1
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
2
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
3
|
Ben-Eltriki M, Ahmadi AR, Nakao Y, Golla K, Lakschevitz F, Häkkinen L, Granville DJ, Kim H. Granzyme B promotes matrix metalloproteinase-1 (MMP-1) release from gingival fibroblasts in a PAR1- and Erk1/2-dependent manner: A novel role in periodontal inflammation. J Periodontal Res 2024; 59:94-103. [PMID: 37873693 DOI: 10.1111/jre.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To gain insights into how proteases signal to connective tissues cells in the periodontium. BACKGROUND The connective tissue degradation observed in periodontitis is largely due to matrix metalloproteinase (MMP) release by gingival fibroblasts. Granzyme B (GzmB) is a serine protease whose role in periodontitis is undefined. METHODS Human gingival crevicular fluid (GCF) samples were obtained from sites with periodontal disease and healthy control sites. GzmB was quantified in the GCF ([GzmB]GCF ) by ELISA. Gingival fibroblasts (GF) were cultured in the presence or absence of recombinant GzmB. Culture supernatants were analyzed by ELISA to quantify GzmB-induced release of interstitial collagenase (MMP-1). In some experiments, cells were pre-treated with the inhibitor PD98059 to block MEK/ERK signaling. The protease-activated receptor-1 (PAR-1) was blocked with ATAP-2 neutralizing antibody prior to GzmB stimulation. Systemic MMP-1 levels were measured in plasma from wild-type (WT) and granzyme-B-knockout (GzmB-/- ) mice. RESULTS The [GzmB]GCF in human samples was ~4-5 fold higher at sites of periodontal disease (gingivitis/periodontitis) compared to healthy control sites, suggesting an association between GzmB and localized matrix degradation. GzmB induced a ~4-5-fold increase in MMP-1 secretion by cultured fibroblasts. GzmB induced phosphorylation of Erk1/2, which was abrogated by PD98059. GzmB-induced upregulation of MMP-1 secretion was also reduced by PD98059. Blockade of PAR-1 function by ATAP-2 abrogated the increase in MMP-1 secretion by GF. Circulating MMP-1 was similar in WT and GzmB-/- mice, suggesting that GzmB's effects on MMP-1 release are not reflected systemically. CONCLUSION These data point to a novel GzmB-driven signaling pathway in fibroblasts in which MMP-1 secretion is upregulated in a PAR1- and Erk1/2-dependent manner.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Reza Ahmadi
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuya Nakao
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Flavia Lakschevitz
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
5
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. An immunomodulating peptide with potential to suppress tumour growth and autoimmunity. Sci Rep 2023; 13:19741. [PMID: 37957274 PMCID: PMC10643673 DOI: 10.1038/s41598-023-47229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/β subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor β1/β2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, New South Wales, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Department of Oncology,, Peter MacCallum Cancer Centre and Sir Peter MacCallum, University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, New South Wales, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
6
|
Chan HY, Tran HM, Breen J, Schjenken JE, Robertson SA. The endometrial transcriptome transition preceding receptivity to embryo implantation in mice. BMC Genomics 2023; 24:590. [PMID: 37794337 PMCID: PMC10552439 DOI: 10.1186/s12864-023-09698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.
Collapse
Affiliation(s)
- Hon Yeung Chan
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Ha M Tran
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - James Breen
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - John E Schjenken
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, NSW, 2305, Australia
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sarah A Robertson
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
7
|
Hoshino T, Murayama N, Yamagishi K, Okado Y, Iwai H, Shirai K, Hosaka S, Moore PF, Nagata M. Clinical efficacy of recombinant canine interferon-gamma therapy in dogs with cutaneous epitheliotropic T-cell lymphoma. Vet Dermatol 2023; 34:460-467. [PMID: 37006127 DOI: 10.1111/vde.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/20/2022] [Accepted: 02/19/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND The antitumour effects of interferon-gamma (IFN-γ) in humans with cutaneous epitheliotropic T-cell lymphoma (CETCL) have been described; however, the efficacy of IFN-γ in dogs has not been investigated. HYPOTHESIS/OBJECTIVES The aim of this study was to evaluate the efficacy of recombinant canine IFN-γ (rCaIFN-γ) therapy in dogs with CETCL. ANIMALS Twenty dogs with CETCL recruited from seven veterinary clinics were enrolled in the study. MATERIALS AND METHODS Fifteen dogs were treated with rCaIFN-γ, and five control dogs were treated with prednisolone. We evaluated survival time, skin lesions (erythema, nodules, ulcers and bleeding), pruritus and general condition (sleep, appetite and body weight). In the rCaIFN-γ group, a questionnaire regarding the therapy was administered to owners after the dogs died. RESULTS No significant differences existed in the median survival time between the rCaIFN-γ and control groups (log-rank test: p = 0.2761, Wilcoxon's rank sum test: p = 0.4444). However, there were significant differences in ulcer, bleeding, pruritus, sleep, appetite and body weight between the groups (Wilcoxon-Mann-Whitney U-test: p = 0.0023, p = 0.0058, p = 0.0005, p = 0.0191, p = 0.0306 and p = 0.0306, respectively). Two (40%) of five dogs were euthanised in the control group, compared with none in the rCaIFN-γ group. Fourteen questionnaires were collected, and owners reported that they were satisfied with the rCaIFN-γ treatment. CONCLUSIONS AND CLINICAL RELEVANCE Although the median survival time was not prolonged, rCaIFN-γ could be helpful in maintaining good quality of life for dogs with CETCL.
Collapse
Affiliation(s)
- Tomoya Hoshino
- Department of Dermatology, Veterinary Specialists Emergency Centre, Saitama, Japan
| | | | | | | | | | | | | | - Peter F Moore
- Department of Veterinary Pathology, University of California, Davis, California, USA
| | - Masahiko Nagata
- Department of Dermatology, Veterinary Specialists Emergency Centre, Saitama, Japan
- Dermatology Services for Dogs and Cats, Tokyo, Japan
- ASC, Tokyo, Japan
| |
Collapse
|
8
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 is a key modulator of regulatory T cell-mediated tumor evasion. Proc Natl Acad Sci U S A 2023; 120:e2221707120. [PMID: 37253006 PMCID: PMC10266015 DOI: 10.1073/pnas.2221707120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Prashi Jain
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yosef Gilad
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yan Xia
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Nuri Sung
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Mi Jin Park
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Adam M. Dean
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Rainer B. Lanz
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Jianming Xu
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Clifford C. Dacso
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - David M. Lonard
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Bert W. O'Malley
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
10
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid Receptor Coactivator-3 is a Key Modulator of Regulatory T Cell-Mediated Tumor Evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534575. [PMID: 37034717 PMCID: PMC10081245 DOI: 10.1101/2023.03.28.534575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were 'permanently eradicated' in a genetically engineered tamoxifen-inducible Treg-cell specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the Chemokine (C-C motif) ligand (Ccl) 19/Ccl21/ Chemokine (C-C motif) Receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C Motif Chemokine Ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and Natural Killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish pre-established breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3 deleted Tregs represents a novel approach to completely block tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators. Significance statement Tregs are essential in restraining immune responses for immune homeostasis. SRC-3 is a pleiotropic coactivator, the second-most highly expressed transcriptional coactivator in Tregs, and a suspect in Treg function. The disruption of SRC-3 expression in Tregs leads to a 'complete lifetime eradication' of tumors in aggressive syngeneic breast cancer mouse models because deletion of SRC-3 alters the expression of a wide range of key genes involved in efferent and afferent Treg signaling. SRC-3KO Tregs confer this long-lasting protection against cancer recurrence in mice without an apparent systemic autoimmune pathological phenotype. Therefore, treatment with SRC-3 deleted Tregs could represent a novel and efficient future target for eliminating tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators.
Collapse
|
11
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Recombinant GPEHT Fusion Protein Derived from HTLV-1 Proteins with Alum Adjuvant Induces a High Immune Response in Mice. Vaccines (Basel) 2023; 11:vaccines11010115. [PMID: 36679960 PMCID: PMC9865465 DOI: 10.3390/vaccines11010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a positive single-stranded RNA virus that belongs to the delta retrovirus family. As a result, a vaccine candidate that can be recognized by B cells and T cells is a good candidate for generating a durable immune response. Further, the GPEHT protein is a multi-epitope protein designed based on the Gag, Pol, Env, Hbz, and Tax proteins of HTLV-1. In developing a suitable and effective vaccine against HTLV-1, the selection of a designed protein (GPEHT) with the formulation of an alum adjuvant was conducted. In this study, we assessed the potential of a multi-epitope vaccine candidate for stimulating the immune response against HTLV-1. In assessing the type of stimulated immune reaction, total IgG, IgG1, and IgG2a isotypes, as well as the cytokines associated with Th1 (IFN-γ), Th2 (IL-4), and Th17 (IL-17), were analyzed. The outcomes showed that the particular antisera (total IgG) were more elevated in mice that received the GPEHT protein with the alum adjuvant than those in the PBS+Alum control. A subcutaneous vaccination with our chimera protein promoted high levels of IgG1 and IgG2a isotypes. Additionally, IFN-γ, IL-4, and IL-17 levels were significantly increased after spleen cell stimulation in mice that received the GPEHT protein. The immunogenic analyses revealed that the GPEHT vaccine candidate could generate humoral and cell-mediated immune reactions. Ultimately, this study suggests that GPEHT proteins developed with an alum adjuvant can soon be considered as a prospective vaccine to more accurately evaluate their protective efficacy against HTLV-1.
Collapse
|
13
|
Lim JS, Kim CR, Shin KS, Park HJ, Yoon TJ. Red Ginseng Extract and γ-Aminobutyric Acid Synergistically Enhance Immunity Against Cancer Cells and Antitumor Metastasis Activity in Mice. J Med Food 2023; 26:27-35. [PMID: 36576794 DOI: 10.1089/jmf.2022.k.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of combined administration of red ginseng (RG) extracts and gamma-aminobutyric acid (GABA) on immunostimulatory activity and tumor metastasis inhibition were investigated in mice. For the immunostimulatory activity, splenocyte proliferation, natural killer (NK) cell activity, including the production of granzyme B (GrB) and interferon gamma (IFN-γ), and serum level of cytokine such as IFN-γ, interleukin (IL)-17, and IL-21 were assessed. Peyer's patch cells obtained from mice administered with RG+GABA were cultured, and the cytokine level in the culture supernatant and bone marrow (BM) cell proliferation activity were examined. The proliferative activity of splenocytes was significantly higher in the RG-GABA treatment group than in RG or GABA alone (P < .05). In the experimental tumor metastasis model, oral administration of RG+GABA showed a higher antitumor metastatic effect compared to that of RG or GABA alone. Oral administration of RG+GABA significantly augmented NK cell-mediated cytotoxicity against YAC-1 tumor cells. In addition, the production of GrB and IFN-γ was stimulated in the culture supernatant of NK cells and YAC-1 cells. Serum concentrations of IFN-γ, IL-17, and IL-21 in mice with RG+GABA were significantly higher compared to the corresponding blood levels in mice administered with RG or GABA alone. The RG+GABA group showed significant BM cell proliferation and increased production of IL-6 and granulocyte-macrophage colony-stimulating factor compared to that in the monotherapy groups. Therefore, RG may have a synergistic effect with GABA for enhancing the host defense system such as BM proliferation and NK cell activity in a tumor metastasis model.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea
| | - Chae Rim Kim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea.,DoGenBio Co., Seoul, Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Yeongtong-gu, Korea
| | - Hee Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul, Korea
| | | |
Collapse
|
14
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depends on involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4 and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokines receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
| | | | - Kalpana Pai
- Savitribai Phule Pune University, Pune, Maharashtra
| |
Collapse
|
16
|
Zhou J, Blevins LK, Crawford RB, Kaminski NE. Role of Programmed Cell Death Protein-1 and Lymphocyte Specific Protein Tyrosine Kinase in the Aryl Hydrocarbon Receptor- Mediated Impairment of the IgM Response in Human CD5 + Innate-Like B Cells. Front Immunol 2022; 13:884203. [PMID: 35558082 PMCID: PMC9088000 DOI: 10.3389/fimmu.2022.884203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Innate-like B cells (ILBs) are a heterogeneous population B cells which participate in innate and adaptive immune responses. This diverse subset of B cells is characterized by the expression of CD5 and has been shown to secrete high levels of immunoglobulin M (IgM) in the absence of infection or vaccination. Further, CD5+ ILBs have been shown to express high basal levels of lymphocyte specific protein tyrosine kinase (LCK) and programmed cell death protein-1 (PD-1), which are particularly sensitive to stimulation by interferon gamma (IFNγ). Previous studies have demonstrated that activation of the aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, results in suppressed IgM responses and is dependent on LCK. A recent study showed that CD5+ ILBs are particularly sensitive to AHR activation as evidenced by a significant suppression of the IgM response compared to CD5- B cells, which were refractory. Therefore, the objective of this study was to further investigate the role of LCK and PD-1 signaling in AHR-mediated suppression of CD5+ ILBs. In addition, studies were conducted to establish whether IFNγ alters the levels of LCK and PD-1 in CD5+ ILBs. We found that AHR activation led to a significant upregulation of total LCK and PD-1 proteins in CD5+ ILBs, which correlated with suppression of IgM. Interestingly, treatment with recombinant IFNγ reduced LCK protein levels and reversed AHR-mediated IgM suppression in CD5+ ILBs in a similar manner as LCK inhibitors. Collectively, these results support a critical role for LCK and PD-1 in AHR-mediated suppression of the IgM response in human CD5+ ILBs.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lance K. Blevins
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Robert B. Crawford
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Norbert E. Kaminski
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
18
|
Sun D, Chan N, Shao H, Born WK, Kaplan HJ. γδ T Cells Activated in Different Inflammatory Environments Are Functionally Distinct. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1224-1231. [PMID: 35101894 DOI: 10.4049/jimmunol.2100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
γδ T cells are important immunoregulatory cells in experimental autoimmune uveitis (EAU), and the activation status of γδ T cells determines their disease-enhancing or inhibitory effects. Because γδ T cells can be activated via various pathways, we questioned whether the nature of their activation might impact their function. In this study, we show that γδ T cells activated under different inflammatory conditions differ greatly in their functions. Whereas anti-CD3 treatment activated both IFN-γ+ and IL-17+ γδ T cells, cytokines preferentially activated IL-17+ γδ T cells. γδ T cells continued to express high levels of surface CD73 after exposure to inflammatory cytokines, but they downregulated surface CD73 after exposure to dendritic cells. Although both CD73high and CD73low cells have a disease-enhancing effect, the CD73low γδ T cells are less inhibitory. We also show that polarized activation not only applies to αβ T cells and myeloid cells, but also to γδ T cells. After activation under Th17-polarizing conditions, γδ T cells predominantly expressed IL-17 (gdT17), but after activation under Th1 polarizing conditions (gdT1) they mainly expressed IFN-γ. The pro-Th17 activity of γδ T cells was associated with gdT17, but not gdT1. Our results demonstrate that the functional activity of γδ T cells is strikingly modulated by their activation level, as well as the pathway through which they were activated.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| | - Nymph Chan
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health Center, Denver, CO; and
| | - Henry J Kaplan
- School of Medicine, Saint Louis University, St. Louis, MO
| |
Collapse
|
19
|
Zhang W, An EK, Park HB, Hwang J, Dhananjay Y, Kim SJ, Eom HY, Oda T, Kwak M, Lee PCW, Jin JO. Ecklonia cava fucoidan has potential to stimulate natural killer cells in vivo. Int J Biol Macromol 2021; 185:111-121. [PMID: 34119543 DOI: 10.1016/j.ijbiomac.2021.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Fucoidan is a sulfated polysaccharide, derived from various marine brown seaweeds, that has immunomodulatory effects. In this study, we analyzed the effects of five different fucoidans, which were extracted from Ascophyllum nodosum, Undaria pinnatifida, Macrocystis pyrifera, Fucus vesiculosus, and Ecklonia cava, on natural killer (NK) cell activation in mice. Among these, E. cava fucoidan (ECF) promoted an increase in the number of NK cells in the spleen and had the strongest effect on the activation of NK cells. Additionally, we observed that DC stimulation was required for NK cell activation and that ECF had the most potent effect on splenic dendritic cells (DC). Finally, ECF treatment effectively prevented infiltration of CT-26 carcinoma cells in the lungs of BALB/c mice in an NK cell dependent manner. Collectively, these results suggest that ECF could be a suitable candidate for enhancing NK cell-mediated anti-cancer immunity.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae-Bin Park
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hee-Yun Eom
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
20
|
Jin WJ, Erbe AK, Schwarz CN, Jaquish AA, Anderson BR, Sriramaneni RN, Jagodinsky JC, Bates AM, Clark PA, Le T, Lan KH, Chen Y, Kim K, Morris ZS. Tumor-Specific Antibody, Cetuximab, Enhances the In Situ Vaccine Effect of Radiation in Immunologically Cold Head and Neck Squamous Cell Carcinoma. Front Immunol 2020; 11:591139. [PMID: 33281820 PMCID: PMC7689006 DOI: 10.3389/fimmu.2020.591139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
In head and neck squamous cell carcinoma (HNSCC) tumors that over-expresses huEGFR, the anti-EGFR antibody, cetuximab, antagonizes tumor cell viability and sensitizes to radiation therapy. However, the immunologic interactions between cetuximab and radiation therapy are not well understood. We transduced two syngeneic murine HNSCC tumor cell lines to express human EGFR (MOC1- and MOC2-huEGFR) in order to facilitate evaluation of the immunologic interactions between radiation and cetuximab. Cetuximab was capable of inducing antibody-dependent cellular cytotoxicity (ADCC) in MOC1- and MOC2-huEGFR cells but showed no effect on the viability or radiosensitivity of these tumor cells, which also express muEGFR that is not targeted by cetuximab. Radiation enhanced the susceptibility of MOC1- and MOC2-huEGFR to ADCC, eliciting a type I interferon response and increasing expression of NKG2D ligands on these tumor cells. Co-culture of splenocytes with cetuximab and MOC2-huEGFR cells resulted in increased expression of IFNγ in not only NK cells but also in CD8+ T cells, and this was dependent upon splenocyte expression of FcγR. In MOC2-huEGFR tumors, combining radiation and cetuximab induced tumor growth delay that required NK cells, EGFR expression, and FcγR on host immune cells. Combination of radiation and cetuximab increased tumor infiltration with NK and CD8+ T cells but not regulatory T cells. Expression of PD-L1 was increased in MOC2-huEGFR tumors following treatment with radiation and cetuximab. Delivering anti-PD-L1 antibody with radiation and cetuximab improved survival and resulted in durable tumor regression in some mice. Notably, these cured mice showed evidence of an adaptive memory response that was not specifically directed against huEGFR. These findings suggest an opportunity to improve the treatment of HNSCC by combining radiation and cetuximab to engage an innate anti-tumor immune response that may prime an effective adaptive immune response when combined with immune checkpoint blockade. It is possible that this approach could be extended to any immunologically cold tumor that does not respond to immune checkpoint blockade alone and for which a tumor-specific antibody exists or could be developed.
Collapse
Affiliation(s)
- Won Jong Jin
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Ciara N. Schwarz
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Abigail A. Jaquish
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Bryce R. Anderson
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | | | - Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Amber M. Bates
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, United States
| | - Keng-Hsueh Lan
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Yi Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, United States
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
21
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
22
|
Defective FasL expression is associated with increased resistance to melanoma liver metastases and enhanced natural killer cell activity. Melanoma Res 2020; 29:401-412. [PMID: 30932943 DOI: 10.1097/cmr.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective was to determine if the absence of FasL signaling would affect melanoma liver metastases by influencing the antimelanoma properties of liver natural killer (NK) cells. Melanoma liver metastases were induced in wild-type C57BL/6 mice and the gld/gld mutant C57BL/6 mouse strain that expresses a defective form of FasL (CD95L) that fails to engage and signal via the Fas receptor (CD95). Liver metastases were produced by intrasplenic injection of B16LS9 melanoma cells. Liver NK cell activity directed against murine B16LS9 melanoma cells was determined in a 24 h in-vitro cytotoxicity assay. Liver NK cells, NK T cells, and the NK cell surface activation marker, NKG2D, were measured by flow cytometry. Mice expressing defective FasL displayed reduced, rather than enhanced, melanoma liver metastases that coincided with increased liver NK cell-mediated tumor cell cytotoxicity. Enhanced cytotoxicity was not mediated by perforin, tumor necrosis factor-α, or tumor necrosis-associated apoptosis-inducing ligand but was closely associated with elevated interferon-γ in the tumor-bearing liver. FasL-defective gld/gld mice also displayed reduced numbers of liver NK T cells, which have been previously implicated in suppression on liver NK cell activity. The absence of functional FasL in the liver correlates with a heightened, not diminished, resistance to melanoma liver metastases. The resistance to liver metastases coincides with a significant, albeit transient, increase in liver NK cytotoxicity and elevated levels of interferon-γ in the liver.
Collapse
|
23
|
Thomson CA, McColl A, Graham GJ, Cavanagh J. Sustained exposure to systemic endotoxin triggers chemokine induction in the brain followed by a rapid influx of leukocytes. J Neuroinflammation 2020; 17:94. [PMID: 32213184 PMCID: PMC7098135 DOI: 10.1186/s12974-020-01759-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Recent years have seen an explosion of research pertaining to biological psychiatry, yet despite subsequent advances in our understanding of neuroimmune communication pathways, how the brain senses and responds to peripheral inflammation remains poorly understood. A better understanding of these pathways may be important for generating novel therapeutics to treat many patients with chronic inflammatory diseases who also suffer from neuropsychiatric comorbidities. Here we have systematically assessed the leukocyte infiltrate to the brain following systemic endotoxin exposure to better understand this novel route of neuroimmune communication. Methods Mice were injected intraperitoneally with LPS daily for 2, 5 or 7 consecutive days. We systematically interrogated the subsequent induction of chemokine transcription in the brain using TaqMan low-density arrays. A combination of flow cytometry and immunohistochemistry was then used to characterise the accompanying leukocyte infiltrate. Results Repeated LPS challenges resulted in prolonged activation of brain-resident microglia, coupled with an increased local transcription of numerous chemokines. After 2 days of administering LPS, there was a marked increase in the expression of the neutrophil chemoattractants CXCL1 and CXCL2; the monocyte chemoattractants CCL2, CCL5, CCL7 and CCL8; and the lymphocyte chemoattractants CXCL9, CXCL10 and CXCL16. In a number of cases, this response was sustained for several days. Chemokine induction was associated with a transient recruitment of neutrophils and monocytes to the brain, coupled with a sustained accumulation of macrophages, CD8+ T cells, NK cells and NKT cells. Strikingly, neutrophils, monocytes and T cells appeared to extravasate from the vasculature and/or CSF to infiltrate the brain parenchyma. Conclusions Prolonged exposure to a peripheral inflammatory stimulus triggers the recruitment of myeloid cells and lymphocytes to the brain. By altering the inflammatory or metabolic milieu of the brain, this novel method of immune-to-brain communication may have profound implications for patients with chronic inflammatory diseases, potentially leading to neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alison McColl
- Institute of Infection, Immunity & Inflammation, Collage of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- Institute of Infection, Immunity & Inflammation, Collage of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity & Inflammation, Collage of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK. .,Institute of Health & Wellbeing, Collage of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Clarke EC, Bradfute SB. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 1: Potential effects on adaptive immunity and response to vaccination. Antiviral Res 2020; 174:104703. [DOI: 10.1016/j.antiviral.2019.104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
|
25
|
Cardoso Alves L, Berger MD, Koutsandreas T, Kirschke N, Lauer C, Spörri R, Chatziioannou A, Corazza N, Krebs P. Non-apoptotic TRAIL function modulates NK cell activity during viral infection. EMBO Rep 2020; 21:e48789. [PMID: 31742873 PMCID: PMC6945065 DOI: 10.15252/embr.201948789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022] Open
Abstract
The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.
Collapse
Affiliation(s)
- Ludmila Cardoso Alves
- Institute of PathologyUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | | | - Thodoris Koutsandreas
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nick Kirschke
- Institute of PathologyUniversity of BernBernSwitzerland
| | | | - Roman Spörri
- Institute of MicrobiologyETH ZurichZurichSwitzerland
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nadia Corazza
- Institute of PathologyUniversity of BernBernSwitzerland
| | | |
Collapse
|
26
|
Natural Killer Cells Integrate Signals Received from Tumour Interactions and IL2 to Induce Robust and Prolonged Anti-Tumour and Metabolic Responses. IMMUNOMETABOLISM 2019; 1:e190014. [PMID: 31595191 PMCID: PMC6783304 DOI: 10.20900/immunometab20190014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural Killer (NK) cells are lymphocytes with an important role in anti-tumour responses. NK cells bridge the innate and adaptive arms of the immune system; they are primed for immediate anti-tumour function but can also have prolonged actions alongside the adaptive T cell response. However, the key signals and cellular processes that are required for extended NK cell responses are not fully known. Herein we show that murine NK cell interaction with tumour cells induces the expression of CD25, the high affinity IL2 receptor, rendering these NK cells highly sensitive to the T cell-derived cytokine IL2. In response to IL2, CD25high NK cells show robust increases in metabolic signalling pathways (mTORC1, cMyc), nutrient transporter expression (CD71, CD98), cellular growth and in NK cell effector functions (IFNγ, granzyme B). Specific ligation of an individual activating NK cell receptor, NK1.1, showed similar increases in CD25 expression and IL2-induced responses. NK cell receptor ligation and IL2 collaborate to induce mTORC1/cMyc signalling leading to high rates of glycolysis and oxidative phosphorylation (OXPHOS) and prolonged NK cell survival. Disrupting mTORC1 and cMyc signalling in CD25high tumour interacting NK cells prevents IL2-induced cell growth and function and compromises NK cell viability. This study reveals that tumour cell interactions and T cell-derived IL2 cooperate to promote robust and prolonged NK cell anti-tumour metabolic responses.
Collapse
|
27
|
Kundu K, Ghosh S, Sarkar R, Edri A, Brusilovsky M, Gershoni-Yahalom O, Yossef R, Shemesh A, Soria JC, Lazar V, Joshua BZ, Campbell KS, Elkabets M, Porgador A. Inhibition of the NKp44-PCNA Immune Checkpoint Using a mAb to PCNA. Cancer Immunol Res 2019; 7:1120-1134. [PMID: 31164357 DOI: 10.1158/2326-6066.cir-19-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 05/30/2019] [Indexed: 02/05/2023]
Abstract
mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Susmita Ghosh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rhitajit Sarkar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rami Yossef
- Surgery Branch, NCI, NIH, Bethesda, Maryland
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Vladimir Lazar
- Worldwide Innovative Network (WIN) Association - WIN Consortium, Villejuif, France
| | - Ben-Zion Joshua
- Department of Otolaryngology-Head and Neck Surgery, Soroka Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
28
|
The Interplay between MicroRNAs and Cellular Components of Tumour Microenvironment (TME) on Non-Small-Cell Lung Cancer (NSCLC) Progression. J Immunol Res 2019; 2019:3046379. [PMID: 30944831 PMCID: PMC6421779 DOI: 10.1155/2019/3046379] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Cellular components of the tumour microenvironment (TME) are recognized to regulate the hallmarks of cancers including tumour proliferation, angiogenesis, invasion, and metastasis, as well as chemotherapeutic resistance. The linkage between miRNA, TME, and the development of the hallmarks of cancer makes miRNA-mediated regulation of TME a potential therapeutic strategy to complement current cancer therapies. Despite significant advances in cancer therapy, lung cancer remains the deadliest form of cancer among males in the world and has overtaken breast cancer as the most fatal cancer among females in more developed countries. Therefore, there is an urgent need to develop more effective treatments for NSCLC, which is the most common type of lung cancer. Hence, this review will focus on current literature pertaining to antitumour or protumourigenic effects elicited by nonmalignant stromal cells of TME in NSCLC through miRNA regulation as well as current status and future prospects of miRNAs as therapeutic agents or targets to regulate TME in NSCLC.
Collapse
|
29
|
Manohar M, Kandikattu HK, Verma AK, Mishra A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G954-G965. [PMID: 30212254 PMCID: PMC6336943 DOI: 10.1152/ajpgi.00139.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is an inflammatory disease characterized by the induction of several proinflammatory cytokines like interleukin (IL)-6, IL-8, IL-1β, and IL-1. Recently, the multifunctional innate cytokine IL-15 has been implicated in the protection of several diseases, including cancer. Tissue fibrosis is one of the major problems in successfully treating chronic pancreatitis pathogenesis. Therefore, we tested the hypothesis that recombinant IL-15 (rIL-15) treatment may induce innate tissue responses and its overexpression will improve the pathogenesis of cerulein-induced chronic pancreatitis, associated remodeling, and fibrosis. We observed atrophy of acinar cells, increased inflammation, and increased deposition of perivascular collagen, the upregulated protein level of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), and collagen-1 in cerulein-induced chronic pancreatitis in mice. Furthermore, we reported that rIL-15 treatment protects mice from the cerulein-induced chronic pancreatitis pathogenesis, including acinar cell atrophy, and perivascular accumulation of tissue collagen followed by downregulation of profibrotic genes such as TGF-β1, α-SMA, collagen-1, collagen-3, and fibronectin in cerulein-induced chronic pancreatitis in mice. Mechanistically, we show that IL-15-mediated increase of interferon-γ-responsive invariant natural killer T (iNKT) cells in the blood and tissue protects cerulein-induced pancreatic pathogenesis in mice. Of note, a reduction in iNKT cells was also observed in human chronic pancreatitis compared with normal individuals. Taken together, these data suggest that IL-15 treatment may be a novel therapeutic strategy for treating chronic pancreatitis pathogenesis. NEW & NOTEWORTHY Pancreatic fibrosis is a major concern for the successful treatment of chronic pancreatitis and pancreatic cancer. Therefore, restriction in the progression of fibrosis is the promising approach to manage the pancreatitis pathogenesis. Herein, we present in vivo evidences that pharmacological treatment of recombinant interleukin-15 improves remodeling and fibrosis in cerulein-induced chronic pancreatitis in mice. Our observations indicate that interleukin-15 immunotherapy may be a possible and potential strategy for restricting the progression of fibrosis in chronic pancreatitis.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alok Kumar Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
30
|
Mendez-Encinas MA, Carvajal-Millan E, Rascon-Chu A, Astiazaran-Garcia HF, Valencia-Rivera DE. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2314759. [PMID: 30186541 PMCID: PMC6116397 DOI: 10.1155/2018/2314759] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
Abstract
In the last years, biomedical research has focused its efforts in the development of new oral delivery systems for the treatment of different diseases. Ferulated arabinoxylans are polysaccharides from cereals that have been gaining attention in the pharmaceutical field due to their prebiotic, antioxidant, and anticancer properties. The antioxidant and anticancer properties of these polysaccharides make them attractive compounds for the treatment of cancer, particularly colon cancer. In addition, ferulated arabinoxylans can form covalent gels through the cross-linking of their ferulic acids. Due to their particular characteristics, ferulated arabinoxylan gels represent an excellent alternative as colon-targeted drug delivery systems. The aim of the present work is to review the physicochemical and functional properties of ferulated arabinoxylans and their gels and to present the future perspectives for potential application as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Mayra Alejandra Mendez-Encinas
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Agustín Rascon-Chu
- Biotechnology, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | | | - Dora Edith Valencia-Rivera
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, 83621 Caborca, SON, Mexico
| |
Collapse
|
31
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Kumar N, Khakoo SI. Hepatocellular carcinoma: Prospects for natural killer cell immunotherapy. HLA 2018; 92:3-11. [PMID: 29667374 DOI: 10.1111/tan.13275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
Liver disease is a growing cause of death in the United Kingdom and the incidence of hepatocellular carcinoma (HCC) is rising (http://www.cancerresearchuk.org/). The combination of an immunosuppressive environment within the liver and suboptimal host anti-tumour immune responses may account for the poor survival outcome of HCC. Understanding how tumours evade immune recognition coupled with new insights into the unique immunological environment within the liver will be critical to developing liver-specific immunotherapies.
Collapse
Affiliation(s)
- N Kumar
- Section of Hepatology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - S I Khakoo
- Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
33
|
IL-33 attenuates mortality by promoting IFN-γ production in sepsis. Inflamm Res 2018; 67:531-538. [PMID: 29610934 DOI: 10.1007/s00011-018-1144-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 03/24/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE AND DESIGN Sepsis remains a major clinical problem with high morbidity and mortality. Interleukin (IL)-33 is a recently described member of the IL-1 family that is widely expressed and functions as a new inflammatory mediator. IL-33 has been reported to protect sepsis, but the underlying mechanisms are not well-elucidated. MATERIALS AND METHODS We measured the interferon gamma (IFN-γ) production in septic mice after IL-33 treatment. RESULTS IL-33 treatment enhanced the IFN-γ level in blood and promoted mice's survival, so the protective effects of IL-33 depend on IFN-γ. The IL-33 treatment also promoted both γδ T cells and NK cells in septic mice. CONCLUSION Our data showed that IL-33 attenuates mortality by promoting IFN-γ production in sepsis.
Collapse
|
34
|
Keating N, Nicholson SE. SOCS-mediated immunomodulation of natural killer cells. Cytokine 2018; 118:64-70. [PMID: 29609875 DOI: 10.1016/j.cyto.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Natural killer (NK) cells are innate immune cells with an intrinsic ability to detect and kill infected and cancerous cells. The success of therapies targeting immune checkpoints on CD8 cells has intensified interest in harnessing the cytolytic effector functions of NK cells for new cancer treatments. NK cell development, survival and effector activity is dependent on exposure to the cytokine interleukin (IL)-15. The suppressor of cytokine (SOCS) proteins (CIS; SOCS1-7) are important negative regulators of cytokine signaling, and both CIS and SOCS2 are reported to have roles in regulating NK cell responses. Their immunomodulatory effects on NK cells suggest that these SOCS proteins are promising targets that can potentially form the basis of novel cancer therapies. Here we discuss the role of NK cells in tumor immunity as well as review the role of the SOCS proteins in regulating IL-15 signaling and NK cell function.
Collapse
Affiliation(s)
- Narelle Keating
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|
35
|
Moysidou M, Karaliota S, Kodela E, Salagianni M, Koutmani Y, Katsouda A, Kodella K, Tsakanikas P, Ourailidou S, Andreakos E, Kostomitsopoulos N, Skokos D, Chatzigeorgiou A, Chung KJ, Bornstein S, Sleeman MW, Chavakis T, Karalis KP. CD8+ T cells in beige adipogenesis and energy homeostasis. JCI Insight 2018. [PMID: 29515042 DOI: 10.1172/jci.insight.95456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although accumulation of lymphocytes in the white adipose tissue (WAT) in obesity is linked to insulin resistance, it remains unclear whether lymphocytes also participate in the regulation of energy homeostasis in the WAT. Here, we demonstrate enhanced energy dissipation in Rag1-/- mice, increased catecholaminergic input to subcutaneous WAT, and significant beige adipogenesis. Adoptive transfer experiments demonstrated that CD8+ T cell deficiency accounts for the enhanced beige adipogenesis in Rag1-/- mice. Consistently, we identified that CD8-/- mice also presented with enhanced beige adipogenesis. The inhibitory effect of CD8+ T cells on beige adipogenesis was reversed by blockade of IFN-γ. All together, our findings identify an effect of CD8+ T cells in regulating energy dissipation in lean WAT, mediated by IFN-γ modulation of the abundance of resident immune cells and of local catecholaminergic activity. Our results provide a plausible explanation for the clinical signs of metabolic dysfunction in diseases characterized by altered CD8+ T cell abundance and suggest targeting of CD8+ T cells as a promising therapeutic approach for obesity and other diseases with altered energy homeostasis.
Collapse
Affiliation(s)
- Maria Moysidou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Sevasti Karaliota
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Elisavet Kodela
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Maria Salagianni
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Yassemi Koutmani
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantia Kodella
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Styliani Ourailidou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Kyoung-Jin Chung
- Technische Universität Dresden, School of Medicine, Dresden, Germany
| | - Stefan Bornstein
- Technische Universität Dresden, School of Medicine, Dresden, Germany
| | - Mark W Sleeman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Katia P Karalis
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Technische Universität Dresden, School of Medicine, Dresden, Germany.,Endocrine Division, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Garand M, Goodier M, Owolabi O, Donkor S, Kampmann B, Sutherland JS. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018. [PMID: 29520269 PMCID: PMC5827559 DOI: 10.3389/fimmu.2018.00257] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) is still a global health concern, especially in resource-poor countries such as The Gambia. Defining protective immunity to TB is challenging: its pathogenesis is complex and involves several cellular components of the immune system. Recent works in vaccine development suggest important roles of the innate immunity in natural protection to TB, including natural killer (NK) cells. NK cells mediate cellular cytotoxicity and cytokine signaling in response to Mycobacterium tuberculosis (Mtb). NK cells can display specific memory-type markers to previous antigen exposure; thus, bridging innate and adaptive immunity. However, major knowledge gaps exist on the contribution of NK cells in protection against Mtb infection or TB. We performed a cross-sectional assessment of NK cells phenotype and function in four distinct groups of individuals: TB cases pre-treatment (n = 20) and post-treatment (n = 19), and household contacts with positive (n = 9) or negative (n = 18) tuberculin skin test (TST). While NK cells frequencies were similar between all groups, significant decreases in interferon-γ expression and degranulation were observed in NK cells from TB cases pre-treatment compared to post-treatment. Conversely, CD57 expression, a marker of advanced NK cells differentiation, was significantly lower in cases post-treatment compared to pre-treatment. Finally, NKG2C, an activation and imprinted-NK memory marker, was significantly increased in TST+ (latently infected) compared to TB cases pre-treatment and TST- (uninfected) individuals. The results of this study provide valuable insights into the role of NK cells in Mtb infection and TB disease, demonstrating potential markers for distinguishing between infection states and monitoring of TB treatment response.
Collapse
Affiliation(s)
- Mathieu Garand
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Martin Goodier
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| |
Collapse
|
37
|
Adams NM, O'Sullivan TE, Geary CD, Karo JM, Amezquita RA, Joshi NS, Kaech SM, Sun JC. NK Cell Responses Redefine Immunological Memory. THE JOURNAL OF IMMUNOLOGY 2017; 197:2963-2970. [PMID: 27824591 DOI: 10.4049/jimmunol.1600973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
Abstract
Immunological memory has traditionally been regarded as a unique trait of the adaptive immune system. Nevertheless, there is evidence of immunological memory in lower organisms and invertebrates, which lack an adaptive immune system. Despite their innate ability to rapidly produce effector cytokines and kill virally infected or transformed cells, NK cells also exhibit adaptive characteristics such as clonal expansion, longevity, self-renewal, and robust recall responses to antigenic or nonantigenic stimuli. In this review, we highlight the intracellular and extracellular requirements for memory NK cell generation and describe the emerging evidence for memory precursor NK cells and their derivation.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenny M Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
38
|
Simons B, Ferrini ME, Carvalho S, Bassett DJP, Jaffar Z, Roberts K. PGI2 Controls Pulmonary NK Cells That Prevent Airway Sensitization to House Dust Mite Allergen. THE JOURNAL OF IMMUNOLOGY 2016; 198:461-471. [PMID: 27895167 DOI: 10.4049/jimmunol.1600275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
In allergic asthma, inhalation of airborne allergens such as the house dust mite (HDM) effectively activates both innate and adaptive immunity in the lung mucosa. To determine the role of the eicosanoid PGI2 and its receptor IP during allergic airway sensitization, HDM responses in mice lacking a functional IP receptor (i.e., PGI2 IP receptor-deficient [IP-/-]) were compared with wild type (WT) mice. Surprisingly, IP-/- mice had increased numbers of pulmonary CD3-NK1.1+Ly49b+ NK cells producing IFN-γ that was inversely associated with the number of type 2 innate lymphoid cells (ILC2s) expressing IL-33Rα and IL-13 compared with WT animals. This phenomenon was associated with elevated CX3CL1 levels in the airways of IP-/- mice and treatment with a neutralizing Ab to CX3CL1 reduced IFN-γ production by the lung NK cells. Remarkably, IP-/- mice were less responsive to HDM challenge than WT counterparts because intranasal instillation of the allergen induced markedly reduced levels of airway eosinophils, CD4+ lymphocyte infiltration, and mucus production, as well as depressed levels of CCL2 chemokine and Th2 cytokines. NK cells were responsible for such attenuated responses because depletion of NK1.1+ cells in IP-/- mice restored both the HDM-induced lung inflammation and ILC2 numbers, whereas transfer of CD3-NK1.1+ NK cells into the airways of WT hosts suppressed the inflammatory response. Collectively, these data demonstrate a hitherto unknown role for PGI2 in regulating the number and properties of NK cells resident in lung tissue and reveal a role for NK cells in limiting lung tissue ILC2s and preventing allergic inflammatory responses to inhaled HDM allergen.
Collapse
Affiliation(s)
- Bryan Simons
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Maria E Ferrini
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Sophia Carvalho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - David J P Bassett
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Zeina Jaffar
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Kevan Roberts
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| |
Collapse
|
39
|
Mehrotra P, Collett JA, McKinney SD, Stevens J, Ivancic CM, Basile DP. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. Am J Physiol Renal Physiol 2016; 312:F385-F397. [PMID: 27852609 DOI: 10.1152/ajprenal.00462.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
T cells have been implicated in the pathogenesis of acute kidney injury (AKI) and its progression to chronic kidney disease (CKD). Previous studies suggest that Th17 cells participate during the AKI-to-CKD transition, and inhibition of T cell activity by mycophenolate mofetil (MMF) or losartan attenuates the development of fibrosis following AKI. We hypothesized that T cell-deficient rats may have reduced levels of IL-17 cytokine leading to decreased fibrosis following AKI. Renal ischemis-reperfusion (I/R) was performed on T cell-deficient athymic rats (Foxn1rnu-/rnu-) and control euthymic rats (Foxn1rnu-/+), and CKD progression was hastened by unilateral nephrectomy at day 33 and subsequent exposure to 4.0% sodium diet. Renal fibrosis developed in euthymic rats and was reduced by MMF treatment. Athymic rats exhibited a similar degree of fibrosis, but this was unaffected by MMF treatment. FACS analysis demonstrated that the number of IL-17+ cells was similar between postischemic athymic vs. euthymic rats. The source of IL-17 production in euthymic rats was predominately from conventional T cells (CD3+/CD161-). In the absence of conventional T cells in athymic rats, a compensatory pathway involving natural killer cells (CD3-/CD161+) was the primary source of IL-17. Blockade of IL-17 activity using IL-17Rc receptor significantly decreased fibrosis and neutrophil recruitment in both euthymic and athymic rats compared with vehicle-treated controls. Taken together, these data suggest that IL-17 secretion participates in the pathogenesis of AKI-induced fibrosis possibly via the recruitment of neutrophils and that the source of IL-17 may be from either conventional T cells or NK cells.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Seth D McKinney
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Jackson Stevens
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Carlie M Ivancic
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University of Medicine, Indianapolis, Indiana
| |
Collapse
|
40
|
Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, Abboud FM. Nicotine Mediates CD161a+ Renal Macrophage Infiltration and Premature Hypertension in the Spontaneously Hypertensive Rat. Circ Res 2016; 119:1101-1115. [PMID: 27660287 PMCID: PMC5085865 DOI: 10.1161/circresaha.116.309402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.
Collapse
MESH Headings
- Age of Onset
- Angiotensin II/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Denervation
- Gene Expression Regulation/drug effects
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Immunophenotyping
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/genetics
- Kidney/innervation
- Kidney/pathology
- Lectins/biosynthesis
- Lectins/genetics
- Macrophages/classification
- Macrophages/drug effects
- Macrophages/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily B/analysis
- Nephritis/chemically induced
- Nephritis/physiopathology
- Nicotine/pharmacology
- Nicotine/toxicity
- Norepinephrine/metabolism
- Prehypertension/etiology
- Prehypertension/genetics
- Prehypertension/pathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Sailesh C Harwani
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City.
| | - Jason Ratcliff
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Fayyaz S Sutterwala
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Zuhair K Ballas
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - David K Meyerholz
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Mark W Chapleau
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Francois M Abboud
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
41
|
Chow KV, Delconte RB, Huntington ND, Tarlinton DM, Sutherland RM, Zhan Y, Lew AM. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2000-8. [PMID: 27474076 DOI: 10.4049/jimmunol.1600181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/24/2016] [Indexed: 11/19/2022]
Abstract
Although the mechanisms governing the innate recognition of pathogen-associated molecular patterns have been well defined, how allogeneic cellular stimuli evoke innate responses remains less so. In this article, we report that upon i.v. transfer (to avoid major iatrogenic interference), allogeneic but not syngeneic leukocytes could induce a rapid (after 1 d) accumulation of host monocyte-derived dendritic cells (moDCs) without any increase in conventional DCs. This occurred in various donor-host strain combinations, did not require MHC mismatch, and could be induced by various donor cell types including B cells, T cells, or NK cells. Using RAG(-/-)γc(-/-) and scid γc(-/-)mice with different MHC, we found that the presence of either donor or host lymphoid cells was required. Alloinduced moDC accumulation was significantly reduced when splenocytes from mice deficient in NK cells by genetic ablation were used as donors. A major component of this moDC accumulation appears to be recruitment. Our findings provide new insights into how the innate and adaptive immune system may interact during allogeneic encounters and thus transplant rejection.
Collapse
Affiliation(s)
- Kevin V Chow
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rebecca B Delconte
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas D Huntington
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David M Tarlinton
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia; and
| | - Robyn M Sutherland
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yifan Zhan
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia;
| | - Andrew M Lew
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Konduri V, Li D, Halpert MM, Liang D, Liang Z, Chen Y, Fisher WE, Paust S, Levitt JM, Yao QC, Decker WK. Chemo-immunotherapy mediates durable cure of orthotopic K rasG12D/p53 -/- pancreatic ductal adenocarcinoma. Oncoimmunology 2016; 5:e1213933. [PMID: 27757308 DOI: 10.1080/2162402x.2016.1213933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, exhibiting a five-year overall survival (OS) of only 7% despite aggressive standard of care. Recent advances in immunotherapy suggest potential application of immune-based treatment approaches to PDAC. To explore this concept further, we treated orthotopically established K-rasG12D/p53-/- PDAC tumors with gemcitabine and a cell-based vaccine previously shown to generate durable cell-mediated (TH1) immunity. Tumor progression was monitored by IVIS. The results indicated that the combination of chemotherapy and dendritic cell (DC) vaccination was effective in eliminating tumor, preventing metastasis and recurrence, and significantly enhancing OS. No animal that received the combination therapy relapsed, while mice that received gemcitabine-only or vaccine-only regimens relapsed and progressed. Analysis of circulating PBMC demonstrated that mice receiving the combination therapy exhibited significantly elevated levels of CD8+IFNγ+CCR7+NK1.1+ T-cells with significantly reduced levels of exhausted GITR+CD8+ T-cells after the cessation of treatment. Retro-orbital tumor re-challenge of surviving animals at six-months post-treatment demonstrated durable antitumor immunity only among mice that had received the combination therapy. CD8+ splenocytes derived from surviving mice that had received the combination therapy were sorted into NK1.1pos and NK1.1neg populations and adoptively transferred into naive recipients. Transfer of only 1,500 CD8+NK1.1pos T-cells was sufficient to mediate tumor rejection whereas transfer of 1,500 CD8+NK1.1neg T-cells imparted only minimal effects. The data suggest that addition of a TH1 DC vaccine regimen as an adjuvant to existing therapies can mediate eradication of tumors and offer durable protection against PDAC.
Collapse
Affiliation(s)
- Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine , Houston, TX, USA
| | - Dali Li
- Michael E. Debakey Department of Surgery, Baylor College of Medicine , Houston, TX, USA
| | - Matthew M Halpert
- Department of Pathology & Immunology, Baylor College of Medicine , Houston, TX, USA
| | - Dan Liang
- Department of Pathology & Immunology, Baylor College of Medicine , Houston, TX, USA
| | - Zhengdong Liang
- Michael E. Debakey Department of Surgery, Baylor College of Medicine , Houston, TX, USA
| | - Yunyu Chen
- Department of Pathology & Immunology, Baylor College of Medicine , Houston, TX, USA
| | - William E Fisher
- Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Elkins Pancreas Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Silke Paust
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Human Immunobiology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA; Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Qizhi Cathy Yao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Elkins Pancreas Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
44
|
Macho-Fernandez E, Brigl M. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Front Immunol 2015; 6:362. [PMID: 26284062 PMCID: PMC4517383 DOI: 10.3389/fimmu.2015.00362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Brigl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A, Liu L, Fairlie DP, Rossjohn J, McCluskey J, Fremont DH, Hansen TH, Hoft DF. Functional Heterogeneity and Antimycobacterial Effects of Mouse Mucosal-Associated Invariant T Cells Specific for Riboflavin Metabolites. THE JOURNAL OF IMMUNOLOGY 2015; 195:587-601. [PMID: 26063000 DOI: 10.4049/jimmunol.1402545] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant TCR Vα-chain, and their optimal development is dependent upon commensal flora and expression of the nonpolymorphic MHC class I-like molecule MR1. MAIT cells are activated in an MR1-restricted manner by diverse strains of bacteria and yeast, suggesting a widely shared Ag. Recently, human and mouse MR1 were found to bind bacterial riboflavin metabolites (ribityllumazine [RL] Ags) capable of activating MAIT cells. In this study, we used MR1/RL tetramers to study MR1 dependency, subset heterogeneity, and protective effector functions important for tuberculosis immunity. Although tetramer(+) cells were detected in both MR1(+/+) and MR1(-/-) TCR Vα19i-transgenic (Tg) mice, MR1 expression resulted in significantly increased tetramer(+) cells coexpressing TCR Vβ6/8, NK1.1, CD44, and CD69 that displayed more robust in vitro responses to IL-12 plus IL-18 and RL Ag, indicating that MR1 is necessary for the optimal development of the classic murine MAIT cell memory/effector subset. In addition, tetramer(+) MAIT cells expressing CD4, CD8, or neither developing in MR1(+/+) Vα19i-Tg mice had disparate cytokine profiles in response to RL Ag. Therefore, murine MAIT cells are considerably more heterogeneous than previously thought. Most notably, after mycobacterial pulmonary infection, heterogeneous subsets of tetramer(+) Vα19i-Tg MAIT cells expressing CXCR3 and α4β1 were recruited into the lungs and afforded early protection. In addition, Vα19iCα(-/-)MR(+/+) mice were significantly better protected than were Vα19iCα(-/-)MR1(-/-), wild-type, and MR1(-/-) non-Tg mice. Overall, we demonstrate considerable functional diversity of MAIT cell responses, as well as that MR1-restricted MAIT cells are important for tuberculosis protective immunity.
Collapse
Affiliation(s)
- Isaac G Sakala
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110;
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher S Eickhoff
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Azra Blazevic
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute of Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute of Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Melbourne, Victoria 3800 Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110;
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104; Department of Microbiology and Immunology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, Saint Louis, MO 63104
| |
Collapse
|
46
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
47
|
Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2015; 6:309-20. [PMID: 24762075 DOI: 10.2217/imt.13.175] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.
Collapse
Affiliation(s)
- Leandro J Carreño
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
48
|
Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-like particles of prawn nodavirus. Appl Environ Microbiol 2014; 81:882-9. [PMID: 25416760 DOI: 10.1128/aem.03695-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
Collapse
|
49
|
Ogawa K, Takeuchi M, Nakamura N. Immunological Effects of Partially Hydrolyzed Arabinoxylan from Corn Husk in Mice. Biosci Biotechnol Biochem 2014; 69:19-25. [PMID: 15665462 DOI: 10.1271/bbb.69.19] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of oral administration of partially hydrolyzed water-soluble corn husk arabinoxylan (CHAX), the average molecular weight of which is about 53 kDa, on immunopotentiating activity was investigated in mice. Oral administration of CHAX to healthy mice significantly augmented the production of interleukin (IL)-2 and interferon (IFN)-gamma with a slight increase in IL-4 in mitogen-induced proliferation of spleen cells. Natural killer (NK) cell activity in spleen cells from mice, which were transplanted tumor and administrated CHAX, was augmented about 2-fold. In model mice of atopic dermatitis, the average ear thickness of mice administrated CHAX was induced by dinitrophenyl-fluorobenzene (DNFB) after injection of an anti-dinitrophenyl (DNP)-IgE monoclonal antibody was much smaller than that in control animals. These results suggest that CHAX has the ability to increase the level of immunopotentiating activity without causing over response of immunological reaction even if it is administrated orally to mice.
Collapse
Affiliation(s)
- Koichi Ogawa
- Research Institute, Nihon Shokuhin Kako Co., Ltd., Shizuoka, Japan.
| | | | | |
Collapse
|
50
|
Tyznik AJ, Verma S, Wang Q, Kronenberg M, Benedict CA. Distinct requirements for activation of NKT and NK cells during viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3676-85. [PMID: 24634489 PMCID: PMC3981072 DOI: 10.4049/jimmunol.1300837] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.
Collapse
Affiliation(s)
- Aaron J. Tyznik
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | - Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | - Qiao Wang
- Division of Immune Regulation, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | - Chris A. Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| |
Collapse
|