1
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
2
|
Robinson AM, Higgins BW, Shuparski AG, Miller KB, McHeyzer-Williams LJ, McHeyzer-Williams MG. Evolution of antigen-specific follicular helper T cell transcription from effector function to memory. Sci Immunol 2022; 7:eabm2084. [PMID: 36206356 PMCID: PMC9881730 DOI: 10.1126/sciimmunol.abm2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding how follicular helper T cells (TFH) regulate the specialization, maturation, and differentiation of adaptive B cell immunity is crucial for developing durable high-affinity immune protection. Using indexed single-cell molecular strategies, we reveal a skewed intraclonal assortment of higher-affinity T cell receptors and the distinct molecular programming of the localized TFH compartment compared with emigrant conventional effector TH cells. We find a temporal shift in B cell receptor class switch, which permits identification of inflammatory and anti-inflammatory modules of transcriptional programming that subspecialize TFH function before and during the germinal center (GC) reaction. Late collapse of this local primary GC reaction reveals a persistent post-GC TFH population that discloses a putative memory TFH program. These studies define subspecialized antigen-specific TFH transcriptional programs that progressively change with antibody class-specific evolution of high-affinity B cell immunity and a memory TFH transcriptional program that emerges upon local GC resolution.
Collapse
|
3
|
Katayama Y, Yokota R, Akiyama T, Kobayashi TJ. Machine Learning Approaches to TCR Repertoire Analysis. Front Immunol 2022; 13:858057. [PMID: 35911778 PMCID: PMC9334875 DOI: 10.3389/fimmu.2022.858057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems. In this paper, we review recent repertoire analysis methods based on machine learning and deep learning and discuss their prospects.
Collapse
Affiliation(s)
- Yotaro Katayama
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Yokota
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Campion SL, Brenna E, Thomson E, Fischer W, Ladell K, McLaren JE, Price DA, Frahm N, McElrath JM, Cohen KW, Maenza JR, Walsh SR, Baden LR, Haynes BF, Korber B, Borrow P, McMichael AJ. Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. J Clin Invest 2021; 131:e150823. [PMID: 34850742 PMCID: PMC8631594 DOI: 10.1172/jci150823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1-seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen.
Collapse
Affiliation(s)
- Suzanne L. Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elaine Thomson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Will Fischer
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | | | | | - David A. Price
- Division of Infection and Immunity and
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Juliana M. McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Janine R. Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen R. Walsh
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lindsey R. Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Barton F. Haynes
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bette Korber
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Cassotta A, Paparoditis P, Geiger R, Mettu RR, Landry SJ, Donati A, Benevento M, Foglierini M, Lewis DJM, Lanzavecchia A, Sallusto F. Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. J Exp Med 2021; 217:151933. [PMID: 32644114 PMCID: PMC7537397 DOI: 10.1084/jem.20200206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry–based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Alessia Donati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Marco Benevento
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J M Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Kervevan J, Chakrabarti LA. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci 2021; 22:E523. [PMID: 33430234 PMCID: PMC7825705 DOI: 10.3390/ijms22020523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| |
Collapse
|
8
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Bradley P, Thomas PG. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol 2019; 37:547-570. [PMID: 30699000 DOI: 10.1146/annurev-immunol-042718-041757] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.
Collapse
Affiliation(s)
- Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; .,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
10
|
Qu C, Wang Y, Fan C. Response to Letter to the Editor re 'Be cautious for exceptional results in evaluating the effect of adolescent booster of hepatitis B vaccine'. Int J Infect Dis 2018; 66:153-156. [PMID: 29158135 DOI: 10.1016/j.ijid.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chunfeng Qu
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yuting Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunsun Fan
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Jiangsu 226200, China
| |
Collapse
|
11
|
Wang Y, Chen T, Lu LL, Wang M, Wang D, Yao H, Fan C, Qi J, Zhang Y, Qu C. Adolescent booster with hepatitis B virus vaccines decreases HBV infection in high-risk adults. Vaccine 2017; 35:1064-1070. [PMID: 28069363 DOI: 10.1016/j.vaccine.2016.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/24/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neutralizing antibodies (anti-HBs) after immunization with hepatitis B virus (HBV) vaccines against HBV surface antigen (HBsAg) wane after 10-15years. We analyzed the effect of an adolescent booster given to vaccination-protected children born to mothers with different HBsAg-carrying status against HBV infection in their mature adulthood. METHODS A total of 9793 individuals, who were HBsAg-negative at childhood (baseline) and donated blood samples, both during childhood and adulthood, from the vaccination group in "Qidong Hepatitis B Intervention Study", were enrolled. Among them 7414 received a one-dose, 10μg-recombinant HBV vaccine booster at 10-14years of age. At endpoint (23-28years of age), we determined the HBV serological markers and quantified their serum HBV-DNA in each of the chronic HBV-infected adults. RESULTS Fifty-seven adults were identified as chronic HBV infection, indicated by HBsAg(+)&anti-HBc(+) for more than 6months. The individuals who were born to HBsAg-positive mothers (high-risk adults) had significantly increased risk of developing chronic HBV infections in adulthood compared with those who were born to HBsAg-negative mothers; the adjusted odds ratio (OR) was 12.56, 95%CI:7.14-22.08. The seronegative status of anti-HBs at 10-11years of age significantly increased the risk of HBV infections among the high-risk adults. When HBsAg(-)&anti-HBc(+) children who were born to HBsAg-positive mothers 70% of them remained as the status and 10% of them developed HBsAg(+)&anti-HBc(+). While when they were born to HBsAg-negative mothers 1.05% HBsAg(-)&anti-HBc(+) children developed HBsAg(+)&anti-HBc(+) and 24.74% of them remained as the status in 12-18years. One dose of adolescent booster showed significant protection on high-risk adults from chronic HBV infection; P for trend was 0.015. CONCLUSIONS Maternal HBsAg-positive status was an independent risk factor for vaccination-protected children to develop HBV breakthrough infection in adulthood. Adolescent boosters might be appropriate for high-risk individuals who were born to HBsAg-positive mothers when their serum anti-HBs<10mIU/ml.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Ling-Ling Lu
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Minjie Wang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongmei Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongyu Yao
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Jun Qi
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yawei Zhang
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China; Department of Surgery, Department of Environmental Health Sciences, Yale School of Public Health, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunfeng Qu
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
12
|
Reversed T Cell Receptor Docking on a Major Histocompatibility Class I Complex Limits Involvement in the Immune Response. Immunity 2016; 45:749-760. [PMID: 27717799 DOI: 10.1016/j.immuni.2016.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/14/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
The anti-viral T cell response is drawn from the naive T cell repertoire. During influenza infection, the CD8+ T cell response to an H-2Db-restricted nucleoprotein epitope (NP366) is characterized by preferential expansion of T cells bearing TRBV13+ T cell receptors (TCRs) and avoidance of TRBV17+ T cells, despite the latter dominating the naive precursor repertoire. We found two TRBV17+ TCRs that bound H-2Db-NP366 with a 180° reversed polarity compared to the canonical TCR-pMHC-I docking. The TRBV17 β-chain dominated the interaction and, whereas the complementarity determining region-3 (CDR3) loops exclusively mediated contacts with the MHC-I, peptide specificity was attributable to germline-encoded recognition. Nevertheless, the TRBV17+ TCR exhibited moderate affinity toward H-2Db-NP366 and was capable of signal transduction. Thus, the naive CD8+ T cell pool can comprise TCRs adopting reversed pMHC-I docking modes that limit their involvement in the immune response.
Collapse
|
13
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
14
|
Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nat Commun 2016; 7:10281. [PMID: 26728651 PMCID: PMC4728444 DOI: 10.1038/ncomms10281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4(+) T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4(+) T-cell response also to vaccination or tumour challenge, revealing a common effect.
Collapse
|
15
|
Tscharke DC, Croft NP, Doherty PC, La Gruta NL. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 2015; 15:705-16. [DOI: 10.1038/nri3905] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Merkenschlager J, Kassiotis G. Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response. Front Immunol 2015; 6:413. [PMID: 26322045 PMCID: PMC4531291 DOI: 10.3389/fimmu.2015.00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 01/14/2023] Open
Abstract
T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates the fate of T cells during development, as well as during the immune response. Whereas development of new T cells in the thymus increases the available TCR repertoire, clonal selection during the immune response narrows TCR diversity through the outgrowth of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the evidence for the existence of such mechanisms that can prevent the loss of diversity. A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies set by TCR affinity for given antigen. Although not yet complete, understanding of these factors and their mechanism of action will be critical in interventional attempts to mold the antigen-selected TCR repertoire.
Collapse
Affiliation(s)
| | - George Kassiotis
- Mill Hill Laboratory, The Francis Crick Institute , London , UK ; Department of Medicine, Faculty of Medicine, Imperial College London , London , UK
| |
Collapse
|
17
|
Clemens EB, Doherty PC, La Gruta NL, Turner SJ. Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR α- and β-chain diversity in the face of peptide-MHC class I specificity. THE JOURNAL OF IMMUNOLOGY 2014; 194:898-910. [PMID: 25535284 DOI: 10.4049/jimmunol.1401792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR β-chains, rather than the combined TCRαβ heterodimers that confer specificity. Hence, the importance of complementary α- and β-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαβ pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or β-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαβ combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and β-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαβ heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αβ pairing confers optimal T cell responsiveness to Ag.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
18
|
Herzig CTA, Mailloux VL, Baldwin CL. Spectratype analysis of the T cell receptor δ CDR3 region of bovine γδ T cells responding to leptospira. Immunogenetics 2014; 67:95-109. [PMID: 25502871 DOI: 10.1007/s00251-014-0817-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/16/2014] [Indexed: 01/13/2023]
Abstract
Gamma delta T cells comprise the majority of blood T cells in ruminants at birth and remain at high levels for several years with most expressing the WC1 co-receptor. A subpopulation of Bos taurus WC1(+) cells expressing a restricted set of WC1 molecules respond immediately by proliferation and interferon-γ production to leptospira following vaccination, preceding the response by CD4 T cells. Our goal is to define the γδ T cell recognition elements involved. Previously, we showed that the responding cells employed a variety of TRDV genes indicating that the CDR1 and CDR2 of TCRδ could vary and may not be principally involved in antigen specificity. Murine and human γδ T cells bind T22 and self lipids through their CDR3δ. Like mice, cattle use up to five TRDD genes in a single CDR3δ adding flexibility to length and configuration for antigen binding. Here, we used spectratyping to evaluate the CDR3δ of leptospira-responsive cells. Little or no compartmentalization of CDR3δ was found for antigen-responsive cells that incorporated TRDV1, TRDV2, or TRDV3 even though they comprise the majority of the leptospira-responding population. Compartmentalization occurred for TRDV4-containing transcripts and was maintained over time and among cattle. However, no common amino acid motif was apparent in those CDR3δ sequences, although a bias in D gene usage occurred. We hypothesize that the restricted set of WC1 co-receptors expressed by the responding cells may lend specificity to the response through their ability to bind bacteria facilitating interaction of various TCRs with bacterial components resulting in cross-linking and activation.
Collapse
Affiliation(s)
- Carolyn T A Herzig
- Department of Veterinary and Animal Sciences, University of Massachusetts, Integrated Sciences Building, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | | | | |
Collapse
|
19
|
Nagaoka M, Hatta Y, Kawaoka Y, Malherbe LP. Antigen signal strength during priming determines effector CD4 T cell function and antigen sensitivity during influenza virus challenge. THE JOURNAL OF IMMUNOLOGY 2014; 193:2812-20. [PMID: 25086170 DOI: 10.4049/jimmunol.1401358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR signal strength during priming is a key determinant of CD4 T cell activation, but its impact on effector CD4 T functions in vivo remains unclear. In this study, we compare the functionality of CD4 T cell responses induced by peptides displaying varying binding half-lives with MHC class II before and after influenza virus infection. Although significant quantitative and qualitative differences in CD4 T cell responses were observed before infection between mice vaccinated with low- or high-stability peptides, both mice mounted robust early Th1 effector cytokine responses upon influenza challenge. However, only effector CD4 T cells induced by low-stability peptides proliferated and produced IL-17A after influenza challenge. In contrast, effector T cells elicited by higher-stability peptides displayed a terminally differentiated phenotype and divided poorly. This defective proliferation was T cell intrinsic but could not be attributed to a reduced expression of lymph node homing receptors. Instead, we found that CD4 T cells stimulated with higher-stability peptides exhibited decreased responsiveness to low levels of Ag presentation. Our study reveals the critical role of TCR signal strength during priming for the function and Ag sensitivity of effector CD4 T cells during viral challenge.
Collapse
Affiliation(s)
- Mika Nagaoka
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53226; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yasuko Hatta
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711; FluGen, Madison, WI 53711; and
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711; Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Tokyo 108-8639, Japan
| | - Laurent P Malherbe
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53226; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
20
|
A novel method for analysis of human T cell repertoires by real-time PCR. J Immunol Methods 2014; 412:24-34. [PMID: 24983878 DOI: 10.1016/j.jim.2014.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
T lymphocyte responses to challenges with multiple pathogens depend on the diversity of their T cell receptors (TcRs) that are heteroduplexes of alpha and beta chains. The regions of alpha and beta chains that define TcR specificity are encoded by rearranged variable (V) and joining (J) genes that are separated by variable numbers of nucleotides that encode the complementarity determining region 3 (CDR3). The assumption that a "healthy" T cell compartment exhibits broad TcR and CDR3 diversity has driven development of methods to evaluate diversity of TcR beta transcripts expressed by T lymphocyte populations and subpopulations in inflammatory sites and human malignancies. To that end, we have developed the BV:BJ matrix assay that uniquely generates a single statistic that describes TcR repertoire diversity and improves identification of beta transcripts expressed by expanded T cell clonotypes. The BV:BJ matrix uses rigorously selected primers specific for individual V and J genes to amplify beta transcripts in real-time PCRs driven by 533 BV:BJ primer pairs. The quantitative control of real-time PCRs produces Shannon entropy estimates of diversity that are reproducible over a range of template amounts and amenable to statistical analyses that have been difficult to perform with existing methods of repertoire analysis.
Collapse
|
21
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
22
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
23
|
Qiao SW, Christophersen A, Lundin KEA, Sollid LM. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int Immunol 2013; 26:13-9. [PMID: 24038601 DOI: 10.1093/intimm/dxt037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4⁺ T cells that recognize dietary gluten antigens presented by the disease-associated HLA-DQ2 or DQ8 molecules are central players in coeliac disease. Unbiased sequencing of the human TCRα variable (TRAV) and humanTCRβ variable (TRBV) genes of 68 HLA-DQ2.5-glia-α2-specific T cells from coeliac disease patients confirmed previous reports of over-usage of the TRBV7-2 gene segment, a conserved Arg residue in the complementarity-determining region (CDR) 3β loop and prevalent usage of the canonical ASSxRxTDTQY CDR3β loop among T cells with this specificity. In 30 clones that had the canonical TCRβ chain, we found a strict usage of the TRAV26-1 gene segment in the TCRα chain. There was variable usage of the TRAJ genes and diverse CDR3α sequences with no apparent conserved motifs. This study extends previous reports on biased TCR usage in both HLA-DQ2.5- and DQ8-restricted gluten-specific TCRs and provides data for further studies on TRAV and TRBV pairing.
Collapse
Affiliation(s)
- Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital - Rikshospitalet, 0372 Oslo, Norway
| | | | | | | |
Collapse
|
24
|
Steinert E, Schwartz RH, Singh NJ. At low precursor frequencies, the T-cell response to chronic self-antigen results in anergy without deletion. Eur J Immunol 2012; 42:2875-80. [PMID: 22806568 PMCID: PMC3725465 DOI: 10.1002/eji.201242518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/13/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
The behavior of self-reactive T cells in the peripheral immune system has often been studied by following the fate of adoptively transferred antigen-specific T cells in antigen expressing mice. In most cases, after a period of expansion, such cells undergo a slow clonal deletion, accompanied by the onset of anergy and/or suppression in the remaining cells. Here, we demonstrate that at initial frequencies approaching those found in normal repertoires, it is possible to completely avoid deletion and still maintain peripheral tolerance. At starting numbers of <1000 T cells, stimulation by chronic self-antigens resulted in a period of robust clonal expansion, followed by a steady plateau phase extending beyond 4 months. Despite their stable persistence, the self-reactive T cells did not convert to a Foxp3⁺ fate. However, they displayed a considerable block in their ability to make IL-2, consistent with the onset of anergy - in a precursor frequency or deletion independent fashion.
Collapse
Affiliation(s)
- Elizabeth Steinert
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ronald H Schwartz
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), NIH Bldg 4; Rm 211, 4 Center Drive, Bethesda, MD 20892-0420, USA
| | - Nevil J Singh
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), NIH Bldg 4; Rm 211, 4 Center Drive, Bethesda, MD 20892-0420, USA
| |
Collapse
|
25
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Baumgartner CK, Yagita H, Malherbe LP. A TCR affinity threshold regulates memory CD4 T cell differentiation following vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 189:2309-17. [PMID: 22844120 DOI: 10.4049/jimmunol.1200453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.
Collapse
|
27
|
Rivas EI, Driver JP, Garabatos N, Presa M, Mora C, Rodriguez F, Serreze DV, Stratmann T. Targeting of a T cell agonist peptide to lysosomes by DNA vaccination induces tolerance in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2011; 186:4078-87. [PMID: 21346228 DOI: 10.4049/jimmunol.0902395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4 T cells are crucial effectors in the pathology of type 1 diabetes (T1D). Successful therapeutic interventions for prevention and cure of T1D in humans are still elusive. Recent research efforts have focused on the manipulation of T cells by treatment with DNA. In this paper, we studied the effects of a DNA treatment strategy designed to target antigenic peptides to the lysosomal compartment on a monospecific T cell population termed 2.5mi(+) T cells that shares reactivity with the diabetogenic T cell clone BDC-2.5 in the NOD mouse. MHC class II tetramer analysis showed that repeated administrations were necessary to expand 2.5mi(+) T cells in vivo. This expansion was independent of Ag presentation by B cells. A single peptide epitope was sufficient to induce protection against T1D, which was not due to Ag-specific T cell anergy. Typical Th2 cytokines such as IL-10 or IL-4 were undetectable in 2.5mi(+) T cells, arguing against a mechanism of immune deviation. Instead, the expanded 2.5mi(+) T cell population produced IFN-γ similar to 2.5mi(+) T cells from naive mice. Protection against T1D by DNA treatment was completely lost in NOD.CD28(-/-) mice which are largely deficient of natural regulatory T cells (Treg). Although Ag-specific Foxp3(+) Treg did not expand in response to DNA treatment, diabetes onset was delayed in Treg-reconstituted and DNA-treated NOD.SCID mice. These observations provide evidence for a Treg-mediated protective mechanism that is independent of the expansion or de novo generation of Ag-specific Treg.
Collapse
Affiliation(s)
- Elisa I Rivas
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
29
|
|
30
|
Milner JD, Fazilleau N, McHeyzer-Williams M, Paul W. Cutting edge: lack of high affinity competition for peptide in polyclonal CD4+ responses unmasks IL-4 production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6569-73. [PMID: 20495070 PMCID: PMC2930602 DOI: 10.4049/jimmunol.1000674] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Priming of naive monoclonal CD4 T cells via weak agonsim permits GATA-3 transcription and Th2 differentiation. To test whether this process can occur in polyclonal naive populations, where a range of TCR affinities exists for any given Ag/MHC complex, we primed naive CD4 cells from 5CC7 Vbeta3 transgenic mice, which have a fixed beta-chain specific for pigeon cytochrome c peptide I-Ek. Priming populations de-pleted of higher affinity, moth cytochrome c pep-tide I-Ek tetramer-binding cells resulted in substantial IL-4 production that did not occur in the presence of higher affinity cells. TCRalpha-chain sequence analysis showed that clones that possessed TCR features associated with high affinity responses to pigeon cytochrome c made less IL-4 than clones that possessed fewer such motifs. These results indicate that cells bearing TCRs that are weakly stimulated by their cognate Ag preferentially adopt a Th2 phenotype when primed in the absence of competition from cells with higher affinity receptors.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
31
|
La Gruta NL, Rothwell WT, Cukalac T, Swan NG, Valkenburg SA, Kedzierska K, Thomas PG, Doherty PC, Turner SJ. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest 2010; 120:1885-94. [PMID: 20440073 DOI: 10.1172/jci41538] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/10/2010] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses to viral infection are characterized by the emergence of dominant and subdominant CTL populations. The immunodominance hierarchies of these populations are highly reproducible for any given spectrum of virus-induced peptide-MHCI complexes and are likely determined by multiple factors. Recent studies demonstrate a direct correlation between naive epitope-specific CD8+ T cell precursor (CTLp) frequency and the magnitude of the response after antigen challenge. Thus, the number of available precursors in the naive pool has emerged as a key predictor of immunodominance. In contrast to this, we report here no consistent relationship between CTLp frequency and the subsequent magnitude of the immune response for 4 influenza virus-derived epitopes following intranasal infection of mice with influenza A virus. Rather, the characteristic, antigen-driven T cell immunodominance hierarchy was determined by the extent of recruitment from the available pool of epitope-specific precursors and the duration of their continued expansion over the course of the infection. These findings suggest possibilities for enhancing protective immune memory by maximizing both the size and diversity of typically subdominant T cell responses through rational vaccine design.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Öling V, Geubtner K, Ilonen J, Reijonen H. A low antigen dose selectively promotes expansion of high-avidity autoreactive T cells with distinct phenotypic characteristics: A study of human autoreactive CD4+T cells specific for GAD65. Autoimmunity 2010; 43:573-82. [DOI: 10.3109/08916930903540424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Baumgartner CK, Malherbe LP. Regulation of CD4 T-cell receptor diversity by vaccine adjuvants. Immunology 2010; 130:16-22. [PMID: 20331477 DOI: 10.1111/j.1365-2567.2010.03265.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
New vaccines based on soluble recombinant antigens (Ags) require adjuvants to elicit long-lasting protective humoral and cellular immunity. Despite the importance of CD4 T helper cells for the generation of long-lived memory B and CD8 T cells, the impact of adjuvants on CD4 T-cell responses is still poorly understood. Adjuvants are known to promote dendritic cell (DC) maturation and migration to secondary lymphoid organs where they present foreign peptides bound to class II major histocompatibility complex molecules (pMHCII) to naïve CD4 T cells. Random and imprecise rearrangements of genetic elements during thymic development ensure that a vast amount of T-cell receptors (TCRs) are present in the naïve CD4 T-cell repertoire. Ag-specific CD4 T cells are selected from this vast pre-immune repertoire based on the affinity of their TCR for pMHCII. Here, we review the evidence demonstrating a link between the adjuvant and the specificity and clonotypic diversity of the CD4 T-cell response, and consider the potential mechanisms at play.
Collapse
|
34
|
Baumgartner CK, Ferrante A, Nagaoka M, Gorski J, Malherbe LP. Peptide-MHC class II complex stability governs CD4 T cell clonal selection. THE JOURNAL OF IMMUNOLOGY 2009; 184:573-81. [PMID: 20007533 DOI: 10.4049/jimmunol.0902107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The clonal composition of the T cell response can affect its ability to mediate infection control or to induce autoimmunity, but the mechanisms regulating the responding TCR repertoire remain poorly defined. In this study, we immunized mice with wild-type or mutated peptides displaying varying binding half-lives with MHC class II molecules to measure the impact of peptide-MHC class II stability on the clonal composition of the CD4 T cell response. We found that, although all peptides elicited similar T cell response size on immunization, the clonotypic diversity of the CD4 T cell response correlated directly with the half-life of the immunizing peptide. Peptides with short half-lives focused CD4 T cell response toward high-affinity clonotypes expressing restricted public TCR, whereas peptides with longer half-lives broadened CD4 T cell response by recruiting lower-affinity clonotypes expressing more diverse TCR. Peptides with longer half-lives did not cause the elimination of high-affinity clonotypes, and at a low dose, they also skewed CD4 T cell response toward higher-affinity clonotypes. Taken collectively, our results suggest the half-life of peptide-MHC class II complexes is the primary parameter that dictates the clonotypic diversity of the responding CD4 T cell compartment.
Collapse
|
35
|
Cukalac T, Moffat JM, Venturi V, Davenport MP, Doherty PC, Turner SJ, Stambas J. Narrowed TCR diversity for immunised mice challenged with recombinant influenza A-HIV Env(311-320) virus. Vaccine 2009; 27:6755-61. [PMID: 19744584 DOI: 10.1016/j.vaccine.2009.08.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 11/25/2022]
Abstract
Understanding CD8+ T cell responses generated by live virus vectors is critical for the rational design of next generation HIV CTL-based vaccines. We used recombinant influenza viruses expressing the HIV Env(311-320) peptide in the neuraminidase stalk to study response magnitude, cytokine production and repertoire diversity for the elicited CD8+ D(d)Env(311) CTL set. The insertion of the CD8+ D(d)Env(311) epitope into the NA stalk resulted in a decrease in viral fitness that was reflected in lower lung viral titres. While not affecting the magnitude of endogenous primary influenza-specific responses, the introduction of the D(d)Env(311) CD8+ T cell epitope altered the hierarchy of responses following secondary challenge. The CD8+ K(d)NP(147) response increased 9-fold in the spleen following secondary infection whereas the CD8+ D(d)Env(311) response increased 15-fold in the spleen. Moreover, this study is the first to describe narrowing of CD8+ TCR repertoire diversity in the context of an evolving secondary immune response against influenza A virus. Analysis of Vbeta bias for CD8+ D(d)Env(311) T cell responses showed a narrowing of CD8+ Vbeta8.1/8.2 D(d)Env(311) TCR repertoire diversity. This work further emphasizes the importance of understanding vaccine-induced CD8+ T cell responses.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Raué HP, Slifka MK. CD8+ T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation. Virology 2009; 390:197-204. [PMID: 19539966 PMCID: PMC2728041 DOI: 10.1016/j.virol.2009.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 02/01/2023]
Abstract
Virus-specific T cell responses are often directed to a small subset of possible epitopes and their relative magnitude defines their hierarchy. We determined the size and functional avidity of 4 representative peptide-specific CD8(+) T cell populations in C57BL/6 mice at different time points after lymphocytic choriomeningitis virus (LCMV) infection. We found that the frequency of different peptide-specific T cell populations in the spleen changed independently over the first 8 days after infection. These changes were not associated with a larger or more rapid increase in functional avidity and yet still resulted in a shift in the final immunodominance hierarchy. Thus, the immunodominance observed at the peak of an antiviral T cell response is not necessarily determined by the initial size or rate of functional avidity maturation of peptide-specific T cell populations.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006, USA
| | - Mark K. Slifka
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
37
|
McHeyzer-Williams LJ, Pelletier N, Mark L, Fazilleau N, McHeyzer-Williams MG. Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 2009; 21:266-73. [PMID: 19502021 PMCID: PMC2731669 DOI: 10.1016/j.coi.2009.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
Follicular helper T (T(FH)) cells are a class of helper T cells specialized in the cognate control of antigen-specific B cell immunity. Upon first contact with antigen-primed B cells, pregerminal center effector T(FH) cells promote B cell clonal expansion, antibody isotype switch, plasma cell differentiation, and the induction of germinal centers. By contrast, within germinal centers, T(FH) cells regulate the fate of antigen-specific GC B cells expressing high-affinity variant B cell receptors to promote memory B cell and long-lived plasma cell development. Recent studies unravel multiple signals controlling T(FH) development and functional subtypes of antigen-specific T(FH) cells, including memory T(FH) cells that accelerate memory B cell responses to antigen rechallenge in vivo.
Collapse
Affiliation(s)
- Louise J McHeyzer-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
38
|
Abortive activation of CD4 T cell responses during competitive priming in vivo. Proc Natl Acad Sci U S A 2009; 106:8647-52. [PMID: 19423666 DOI: 10.1073/pnas.0811584106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunodominance refers to the highly selective peptide reactivity of T cells during an immune response. In this study, we tested the hypothesis that persistence of peptide:class II complexes is one key parameter that selects the final specificity of CD4 T cells. We found that low-stability peptide:class II complexes support the initial priming and expansion of CD4 T cells, but the expansion becomes strikingly aborted in the presence of competitive T cell responses to unrelated peptides. Our experiments revealed that for inhibition to occur, the competitive responses must be initiated by the same antigen presenting cell, and it is not because of competition for MHC binding. These studies not only provide an insight into the events that regulate competitive CD4 T cell priming in vivo, but also provide a previously undescribed conceptual framework to understand the parameters that select the final specificity of the T cell repertoire during pathogen or vaccine-induced immune responses.
Collapse
|
39
|
Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 2009; 10:375-84. [PMID: 19252493 PMCID: PMC2712297 DOI: 10.1038/ni.1704] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/15/2009] [Indexed: 01/23/2023]
Abstract
How follicular helper T cells (T(FH) cells) differentiate to regulate B cell immunity is critical for effective protein vaccination. Here we define three transcription factor T-bet-expressing antigen-specific effector helper T cell subsets with distinguishable function, migratory properties and developmental programming in vivo. Expression of the transcriptional repressor Blimp-1 distinguished T zone 'lymphoid' effector helper T cells (CD62L(hi)CCR7(hi)) from CXCR5(lo) 'emigrant' effector helper T cells and CXCR5(hi) 'resident' T(FH) cells expressing the transcriptional repressor Bcl-6 (CD62L(lo)CCR7(lo)). We then show by adoptive transfer and intact polyclonal responses that helper T cells with the highest specific binding of peptide-major histocompatibility complex class II and the most restricted T cell antigen receptor junctional diversity 'preferentially' developed into the antigen-specific effector T(FH) compartment. Our studies demonstrate a central function for differences in the binding strength of the T cell antigen receptor in the antigen-specific mechanisms that 'program' specialized effector T(FH) function in vivo.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Department of Immunology and Microbial Sciences, La Jolla, California, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Follicular helper T (Tfh) cells are the class of effector T helper cells that regulates the step-wise development of antigen-specific B cell immunity in vivo. Deployment of CXCR5+ Tfh cells to B cell zones of lymphoid tissues and stable cognate interactions with B cells are central to the delivery of antigen-specific Tfh cell function. Here, we review recent advances that have helped to unravel distinctive elements of developmental programming for Tfh cells and unique effector Tfh cell functions focused on antigen-primed B cells. Understanding the regulatory functions of Tfh cells in the germinal center and the subsequent regulation of memory B cell responses to antigen recall represent the frontiers of this research area with the potential to alter fundamentally the design of future vaccines.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Wettstein P, Strausbauch M, Therneau T, Borson N. The application of real-time PCR to the analysis of T cell repertoires. Nucleic Acids Res 2008; 36:e140. [PMID: 18835849 PMCID: PMC2588499 DOI: 10.1093/nar/gkn634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diversity of T-cell populations is determined by the spectrum of antigen-specific T-cell receptors (TCRs) that are heterodimers of alpha and beta subunits encoded by rearranged combinations of variable (AV and BV), joining (AJ and BJ), and constant region genes (AC and BC). We have developed a novel approach for analysis of beta transcript diversity in mice with a real-time PCR-based method that uses a matrix of BV- and BJ-specific primers to amplify 240 distinct BV-BJ combinations. Defined endpoints (Ct values) and dissociation curves are generated for each BV-BJ combination and the Ct values are consolidated in a matrix that characterizes the beta transcript diversity of each RNA sample. Relative diversities of BV-BJ combinations in individual RNA samples are further described by estimates of scaled entropy. A skin allograft system was used to demonstrate that dissection of repertoires into 240 BV-BJ combinations increases efficiency of identifying and sequencing beta transcripts that are overrepresented at inflammatory sites. These BV-BJ matrices should generate greater investigation in laboratory and clinical settings due to increased throughput, resolution and identification of overrepresented TCR transcripts.
Collapse
Affiliation(s)
- Peter Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
42
|
Kedzierska K, Venturi V, Valkenburg SA, Davenport MP, Turner SJ, Doherty PC. Homogenization of TCR repertoires within secondary CD62Lhigh and CD62Llow virus-specific CD8+ T cell populations. THE JOURNAL OF IMMUNOLOGY 2008; 180:7938-47. [PMID: 18523257 DOI: 10.4049/jimmunol.180.12.7938] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza virus-specific CD8(+) T cell clonotypes generated and maintained in C57BL/6J mice after respiratory challenge were found previously to distribute unequally between the CD62L(low) "effector" (T(EM)) and CD62L(high) "central" (T(CM)) memory subsets. Defined by the CDR3beta sequence, most of the prominent TCRs were represented in both the CD62L(high) and CD62L(low) subsets, but there was also a substantial number of diverse, but generally small, CD62L(high)-only clonotypes. The question asked here is how secondary challenge influences both the diversity and the continuity of TCR representation in the T(CM) and T(EM) subsets generated following primary exposure. The experiments use single-cell RT-PCR to correlate clonotypic composition with CD62L phenotype for secondary influenza-specific CD8(+) T cell responses directed at the prominent D(b)NP(366) and D(b)PA(224) epitopes. In both the acute and long-term memory phases of the recall responses to these epitopes, we found evidence of a convergence of TCR repertoire expression for the CD62L(low) and CD62L(high) populations. In fact, unlike the primary response, there were no significant differences in clonotypic diversity between the CD62L(low) and CD62L(high) subsets. This "TCR homogenization" for the CD62L(high) and CD62L(low) CD8(+) populations recalled after secondary challenge indicates common origin, most likely from the high prevalence populations in the CD62L(high) central memory set. Our study thus provides key insights into the TCR diversity spectrum for CD62L(high) and CD62L(low) T cells generated from a normal, unmanipulated T cell repertoire following secondary challenge. A better understanding of TCR selection and maintenance has implications for improved vaccine and immunotherapy protocols.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Salha MD, Cheynier R, Halwani R, McGrath H, Langaee TY, Yassine Diab B, Fournier J, Parenteau M, Edgar J, Ko D, Sherring A, Bogdanovic D, Sekaly RP, Rud EW. Persistence of restricted CD4 T cell expansions in SIV-infected macaques resistant to SHIV89.6P superinfection. Virology 2008; 377:239-47. [PMID: 18570962 PMCID: PMC3640340 DOI: 10.1016/j.virol.2008.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/29/2008] [Accepted: 04/24/2008] [Indexed: 12/11/2022]
Abstract
Attempts to evaluate the protective effect of live attenuated SIV vaccine strains have yielded variable results depending on the route of immunization, the level of attenuation, the level of divergence between the vaccine candidate and the challenge. The protective mechanisms induced by these vaccines are still not well understood. In an effort to address whether the diversity of the CD4+ T cell repertoire in cynomolgus macaques plays a role in the immunological protection following SIVmacC8 infection, we have performed a longitudinal follow-up of the CD4 repertoire by heteroduplex tracking assay in macaques mock-infected or infected with either the attenuated SIVmacC8 or its homologous SIVmacJ5 and challenged with simian-human immunodeficiency virus (SHIV89.6P). Viral load and CD4 absolute counts were determined in these animals and the presence of SHIV89.6P virus in challenged animals was evaluated by PCR and serology. In all macaques that were protected against the challenging virus, we demonstrated a reduced diversity in the CD4+ TRBV repertoire and a few dominant CD4+ T cell clones during early primary infection. In contrast, CD4 TRBV repertoire in unprotected macaques remained highly diverse. Moreover, some of the CD4 T cell clones that were expanded during primary SIV infection re-emerged after challenge suggesting their role in protection against the challenging virus. These results underline the importance of maintaining the CD4 T cell repertoire developed during acute infection and point to the restriction of the CD4 response to the vaccine as a correlate of protection.
Collapse
Affiliation(s)
- M. -D. Salha
- Department of Microbiology and Immunology, McGill University, Montreal, PQ H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
| | - R. Cheynier
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - R. Halwani
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - H. McGrath
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - T. Y. Langaee
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - B. Yassine Diab
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - J. Fournier
- Animal Resource Division, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - M. Parenteau
- Animal Resource Division, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - J. Edgar
- Animal Resource Division, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - D. Ko
- National laboratory for HIV Pathogenesis, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - A. Sherring
- National laboratory for HIV Pathogenesis, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - D. Bogdanovic
- National laboratory for HIV Pathogenesis, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | - R. -P. Sekaly
- Department of Microbiology and Immunology, McGill University, Montreal, PQ H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CHUM), Montreal, PQ H2W 1T8, Canada
- Département de Microbiologie et d’Immunologie, Université de Montreal, Montreal, PQ H3C 3J7, Canada
| | - E. W. Rud
- Animal Resource Division, Health Canada, Ottawa, Ontario K1A 0L2, Canada
- National laboratory for HIV Pathogenesis, Health Canada, Ottawa, Ontario K1A 0L2, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, Montreal, PQ H3T 1E2, Canada
| |
Collapse
|
44
|
Malherbe L, Mark L, Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG. Vaccine adjuvants alter TCR-based selection thresholds. Immunity 2008; 28:698-709. [PMID: 18450485 PMCID: PMC2695494 DOI: 10.1016/j.immuni.2008.03.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 12/26/2022]
Abstract
How T cell receptor (TCR) specificity evolves in vivo after protein vaccination is central to the development of helper T (Th) cell function. Most models of clonal selection in the Th cell compartment favor TCR affinity-based thresholds. Here, we demonstrated that depot-forming vaccine adjuvants did not require Toll-like receptor (TLR) agonists to induce clonal dominance in antigen-specific Th cell responses. However, readily dispersible adjuvants using TLR-9 and TLR-4 agonists skewed TCR repertoire usage by increasing TCR selection thresholds and enhancing antigen-specific clonal expansion. In this manner, vaccine adjuvants control the local accumulation of Th cells expressing TCR with the highest peptide MHC class II binding. Clonal composition was altered by mechanisms that blocked the local propagation of clonotypes independently of antigen dose and not as a consequence of interclonal competition. This capacity of adjuvants to modify antigen-specific Th cell clonal composition has fundamental implications for the design of future protein subunit vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Cytochromes c/immunology
- Cytochromes c/metabolism
- Lymphocyte Activation
- Mice
- Mice, Congenic
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Toll-Like Receptors/agonists
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
- Vaccines/immunology
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Laurent Malherbe
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2008; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
46
|
Venturi V, Kedzierska K, Tanaka MM, Turner SJ, Doherty PC, Davenport MP. Method for assessing the similarity between subsets of the T cell receptor repertoire. J Immunol Methods 2007; 329:67-80. [PMID: 18001765 DOI: 10.1016/j.jim.2007.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 02/04/2023]
Abstract
The CD8+ T cell response is important in the control of many viral and other infections. There have been many studies aimed at better understanding the influence of T cell receptor diversity on immune responses and the evolution of the T cell receptor repertoire over time and through the various stages of immune responses to infection. In recent years, there has been an increase in both the number of studies using T cell receptor data and the volume of T cell receptor data generated per study. Appropriate analytical tools are required to analyse this data. We present a robust approach to assessing the similarity between samples of the T cell receptor repertoire, which we demonstrate on published data of subsets of the influenza A virus D(b)NP366(-) and D(b)PA224(-)specific CD8+ T cell responses in mice sorted on the expression of CD62L, which is a marker distinguishing central and effector memory cells.
Collapse
Affiliation(s)
- Vanessa Venturi
- Department of Haematology, Prince of Wales Hospital, Kensington NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Menezes JS, van den Elzen P, Thornes J, Huffman D, Droin NM, Maverakis E, Sercarz EE. A public T cell clonotype within a heterogeneous autoreactive repertoire is dominant in driving EAE. J Clin Invest 2007; 117:2176-85. [PMID: 17627303 PMCID: PMC1906731 DOI: 10.1172/jci28277] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/30/2007] [Indexed: 01/03/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis. Immunization of B10.PL mice with the Ac1-9 peptide, the immunodominant determinant of myelin basic protein (MBP), produced a single episode of EAE followed by recovery and resistance to reinduction of disease. Using the CDR3 length spectratyping technique, we characterized the clonal composition of the Ac1-9-specific T cell repertoire from induction through onset and resolution of disease. Two clonally restricted subsets within a heterogeneous self-reactive repertoire were found in mouse lymph nodes, spleen, and spinal cord soon after immunization, before any sign of EAE. These clonotypes, designated BV8S2/BJ2S7 and BV16/BJ2S5, were present in all mice examined and thus considered public. BV8S2/BJ2S7 was found in far greater excess; was exclusively Th1 polarized; disappeared from the spinal cord, spleen, and lymph nodes concomitantly with recovery; and transferred disease to naive recipients. In contrast, BV16/BJ2S5 and numerous private clonotypes were either Th1 or Th2 and persisted following recovery. These results are consistent with the hypothesis that the public clonotype BV8S2/BJ2S7 is a driver of disease and necessary for its propagation.
Collapse
MESH Headings
- Animals
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Mice
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/toxicity
- Organ Specificity/genetics
- Organ Specificity/immunology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Recovery of Function/genetics
- Recovery of Function/immunology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
Collapse
Affiliation(s)
- Juscilene S. Menezes
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Peter van den Elzen
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Jordan Thornes
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Donald Huffman
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Nathalie M. Droin
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Emanual Maverakis
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | - Eli E. Sercarz
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| |
Collapse
|
48
|
Fazilleau N, Eisenbraun MD, Malherbe L, Ebright JN, Pogue-Caley RR, McHeyzer-Williams LJ, McHeyzer-Williams MG. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat Immunol 2007; 8:753-61. [PMID: 17529982 DOI: 10.1038/ni1472] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/23/2007] [Indexed: 11/09/2022]
Abstract
How vaccines control the development of antigen-specific effector and memory T helper cells is central to protective immunity but remains poorly understood. Here we found that protein vaccination selected high-affinity, CXCR5+ICOS(hi) follicular B-helper T cells (T(FH) cells) that developed in draining lymphoid tissue to regulate B cell responses. In the memory phase, reservoirs of antigen-specific CXCR5+ICOS(lo) T(FH) cells persisted with less effector activity but accelerated antigen-recall ability. This new compartment of memory T(FH) cells was retained in draining lymphoid sites with antigen-specific memory B cells, persistent complexes of peptide and major histocompatibility complex class II and continued expression of CD69. Thus, protein vaccination promotes B cell immunity by selecting high-affinity effector T(FH) cells and creating lymphoid reservoirs of antigen-specific memory T(FH) cells in vivo.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.
Collapse
Affiliation(s)
- Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6:883-94. [PMID: 17110956 DOI: 10.1038/nri1977] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|