1
|
Badgandi HB, Weichsel A, Montfort WR. Nitric oxide delivery and heme-assisted S-nitrosation by the bedbug nitrophorin. J Inorg Biochem 2023; 246:112263. [PMID: 37290359 PMCID: PMC10332259 DOI: 10.1016/j.jinorgbio.2023.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
Nitrophorins are heme proteins used by blood feeding insects to deliver nitric oxide (NO) to a victim, leading to vasodilation and antiplatelet activity. Cimex lectularius (bedbug) nitrophorin (cNP) accomplishes this with a cysteine ligated ferric (Fe(III)) heme. In the acidic environment of the insect's salivary glands, NO binds tightly to cNP. During a blood meal, cNP-NO is delivered to the feeding site where dilution and increased pH lead to NO release. In a previous study, cNP was shown to not only bind heme, but to also nitrosate the proximal cysteine, leading to Cys-NO (SNO) formation. SNO formation requires oxidation of the proximal cysteine, which was proposed to be metal-assisted through accompanying reduction of ferric heme and formation of Fe(II)-NO. Here, we report the 1.6 Å crystal structure of cNP first chemically reduced and then exposed to NO, and show that Fe(II)-NO is formed but SNO is not, supporting a metal-assisted SNO formation mechanism. Crystallographic and spectroscopic studies of mutated cNP show that steric crowding of the proximal site inhibits SNO formation while a sterically relaxed proximal site enhances SNO formation, providing insight into specificity for this poorly understood modification. Experiments examining the pH dependence for NO implicate direct protonation of the proximal cysteine as the underlying mechanism. At lower pH, thiol heme ligation predominates, leading to a smaller trans effect and 60-fold enhanced NO affinity (Kd = 70 nM). Unexpectedly, we find that thiol formation interferes with SNO formation, suggesting cNP-SNO is unlikely to form in the insect salivary glands.
Collapse
Affiliation(s)
- Hemant B Badgandi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
2
|
Alvarenga PH, Dias DR, Xu X, Francischetti IMB, Gittis AG, Arp G, Garboczi DN, Ribeiro JMC, Andersen JF. Functional aspects of evolution in a cluster of salivary protein genes from mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103785. [PMID: 35568118 PMCID: PMC9662162 DOI: 10.1016/j.ibmb.2022.103785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The D7 proteins are highly expressed in the saliva of hematophagous Nematocera and bind biogenic amines and eicosanoid compounds produced by the host during blood feeding. These proteins are encoded by gene clusters expressing forms having one or two odorant-binding protein-like domains. Here we examine functional diversity within the D7 group in the genus Anopheles and make structural comparisons with D7 proteins from culicine mosquitoes in order to understand aspects of D7 functional evolution. Two domain long form (D7L) and one domain short form (D7S) proteins from anopheline and culicine mosquitoes were characterized to determine their ligand selectivity and binding pocket structures. We previously showed that a D7L protein from Anopheles stephensi, of the subgenus Cellia, could bind eicosanoids at a site in its N-terminal domain but could not bind biogenic amines in its C-terminal domain as does a D7L1 ortholog from the culicine species Aedes aegypti, raising the question of whether anopheline D7L proteins had lost their ability to bind biogenic amines. Here we find that D7L from anopheline species belonging to two other subgenera, Nyssorhynchus and Anopheles, can bind biogenic amines and have a structure much like the Ae. aegypti ortholog. The unusual D7L, D7L3, can also bind serotonin in the Cellia species An. gambiae. We also show through structural comparisons with culicine forms that the biogenic amine binding function of single domain D7S proteins in the genus Anopheles may have evolved through gene conversion of structurally similar proteins, which did not have biogenic amine binding capability. Collectively, the data indicate that D7L proteins had a biogenic amine and eicosanoid binding function in the common ancestor of anopheline and culicine mosquitoes, and that the D7S proteins may have acquired a biogenic amine binding function in anophelines through a gene conversion process.
Collapse
Affiliation(s)
- Patricia H Alvarenga
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA; Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| | - Denis R Dias
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ivo M B Francischetti
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch (RTB) National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Gabriela Arp
- Structural Biology Section, Research Technologies Branch (RTB) National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch (RTB) National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA.
| |
Collapse
|
3
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
6
|
The Pharmacopea within Triatomine Salivary Glands. Trends Parasitol 2020; 36:250-265. [PMID: 32007395 DOI: 10.1016/j.pt.2019.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/30/2022]
Abstract
Triatomines are blood-feeding insects that prey on vertebrate hosts. Their saliva is largely responsible for their feeding success. The triatomine salivary content has been studied over the past decades, revealing multifunctional bioactive proteins targeting the host´s hemostasis and immune system. Recently, sequencing of salivary-gland mRNA libraries revealed increasingly complex and complete transcript databases that have been used to validate the expression of deduced proteins through proteomics. This review provides an insight into the journey of discovery and characterization of novel molecules in triatomine saliva.
Collapse
|
7
|
Abbruzzetti S, Allegri A, Bidon-Chanal A, Ogata H, Soavi G, Cerullo G, Bruno S, Montali C, Luque FJ, Viappiani C. Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7. Sci Rep 2018; 8:10855. [PMID: 30022039 PMCID: PMC6052033 DOI: 10.1038/s41598-018-29182-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Nitrophorins (NP) 1-7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the effect of Glu27 → Val and Glu27 → Gln mutations on the ligand binding kinetics using CO as a model. The results reveal that annihilation of the negative charge of Glu27 upon mutation reduces the pH sensitivity of the ligand binding rate, a process that in turn depends on the ionization of Asp32. We propose that Glu27 exerts a through-space electrostatic action on Asp32, which shifts the pKa of the latter amino acid towards more acidic values thus reducing the pH sensitivity of the transition between open and closed states.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Alessandro Allegri
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Avda. Prat de la Riba 171, Santa Coloma de Gramenet, Spain
| | - Hideaki Ogata
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany.,Institute of Low Temperature Science, Hokkaido University Kita19-Nishi8, Kita-ku, 060-0819, Sapporo, Japan
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 OFA, UK
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Chiara Montali
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Avda. Prat de la Riba 171, Santa Coloma de Gramenet, Spain.
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| |
Collapse
|
8
|
Mendes MT, Carvalho-Costa TM, da Silva MV, Anhê ACBM, Guimarães RM, da Costa TA, Ramirez LE, Rodrigues V, Oliveira CJF. Effect of the saliva from different triatomine species on the biology and immunity of TLR-4 ligand and Trypanosoma cruzi-stimulated dendritic cells. Parasit Vectors 2016; 9:634. [PMID: 27938380 PMCID: PMC5148907 DOI: 10.1186/s13071-016-1890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Triatomines are blood-sucking vectors of Trypanosoma cruzi, the causative agent of Chagas disease. During feeding, triatomines surpass the skin host response through biomolecules present in their saliva. Dendritic cells (DCs) play a crucial role in the induction of the protection to aggressive agents, including blood-sucking arthropods. Here, we evaluated if salivary components of triatomines from different genera evade the host immunity by modulating the biology and the function of LPS- or T. cruzi-stimulated DCs. Methods Saliva of Panstrongylus lignarius, Meccus pallidipennis, Triatoma lecticularia and Rhodnius prolixus were obtained by dissection of salivary glands and the DCs were obtained from the differentiation of mouse bone marrow precursors. Results The differentiation of DCs was inhibited by saliva of all species tested. Saliva differentially inhibited the expression of MHC-II, CD40, CD80 and CD86 in LPS-matured DCs. Except for the saliva of R. prolixus, which induced IL-6 cytokine production, TNF-α, IL-12 and IL-6 were inhibited by the saliva of the other three tested species and IL-10 was increased in all of them. Saliva per se, also induced the production of IL-12, IL-6 and IL-10. Only the saliva of R. prolixus induced DCs apoptosis. The presence of PGE2 was not detected in the saliva of the four triatomines studied. Finally, T. cruzi invasion on DCs is enhanced by the presence of the triatomine saliva. Conclusions These results demonstrate that saliva from different triatomine species exhibit immunomodulatory effects on LPS and T. cruzi-stimulated DCs. These effects could be related to hematophagy and transmission of T. cruzi during feeding. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1890-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Tays Mendes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.,Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Marcos Vinicius da Silva
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | | | - Rafaela Mano Guimarães
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thiago Alvares da Costa
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luis Eduardo Ramirez
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
9
|
Schoeler GB, Wikel SK. Modulation of host immunity by haematophagous arthropods. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Bourret TJ, Lawrence KA, Shaw JA, Lin T, Norris SJ, Gherardini FC. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks. Front Microbiol 2016; 7:1397. [PMID: 27656169 PMCID: PMC5013056 DOI: 10.3389/fmicb.2016.01397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks.
Collapse
Affiliation(s)
- Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University Omaha, NE, USA
| | - Kevin A Lawrence
- Gene Regulation Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Jeff A Shaw
- Department of Medical Microbiology and Immunology, Creighton University Omaha, NE, USA
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Frank C Gherardini
- Gene Regulation Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| |
Collapse
|
11
|
Jablonka W, Pham V, Nardone G, Gittis A, Silva-Cardoso L, Atella GC, Ribeiro JM, Andersen JF. Structure and Ligand-Binding Mechanism of a Cysteinyl Leukotriene-Binding Protein from a Blood-Feeding Disease Vector. ACS Chem Biol 2016; 11:1934-44. [PMID: 27124118 DOI: 10.1021/acschembio.6b00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4), D4 (LTD4), and E4 (LTE4) but not biogenic amines, adenosine diphosphate, or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr114 into close contact with the ligand. LTC4 is cleaved in the complex, leaving free glutathione and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated.
Collapse
Affiliation(s)
- Willy Jablonka
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Van Pham
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Glenn Nardone
- Research Technologies Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Apostolos Gittis
- Research Technologies Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Lívia Silva-Cardoso
- Instituto de Bioquímica Médica
Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Georgia C. Atella
- Instituto de Bioquímica Médica
Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - José M.C. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
12
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
13
|
Santiago PB, Assumpção TCF, de Araújo CN, Bastos IMD, Neves D, da Silva IG, Charneau S, Queiroz RML, Raiol T, Oliveira JVDA, de Sousa MV, Calvo E, Ribeiro JMC, Santana JM. A Deep Insight into the Sialome of Rhodnius neglectus, a Vector of Chagas Disease. PLoS Negl Trop Dis 2016; 10:e0004581. [PMID: 27129103 PMCID: PMC4851354 DOI: 10.1371/journal.pntd.0004581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immune responses. METHODS/PRINCIPAL FINDINGS Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva. We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. CONCLUSIONS/SIGNIFICANCE The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts.
Collapse
Affiliation(s)
| | - Teresa C. F. Assumpção
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, Maryland, United States of America
| | - Carla Nunes de Araújo
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
- Ceilândia Faculty, The University of Brasília, Brasília, Brazil
| | | | - David Neves
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | - Sébastien Charneau
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | - Tainá Raiol
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
- Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Manaus, Brazil
| | | | | | - Eric Calvo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, Maryland, United States of America
| | - Jaime M. Santana
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
- * E-mail:
| |
Collapse
|
14
|
Craven CJ. A hypothesis of couplet molecules and couplet cells in gastric function and an association with Helicobacter pylori. BMC Gastroenterol 2016; 16:16. [PMID: 26879837 PMCID: PMC4754955 DOI: 10.1186/s12876-016-0429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Background Gastrin, from G-cells, and histamine, from enterochromaffin-like (ECL) cells, are two of the hormones that regulate gastric activity. Discussion It is proposed that the G-cells and the ECL cells are coupled by the couplet molecules gastrin and histamine and by a prior asymmetrical cell division. The gastrin (from G-cells) stimulates the ECL cells to produce and secrete histamine while, in a reciprocal way, this histamine (from ECL cells), stimulates the G-cells to produce and secrete gastrin. These molecules would also stimulate cell division – the gastrin would stimulate cell division of ECL cells while histamine would stimulate that of G-cells. A chemical complex of gastrin and histamine is postulated as is also the asymmetric cell divisions of precursor cells to produce the coupled G-cells and ECL cells. Conclusion There is sufficient evidence to support the feasibility of the model in general, but more direct experimental evidence is required to validate the model as applied here to gastric function.
Collapse
|
15
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Berry RE, Yang F, Shokhireva TK, Amoia AM, Garrett S, Goren AM, Korte SR, Zhang H, Weichsel A, Montfort WR, Walker FA. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1. Biochemistry 2015; 54:208-20. [PMID: 25489673 PMCID: PMC4303305 DOI: 10.1021/bi5013047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Indexed: 11/28/2022]
Abstract
Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.
Collapse
Affiliation(s)
| | - Fei Yang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Tatiana K. Shokhireva
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Angela M. Amoia
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Sarah
A. Garrett
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Allena M. Goren
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Stephanie R. Korte
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Hongjun Zhang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Andrzej Weichsel
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - William R. Montfort
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - F. Ann Walker
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
17
|
Zhang Z, Gao L, Shen C, Rong M, Yan X, Lai R. A potent anti-thrombosis peptide (vasotab TY) from horsefly salivary glands. Int J Biochem Cell Biol 2014; 54:83-8. [PMID: 25025626 DOI: 10.1016/j.biocel.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/05/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
Vasotab TY is a KGD (Lys-Gly-Asp)-containing peptide identified from salivary glands of the horsefly of Tabanus yao. We have previously reported that vasotab TY showed a strong vasodilator activity. In the present study, vasotab TY was found to inhibit platelet aggregation effectively. It completely inhibited platelet aggregation induced by adenosine diphosphate (ADP) at the concentration of 9.6μg/ml. Vasotab TY significantly reduced thrombus weight in rat arteriovenous shunt model and inhibited thrombosis in carrageenan-induced mouse tail thrombosis model in vivo. Vasotab TY competitively bound to glycoprotein IIb/IIIa (GPIIb/IIIa) with eptifibatide, a well-known KGD-containing cyclic heptapeptide containing high specificity and high affinity for GPIIb/IIIa, suggesting that it is an antagonist of the fibrinogen receptor GPIIb/IIIa on the surface of platelet. The KGD motif in vasotab TY may facilitate the binding of it to GPIIb/IIIa. Vasotab TY showed a half-life of more than 1h in vivo. It showed little side effects including little bleeding, no hemolytic activity on human blood red cells and no cytotoxicity on human keratinocyte and THP-1 cells. Combined its vasodilator and platelet inhibitory functions, vasotab TY might be an excellent candidate for the development of clinical anti-thrombosis medicines.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100009, China
| | - Lan Gao
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Chuanbin Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100009, China
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Xiuwen Yan
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
18
|
NMR investigations of nitrophorin 2 belt side chain effects on heme orientation and seating of native N-terminus NP2 and NP2(D1A). J Biol Inorg Chem 2013; 19:577-93. [PMID: 24292244 DOI: 10.1007/s00775-013-1063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Nitrophorin 2 (NP2), one of the four NO-storing and NO-releasing proteins found in the saliva of the blood-sucking bug Rhodnius prolixus, has a more ruffled heme and a high preference for a particular heme orientation (B) compared with nitrophorin 1 and nitrophorin 4, which show not a preference (A to B ratio of approximately 1:1), suggesting that it fits more tightly in the β-barrel protein. In this work we have prepared a series of "belt" mutants of NP2(D1A) and (ΔM0)NP2 aimed at reducing the size of aromatic or other residues that surround the heme, and investigated them as the high-spin aqua and low-spin N-methylimidazole complexes. The belt mutants included Y38A, Y38F, F42A, F66A, Y85A, Y85F, Y104A, I120T, and a triple mutant of NP2(D1A), the F42L, L106F, I120T mutant. Although I120 has been mainly considered to be a distal pocket residue, CδH3 of I120 lies directly above the heme 3-methyl, at 2.67 Å, of heme orientation B, or the 2-vinyl of A, and it thus plays a role as a belt mutant, a role that turns out to be extremely important in creating the strong favoring of the B heme orientation [A to B ratio of 1:14 for NP2(D1A) or 1:12 for (ΔM0)NP2]. The results show that the 1D (1)H NMR spectra of the high-spin forms are quite sensitive to changes in the shape of the heme binding cavity. The single mutation I120T eliminates the favorability of the B heme orientation by producing a heme A to B orientation ratio of 1:1, whereas the single mutation F42A reverses the heme orientation from an A to B ratio of 1:14 seen for NP2(D1A) to 10:1 for NP2(D1A,F42A). The most extreme ratio was found for the triple mutant of NP2(D1A), NP2(D1A,F42L,L105F,I120T), in which the A to B ratio is approximately 25:1, a ΔG change of about -3.5 kcal/mol or -14.1 kJ/mol with respect to NP2(D1A). The seating of the heme is modified as well in that mutant and in several others, by rotations of the heme by up to 4° from the seating observed in NP2(D1A), in order to relieve steric interactions between a vinyl β-carbon and a protein side chain, or to fill a cavity created by replacing a large protein side chain by a much smaller one; the latter was observed for all tyrosine to alanine mutants. These relatively small changes in seating have a measurable effect on the NMR spectra of the mutants, but are indeed minor in terms of overall seating and reactivity of the NP2(D1A) protein. The (1)H NMR resonances of the hemin substituents of the low-spin N-methylimidazole complexes of NP2(D1A,F42L,L105F,I120T) as well as NP2(D1A,I120T), NP2(D1A,Y104A), and NP2(D1A,F42A) have been assigned using natural abundance (1)H{(13)C} heteronuclear multiple quantum correlation and (1)H-(1)H nuclear Overhauser effect spectroscopy spectra.
Collapse
|
19
|
Complexes of ferriheme nitrophorin 4 with low-molecular weight thiol(ate)s occurring in blood plasma. J Inorg Biochem 2013; 122:38-48. [DOI: 10.1016/j.jinorgbio.2013.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
|
20
|
Oliveira A, Allegri A, Bidon-Chanal A, Knipp M, Roitberg AE, Abbruzzetti S, Viappiani C, Luque FJ. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1-3 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1711-21. [PMID: 23624263 DOI: 10.1016/j.bbapap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022]
Abstract
Nitrophorins (NPs) are nitric oxide (NO)-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. Though NP7 exhibits a large sequence resemblance with other NPs, two major differential features are the ability to interact with negatively charged cell surfaces and the presence of a specific N-terminus composed of three extra residues (Leu1-Pro2-Gly3). The aim of this study is to examine the influence of the N-terminus on the ligand binding, and the topological features of inner cavities in closed and open states of NP7, which can be associated to the protein structure at low and high pH, respectively. Laser flash photolysis measurements of the CO rebinding kinetics to NP7 and its variant NP7(Δ1-3), which lacks the three extra residues at the N-terminus, exhibit a similar pattern and support the existence of a common kinetic mechanism for ligand migration and binding. This is supported by the existence of a common topology of inner cavities, which consists of two docking sites in the heme pocket and a secondary site at the back of the protein. The ligand exchange between these cavities is facilitated by an additional site, which can be transiently occupied by the ligand in NP7, although it is absent in NP4. These features provide a basis to explain the enhanced internal gas hosting capacity found experimentally in NP7 and the absence of ligand rebinding from secondary sites in NP4. The current data allow us to speculate that the processes of docking to cell surfaces and NO release may be interconnected in NP7, thereby efficiently releasing NO into a target cell. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ana Oliveira
- Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ. Electron spin density on the axial His ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy. Inorg Chem 2013; 52:1285-95. [PMID: 23327568 PMCID: PMC3594510 DOI: 10.1021/ic301805y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of heme proteins is exquisitely tuned by the interaction of the iron center with the axial ligands. NMR studies of paramagnetic heme systems have been focused on the heme signals, but signals from the axial ligands have been rather difficult to detect and assign. We report an extensive assignment of the (1)H, (13)C and (15)N resonances of the axial His ligand in the NO-carrying protein nitrophorin 2 (NP2) in the paramagnetic high-spin and low-spin forms, as well as in the diamagnetic NO complex. We find that the high-spin protein has σ spin delocalization to all atoms in the axial His57, which decreases in size as the number of bonds between Fe(III) and the atom in question increases, except that within the His57 imidazole ring the contact shifts are a balance between positive σ and negative π contributions. In contrast, the low-spin protein has π spin delocalization to all atoms of the imidazole ring. Our strategy, adequately combined with a selective residue labeling scheme, represents a straightforward characterization of the electron spin density in heme axial ligands.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, Rosario 2000, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Berry RE, Muthu D, Shokhireva TK, Garrett SA, Zhang H, Walker FA. Native N-terminus nitrophorin 2 from the kissing bug: similarities to and differences from NP2(D1A). Chem Biodivers 2013; 9:1739-55. [PMID: 22976966 DOI: 10.1002/cbdv.201100449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first amino acid of mature native nitrophorin 2 is aspartic acid, and when expressed in E. coli, the wild-type gene of the mature protein retains the methionine-0, which is produced by translation of the start codon. This form of NP2, (M0)NP2, has been found to have different properties from its D1A mutant, for which the Met0 is cleaved by the methionine aminopeptidase of E. coli (R. E. Berry, T. K. Shokhireva, I. Filippov, M. N. Shokhirev, H. Zhang, F. A. Walker, Biochemistry 2007, 46, 6830). Native N-terminus nitrophorin 2 ((ΔM0)NP2) has been prepared by employing periplasmic expression of NP2 in E. coli using the pelB leader sequence from Erwinia carotovora, which is present in the pET-26b expression plasmid (Novagen). This paper details the similarities and differences between the three different N-terminal forms of nitrophorin 2, (M0)NP2, NP2(D1A), and (ΔM0)NP2. It is found that the NMR spectra of high- and low-spin (ΔM0)NP2 are essentially identical to those of NP2(D1A), but the rate and equilibrium constants for histamine and NO dissociation/association of the two are different.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, AZ 85721-0041, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Xu X, Chang BW, Mans BJ, Ribeiro JMC, Andersen JF. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:105-13. [PMID: 23275168 PMCID: PMC3532134 DOI: 10.1107/s0907444912043326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Abstract
Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.
Collapse
Affiliation(s)
- Xueqing Xu
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Bianca W. Chang
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Ben J. Mans
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
- Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
24
|
Identification of (L)-3-hydroxykynurenine O-sulfate in the buccal gland secretion of the parasitic lamprey, Lethenteron japonicum. Amino Acids 2012; 43:2505-12. [PMID: 22648634 DOI: 10.1007/s00726-012-1331-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Parasitic lampreys are known to secrete proteins having anticoagulant and vasodilator activities from the buccal glands during feeding on their host's blood. However, small molecules in the secretion have never been explored in detail. We examined the secretion of Japanese liver lamprey (Lethenteron japonicum) for small molecules and found an intensely fluorescent substance upon gel filtration. After purification by anion-exchange chromatography and reversed-phase HPLC, structure of the compound was determined to be L-3-hydroxykynurenine O-sulfate by NMR- and UV-spectrometry, complemented with enzymatic and chemical degradation. In vertebrates, the sulfate ester of 3-hydroxykynurenine is a compound that has been regarded as a urinary metabolite of tryptophan but not reported from normal tissues to date. Although the function of this molecule in the buccal glands remains to be elucidated, it is remarkable that the same substance was described in 1960s from two species of blood-sucking insects, Rhodnius prolixus and Triatoma infestans, suggesting its potential role in blood-feeding.
Collapse
|
25
|
Knipp M, Soares RP, Pereira MH. Identification of the native N-terminus of the membrane attaching ferriheme protein nitrophorin 7 from Rhodnius prolixus. Anal Biochem 2012; 424:79-81. [DOI: 10.1016/j.ab.2012.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
|
26
|
Ribeiro JMC, Assumpção TCF, Pham VM, Francischetti IMB, Reisenman CE. An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:563-72. [PMID: 22679863 PMCID: PMC3544468 DOI: 10.1603/me11243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The kissing bug Triatoma rubida (Uhler, 1894) is found in southwestern United States and parts of Mexico where it is found infected with Trypanosoma cruzi, invades human dwellings and causes allergies from their bites. Although the protein salivary composition of several triatomine species is known, not a single salivary protein sequence is known from T. rubida. Furthermore, the salivary diversity of related hematophagous arthropods is very large probably because of the immune pressure from their hosts. Here we report the sialotranscriptome analysis of T. rubida based on the assembly of 1,820 high-quality expressed sequence tags, 51% of which code for putative secreted peptides, including lipocalins, members of the antigen five family, apyrase, hemolysin, and trialysin families. Interestingly, T. rubida lipocalins are at best 40% identical in primary sequence to those of T. protracta, a kissing bug that overlaps its range with T. rubida, indicating the diversity of the salivary lipocalins among species of the same hematophagous genus. We additionally found several expressed sequence tags coding for proteins of clear Trypanosoma spp. origin. This work contributes to the future development of markers of human and pet exposure to T. rubida and to the possible development of desensitization therapies. Supp. Data 1 and 2 (online only) of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/Trubida/Triru-S1-web.xlsx and http://exon.niaid.nih.gov/transcriptome/Trubida/Triru-S2-web.xlsx.
Collapse
Affiliation(s)
- José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway room 2E32D, Rockville, MD 20852, USA.
| | | | | | | | | |
Collapse
|
27
|
Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V. Nuclear inelastic scattering and Mössbauer spectroscopy as local probes for ligand binding modes and electronic properties in proteins: vibrational behavior of a ferriheme center inside a β-barrel protein. J Am Chem Soc 2012; 134:4216-28. [PMID: 22295945 DOI: 10.1021/ja210067t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we present a study of the influence of the protein matrix on its ability to tune the binding of small ligands such as NO, cyanide (CN(-)), and histamine to the ferric heme iron center in the NO-storage and -transport protein Nitrophorin 2 (NP2) from the salivary glands of the blood-sucking insect Rhodnius prolixus. Conventional Mössbauer spectroscopy shows a diamagnetic ground state of the NP2-NO complex and Type I and II electronic ground states of the NP2-CN(-) and NP2-histamine complex, respectively. The change in the vibrational signature of the protein upon ligand binding has been monitored by Nuclear Inelastic Scattering (NIS), also called Nuclear Resonant Vibrational Spectroscopy (NRVS). The NIS data thus obtained have also been calculated by quantum mechanical (QM) density functional theory (DFT) coupled with molecular mechanics (MM) methods. The calculations presented here show that the heme ruffling in NP2 is a consequence of the interaction with the protein matrix. Structure optimizations of the heme and its ligands with DFT retain the characteristic saddling and ruffling only if the protein matrix is taken into account. Furthermore, simulations of the NIS data by QM/MM calculations suggest that the pH dependence of the binding of NO, but not of CN(-) and histamine, might be a consequence of the protonation state of the heme carboxyls.
Collapse
Affiliation(s)
- Beate Moeser
- Technische Universität Kaiserslautern, Fachbereich Physik, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu X, Francischetti IMB, Lai R, Ribeiro JMC, Andersen JF. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. J Biol Chem 2012; 287:10967-76. [PMID: 22311975 DOI: 10.1074/jbc.m112.340471] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antihemostatic/antiangiogenic protein tablysin-15 is a member of the CAP (cysteine-rich secretory, antigen 5, and pathogenesis-related 1 protein) superfamily and has been shown to bind the integrins α(IIb)β(3) and α(V)β(3) by means of an Arg-Gly-Asp (RGD) tripeptide sequence. Here we describe the x-ray crystal structure of tablysin-15 and show that the RGD motif is located in a novel structural context. The motif itself is contained in a type II β-turn structure that is similar in its conformation to the RGD sequence of the cyclic pentapeptide cilengitide when bound to integrin α(V)β(3). The CAP domain also contains a hydrophobic channel that appears to bind a fatty acid molecule in the crystal structure after purification from Escherichia coli. After delipidation of the protein, tablysin-15 was found to bind proinflammatory cysteinyl leukotrienes with submicromolar affinities. The structure of the leukotriene E(4)-tablysin-15 complex shows that the ligand binds with the nonfunctionalized end of the fatty acid chain buried in the hydrophobic pocket, whereas the carboxylate end of the ligand binds forms hydrogen bond/salt bridge interactions with polar side chains at the channel entrance. Therefore, tablysin-15 functions as an inhibitor of integrin function and as an anti-inflammatory scavenger of eicosanoids.
Collapse
Affiliation(s)
- Xueqing Xu
- Laboratory of Malaria and Vector Research, NIAID, National Intitutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Mikulski D, Basinski K, Gasowska A, Bregier-Jarzebowska R, Molski M, Lomozik L. Experimental and quantum-chemical studies of histamine complexes with copper(II) ion. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Ma D, Assumpção TCF, Li Y, Andersen JF, Ribeiro J, Francischetti IMB. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI. Thromb Haemost 2011; 107:111-23. [PMID: 22159626 DOI: 10.1160/th11-10-0685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/26/2011] [Indexed: 02/05/2023]
Abstract
Salivary glands from haematophagous animals express a notable diversity of negative modulators of platelet function. Triplatin is an inhibitor of collagen-induced platelet aggregation which has been described as an antagonist of glycoprotein VI (GPVI). Because triplatin displays sequence homology to members of the lipocalin family of proteins, we investigated whether triplatin mechanism of action could be explained by interaction with pro-haemostatic prostaglandins. Our results demonstrate that triplatin inhibits platelet aggregation induced by low doses of collagen, thromboxane A2 (TXA(2)) mimetic (U46619), and arachidonic acid (AA). On the other hand, it does not inhibit platelet aggregation by convulxin, PMA, or low-dose ADP. Isothermal titration calorimetry (ITC) revealed that triplatin binds AA, cTXA(2), TXB(2), U46619 or prostaglandin (PG)H(2) mimetic (U51605). Consistent with its ligand specificity, triplatin induces relaxation of rat aorta contracted with U46619. Triplatin also interacts with PGF(2α) and PGJ(2), but not with leukotrienes, AA or biogenic amines. Surface plasmon resonance experiments failed to demonstrate interaction of triplatin with GPVI; it also did to inhibit platelet adhesion to fibrillar or soluble collagen. Because triplatin displays sequence similarity to apolipoprotein D (ApoD) - a lipocalin associated with high-density lipoprotein, ApoD was tested as a putative TXA(2)-binding molecule. ITC failed to demonstrate binding of ApoD to all prostanoids described above, or to AA. Furthermore, ApoD was devoid of inhibitory properties towards platelets activation by AA, collagen, or U46619. In conclusion, triplatin mechanism of action has been elucidated without ambiguity as a novel TXA(2)- and PGF(2α)- binding protein. It conceivably blocks platelet aggregation and vasoconstriction, thus contributing to successful blood feeding at the vector-host interface.
Collapse
Affiliation(s)
- Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
31
|
Magez S, Caljon G. Mouse models for pathogenic African trypanosomes: unravelling the immunology of host-parasite-vector interactions. Parasite Immunol 2011; 33:423-9. [PMID: 21480934 DOI: 10.1111/j.1365-3024.2011.01293.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection.
Collapse
Affiliation(s)
- S Magez
- Laboratory for Cellular and Molecular Immunology, VIB Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium.
| | | |
Collapse
|
32
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Xu X, Oliveira F, Chang BW, Collin N, Gomes R, Teixeira C, Reynoso D, My Pham V, Elnaiem DE, Kamhawi S, Ribeiro JMC, Valenzuela JG, Andersen JF. Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem 2011; 286:32383-93. [PMID: 21795673 DOI: 10.1074/jbc.m111.268904] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Collapse
Affiliation(s)
- Xueqing Xu
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
NMR studies of nitrophorin distal pocket side chain effects on the heme orientation and seating of NP2 as compared to NP1. J Inorg Biochem 2011; 105:1238-57. [PMID: 21767470 DOI: 10.1016/j.jinorgbio.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
The nitrophorins (NP) of the adult blood-sucking insect Rhodnius prolixus fall into two pairs based on sequence identity (NP1,4 (90%) and NP2,3 (79%)), which differ significantly in the size of side chains of residues which contact the heme. These residues include those in the distal pocket of NP2 (I120) and NP1 (T121) and the "belt" that surrounds the heme of NP2 (S40, F42), and NP1(A42, L44). To determine the importance of these residues and others conserved or very similar for the two pairs, including L122(123), L132(133), appropriate mutants of NP2 and NP1 have been prepared and studied by (1)H NMR spectroscopy. Wild-type NP2 has heme orientation ratio (A:B) of 1:8 at equilibrium, while wild-type NP1 has A:B ~1:1 at equilibrium. Another difference between NP2 and NP1 is in the heme seating with regard to His57(59). It is found that among the distal pocket residues investigated, the residue most responsible for heme orientation and seating is I120(T121). F42(L44) and L106(F107) may also be important, but must be investigated in greater detail.
Collapse
|
35
|
Côrte-Real R, Gomes RN, Castro-Faria-Neto HC, Azambuja P, Garcia ES. The activity of platelet activating factor-acetyl hydrolase (PAF-AH) in the salivary glands of Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:825-829. [PMID: 21439293 DOI: 10.1016/j.jinsphys.2011.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
In this work, we investigated the activity of the platelet activating factor acetyl hydrolase (PAF-AH) in the salivary gland homogenates and saliva of Rhodnius prolixus. PAF-AH activity in the salivary gland homogenates was lower than in the saliva. Preliminary characterization of the enzyme demonstrated that it hydrolyzed the substrate 2-thio-PAF, was detectable just in 1 pair of salivary gland homogenates in 0.5 ml buffer, and was stable under different conditions. PMSF, TPCK, TLCK, pepstatin A and p-BPB all inhibited the PAF-AH activity. Enzyme specific activity in salivary gland homogenates diminished immediately after feeding of 5th-instar larvae, and increased before feeding by adult insects. 2-Thio-PAF induced platelet-aggregation that was inhibited by previous incubation of the substrate with salivary gland homogenates or saliva. The relevance of PAF-AH for providing Rhodnius with a feeding mechanism for facilitating the sucking of a high volume of blood meal in a short period is discussed.
Collapse
Affiliation(s)
- Rozana Côrte-Real
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Bourret TJ, Boylan JA, Lawrence KA, Gherardini FC. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi. Mol Microbiol 2011; 81:259-73. [PMID: 21564333 PMCID: PMC3147059 DOI: 10.1111/j.1365-2958.2011.07691.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi.
Collapse
Affiliation(s)
- Travis J Bourret
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
37
|
Knipp M, He C. Nitrophorins: nitrite disproportionation reaction and other novel functionalities of insect heme-based nitric oxide transport proteins. IUBMB Life 2011; 63:304-12. [PMID: 21491557 DOI: 10.1002/iub.451] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/15/2011] [Indexed: 01/14/2023]
Abstract
Nitrophorins (NPs) comprise a unique class of heme proteins used by the blood-sucking insect Rhodnius prolixus to deliver the signaling gas molecule NO into the blood vessel of a host during feeding. Upon NO release, histamine can be scavenged by coordination to the heme iron. Although the protein is of similar size as the mammalian globin monomers and shares the same cofactor and proximal histidine coordination, nitrophorin structure, in contrast, is almost entirely composed of a β-barrel. Comparison of the NO and histamine association constants with the concentrations of both compounds invivo raises concerns about the very simple ligand release model in case of at least some of the NPs. Therefore, novel functionalities of the NPs were sought. As a result, catalysis of the nitrite disproportionation reaction was found, which leads to the formation of NO with nitrite as the sole substrate. This is the first example of a ferriheme protein that can perform this reaction. Furthermore, although NPs stabilize the ferriheme state, a peroxidase reactivity of the cofactor involving the higher oxidation state iron (Compound I/II) was studied with the potential to catalyze the oxidation of histamine and norepinephrine. In contrast to many other heme proteins including the globins, the ferroheme state was found to be extremely sensitive to O(2) , which is a consequence of the much lower reduction potential of the NPs, so that the 1-electron reduction of O(2) to O (•-)(2) becomes a thermodynamically favored process. Altogether, the detailed study of the NPs gives insight into the structure-function relationships required for the targeted delivery of diatomic gas molecules in biology. Moreover, the comparison of the structure-function relationships of the NPs (NO transporters) with those of the globins (O(2) transporters) will help to elucidate the architectural requirement for the respective tasks.
Collapse
Affiliation(s)
- Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany.
| | | |
Collapse
|
38
|
2-DE-based proteomic investigation of the saliva of the Amazonian triatomine vectors of Chagas disease: Rhodnius brethesi and Rhodnius robustus. J Proteomics 2011; 74:1652-63. [PMID: 21362504 DOI: 10.1016/j.jprot.2011.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 01/02/2023]
Abstract
The triatomine bugs are obligatory haematophagous organisms that act as vectors of Chagas disease by transmitting the protozoan Trypanosoma cruzi. Their feeding success is strongly related to salivary proteins that allow these insects to access blood by counteracting host haemostatic mechanisms. Proteomic studies were performed on saliva from the Amazonian triatomine bugs: Rhodnius brethesi and R. robustus, species epidemiologically relevant in the transmission of T. cruzi. Initially, salivary proteins were separated by two-dimensional gel electrophoresis (2-DE). The average number of spots of the R. brethesi and R. robustus saliva samples were 129 and 135, respectively. The 2-DE profiles were very similar between the two species. Identification of spots by peptide mass fingerprinting afforded limited efficiency, since very few species-specific salivary protein sequences are available in public sequence databases. Therefore, peptide fragmentation and de novo sequencing using a MALDI-TOF/TOF mass spectrometer were applied for similarity-driven identifications which generated very positive results. The data revealed mainly lipocalin-like proteins which promote blood feeding of these insects. The redundancy of saliva sequence identification suggested multiple isoforms caused by gene duplication followed by gene modification and/or post-translational modifications. In the first experimental assay, these proteins were predominantly phosphorylated, suggesting functional phosphoregulation of the lipocalins.
Collapse
|
39
|
Francischetti IMB, Calvo E, Andersen JF, Pham VM, Favreau AJ, Barbian KD, Romero A, Valenzuela JG, Ribeiro JMC. Insight into the Sialome of the Bed Bug, Cimex lectularius. J Proteome Res 2010; 9:3820-31. [PMID: 20441151 DOI: 10.1021/pr1000169] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion composed of dozens or near 100 different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy, creating unique salivary potions in the form of novel pharmacological use of endogenous substances and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alvarenga PH, Francischetti IMB, Calvo E, Sá-Nunes A, Ribeiro JMC, Andersen JF. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. PLoS Biol 2010; 8:e1000547. [PMID: 21152418 PMCID: PMC2994686 DOI: 10.1371/journal.pbio.1000547] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/08/2010] [Indexed: 12/04/2022] Open
Abstract
A salivary protein from a malaria-transmitting mosquito uses a single domain to bind to thromboxane A2 and cysteinyl leukotrienes and prevent blood clotting and inflammation in the host on which it feeds. The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A2 (TXA2) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C4 (LTC4)-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA2 analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD7. In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA2 analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA2 analog U46619 is stabilized by hydrogen bonding interactions of the ω-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC4 and occupies a very similar position to LTE4 in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation. When feeding, a female mosquito must inhibit the blood clotting and inflammatory responses of the host. To do this, the insect produces salivary proteins that neutralize key host molecules participating in clotting and inflammation. Here, we describe a salivary protein AnSt-D7L1 that scavenges both thomboxane A2 and cysteinyl leukotrienes, two substances involved in blood vessel constriction, platelet aggregation, and inflammatory responses to an insect bite. We produced this protein in bacteria and showed that it tightly binds both these molecules, inhibiting the processes in which they are involved. We then determined its structure using X-ray crystallography and showed that there is a single binding site in one domain of the protein, accommodating both thromboxane A2 and cysteinyl leukotrienes, and that this site is responsible for the scavenging effect of the protein. These studies reveal the structural features of proteins needed to bind to key molecules of potential pharmacological importance and add to our understanding of the process of mosquito blood feeding, which is essential for transmission of the malaria parasite.
Collapse
Affiliation(s)
- Patricia H. Alvarenga
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- Laboratório de Bioquímica e Fisiologia de Artrópodes, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Anderson Sá-Nunes
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mizurini DM, Francischetti IMB, Andersen JF, Monteiro RQ. Nitrophorin 2, a factor IX(a)-directed anticoagulant, inhibits arterial thrombosis without impairing haemostasis. Thromb Haemost 2010; 104:1116-23. [PMID: 20838739 DOI: 10.1160/th10.1160/th10-03-0186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 07/30/2010] [Indexed: 11/05/2022]
Abstract
Nitrophorin 2 (NP2) is a 20 kDa lipocalin identified in the salivary gland of the blood sucking insect, Rhodnius prolixus. It functions as a potent inhibitor of the intrinsic pathway of coagulation upon binding to factor IX (FIX) or FIXa. Herein we have investigated the in vivo antithrombotic properties of NP2. Surface plasmon resonance assays demonstrated that NP2 binds to rat FIX and FIXa with high affinities (KD = 43 and 47 nM, respectively), and prolongs the aPTT without affecting the PT. In order to evaluate NP2 antithrombotic effects in vivo two distinct models of thrombosis in rats were carried out. In the rose Bengal/laser induced injury model of arterial thrombosis, NP2 increased the carotid artery occlusion time by ≍35 and ≍155%, at doses of 8 and 80 μg/kg, respectively. NP2 also inhibited thrombus formation in an arterio-venous shunt model, showing ≍60% reduction at 400 μg/kg (i.v. administration). The antithrombotic effect lasted for up to 48 hours after a single i.v. dose. Notably, effective doses of NP2 did not increase the blood loss as evaluated by tail-transection model. In conclusion, NP2 is a potent and long-lasting inhibitor of arterial thrombosis with minor effects on haemostasis. It might be regarded as a potential agent for the treatment of human cardiovascular diseases.
Collapse
Affiliation(s)
- Daniella M Mizurini
- Instituto de Bioquímica Médica/CCS/UFRJ, Avenida Carlos Chagas Filho 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941590, Brazil
| | | | | | | |
Collapse
|
42
|
Davis SC, Clark S, Hayes JR, Green TL, Gruetter CA. Up-regulation of histidine decarboxylase expression and histamine content in B16F10 murine melanoma cells. Inflamm Res 2010; 60:55-61. [PMID: 20640870 DOI: 10.1007/s00011-010-0234-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 04/22/2010] [Accepted: 06/29/2010] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN This study was conducted to determine if differences in histidine decarboxylase expression and histamine levels exist between B16F10 melanoma cells and non-cancerous Melan-A melanocytes. METHODS Immunofluorescence and western blot analysis were used to detect and compare histidine decarboxylase protein levels. Enzyme-linked immunoassay was used to detect, measure, and compare histamine levels. RESULTS Histidine decarboxylase expression was found to be elevated in the B16F10 cells. Western blot analysis demonstrated levels of histidine decarboxylase protein expression more than twofold higher (p < 0.001) in B16F10 than in Melan-A cells. Histamine levels were 280-fold higher (p < 0.001) in B16F10 (229 ± 15 pg/mg protein) than in Melan-A (0.83 ± 0.03 pg/mg protein) cells. CONCLUSION Results indicate an up-regulated histaminergic system in the B16F10 melanoma cells when compared to non-cancerous melanocytes. This supports the use of B16F10 cells as a model in which to investigate a potential role of the endogenous histaminergic system in regulating malignant cell function.
Collapse
Affiliation(s)
- Steven C Davis
- Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704-9388, USA.
| | | | | | | | | |
Collapse
|
43
|
Benabbas A, Ye X, Kubo M, Zhang Z, Maes EM, Montfort WR, Champion PM. Ultrafast dynamics of diatomic ligand binding to nitrophorin 4. J Am Chem Soc 2010; 132:2811-20. [PMID: 20121274 DOI: 10.1021/ja910005b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrophorin 4 (NP4) is a heme protein that stores and delivers nitric oxide (NO) through pH-sensitive conformational change. This protein uses the ferric state of a highly ruffled heme to bind NO tightly at low pH and release it at high pH. In this work, the rebinding kinetics of NO and CO to NP4 are investigated as a function of iron oxidation state and the acidity of the environment. The geminate recombination process of NO to ferrous NP4 at both pH 5 and pH 7 is dominated by a single approximately 7 ps kinetic phase that we attribute to the rebinding of NO directly from the distal pocket. The lack of pH dependence explains in part why NP4 cannot use the ferrous state to fulfill its function. The kinetic response of ferric NP4NO shows two distinct phases. The relative geminate amplitude of the slower phase increases dramatically as the pH is raised from 5 to 8. We assign the fast phase of NO rebinding to a conformation of the ferric protein with a closed hydrophobic pocket. The slow phase is assigned to the protein in an open conformation with a more hydrophilic heme pocket environment. Analysis of the ultrafast kinetics finds the equilibrium off-rate of NO to be proportional to the open state population as well as the pH-dependent amplitude of escape from the open pocket. When both factors are considered, the off-rate increases by more than an order of magnitude as the pH changes from 5 to 8. The recombination of CO to ferrous NP4 is observed to have a large nonexponential geminate amplitude with rebinding time scales of approximately 10(-11)-10(-9) s at pH 5 and approximately 10(-10)-10(-8) s at pH 7. The nonexponential CO rebinding kinetics at both pH 5 and pH 7 are accounted for using a simple model that has proven effective for understanding CO binding in a variety of other heme systems (Ye, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 14682).
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Alves-Silva J, Ribeiro JMC, Van Den Abbeele J, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 2010; 11:213. [PMID: 20353571 PMCID: PMC2853526 DOI: 10.1186/1471-2164-11-213] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. RESULTS As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. CONCLUSIONS The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
Collapse
|
45
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
46
|
Andersen JF. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 2009; 56:1120-9. [PMID: 19925819 DOI: 10.1016/j.toxicon.2009.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The saliva of blood-feeding arthropods contains rich mixtures of ligand binding proteins targeted at inhibiting hemostasis and inflammation in the host. Since blood feeding has evolved many times, different taxonomic groups utilize completely different families of proteins to perform similar tasks. Structural studies performed on a number of these proteins have revealed biologically novel and sophisticated mechanisms used to perform their functions. Here, the results of these structural and mechanistic studies are reviewed.
Collapse
Affiliation(s)
- John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 2E-32B Twinbrook 3 Bldg, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| |
Collapse
|
47
|
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, Assumpção TC, Marcus K, Stephan C, Meyer HE, Ribeiro JMC, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA. Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 2009; 3:e532. [PMID: 19841746 PMCID: PMC2760138 DOI: 10.1371/journal.pntd.0000532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. METHODOLOGY/PRINCIPAL FINDINGS T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. CONCLUSIONS/SIGNIFICANCE The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Collapse
Affiliation(s)
- Alexandra Schwarz
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annu Rev Genomics Hum Genet 2009; 10:483-511. [DOI: 10.1146/annurev.genom.9.081307.164356] [Citation(s) in RCA: 587] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A2, sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.
Collapse
Affiliation(s)
- Bryan G. Fry
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne 3010 Australia
| | - Kim Roelants
- Unit of Ecology and Systematics, Vrije Universiteit Brussels, 1050 Brussels, Belgium
| | - Donald E. Champagne
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602
| | | | - Joel D.A. Tyndall
- National School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Janette A. Norman
- Sciences Department, Museum Victoria, Melbourne, Victoria 3001, Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Raymond S. Norton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Victoria, Australia
| | - Camila Renjifo
- Department of Physiological Sciences, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ricardo C. Rodríguez de la Vega
- Structural and Computational Biology/Gene Expression Units, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
49
|
1H and 13C NMR spectroscopic studies of the ferriheme resonances of three low-spin complexes of wild-type nitrophorin 2 and nitrophorin 2(V24E) as a function of pH. J Biol Inorg Chem 2009; 14:1077-95. [PMID: 19517143 PMCID: PMC2847153 DOI: 10.1007/s00775-009-0551-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/24/2009] [Indexed: 11/19/2022]
Abstract
The ferriheme resonances of the low-spin (S = 1/2) complexes of wild-type (wt) nitrophorin 2 (NP2) and its heme pocket mutant NP2(V24E) with imidazole (ImH), histamine (Hm), and cyanide (CN−) as the sixth ligand have been investigated by NMR spectroscopy as a function of pH (4.0–7.5). For the three wt NP2 complexes, the ratio of the two possible heme orientational isomers, A and B, remains almost unchanged (ratio of A:B approximately 1:6 to 1:5) over this wide pH range. However, strong chemical exchange cross peaks appear in the nuclear Overhauser effect spectroscopy/exchange spectroscopy (NOESY/EXSY) spectra for the heme methyl resonances at low pH (pH* 4.0–5.5), which indicate chemical exchange between two species. We have shown these to be two different exogenous ImH or Hm orientations that are denoted B and B′, with the ImH plane nearly parallel and perpendicular to the ImH plane of the protein-provided His57, respectively. The wt NP2–CN complex also shows EXSY cross peaks due to chemical exchange, which is shown to be a result of interchange between two ruffling distortions of the heme. The same ruffling distortion interchange is also responsible for the ImH and Hm chemical exchange. For the three NP2(V24E) ligand complexes, no EXSY cross peaks are observed, but the A:B ratios change dramatically with pH. The fact that heme favors the A orientation highly for NP2(V24E) at low pH as compared with wt NP2 is believed to be due to the steric effect of the V24E mutation. The existence of the B′ species at lower pH for wt NP2 complexes and the increase in A heme orientation at lower pH for NP2(V24E) are believed to be a result of a change in structure near Glu53 when it is protonated at low pH. 1H{13C} heteronuclear multiple quantum coherence (HMQC) spectra are very helpful for the assignment of heme and nearby protein side chain resonances.
Collapse
|
50
|
Caljon G, Broos K, De Goeyse I, De Ridder K, Sternberg JM, Coosemans M, De Baetselier P, Guisez Y, Den Abbeele JV. Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:332-341. [PMID: 19507303 DOI: 10.1016/j.ibmb.2009.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Our previous screening of a Glossina morsitans morsitans lamdagt11 salivary gland expression library with serum of a tsetse fly exposed rabbit identified a cDNA encoding Tsetse Antigen5 (TAg5, 28.9 kDa), a homologue of Antigen5 sting venom allergens. Recombinant TAg5 was produced in Sf9 cells in order to assess its immunogenic properties in humans. Plasma from a patient that previously exhibited anaphylactic reactions against tsetse fly bites contained circulating anti-TAg5 and anti-saliva IgEs. In a significant proportion of plasma samples of African individuals, TAg5 and saliva binding IgEs (respectively 56 and 65%) can be detected. Saliva, harvested from flies that were subjected to TAg5- specific RNA interference (RNAi), displayed significantly reduced IgE binding potential. Allergenic properties of TAg5 and tsetse fly saliva were further illustrated in immunized mice, using an immediate cutaneous hypersensitivity and passive cutaneous anaphylaxis assay. Collectively, TAg5 was illustrated to be a tsetse fly salivary allergen, demonstrating that Antigen5-related proteins are represented as functional allergens not only in stinging but also in blood feeding insects.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Parasitology, Institute of Tropical Medicine Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|