together, CiVDS presents in the sympathetic nervous system with potential physiological functions, including cardiac muscle contractility.
Collapse
|
35
|
Computational Drug Repurposing Algorithm Targeting TRPA1 Calcium Channel as a Potential Therapeutic Solution for Multiple Sclerosis. Pharmaceutics 2019; 11:pharmaceutics11090446. [PMID: 31480671 PMCID: PMC6781306 DOI: 10.3390/pharmaceutics11090446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS) through neurodegeneration and demyelination, leading to physical/cognitive disability and neurological defects. A viable target for treating MS appears to be the Transient Receptor Potential Ankyrin 1 (TRPA1) calcium channel, whose inhibition has been shown to have beneficial effects on neuroglial cells and protect against demyelination. Using computational drug discovery and data mining methods, we performed an in silico screening study combining chemical graph mining, quantitative structure-activity relationship (QSAR) modeling, and molecular docking techniques in a global prediction model in order to identify repurposable drugs as potent TRPA1 antagonists that may serve as potential treatments for MS patients. After screening the DrugBank database with the combined generated algorithm, 903 repurposable structures were selected, with 97 displaying satisfactory inhibition probabilities and pharmacokinetics. Among the top 10 most probable inhibitors of TRPA1 with good blood brain barrier (BBB) permeability, desvenlafaxine, paliperidone, and febuxostat emerged as the most promising repurposable agents for treating MS. Molecular docking studies indicated that desvenlafaxine, paliperidone, and febuxostat are likely to induce allosteric TRPA1 channel inhibition. Future in vitro and in vivo studies are needed to confirm the biological activity of the selected hit molecules.
Collapse
|
36
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
37
|
Zhang X, Hu M, Yang Y, Xu H. Organellar TRP channels. Nat Struct Mol Biol 2018; 25:1009-1018. [PMID: 30374082 DOI: 10.1038/s41594-018-0148-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Mammalian transient receptor potential (TRP) channels mediate Ca2+ flux and voltage changes across membranes in response to environmental and cellular signals. At the plasma membrane, sensory TRPs act as neuronal detectors of physical and chemical environmental signals, and receptor-operated (metabotropic) TRPs decode extracellular neuroendocrine cues to control body homeostasis. In intracellular membranes, such as those in lysosomes, organellar TRPs respond to compartment-derived signals to control membrane trafficking, signal transduction, and organelle function. Complementing mouse and human genetics and high-resolution structural approaches, physiological studies employing natural agonists and synthetic inhibitors have become critical in resolving the in vivo functions of metabotropic, sensory, and organellar TRPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Kee Z, Kodji X, Brain SD. The Role of Calcitonin Gene Related Peptide (CGRP) in Neurogenic Vasodilation and Its Cardioprotective Effects. Front Physiol 2018; 9:1249. [PMID: 30283343 PMCID: PMC6156372 DOI: 10.3389/fphys.2018.01249] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/05/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a highly potent vasoactive peptide released from sensory nerves, which is now proposed to have protective effects in several cardiovascular diseases. The major α-form is produced from alternate splicing and processing of the calcitonin gene. The CGRP receptor is a complex composed of calcitonin like receptor (CLR) and a single transmembrane protein, RAMP1. CGRP is a potent vasodilator and proposed to have protective effects in several cardiovascular diseases. CGRP has a proven role in migraine and selective antagonists and antibodies are now reaching the clinic for treatment of migraine. These clinical trials with antagonists and antibodies indicate that CGRP does not play an obvious role in the physiological control of human blood pressure. This review discusses the vasodilator and hypotensive effects of CGRP and the role of CGRP in mediating cardioprotective effects in various cardiovascular models and disorders. In models of hypertension, CGRP protects against the onset and progression of hypertensive states by potentially counteracting against the pro-hypertensive systems such as the renin-angiotensin-aldosterone system (RAAS) and the sympathetic system. With regards to its cardioprotective effects in conditions such as heart failure and ischaemia, CGRP-containing nerves innervate throughout cardiac tissue and the vasculature, where evidence shows this peptide alleviates various aspects of their pathophysiology, including cardiac hypertrophy, reperfusion injury, cardiac inflammation, and apoptosis. Hence, CGRP has been suggested as a cardioprotective, endogenous mediator released under stress to help preserve cardiovascular function. With the recent developments of various CGRP-targeted pharmacotherapies, in the form of CGRP antibodies/antagonists as well as a CGRP analog, this review provides a summary and a discussion of the most recent basic science and clinical findings, initiating a discussion on the future of CGRP as a novel target in various cardiovascular diseases.
Collapse
Affiliation(s)
- Zizheng Kee
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Xenia Kodji
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Susan D Brain
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Selective killing of proinflammatory synovial fibroblasts via activation of transient receptor potential ankyrin (TRPA1). Biochem Pharmacol 2018; 154:293-302. [PMID: 29803505 DOI: 10.1016/j.bcp.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies in rheumatoid arthritis synovial fibroblasts (RASF) demonstrated the expression of several transient receptor potential channels (TRP) such as TRPV1, TRPV2, TRPV4, TRPA1 and TRPM8. Upon ligation, these receptors increase intracellular calcium but they have also been linked to modulation of inflammation in several cell types. TNF was shown to increase the expression of TRPA1, the receptor for mustard oil and environmental poisons in SF, but the functional consequences have not been investigated yet. METHODS TRPA1 was detected by immunocytochemistry, western blot and cell-based ELISA. Calcium measurements were conducted in a multimode reader. Cell viability was assessed by quantification of lactate dehydrogenase (LDH) in culture supernatants and "RealTime-Glo" luminescent assays. IL-6 and IL-8 production by SF was quantified by ELISA. Proliferation was determined by cell titer blue incorporation. RESULTS After 72 h, mimicking proinflammatory conditions by the innate cytokine TNF up-regulated TRPA1 protein levels in RASF which was accompanied by increased sensitivity to TRPA1 agonists AITC and polygodial. Under unstimulated conditions, polygodial elicited calcium flux only in the highest concentrations used (50 µM and 25 µM). TNF preincubation substantially lowered the activation threshold for polygodial (from 25 µM to 1 µM). In the absence of TNF pre-stimulation, only polygodial in high concentrations was able to reduce viability of synovial fibroblasts as determined by a real-time viability assay. However, following TNF preincubation, stimulation of TRPA1 led to a fast (<30 min) viability loss by necrosis of synovial fibroblasts. TRPA1 activation was also associated with decreased proliferation of RASFs, an effect that was also substantially enhanced by TNF preincubation. On the functional level, IL-6 and IL-8 production was attenuated by the TRPA1 antagonist A967079 but also polygodial, although the latter mediated this effect by reducing cell viability. CONCLUSION Simulating inflamed conditions by preincubation of synovial fibroblasts with TNF up-regulates and sensitizes TRPA1. Subsequent activation of TRPA1 increases calcium flux and substantially reduces cell viability by inducing necrosis. Since TRPA1 agonists in the lower concentration range only show effects in TNF-stimulated RASF, this cation channel might be an attractive therapeutic target in chronic inflammation to selectively reduce the activity of proinflammatory SF in the joint.
Collapse
|
40
|
Abstract
Lysosomes support diverse cellular functions by acting as sites of macromolecule degradation and nutrient recycling. The degradative abilities of lysosomes are conferred by a lumen that is characterized by an acidic pH and which contains numerous hydrolases that support the breakdown of major cellular macromolecules to yield cellular building blocks (amino acids, nucleic acids, sugars, lipids and metals) that are transported into the cytoplasm for their re-use. In addition to these important hydrolytic and recycling functions, lysosomes also serve as a signaling platform that integrates nutrient and metabolic cues to control signaling via the mTORC1 pathway. Due to their extreme longevity, polarity, demands of neurotransmission and metabolic activity, neurons are particularly sensitive to perturbations in lysosome function. The dependence of neurons on optimal lysosome function is highlighted by insights from human genetics that link lysosome dysfunction to a wide range of both rare and common neurological diseases. How then is lysosome function adapted to the unique demands of neurons? This review will focus on the roles played by lysosomes in distinct neuronal sub-compartments, the regulation of neuronal lysosome sub-cellular localization and the implications of such neuronal lysosome regulation for both physiology and disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
41
|
Abstract
Cells utilize calcium ions (Ca2+) to signal almost all aspects of cellular life, ranging from cell proliferation to cell death, in a spatially and temporally regulated manner. A key aspect of this regulation is the compartmentalization of Ca2+ in various cytoplasmic organelles that act as intracellular Ca2+ stores. Whereas Ca2+ release from the large-volume Ca2+ stores, such as the endoplasmic reticulum (ER) and Golgi apparatus, are preferred for signal transduction, Ca2+ release from the small-volume individual vesicular stores that are dispersed throughout the cell, such as lysosomes, may be more useful in local regulation, such as membrane fusion and individualized vesicular movements. Conceivably, these two types of Ca2+ stores may be established, maintained or refilled via distinct mechanisms. ER stores are refilled through sustained Ca2+ influx at ER-plasma membrane (PM) membrane contact sites (MCSs). In this review, we discuss the release and refilling mechanisms of intracellular small vesicular Ca2+ stores, with a special focus on lysosomes. Recent imaging studies of Ca2+ release and organelle MCSs suggest that Ca2+ exchange may occur between two types of stores, such that the small stores acquire Ca2+ from the large stores via ER-vesicle MCSs. Hence vesicular stores like lysosomes may be viewed as secondary Ca2+ stores in the cell.
Collapse
|
42
|
Patel S. Ins and outs of Ca 2+ transport by acidic organelles and cell migration. Commun Integr Biol 2018. [PMCID: PMC5824967 DOI: 10.1080/19420889.2017.1331800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Much contemporary evidence underscores the pathophysiological importance of Ca2+ handling by acidic organelles such as lysosomes. Whereas our knowledge of how Ca2+ is released from these acidic Ca2+ stores (the ‘outs’) is advancing, we know relatively little about how Ca2+ uptake is effected (the ‘ins’). Here I highlight new work identifying animal Ca2+/H+ (CAX) exchangers that localize to acidic organelles, mediate Ca2+ uptake and regulate cell migration in vivo. Continued molecular definition of the acidic Ca2+ store toolkit provides new insight into Ca2+-dependent function.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
43
|
Stueber T, Eberhardt MJ, Caspi Y, Lev S, Binshtok A, Leffler A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium 2017; 68:34-44. [PMID: 29129206 DOI: 10.1016/j.ceca.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022]
Abstract
Several members of the transient receptor channel (TRP) family can mediate a calcium-dependent cytotoxicity. In sensory neurons, vanilloids like capsaicin induce neurotoxicity by activating TRPV1. The closely related ion channel TRPA1 is also activated by irritants, but it is unclear if and how TRPA1 mediates cell death. In the present study we explored cytotoxicity and intracellular calcium signalling resulting from activation of TRPV1 and TRPA1, either heterologously expressed in HEK 293 cells or in native mouse dorsal root ganglion (DRG) neurons. While activation of TRPV1 by the vanilloids capsaicin, resiniferatoxin and anandamide results in calcium-dependent cell death, activation by protons and the oxidant chloramine-T failed to reduce cell viability. The TRPA1-agonists acrolein, carvacrol and capsazepine all induced cytotoxicity, but this effect is independent of TRPA1. Activation of both TRPA1 and TRPV1 triggers a strong influx of external calcium, but also a strong calcium-release from intracellular stores most likely including the endoplasmic reticulum (ER). Activation of TRPV1, but not TRPA1 also results in a strong increase of mitochondrial calcium both in HEK 293 cells and mouse DRG neurons. Our data demonstrate that activation of TRPV1, but not TRPA1 mediates a calcium-dependent cell death. While both receptors mediate a release of calcium from intracellular stores, only activation of TRPV1 seems to mediate a robust and probably lethal increase in mitochondrial calcium.
Collapse
Affiliation(s)
- Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Mirjam J Eberhardt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
44
|
Wang Y, Wu Q, Hu M, Liu B, Chai Z, Huang R, Wang Y, Xu H, Zhou L, Zheng L, Wang C, Zhou Z. Ligand- and voltage-gated Ca2+channels differentially regulate the mode of vesicular neuropeptide release in mammalian sensory neurons. Sci Signal 2017. [DOI: 10.1126/scisignal.aal1683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
46
|
Yang C, Wang X. Cell biology in China: Focusing on the lysosome. Traffic 2017; 18:348-357. [DOI: 10.1111/tra.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, and School of Life Sciences; Yunnan University; Kunming China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Xiaochen Wang
- State Key Laboratory of Biomolecules, Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
47
|
Affiliation(s)
- Zuying Chai
- a Center for Mitochondrial Biology and Medicine , The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China.,b State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine , Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University , Beijing , China
| | - Yang Chen
- a Center for Mitochondrial Biology and Medicine , The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Changhe Wang
- a Center for Mitochondrial Biology and Medicine , The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China.,b State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine , Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University , Beijing , China
| |
Collapse
|
48
|
Abstract
The ion channel TRPA1 detects noxious stimuli at the plasma membrane of neurons and elicits pain and inflammation. In this issue, Shang et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201603081) report that TRPA1 also localizes to lysosomal membranes of neurons, releasing intracellular Ca2+ to trigger vesicle exocytosis and neuropeptide release.
Collapse
Affiliation(s)
- Mingxue Gu
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Haoxing Xu
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
49
|
Abstract
Lysosomes are key acidic Ca2+ stores. The principle Ca2+-permeable channels of the lysosome are TRP mucolipins (TRPMLs) and NAADP-regulated two-pore channels (TPCs). Recent studies, reviewed in this collection, have linked numerous neurodegenerative diseases to both gain and loss of function of TRPMLs/TPCs, as well as to defects in acidic Ca2+ store content. These diseases span rare lysosomal storage disorders such as Mucolipidosis Type IV and Niemann-Pick disease, type C, through to more common ones such as Alzheimer and Parkinson disease. Cellular phenotypes, underpinned by endo-lysosomal trafficking defects, are reversed by chemical or molecular targeting of TRPMLs and TPCs. Lysosomal Ca2+ channels therefore emerge as potential druggable targets in combatting neurodegeneration.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT
| |
Collapse
|
50
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|