1
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
2
|
Sun Y, Liu W, Luo B. Virus infection participates in the occurrence and development of human diseases through monoamine oxidase. Rev Med Virol 2023; 33:e2465. [PMID: 37294534 DOI: 10.1002/rmv.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Monoamine oxidase (MAO) is a membrane-bound mitochondrial enzyme that maintains the steady state of neurotransmitters and other biogenic amines in biological systems through catalytic oxidation and deamination. MAO dysfunction is closely related to human neurological and psychiatric diseases and cancers. However, little is known about the relationship between MAO and viral infections in humans. This review summarises current research on how viral infections participate in the occurrence and development of human diseases through MAO. The viruses discussed in this review include hepatitis C virus, dengue virus, severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, Japanese encephalitis virus, Epstein-Barr virus, and human papillomavirus. This review also describes the effects of MAO inhibitors such as phenelzine, clorgyline, selegiline, M-30, and isatin on viral infectious diseases. This information will not only help us to better understand the role of MAO in the pathogenesis of viruses but will also provide new insights into the treatment and diagnosis of these viral diseases.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Isolating Mitochondria, Mitoplasts, and mtDNA from Cultured Mammalian Cells. Methods Mol Biol 2023; 2615:17-30. [PMID: 36807781 DOI: 10.1007/978-1-0716-2922-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mitochondria are double membrane-bound eukaryotic organelles with roles in a range of cellular activities including energy conversion, apoptosis, cell signalling, and the biosynthesis of enzyme cofactors. Mitochondria contain their own genome, called mtDNA, which encodes subunits of the oxidative phosphorylation machinery as well as the rRNA and tRNA molecules required for their translation within mitochondria. The ability to isolate highly purified mitochondria from cells has been instrumental in a number of studies of mitochondrial function. Differential centrifugation is a long-established method for the isolation of mitochondria. Cells are subjected to osmotic swelling and disruption, followed by centrifugation in isotonic sucrose solutions to separate mitochondria from other cellular components. We present a method using this principle for the isolation of mitochondria from cultured mammalian cell lines. Mitochondria purified by this method can be further fractionated to investigate protein localization, or act as a starting point to purify mtDNA.
Collapse
|
5
|
Bassot A, Morio B, Bortoli S, Coumoul X. Le B-A-BA de la mitochondrie, une cheffe d’orchestre intracellulaire très dynamique. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
7
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Rudin D, Liechti ME, Luethi D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp Neurol 2021; 343:113778. [PMID: 34090893 DOI: 10.1016/j.expneurol.2021.113778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Applied Physics, TU Wien, Vienna, Austria.
| |
Collapse
|
9
|
Mitochondria as a Source and a Target for Uremic Toxins. Int J Mol Sci 2019; 20:ijms20123094. [PMID: 31242575 PMCID: PMC6627204 DOI: 10.3390/ijms20123094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023] Open
Abstract
Elucidation of molecular and cellular mechanisms of the uremic syndrome is a very challenging task. More than 130 substances are now considered to be "uremic toxins" and represent a very diverse group of molecules. The toxicity of these molecules affects many cellular processes, and expectably, some of them are able to disrupt mitochondrial functioning. However, mitochondria can be the source of uremic toxins as well, as the mitochondrion can be the site of complete synthesis of the toxin, whereas in some scenarios only some enzymes of the pathway of toxin synthesis are localized here. In this review, we discuss the role of mitochondria as both the target and source of pathological processes and toxic compounds during uremia. Our analysis revealed about 30 toxins closely related to mitochondria. Moreover, since mitochondria are key regulators of cellular redox homeostasis, their functioning might directly affect the production of uremic toxins, especially those that are products of oxidation or peroxidation of cellular components, such as aldehydes, advanced glycation end-products, advanced lipoxidation end-products, and reactive carbonyl species. Additionally, as a number of metabolic products can be degraded in the mitochondria, mitochondrial dysfunction would therefore be expected to cause accumulation of such toxins in the organism. Alternatively, many uremic toxins (both made with the participation of mitochondria, and originated from other sources including exogenous) are damaging to mitochondrial components, especially respiratory complexes. As a result, a positive feedback loop emerges, leading to the amplification of the accumulation of uremic solutes. Therefore, uremia leads to the appearance of mitochondria-damaging compounds, and consecutive mitochondrial damage causes a further rise of uremic toxins, whose synthesis is associated with mitochondria. All this makes mitochondrion an important player in the pathogenesis of uremia and draws attention to the possibility of reducing the pathological consequences of uremia by protecting mitochondria and reducing their role in the production of uremic toxins.
Collapse
|
10
|
Jones HBL, Crean RM, Mullen A, Kendrick EG, Bull SD, Wells SA, Carbery DR, MacMillan F, van der Kamp MW, Pudney CR. Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry 2019; 58:2362-2372. [PMID: 30964996 DOI: 10.1021/acs.biochem.9b00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.
Collapse
Affiliation(s)
| | | | - Anna Mullen
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | | | | | | | | | - Fraser MacMillan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Marc W van der Kamp
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | | |
Collapse
|
11
|
Monoamine Oxidase-Related Vascular Oxidative Stress in Diseases Associated with Inflammatory Burden. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8954201. [PMID: 31178977 PMCID: PMC6501417 DOI: 10.1155/2019/8954201] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022]
Abstract
Monoamine oxidases (MAO) with 2 isoforms, A and B, located at the outer mitochondrial membrane are flavoenzyme membranes with a major role in the metabolism of monoaminergic neurotransmitters and biogenic amines in the central nervous system and peripheral tissues, respectively. In the process of oxidative deamination, aldehydes, hydrogen peroxide, and ammonia are constantly generated as potential deleterious by-products. While being systematically studied for decades as sources of reactive oxygen species in brain diseases, compelling evidence nowadays supports the role of MAO-related oxidative stress in cardiovascular and metabolic pathologies. Indeed, oxidative stress and chronic inflammation are the most common pathomechanisms of the main noncommunicable diseases of our century. MAO inhibition with the new generation of reversible and selective drugs has recently emerged as a pharmacological strategy aimed at mitigating both processes. The aim of this minireview is to summarize available information regarding the contribution of MAO to the vascular oxidative stress and endothelial dysfunction in hypertension, metabolic disorders, and chronic kidney disease, all conditions associated with increased inflammatory burden.
Collapse
|
12
|
Abstract
Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson's disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.
Collapse
Affiliation(s)
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Chamoli M, Chinta SJ, Andersen JK. An inducible MAO-B mouse model of Parkinson’s disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. J Neural Transm (Vienna) 2018; 125:1651-1658. [DOI: 10.1007/s00702-018-1887-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
|
14
|
Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018; 12:161. [PMID: 29593491 PMCID: PMC5861202 DOI: 10.3389/fnins.2018.00161] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic concentrations of dopamine and calcium ions. Here we review the evidence for the multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate synergistic interactions between aSyn, calcium ions and dopamine that may lead to imbalanced protein turnover and selective susceptibility of these neurons. We conclude that decreasing the levels of any one of these toxicity mediators can be beneficial for the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug interventions aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Michael R Post
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Ori J Lieberman
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Eugene V Mosharov
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Tomaru M, Ohsako T, Watanabe M, Juni N, Matsubayashi H, Sato H, Takahashi A, Yamamoto MT. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster. G3 (BETHESDA, MD.) 2018; 8:149-160. [PMID: 29158336 PMCID: PMC5765343 DOI: 10.1534/g3.117.300171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps) of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611 Thus, shps may define a new class of gene responsible for sperm storage.
Collapse
Affiliation(s)
- Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Takashi Ohsako
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Naoto Juni
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiroshi Matsubayashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiromi Sato
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Ayako Takahashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masa-Toshi Yamamoto
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| |
Collapse
|
16
|
Wilson BA, Cruz-Diaz N, Su Y, Rose JC, Gwathmey TM, Chappell MC. Angiotensinogen import in isolated proximal tubules: evidence for mitochondrial trafficking and uptake. Am J Physiol Renal Physiol 2016; 312:F879-F886. [PMID: 27903492 PMCID: PMC5451555 DOI: 10.1152/ajprenal.00246.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
The renal proximal tubules are a key functional component of the kidney and express the angiotensin precursor angiotensinogen; however, it is unclear the extent that tubular angiotensinogen reflects local synthesis or internalization. Therefore, the current study established the extent to which angiotensinogen is internalized by proximal tubules and the intracellular distribution. Proximal tubules were isolated from the kidney cortex of male sheep by enzymatic digestion and a discontinuous Percoll gradient. Tubules were incubated with radiolabeled 125I-angiotensinogen for 2 h at 37°C in serum/phenol-free DMEM/F12 media. Approximately 10% of exogenous 125I-angiotensinogen was internalized by sheep tubules. Subcellular fractionation revealed that 21 ± 4% of the internalized 125I-angiotensinogen associated with the mitochondrial fraction with additional labeling evident in the nucleus (60 ± 7%), endoplasmic reticulum (4 ± 0.5%), and cytosol (15 ± 4%; n = 4). Subsequent studies determined whether mitochondria directly internalized 125I-angiotensinogen using isolated mitochondria from renal cortex and human HK-2 proximal tubule cells. Sheep cortical and HK-2 mitochondria internalized 125I-angiotensinogen at a comparable rate of (33 ± 9 vs. 21 ± 10 pmol·min-1·mg protein-1; n = 3). Lastly, unlabeled angiotensinogen (100 nM) competed for 125I-angiotensinogen uptake to a greater extent than human albumin in HK-2 mitochondria (60 ± 2 vs. 16 ± 13%; P < 0.05, n = 3). Collectively, our data demonstrate angiotensinogen import and subsequent trafficking to the mitochondria in proximal tubules. We conclude that this pathway may constitute a source of the angiotensinogen precursor for the mitochondrial expression of angiotensin peptides.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Nildris Cruz-Diaz
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Yixin Su
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
17
|
Du Y, Long Q, Zhang L, Shi Y, Liu X, Li X, Guan B, Tian Y, Wang X, Li L, He D. Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int J Oncol 2015; 47:2064-72. [PMID: 26499200 PMCID: PMC4665143 DOI: 10.3892/ijo.2015.3202] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key determinants in the malignant progression of cancer, supporting tumorigenesis and metastasis. CAFs also mediate epithelial to mesenchymal transition (EMT) in tumor cells and their achievement of stem cell traits. Curcumin has recently been found to possess anticancer activities via its effect on a variety of biological pathways involved in cancer progression. In this study, we found that CAFs could induce prostate cancer cell EMT and invasion through a monoamine oxidase A (MAOA)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway, which exploits reactive oxygen species (ROS) to drive a migratory and aggressive phenotype of prostate carcinoma cells. Moreover, CAFs was able to increase CXC chemokine receptor 4 (CXCR4) and interleukin-6 (IL-6) receptor expression in prostate cancer cells. However, curcumin abrogated CAF-induced invasion and EMT, and inhibited ROS production and CXCR4 and IL-6 receptor expression in prostate cancer cells through inhibiting MAOA/mTOR/HIF-1α signaling, thereby supporting the therapeutic effect of curcumin in prostate cancer.
Collapse
Affiliation(s)
- Yuefeng Du
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Qingzhi Long
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Lin Zhang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ying Shi
- Department of Urology, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xioagang Liu
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xudong Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Bin Guan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yanchao Tian
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Lei Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
18
|
Rashed E, Lizano P, Dai H, Thomas A, Suzuki CK, Depre C, Qiu H. Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One 2015; 10:e0119537. [PMID: 25746286 PMCID: PMC4352051 DOI: 10.1371/journal.pone.0119537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives Stress-inducible heat shock protein 22 (Hsp22) confers protection against ischemia through induction of the inducible isoform of nitric oxide synthase (iNOS). Hsp22 overexpression in vivo stimulates cardiac mitochondrial respiration, whereas Hsp22 deletion in vivo significantly reduces respiration. We hypothesized that Hsp22-mediated regulation of mitochondrial function is dependent upon its mitochondrial translocation together with iNOS. Methods and Results Adenoviruses harboring either the full coding sequence of Hsp22 (Ad-WT-Hsp22) or a mutant lacking a N-terminal 20 amino acid putative mitochondrial localization sequence (Ad-N20-Hsp22) were generated, and infected in rat neonatal cardiomyocytes. Compared to β-Gal control, WT-Hsp22 accumulated in mitochondria by 2.5 fold (P<0.05) and increased oxygen consumption rates by 2-fold (P<0.01). This latter effect was abolished upon addition of the selective iNOS inhibitor, 1400W. Ad-WT-Hsp22 significantly increased global iNOS expression by about 2.5-fold (P<0.01), and also increased iNOS mitochondrial localization by 4.5 fold vs β-gal (P<0.05). Upon comparable overexpression, the N20-Hsp22 mutant did not show significant mitochondrial translocation or stimulation of mitochondrial respiration. Moreover, although N20-Hsp22 did increase global iNOS expression by 4.6-fold, it did not promote iNOS mitochondrial translocation. Conclusion Translocation of both Hsp22 and iNOS to the mitochondria is necessary for Hsp22-mediated stimulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Eman Rashed
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Paulo Lizano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Huacheng Dai
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Andrew Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Carolyn K. Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Christophe Depre
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Hongyu Qiu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tiernan CT, Edwin EA, Hawong HY, Ríos-Cabanillas M, Goudreau JL, Atchison WD, Lookingland KJ. Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase. Toxicol Sci 2015; 144:347-56. [PMID: 25601988 DOI: 10.1093/toxsci/kfv001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The environmental neurotoxicant methylmercury (MeHg) disrupts dopamine (DA) neurochemical homeostasis by stimulating DA synthesis and release. Evidence also suggests that DA metabolism is independently impaired. The present investigation was designed to characterize the DA metabolomic profile induced by MeHg, and examine potential mechanisms by which MeHg inhibits the DA metabolic enzyme aldehyde dehydrogenase (ALDH) in rat undifferentiated PC12 cells. MeHg decreases the intracellular concentration of 3,4-dihydroxyphenylacetic acid (DOPAC). This is associated with a concomitant increase in intracellular concentrations of the intermediate metabolite 3,4-dihydroxyphenylaldehyde (DOPAL) and the reduced metabolic product 3,4-dihydroxyethanol. This metabolomic profile is consistent with inhibition of ALDH, which catalyzes oxidation of DOPAL to DOPAC. MeHg does not directly impair ALDH enzymatic activity, however MeHg depletes cytosolic levels of the ALDH cofactor NAD(+), which could contribute to impaired ALDH activity following exposure to MeHg. The observation that MeHg shunts DA metabolism along an alternative metabolic pathway and leads to the accumulation of DOPAL, a reactive species associated with protein and DNA damage, as well as cell death, is of significant consequence. As a specific metabolite of DA, the observed accumulation of DOPAL provides evidence for a specific mechanism by which DA neurons may be selectively vulnerable to MeHg.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Ethan A Edwin
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Hae-Young Hawong
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Mónica Ríos-Cabanillas
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - John L Goudreau
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - William D Atchison
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| | - Keith J Lookingland
- *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824 *Neuroscience Program, Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
20
|
Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2014; 78:1490-511. [PMID: 24490736 DOI: 10.1134/s0006297913130087] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.
Collapse
Affiliation(s)
- V G Grivennikova
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
21
|
Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W, Aichler M, Zischka H. Why to compare absolute numbers of mitochondria. Mitochondrion 2014; 19 Pt A:113-23. [PMID: 24969531 DOI: 10.1016/j.mito.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Abstract
Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.
Collapse
Affiliation(s)
- Sabine Schmitt
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Sabine Schulz
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Eva-Maria Schropp
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Alisha Simmons
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Wolfgang Beisker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology-Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| |
Collapse
|
22
|
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, Stiles BL, Zhau HE, Shih JC, Chung LWK. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908. [PMID: 24865426 DOI: 10.1172/jci70982] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Collapse
|
23
|
Guitart M, Osorio-Conles Ó, Pentinat T, Cebrià J, García-Villoria J, Sala D, Sebastián D, Zorzano A, Ribes A, Jiménez-Chillarón JC, García-Martínez C, Gómez-Foix AM. Fatty acid transport protein 1 (FATP1) localizes in mitochondria in mouse skeletal muscle and regulates lipid and ketone body disposal. PLoS One 2014; 9:e98109. [PMID: 24858472 PMCID: PMC4032244 DOI: 10.1371/journal.pone.0098109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/29/2014] [Indexed: 12/20/2022] Open
Abstract
FATP1 mediates skeletal muscle cell fatty acid import, yet its intracellular localization and metabolic control role are not completely defined. Here, we examine FATP1 localization and metabolic effects of its overexpression in mouse skeletal muscle. The FATP1 protein was detected in mitochondrial and plasma membrane fractions, obtained by differential centrifugation, of mouse gastrocnemius muscle. FATP1 was most abundant in purified mitochondria, and in the outer membrane and soluble intermembrane, but not in the inner membrane plus matrix, enriched subfractions of purified mitochondria. Immunogold electron microscopy localized FATP1-GFP in mitochondria of transfected C2C12 myotubes. FATP1 was overexpressed in gastrocnemius mouse muscle, by adenovirus-mediated delivery of the gene into hindlimb muscles of newborn mice, fed after weaning a chow or high-fat diet. Compared to GFP delivery, FATP1 did not alter body weight, serum fed glucose, insulin and triglyceride levels, and whole-body glucose tolerance, in either diet. However, fatty acid levels were lower and β-hydroxybutyrate levels were higher in FATP1- than GFP-mice, irrespective of diet. Moreover, intramuscular triglyceride content was lower in FATP1- versus GFP-mice regardless of diet, and β-hydroxybutyrate content was unchanged in high-fat-fed mice. Electroporation-mediated FATP1 overexpression enhanced palmitate oxidation to CO2, but not to acid-soluble intermediate metabolites, while CO2 production from β-hydroxybutyrate was inhibited and that from glucose unchanged, in isolated mouse gastrocnemius strips. In summary, FATP1 was localized in mitochondria, in the outer membrane and intermembrane parts, of mouse skeletal muscle, what may be crucial for its metabolic effects. Overexpressed FATP1 enhanced disposal of both systemic fatty acids and intramuscular triglycerides. Consistently, it did not contribute to the high-fat diet-induced metabolic dysregulation. However, FATP1 lead to hyperketonemia, likely secondary to the sparing of ketone body oxidation by the enhanced oxidation of fatty acids.
Collapse
Affiliation(s)
- Maria Guitart
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- * E-mail:
| | - Óscar Osorio-Conles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Thais Pentinat
- Hospital Sant Joan de Déu, Endocrinology, Esplugues, Barcelona, Spain
| | - Judith Cebrià
- Hospital Sant Joan de Déu, Endocrinology, Esplugues, Barcelona, Spain
| | - Judit García-Villoria
- Sección de Errores Congénitos del Metabolismo (IBC), Servicio de Bioquímica y Genética Molecular, Hospital Clínico, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain
| | - David Sala
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - David Sebastián
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Antonia Ribes
- Sección de Errores Congénitos del Metabolismo (IBC), Servicio de Bioquímica y Genética Molecular, Hospital Clínico, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain
| | | | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, UB, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna M. Gómez-Foix
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Institut de Biomedicina de la UB, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| |
Collapse
|
24
|
Masola B, Devlin TM. Intramitochondrial localization of alanine aminotransferase in rat-liver mitochondria: comparison with glutaminase and aspartate aminotransferase. Amino Acids 2013; 9:363-74. [PMID: 24178884 DOI: 10.1007/bf00807273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1995] [Accepted: 07/17/1995] [Indexed: 11/29/2022]
Abstract
The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- B Masola
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | | |
Collapse
|
25
|
Povelones ML, Tiengwe C, Gluenz E, Gull K, Englund PT, Jensen RE. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1. Mol Microbiol 2013; 87:713-29. [PMID: 23336702 DOI: 10.1111/mmi.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/01/2023]
Abstract
In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.
Collapse
Affiliation(s)
- Megan L Povelones
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chambers JW, Pachori A, Howard S, Iqbal S, LoGrasso PV. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats. J Biol Chem 2012; 288:4000-11. [PMID: 23258542 DOI: 10.1074/jbc.m112.406777] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To build upon recent findings that mitochondrial JNK signaling is inhibited by selectively blocking the interaction between JNK and Sab, we utilized a cell-permeable peptide to demonstrate that ischemia/reperfusion (I/R) injury could be protected in vivo and that JNK mitochondrial signaling was the mechanism by which reactive oxygen species (ROS) generation, mitochondrial dysfunction, and cardiomyocyte cell death occur. We also demonstrated that 5 mg/kg SR-3306 (a selective JNK inhibitor) was able to protect against I/R injury, reducing infarct volume by 34% (p < 0.05) while also decreasing I/R-induced increases in the activity of creatine phosphokinase and creatine kinase-MB. TUNEL staining showed that the percent TUNEL positive nuclei in rat hearts increased 10-fold after I/R injury and that this was reduced 4-fold (p < 0.01) by SR-3306. These data suggest that blocking JNK mitochondrial translocation or JNK inhibition prevents ROS increases and mitochondrial dysfunction and may be an effective treatment for I/R-induced cardiomyocyte death.
Collapse
Affiliation(s)
- Jeremy W Chambers
- Department of Molecular Therapeutics and the Translational Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | |
Collapse
|
27
|
Vasdev N, Sadovski O, Moran MD, Parkes J, Meyer JH, Houle S, Wilson AA. Development of new radiopharmaceuticals for imaging monoamine oxidase B. Nucl Med Biol 2011; 38:933-43. [DOI: 10.1016/j.nucmedbio.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/14/2011] [Accepted: 03/30/2011] [Indexed: 01/06/2023]
|
28
|
Chambers JW, Cherry L, Laughlin JD, Figuera-Losada M, LoGrasso PV. Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1). ACS Chem Biol 2011; 6:808-18. [PMID: 21563797 PMCID: PMC3158843 DOI: 10.1021/cb200062a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-jun N-terminal kinases (JNKs) are responsive to stress stimuli leading to activation of proapoptotic proteins and transcription. Additionally, JNK mitochondrial localization has been reported. To selectively target mitochondrial JNK signaling, we exploited JNK interaction with its mitochondrial scaffold, Sab, using small interfering RNAs (siRNAs) and a cell-permeable peptide corresponding to the KIM1 domain of Sab. Gene silencing and peptide interference of this interaction disrupted JNK translocation to the mitochondria and reduced phosphorylation of Bcl-2 without significant impact on c-Jun phosphorylation or AP-1 transcription. In contrast, the JNK inhibitory peptide (TI-JIP1) prevented these three functions. Tat-Sab(KIM1) selectivity was also demonstrated in anisomycin-stressed HeLa cells where Tat-Sab(KIM1) prevented Bcl-2 phosphorylation, cell death, loss of mitochondrial membrane potential, and superoxide generation but not c-Jun phosphorylation. Conversely, TI-JIP1 prevented all aforementioned stress-induced events. This probe introduces a means to evaluate JNK-mediated events on the mitochondria without intervening in nuclear functions of JNK.
Collapse
Affiliation(s)
- Jeremy W. Chambers
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Lisa Cherry
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - John D. Laughlin
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Mariana Figuera-Losada
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Philip V. LoGrasso
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| |
Collapse
|
29
|
Grube K, Rüdebusch J, Xu Z, Böckenholt T, Methner C, Müller T, Cuello F, Zimmermann K, Yang X, Felix SB, Cohen MV, Downey JM, Krieg T. Evidence for an intracellular localization of the adenosine A2B receptor in rat cardiomyocytes. Basic Res Cardiol 2011; 106:385-96. [PMID: 21246204 DOI: 10.1007/s00395-011-0151-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 11/26/2022]
Abstract
Protection achieved by ischemic preconditioning is dependent on A(2B) adenosine receptors (A(2B)AR) in rabbit and mouse hearts and, predictably, an A(2B)AR agonist protects them. But it is controversial whether cardiomyocytes themselves actually express A(2B)AR. The present study tested whether A(2B)AR could be demonstrated on rat cardiomyocytes. Isolated rat hearts experienced 30 min of ischemia and 120 min of reperfusion. The highly selective, cell-permeant A(2B)AR agonist BAY60-6583 (500 nM) infused at reperfusion reduced infarct size from 40.4 ± 2.0% of the risk zone in control hearts to 19.9 ± 2.8% indicating that A(2B)AR are protective in rat heart as well. Furthermore, BAY60-6583 reduced calcium-induced mitochondrial permeability transition in isolated rat cardiomyocytes. A(2B)AR protein could be demonstrated in isolated cardiomyocytes by western blotting. In addition, message for A(2B)AR was found in individual cardiomyocytes using quantitative RT-PCR. Surprisingly, immunofluorescence microscopy did not show A(2B)AR on the cardiomyocyte's sarcolemma but rather at intracellular sites. Co-staining with MitoTracker Red in isolated cardiomyocytes revealed A(2B)AR are localized to mitochondria. Western blot analysis of a mitochondrial fraction from either rat heart biopsies or isolated cardiomyocytes revealed a strong A(2B)AR band. Thus, the present study demonstrates that activation of A(2B)AR is strongly cardioprotective in rat heart and suppresses transition pores in isolated cardiomyocytes, and A(2B)AR are expressed in individual cardiomyocytes. However, surprisingly, A(2B)AR are present in or near mitochondria rather than on the sarcolemma as are other adenosine receptors. Because A(2B)AR signaling is thought to result in inhibition of mitochondrial transition pores, this convenient location may be important.
Collapse
Affiliation(s)
- Karina Grube
- Department of Cardiology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carabez A, Sandoval F. A MITOCHONDRIAL INNER MEMBRANE PREPARATION THAT SEDIMENTS AT 100 g. ACTA ACUST UNITED AC 2010; 62:877-81. [PMID: 19866789 DOI: 10.1083/jcb.62.3.877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Carabez
- Departamento de Biología Experimental and Departamento de Bioquímica, Instituto de Biología and Facultad de Medicina, Ciudad Universitaria, México 20, D.F., México
| | | |
Collapse
|
31
|
Cassady WE, Wagner RP. SEPARATION OF MITOCHONDRIAL MEMBRANES OF NEUROSPORA CRASSA: I. Localization of L-Kynurenine-3-Hydroxylase. ACTA ACUST UNITED AC 2010; 49:536-41. [PMID: 19866780 PMCID: PMC2108319 DOI: 10.1083/jcb.49.2.536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- W E Cassady
- Department of Zoology, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
32
|
Moyle WR, Jungas RL, Greep RO. Metabolism of free and esterified cholesterol by Leydig-cell tumour mitochondria. Biochem J 2010; 134:415-24. [PMID: 16742800 PMCID: PMC1177826 DOI: 10.1042/bj1340415] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1. Experiments were designed to localize intracellularly the enzymes and sterol substrates required for steroidogenesis in Leydig-cell tumours. Subcellular fractions were prepared by differential centrifugation of tumour homogenates. Both free and esterified cholesterol were associated primarily with the fractions sedimenting at 1400g(av.) and the lipid layer floating on the surface of the isolation tubes; they were not found in the mitochondria, where the conversion of cholesterol into pregnenolone occurred. 2. Hydrolysis of esterified cholesterol was required before it could be oxidized to pregnenolone. 3. An enzyme capable of hydrolysing cholesterol esters was located external to the mitochondria. 4. Mitochondria were subfractionated by allowing them to swell in 0.02m-phosphate buffer (pH7.2) and separating the inner and outer membranes by sedimentation in sucrose gradients. The outer membrane, identified by its content of monoamine oxidase, contained most of the cholesterol associated with the mitochondria. The inner membrane, identified by its content of succinate dehydrogenase, contained the cholesterol side-chain-cleaving enzyme and very little cholesterol. 5. Accumulation of sterols by the mitochondria was studied by incubating this fraction with labelled free and esterified cholesterol suspended in lipid-free bovine serum albumin. Two phases of cholesterol accumulation were observed. The first phase, requiring 10-15min, was independent of the incubation temperature, and was inhibited by the presence of bovine serum albumin in the incubation medium. The second phase of accumulation was independent of the serum albumin content of the medium but was inhibited by low incubation temperature. 6. Esterified cholesterol was not accumulated by the mitochondria after the initial rapid binding phase. 7. The findings suggest that cholesterol was not rapidly accumulated by the mitochondrial fraction in vitro and that mechanisms may be required to facilitate cholesterol transport into mitochondria in intact tumour cells during the periods in which steroidogenesis is stimulated maximally.
Collapse
Affiliation(s)
- W R Moyle
- Laboratory of Human Reproduction and Reproductive Biology and the Department of Biological Chemistry, Harvard Medical School, Boston, Mass. 02115, U.S.A
| | | | | |
Collapse
|
33
|
Radiosynthesis and in vivo evaluation of [11C]-labelled pyrrole-2-carboxamide derivates as novel radioligands for PET imaging of monoamine oxidase A. Nucl Med Biol 2010; 37:459-67. [DOI: 10.1016/j.nucmedbio.2009.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/17/2009] [Accepted: 09/28/2009] [Indexed: 11/21/2022]
|
34
|
Zhao Y, Herdegen T. Cerebral ischemia provokes a profound exchange of activated JNK isoforms in brain mitochondria. Mol Cell Neurosci 2009; 41:186-95. [DOI: 10.1016/j.mcn.2009.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 01/05/2023] Open
|
35
|
Zuurendonk PF, Tager JM. Rapid separation of particulate components and soluble cytoplasm of isolated rat-liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 333:393-9. [PMID: 19400050 DOI: 10.1016/0005-2728(74)90022-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A method is described for the rapid separation of mitochondria (plus other particulate components) from the soluble cytoplasm of isolated rat-liver cells. The cells were incubated briefly with a low concentration of digitonin. After rapid centrifugation, the pellet contained more than 90% of the total adenylate kinase and glutamate dehydrogenase activities and the supernatant at least 80% of the lactate dehydrogenase activity. About 60% of total adenine nucleotides in hepatocytes were found in the soluble cytoplasm. The ATP/ADP ratio in the particulate fraction 80 s after exposure to digitonin of hepatocytes metabolizing alanine was 2.0-2.4, and that in the soluble cytoplasm 6-19. In the presence of atractyloside, these values were 3.5-4.4 and 1.3-2.2, respectively.
Collapse
Affiliation(s)
- P F Zuurendonk
- Laboratory of Biochemistry, B.C.P. Jansen Institute, University of Amsterdam, Plantage Muidergracht 12, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Koes MT, Stasiw RO, Forrester LJ, Chattopadhyay SK, Bartling GJ, Cowan D, Brown HD. Characterization of solubilized cytochrome P-450. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 5:345-51. [PMID: 4149433 DOI: 10.1111/j.1399-3011.1973.tb02338.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Moltó E, Bonzón-Kulichenko E, Gallardo N, Andrés A. MTPA: A crustacean metallothionein that affects hepatopancreatic mitochondrial functions. Arch Biochem Biophys 2007; 467:31-40. [PMID: 17889825 DOI: 10.1016/j.abb.2007.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/21/2007] [Accepted: 08/15/2007] [Indexed: 11/30/2022]
Abstract
Metallothioneins are cysteine-rich proteins, with a high capacity to bind metallic ions, and for which a precise biological role has not been established. Here we investigated the effects of MTPA, a metallothionein from the lobster Panulirus argus, on mitochondrial oxygen consumption and ROS production. An HPLC-RP-ESI-MS analysis of recombinant MTPA showed that despite its extra Cys, MTPA binds 6 Zn2+ per molecule akin to other crustacean metallothioneins with 18 Cys. The extra Cys is not involved in zinc binding, since its side-chain would be oriented to the outside of the molecule according to a preliminary model of the tridimensional structure of MTPA. MTPA-Zn2+(6) is imported into the hepatopancreatic mitochondria intermembrane space and inhibits mitochondrial oxygen consumption, increasing thereby ROS production. Nevertheless, the stimulation of ROS production by MT-bound Zn2+ is weaker compared to equivalent amounts of free Zn2+, suggesting that MTPA protects against oxidative stress. This constitutes the first report on metallothioneins effects on mitochondrial function in invertebrates and agrees with the results described for mammals, suggesting a connection between metallothioneins and energy metabolism.
Collapse
Affiliation(s)
- Eduardo Moltó
- Biochemistry Section, Faculty of Chemistry, Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
38
|
Plotnikov EY, Kazachenko AV, Vyssokikh MY, Vasileva AK, Tcvirkun DV, Isaev NK, Kirpatovsky VI, Zorov DB. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int 2007; 72:1493-502. [PMID: 17914353 DOI: 10.1038/sj.ki.5002568] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reoxygenation following ischemia causes tissue oxidative stress. We studied the role of oxidative stress caused by kidney ischemia/reperfusion (I/R) on the mitochondria of renal tissue slices. I/R caused the mitochondria to be swollen, fragmented, and have lower membrane potential. The mitochondria generated more reactive oxygen species (ROS) and nitric oxide (NO) in situ as measured by fluorescence of ROS- and NO-sensitive probes. Infusion of lithium ion, an inhibitor of glycogen kinase synthase-3, caused phosphorylation of its Ser-9 and restored the membrane potential and decreased ROS production of the mitochondrial fraction. Ischemic kidney and hypoxic rat preconditioning improved mitochondrial membrane potential and lowered ROS production caused by subsequent I/R similar to lithium ion infusion. Preconditioning normalized NO production in mitochondria as well. The drop in the mitochondrial membrane potential was prevented by NO synthase inhibition, demonstrating a strong contribution of NO to changes in mitochondrial energy metabolism during the I/R transition. Mitochondria in the I/R-stressed kidney contained less cytochrome c and more pro-apoptotic Bax, consistent with apoptotic degradation.
Collapse
Affiliation(s)
- E Y Plotnikov
- Laboratory of Mitochondrial Structure and Functions, AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Erickson DA, Hollfelder S, Tenge J, Gohdes M, Burkhardt JJ, Krieter PA. In vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human. Drug Metab Dispos 2007; 35:2232-41. [PMID: 17881661 DOI: 10.1124/dmd.107.016055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The in vitro metabolism of [(14)C]bicifadine by hepatic microsomes and hepatocytes from mouse, rat, monkey, and human was compared using radiometric high-performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Two main metabolic pathways were identified in all four species. One pathway was an NADPH-dependent pathway in which the methyl group was oxidized to form a hydroxymethyl metabolite (M2). Its formation was inhibited in human microsomes only by quinidine, a CYP2D6 inhibitor. In incubations with individual cDNA-expressed human cytochromes P450, M2 was formed only by CYP2D6 and CYP1A2, with CYP2D6 activity 6-fold greater than that of CYP1A2. M2 was oxidized further to the carboxylic acid metabolite (M3) by hepatocytes from all four species. The second major metabolic pathway was an NADPH-independent oxidation at the C2 position of the pyrrolidine ring, forming a lactam metabolite (M12). This reaction was almost completely inhibited in human hepatic microsomes and mitochondria by the monoamine oxidase (MAO)-B-specific inhibitor selegiline. Clorgyline, a specific inhibitor of MAO-A, was less effective in inhibiting M12 formation. Other metabolic pathways of variable significance among the four species included the formation of carbamoyl-O-glucuronide, hydroxymethyl lactam, and carboxyl lactam. Overall, the data indicate that the primary enzymes responsible for the primary metabolism of bicifadine in humans are MAO-B and CYP2D6.
Collapse
Affiliation(s)
- David A Erickson
- Department of Drug Metabolism, Covance Laboratories Inc, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang J, Qi S, Cheng W, Li L, Wang F, Li YZ, Zhang SP. Identification, expression and tissue distribution of a renalase homologue from mouse. Mol Biol Rep 2007; 35:613-20. [PMID: 17846919 DOI: 10.1007/s11033-007-9131-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/14/2007] [Indexed: 11/25/2022]
Abstract
FAD (flavin adenine dinucleotide)-dependent monoamine oxidases play very important roles in many biological processes. A novel monoamine oxidase, named renalase, has been identified in human kidney recently and is found to be markedly reduced in patients with end-stage renal disease (ESRD). Here, we reported the identification of a renalase homologue from mouse, termed mMAO-C (mouse monoamine oxidase-C) after the monoamine oxidase-A and -B (MAO-A and -B). This gene locates on the mouse chromosome 19C1 and its coding region spans 7 exons. The deuced amino acid sequences were predicted to contain a typical secretive signal peptide and a conserved amine oxidase domain. Phylogenetic analysis and multiple sequences alignment indicated that mMAO-C-like sequences exist in all examined species and share significant similarities. This gene has been submitted to the NCBI GenBank database (Accession number: DQ788834). With expression vectors generated from the cloned mMAO-C gene, exogenous protein was effectively expressed in both prokaryotic and eukaryotic cells. Recombinant mMAO-C protein was secreted out of human cell lines, indicating the biological function of its signal peptide. Moreover, tissue expression pattern analysis revealed that mMAO-C gene is predominantly expressed in the mouse kidney and testicle, which implies that kidney and testicle are the main sources of renalase secretion. Shortly, this study provides an insight into understanding the physiological and biological functions of mMAO-C and its homologues in endocrine.
Collapse
Affiliation(s)
- Jian Wang
- Laboratory for Functional Genomic Research, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
42
|
Bello RI, Gómez-Díaz C, Burón MI, Navas P, Villalba JM. Differential regulation of hepatic apoptotic pathways by dietary olive and sunflower oils in the aging rat. Exp Gerontol 2006; 41:1174-84. [PMID: 17049786 DOI: 10.1016/j.exger.2006.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022]
Abstract
In this work we have studied how dietary fat affects aging-related changes in a number of factors that regulate rat hepatic apoptosis. Animals were fed lifelong with two experimental diets containing either virgin olive oil or sunflower oil as dietary fat. Caspases of the intrinsic and extrinsic pathways of apoptosis, Bcl-2 and Bax polypeptide levels, and plasma membrane neutral sphingomyelinase activity were determined at 6, 12, and 24 months of age. Caspase-8/10 activity (a marker of the extrinsic pathway) was not affected by either aging or dietary fat, but activities of both caspase-9 (a marker of the intrinsic pathway) and caspase-3 (an executioner caspase) were significantly depressed in liver from animals fed on a sunflower oil-based diet. These decreases were not observed in animals fed with a diet based on virgin olive oil, which also resulted in significantly lower Bcl-2/Bax ratios. On the other hand, in comparison with sunflower, dietary olive oil decreased oxidative stress in liver from aged rats, resulting in lower levels of membrane hydroperoxides and higher coenzyme Q levels in plasma membrane. Plasma membrane Mg(2+)-dependent neutral sphingomyelinase was strongly activated in aged rats fed on the sunflower oil diet, but no aging-related increase was observed in animals fed on the olive oil diet. Our results support that dietary oil can alter significantly the susceptibility of hepatocytes to different apoptotic stimuli by altering both pro- and anti-apoptotic mediators, which reinforces the importance of the diet in aging studies. Because virgin olive oil may increase susceptibility of hepatocytes to apoptosis induced through the intrinsic pathway under conditions of decreased oxidative stress, our results may have important implications to understand the potential beneficial effects of that edible oil against liver carcinogenesis during aging.
Collapse
Affiliation(s)
- Rosario I Bello
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Córdoba 14014, Spain
| | | | | | | | | |
Collapse
|
43
|
Wang J, Cao Y, Chen Y, Chen Y, Gardner P, Steiner DF. Pancreatic beta cells lack a low glucose and O2-inducible mitochondrial protein that augments cell survival. Proc Natl Acad Sci U S A 2006; 103:10636-41. [PMID: 16815968 PMCID: PMC1502284 DOI: 10.1073/pnas.0604194103] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
beta cell failure is a common denominator of diabetes. Susceptibility to stress-induced apoptosis may underlie beta cell failure and/or hamper islet transplantation therapy. The causal basis is not well understood. In efforts to identify important differences in gene expression in alpha vs. beta cells, a gene termed HIMP1 (Hypoglycemia/hypoxia Inducible Mitochondrial Protein, or HIG1) has been cloned from an alpha cell cDNA library. It is a member of a well conserved eukaryote protein family. In mice, its two alternatively spliced products each form a transmembrane loop, having an N(outside)-C(outside) orientation and are expressed highly in the mitochondrial inner membrane in several tissues including heart and pancreatic alpha cells, but not in beta cells. Ectopic expression of HIMP1 in MIN6 beta cells protects the cells from apoptosis induced by several stimuli and prolongs their survival. These results suggest an important role for HIMP1 in stress protective programs in mitochondria.
Collapse
Affiliation(s)
- Jie Wang
- Departments of *Biochemistry and Molecular Biology
| | - Yun Cao
- The Howard Hughes Medical Institute, 5841 South Maryland Avenue, Chicago, IL 60637
| | - Ying Chen
- Neurobiology, Pharmacology, and Physiology, and
| | - Yimei Chen
- Molecular Genetics and Cell Biology, University of Chicago, and
| | - Paul Gardner
- The Howard Hughes Medical Institute, 5841 South Maryland Avenue, Chicago, IL 60637
| | - Donald F. Steiner
- Departments of *Biochemistry and Molecular Biology
- The Howard Hughes Medical Institute, 5841 South Maryland Avenue, Chicago, IL 60637
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:509-17. [PMID: 16829228 DOI: 10.1016/j.bbabio.2006.04.029] [Citation(s) in RCA: 1036] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/24/2006] [Accepted: 04/28/2006] [Indexed: 11/26/2022]
Abstract
Unstable mitochondrial membrane potential and redox transitions can occur following insults including ischemia/reperfusion injury and toxin exposure, with negative consequences for mitochondrial integrity and cellular survival. These transitions can involve mechanisms such as the recently described process, "Reactive Oxygen Species (ROS)-induced ROS-release" (RIRR), and be generated by circuits where the mitochondrial permeability transition (MPT) pore and the inner membrane anion channel (IMAC) are involved. The exposure to excessive oxidative stress results in an increase in ROS reaching a threshold level that triggers the opening of one of the requisite mitochondrial channels. In turn, this leads to the simultaneous collapse of the mitochondrial membrane potential and a transient increased ROS generation by the electron transfer chain. Generated ROS can be released into cytosol and trigger RIRR in neighboring mitochondria. This mitochondrion-to-mitochondrion ROS-signaling constitutes a positive feedback mechanism for enhanced ROS production leading to potentially significant mitochondrial and cellular injury. This review and update considers a variety of RIRR mechanisms (involving MPT, IMAC and episodes of mitochondrial transient hyperpolarization). RIRR could be a general cell biology phenomenon relevant to the processes of programmed mitochondrial destruction and cell death, and may contribute to other mechanisms of post-ischemic pathologies, including arrhythmias.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
45
|
Nagatsu T, Sawada M. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:53-65. [PMID: 17447416 DOI: 10.1007/978-3-211-33328-0_7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monoamine oxidases A and B (MAO A and MAO B) are the major enzymes that catalyze the oxidative deamination of monoamine neurotaransmitters such as dopamine (DA), noradrenaline, and serotonin in the central and peripheral nervous systems. MAO B is mainly localized in glial cells. MAO B also oxidizes the xenobiotic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to a parkinsonism-producing neurotoxin, 1-methyl-4-phenyl-pyridinium (MPP+). MAO B may be closely related to the pathogenesis of Parkinson's disease (PD), in which neuromelanin-containing DA neurons in the substantia nigra projecting to the striatum in the brain selectively degenerate. MAO B degrades the neurotransmitter DA that is deficient in the nigro-striatal region in PD, and forms H2O2 and toxic aldehyde metabolites of DA. H2O2 produces highly toxic reactive oxygen species (ROS) by Fenton reaction that is catalyzed by iron and neuromelanin. MAO B inhibitors such as L-(-)-deprenyl (selegiline) and rasagiline are effective for the treatment of PD. Concerning the mechanism of the clinical efficacy of MAO B inhibitors in PD, the inhibition of DA degradation (a symptomatic effect) and also the prevention of the formation of neurotoxic DA metabolites, i.e., ROS and dopamine derived aldehydes have been speculated. As another mechanism of clinical efficacy, MAO B inhibitors such as selegiline are speculated to have neuroprotective effects to prevent progress of PD. The possible mechanism of neuroprotection of MAO B inhibitors may be related not only to MAO B inhibition but also to induction and activation of multiple factors for anti-oxidative stress and anti-apoptosis: i.e., catalase, superoxide dismutase 1 and 2, thioredoxin, Bcl-2, the cellular poly(ADP-ribosyl)ation, and binding to glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Furthermore, it should be noted that selegiline increases production of neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrphic factor (GDNF), possibly from glial cells, to protect neurons from inflammatory process.
Collapse
Affiliation(s)
- T Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|
46
|
|
47
|
Wu CC, Chan ML, Chen WY, Tsai CY, Chang FR, Wu YC. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol Cancer Ther 2005; 4:1277-85. [PMID: 16093444 DOI: 10.1158/1535-7163.mct-05-0027] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pristimerin, a naturally occurring triterpenoid, has been shown to cause cytotoxicity in several cancer cell lines. However, the mechanism for the cytotoxic effect of pristimerin was never explored. In the present study, human breast cancer MDA-MB-231 cells treated with pristimerin (1 and 3 micromol/L) showed rapid induction of apoptosis, as indicated by caspase activation, DNA fragmentation, and morphologic changes. Pretreatment of a pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) completely prevented pristimerin-induced apoptosis. Treatment of tumor cells with pristimerin resulted in a rapid release of cytochrome c from mitochondria, which preceded caspase activation and the decrease of mitochondrial membrane potential. In addition, neither benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone nor permeability transition pore inhibitor cyclosporin A markedly prevented pristimerin-induced mitochondrial cytochrome c release. Pristimerin did not significantly alter the protein level of Bcl-2 family members (Bcl-2, Bcl-X(L), and Bax), nor did it induce Bax translocation. Moreover, Bcl-2 overexpression fails to prevent pristimerin-induced apoptosis. The generation of reactive oxygen species in MDA-MB-231 cells was also not affected by pristimerin. In a cell-free system, pristimerin induced cytochrome c release from isolated mitochondria. Taken together, these results suggested that pristimerin is a novel mitochondria-targeted compound and may be further evaluated as a chemotherapeutic agent for human cancer.
Collapse
Affiliation(s)
- Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
48
|
Chinopoulos C, Starkov AA, Grigoriev S, Dejean LM, Kinnally KW, Liu X, Ambudkar IS, Fiskum G. Diacylglycerols activate mitochondrial cationic channel(s) and release sequestered Ca(2+). J Bioenerg Biomembr 2005; 37:237-47. [PMID: 16167179 PMCID: PMC2600847 DOI: 10.1007/s10863-005-6634-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Mitochondria contribute to cytosolic Ca(2+) homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAG's) induce Ca(2+) release from Ca(2+)-loaded mammalian mitochondria. Release is not mediated by the uni-porter or the Na(+)/Ca(2+) exchanger, nor is it attributed to putative catabolites. DAG's-induced Ca(2+) efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca(2+) and relatively slow reuptake, a secondary progressive release of Ca(2+) occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAG's-induced Ca(2+) efflux is abolished by La(3+) (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca(2+) efflux. Ca(2+)-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAG's-induced Ca(2+) release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAG's-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La(3+). The presence of a second messenger-sensitive Ca(2+) release mechanism in mitochondria could have an important impact on intracellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Anesthesiology, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith RR, Dimayuga ER, Keller JN, Maragos WF. Enhanced Toxicity to the Catecholamine Tyramine in Polyglutamine Transfected SH-SY5Y Cells. Neurochem Res 2005; 30:527-31. [PMID: 16076022 DOI: 10.1007/s11064-005-2687-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder, of which the pathogenesis is not completely understood. In patients with Huntington's disease, there is a mutation in the gene encoding the protein huntingtin, which results in an expanded polyglutamine sequence leading to degeneration of the basal ganglia. There is mounting evidence that metabolism of the transmitter dopamine by the enzyme monoamine oxidase may contribute to striatal damage in mitochondrial toxin-induced models of HD. In this study, we have examined the role of the catecholamine tyramine in neural SH-SY5Y cells transfected with normal and expanded polyglutamine repeat numbers. Our findings demonstrate that cells containing a pathological number of polyglutamines are more sensitive to tyramine than cells with a non-pathological number. Tyramine-induced cell death was attenuated by MAO inhibitors as well as with catalase and the iron chelator deferoxamine, suggesting that H202 might mediate the observed toxicity. These observations support the notion that the metabolism of dopamine plays a role in neuron death in Huntington's disease.
Collapse
Affiliation(s)
- Rebecca R Smith
- Department of Neurology, University of Kentucky, Lexington, KY 40536-0284, USA
| | | | | | | |
Collapse
|
50
|
Clark JM, Koehler JK, Smith WD. Freeze-fracture observations of unfertilized and fertilized hamster oocytes with special reference to the use of lipid probes. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/mrd.1120140205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|