1
|
Tyler CJ, Hoti I, Griffiths DD, Cuff SM, Andrews R, Keisker M, Ahmed R, Hansen HP, Lindsay JO, Stagg AJ, Moser B, McCarthy NE, Eberl M. IL-21 conditions antigen-presenting human γδ T-cells to promote IL-10 expression in naïve and memory CD4 + T-cells. DISCOVERY IMMUNOLOGY 2024; 3:kyae008. [PMID: 38903247 PMCID: PMC11187773 DOI: 10.1093/discim/kyae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Direct interaction between T-cells exerts a major influence on tissue immunity and inflammation across multiple body sites including the human gut, which is highly enriched in 'unconventional' lymphocytes such as γδ T-cells. We previously reported that microbial activation of human Vγ9/Vδ2+ γδ T-cells in the presence of the mucosal damage-associated cytokine IL-15 confers the ability to promote epithelial barrier defence, specifically via induction of IL-22 expression in conventional CD4+ T-cells. In the current report, we assessed whether other cytokines enriched in the gut milieu also functionally influence microbe-responsive Vγ9/Vδ2 T-cells. When cultured in the presence of IL-21, Vγ9/Vδ2 T-cells acquired the ability to induce expression of the immunoregulatory cytokine IL-10 in both naïve and memory CD4+ T-cells, at levels surpassing those induced by monocytes or monocyte-derived DCs. These findings identify an unexpected influence of IL-21 on Vγ9/Vδ2 T-cell modulation of CD4+ T-cell responses. Further analyses suggested a possible role for CD30L and/or CD40L reverse signalling in mediating IL-10 induction by IL-21 conditioned Vγ9/Vδ2 T-cells. Our findings indicate that the local microenvironment exerts a profound influence on Vγ9/Vδ2 T-cell responses to microbial challenge, leading to induction of distinct functional profiles among CD4+ T-cells that may influence inflammatory events at mucosal surfaces. Targeting these novel pathways may offer therapeutic benefit in disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Christopher J Tyler
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Inva Hoti
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniel D Griffiths
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Maximilian Keisker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hinrich P Hansen
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - James O Lindsay
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Gastroenterology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
3
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
4
|
Alvarez-de Miranda FJ, Alonso-Sánchez I, Alcamí A, Hernaez B. TNF Decoy Receptors Encoded by Poxviruses. Pathogens 2021; 10:pathogens10081065. [PMID: 34451529 PMCID: PMC8401223 DOI: 10.3390/pathogens10081065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules.
Collapse
|
5
|
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021; 13:v13061146. [PMID: 34203773 PMCID: PMC8232671 DOI: 10.3390/v13061146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.
Collapse
Affiliation(s)
- Carla Mavian
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany;
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
- Correspondence:
| |
Collapse
|
6
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
7
|
Malik U, Zafar S, Younas N, Zerr I, Javed A. Unveiling the Physical and Functional Niches of FAM26F by Analyzing Its Subcellular Localization and Novel Interacting Partners. ACS OMEGA 2020; 5:22008-22020. [PMID: 32923759 PMCID: PMC7482079 DOI: 10.1021/acsomega.0c01249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The knowledge of a protein's subcellular localization and interacting partners are crucial for elucidating its cellular function and associated regulatory networks. Although FAM26F (family with sequence similarity 26, member F) has been recognized as a vital player in various infections, stimulation studies, cancer, and immune pathogenesis, the precise location and function of FAM26F are not well understood. The current study is the first to focus on functional characterization of FAM26F by analyzing its subcellular localization and identifying its novel interacting partners using advanced proteome approaches. The immunofluorescence and confocal microscopy results revealed FAM26F to be largely localized within the Golgi apparatus of the cell. However, its minor presence in endoplasmic reticulum (ER) pointed toward the probable retrograde transfer of FAM26F from Golgi to ER during adverse conditions. Moreover, co-immunoprecipitation and MS/MS results demonstrated a total of 85 proteins, 44 of which significantly copurified with FAM26F. Interestingly, out of these 44 MS/MS identified proteins, almost 52% were involved in innate immunity, 38.6% in neutrophil degranulation, and remaining 10% were either involved in phosphorylation, degradation, or regulation of apoptosis. Further characterization through Ingenuity Pathway Analysis showed that majority of these proteins was involved in maintaining calcium homeostasis of cell. Consequently, the validation of selected proteins uncovered the key interaction of FAM26F with Thioredoxin, which essentially paved the way for depicting its mechanism of action under stress or disease conditions. It is proposed that activation and inhibition of the cellular immune response is essentially dependent on whether FAM26F or Thioredoxin considerably interact with CD30R.
Collapse
Affiliation(s)
- Uzma Malik
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Saima Zafar
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
- Department
of Biomedical Engineering & Sciences, School of Mechanical &
Manufacturing Engineering (SMME), National
University of Sciences and Technology (NUST), H-12
Campus, 44000 Islamabad, Pakistan
| | - Neelam Younas
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Inga Zerr
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Aneela Javed
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
| |
Collapse
|
8
|
Ferrarini I, Rigo A, Zamò A, Vinante F. Classical Hodgkin lymphoma cells may promote an IL-17-enriched microenvironment. Leuk Lymphoma 2019; 60:3395-3405. [PMID: 31304817 DOI: 10.1080/10428194.2019.1636983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In classical Hodgkin lymphoma (cHL), the significance of the interplay between Hodgkin and Reed-Sternberg cells (HRS) and reactive T cells remains poorly defined. By immunohistochemistry on bioptic cHL specimens, we found that HRS and surrounding T lymphocytes stained positive for IL-17 in 40% of cases. IL-17 was detectable in a similar proportion of patients' sera and correlated with disease burden. Supernatants of KM-H2 and HDLM-2 cHL cell lines guided preferential chemotaxis of CCR6+ T lymphocytes. Coculture of cHL cell lines with PBMC promoted the enrichment of Th17 lymphocytes and Foxp3+/IL-17+ cells, whereas T regulatory cells slightly decreased. Soluble CD30 downmodulated membrane CD30 expression on T cells and contributed to their polarization shift by stimulating IL-17 production and reducing IFN-γ synthesis. Thus, HRS and a number of reactive CD4+ T cells, attracted by tumor-secreted chemokines, produce an IL-17 tumor-shaped inflammatory milieu in a cHL subset.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Oncology, University of Turin, Turin, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Alejo A, Ruiz-Argüello MB, Pontejo SM, Fernández de Marco MDM, Saraiva M, Hernáez B, Alcamí A. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation. Nat Commun 2018; 9:1790. [PMID: 29724993 PMCID: PMC5934441 DOI: 10.1038/s41467-018-04098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain
| | - M Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain.,Progenika Biopharma, 48160, Derio, Spain
| | - Sergio M Pontejo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - María Del Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,Animal & Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.,Institute for Molecular and Cell Biology, 4200-135, Porto, Portugal
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.
| |
Collapse
|
10
|
Zhou AC, Snell LM, Wortzman ME, Watts TH. CD30 Is Dispensable for T-Cell Responses to Influenza Virus and Lymphocytic Choriomeningitis Virus Clone 13 but Contributes to Age-Associated T-Cell Expansion in Mice. Front Immunol 2017; 8:1156. [PMID: 28993768 PMCID: PMC5622170 DOI: 10.3389/fimmu.2017.01156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023] Open
Abstract
CD30 is a tumor necrosis factor receptor (TNFR) family member whose expression is associated with Hodgkin’s disease, anaplastic large cell lymphomas, and other T and B lymphoproliferative disorders in humans. A limited number of studies have assessed the physiological role of CD30/CD30 ligand interactions in control of infection in mice. Here, we assess the role of CD30 in T-cell immunity to acute influenza and chronic lymphocytic choriomeningitis virus (LCMV) clone 13 infection, two viral infections in which other members of the TNFR superfamily are important for T-cell responses. We show that CD30 is expressed on activated but not resting CD4 and CD8 T cells in vitro, as well as on regulatory T cells and marginally on T helper 1 cells in vivo during influenza infection. Despite this, CD4 and CD8 T-cell expansion in response to influenza virus was comparable in CD30+/+ and CD30−/− littermates, with no discernable role for the pathway in the outcome of influenza infection. Similarly, during persistent infection with LCMV clone 13, CD30 plays no obvious role in CD4 or CD8 T-cell responses, the level of T-cell exhaustion or viral control. In contrast, in the steady state, we observed increased numbers of total CD4 and CD8 T cells as well as increased numbers of regulatory T cells in unimmunized older (~8 months) CD30+/+ but not in CD30−/− age-matched littermates. Naive T-cell numbers were unchanged in the aged CD30+/+ mice compared to their CD30−/− littermate controls, rather the T-cell expansions were explained by an increase in CD4+ and CD8+ CD44mid-hiCD62L− effector memory cells, with a similar trend in the central memory T-cell compartment. In contrast, CD30 did not impact the numbers of T cells in young mice. These data suggest a role for CD30 in the homeostatic regulation of T cells during aging, contributing to memory T-cell expansions, which may have relevance for CD30 expression in human T-cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Angela C Zhou
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Laura M Snell
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michael E Wortzman
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
12
|
Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2016; 17:112-129. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors - which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins - modulate and antagonize signalling by canonical effector-receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure-mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.
Collapse
|
13
|
Marín ND, García LF. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. Tuberculosis (Edinb) 2016; 102:8-15. [PMID: 28061955 DOI: 10.1016/j.tube.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/29/2016] [Indexed: 12/01/2022]
Abstract
The establishment of a protective T-cell response against mycobacterial infections involves different co-stimulatory molecules and their respective ligands. Among these molecules the Tumor Necrosis Factor Receptor Super-family (TNFRSF) and the Tumor Necrosis Factor Super-family (TNFSF) are known to be important members. This review analyzes the evidence that CD30 and CD153 (CD30L), members of the TNFRSF and TNSF, play key roles in the T cell-dependent anti-mycobacterial immune response. Mice deficient in either CD30 or CD153, or treated with antibodies blocking the effects or CD30 and CD153, and infected with M.avium or M.bovis BCG exhibit higher bacterial burden, abnormal inflammatory responses with decreased Th1 responses, this is evidenced by the reduced number of IFN-γ-producing cells. Recent evidence also showed that CD30+ CD153+ Tγδ cells participate in the early stages of M.bovis BCG infection by producing IL-17A. In humans, stimulation of T-cells with mycobacterial antigens induces CD30 expression mainly by CD4+ cells; CD30+ cells have been demonstrated in tissues of patients with tuberculosis (TB) and in positive tuberculin skin test reactions. In addition, the levels of soluble CD30 are increased in serum and BAL of TB patients and these levels seems to correlate with the severity of the disease. These findings suggest that CD30/CD153 interactions during the anti-mycobacterial immune response are important for the establishment and maintenance of a protective response. Further studies would be required to determine whether these molecules may be good clinical biomarkers or potential targets for immune manipulation.
Collapse
Affiliation(s)
- Nancy D Marín
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
14
|
Abstract
The prognosis of patients with classical Hodgkin lymphoma following chemo- and radiotherapy has been excellent during the last 4 decades. However, the development of secondary malignancies is of major concern. Therefore, the reduction of radiotherapy application is a major objective of ongoing clinical trials. De-escalation of treatment may increase the risk of relapses and thus may lead to reappearance of prognostic factors. Prognostic biomarkers might help to identify patients who are at increased risk of relapse. This review summarizes the current knowledge about potential prognostic biomarkers for patients with classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Martin S Staege
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Stefanie Kewitz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Toralf Bernig
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Caspar Kühnöl
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Christine Mauz-Körholz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
15
|
Abstract
Viruses have evolved numerous mechanisms to evade the immune response, including proteins that target the function of cytokines. This article provides an overview of the different strategies used by viruses to block the induction of cytokines and immune signals triggered by cytokines. Examples of virus evasion proteins are presented, such as intracellular proteins that block signal transduction and immune activation mechanisms, secreted proteins that mimic cytokines, or viral decoy receptors that inhibit the binding of cytokines to their cognate receptors. Virus-encoded proteins that target cytokines play a major role in immune modulation, and their contributions to viral pathogenesis, promoting virus replication or preventing immunopathology, are discussed.
Collapse
|
16
|
Yu Y, Huang Y, Wei S, Li P, Zhou L, Ni S, Huang X, Qin Q. A tumour necrosis factor receptor-like protein encoded by Singapore grouper iridovirus modulates cell proliferation, apoptosis and viral replication. J Gen Virol 2015; 97:756-766. [PMID: 26691529 DOI: 10.1099/jgv.0.000379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been demonstrated that tumour necrosis factor receptor (TNFR) homologues encoded by viruses are usually involved in virus immune evasion by regulating the host immune response or mediating apoptotic cell death. Here, a novel TNFR-like protein encoded by Singapore grouper iridovirus (SGIV VP51) was cloned and characterized. Amino acid analysis showed that VP51 contained three cysteine-rich domains (CRDs) and a transmembrane domain at its C terminus. The expression of VP51 in vitro enhanced cell proliferation, and affected cell cycle progression via altering the G1/S transition. Furthermore, VP51 overexpression improved cell viability during SGIV infection via inhibiting virus-induced apoptosis, evidenced by the reduction of apoptotic bodies and the decrease of caspase-3 activation. In addition, overexpression of VP51 increased viral titre and the expression of viral structural protein gene MCP and cell proliferation promoting gene ICP-18. In contrast, the expression of the viral apoptosis inducing gene, LITAF, was significantly decreased. Although all three CRDs were essential for the action of VP51, CRD2 and CRD3 exerted more crucial roles on virus-induced apoptosis, viral gene transcription and virus production, while CRD1 was more crucial for cell proliferation. Together, SGIV TNFR-like products not only affected cell cycle progression and enhanced cell growth by increasing the expression of the virus encoded cell proliferation gene, but also inhibited virus-induced apoptotic cell death by decreasing the expression of the viral apoptosis inducing gene. Our results provided new insights into understanding the underlying mechanism by which iridovirus regulated the apoptotic pathway to complete its life cycle.
Collapse
Affiliation(s)
- Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| |
Collapse
|
17
|
Yi Y, Qi H, Yuan J, Wang R, Weng S, He J, Dong C. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome. FISH & SHELLFISH IMMUNOLOGY 2015; 45:757-770. [PMID: 26052019 DOI: 10.1016/j.fsi.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carps
- Cell Line
- Female
- Fish Diseases/genetics
- Fish Diseases/metabolism
- Fish Diseases/virology
- Gene Expression Regulation
- Herpesviridae/genetics
- Herpesviridae/physiology
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Male
- Open Reading Frames
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment/veterinary
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Yang Yi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hemei Qi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jimin Yuan
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Wang
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
18
|
Pontejo SM, Alejo A, Alcami A. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors. J Biol Chem 2015; 290:15973-84. [PMID: 25940088 PMCID: PMC4481203 DOI: 10.1074/jbc.m115.650119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs.
Collapse
Affiliation(s)
- Sergio M Pontejo
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain and
| | - Ali Alejo
- Centro de Investigacion en Sanidad Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Valdeolmos, 28130 Madrid, Spain
| | - Antonio Alcami
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain and
| |
Collapse
|
19
|
Characterization of CD30/CD30L(+) Cells in Peripheral Blood and Synovial Fluid of Patients with Rheumatoid Arthritis. J Immunol Res 2015; 2015:729654. [PMID: 26090498 PMCID: PMC4452350 DOI: 10.1155/2015/729654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022] Open
Abstract
The CD30/CD30L signalling system has been implicated in the pathogenesis of several autoimmune and inflammatory conditions. In rheumatoid arthritis (RA), soluble CD30 (sCD30) levels reflect the recruitment of CD30+ T cells into the inflamed joints and correlate with a positive response to immunosuppressive therapy. The aim of our report was to clarify the role of CD30/CD30L signalling system in the pathogenesis of RA. Our analysis of the CD30L+ T cell subsets in peripheral blood (PB) and synovial fluid (SF) of RA patients and of the related cytokine profiles suggests the involvement of CD30/CD30L signalling in polarization of T cells towards a Th17 phenotype with proinflammatory features. Moreover, in RA SF nearly 50% of Treg cells express CD30, probably as an attempt to downmodulate the ongoing inflammation. We also show here that the engagement of CD30L on neutrophils stimulated with CD30/Fc chimera may play a crucial role in RA inflammation since activated neutrophils release IL-8, thus potentially amplifying the local inflammatory damage. In conclusion, the results obtained suggest that the complex CD30/CD30L signalling pathway is implicated in the pathogenesis and progression of RA synovitis through a concerted action on several immune effector cells.
Collapse
|
20
|
Increased bone marrow (BM) plasma level of soluble CD30 and correlations with BM plasma level of interferon (IFN)-γ, CD4/CD8 T-cell ratio and disease severity in aplastic anemia. PLoS One 2014; 9:e110787. [PMID: 25383872 PMCID: PMC4226501 DOI: 10.1371/journal.pone.0110787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023] Open
Abstract
Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets.
Collapse
|
21
|
Kattlun J, Menanteau-Ledouble S, El-Matbouli M. Non-structural protein pORF 12 of cyprinid herpesvirus 3 is recognized by the immune system of the common carp Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2014; 111:269-73. [PMID: 25320039 DOI: 10.3354/dao02793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 is an important pathogen and the causative agent of koi herpesvirus disease, which has been associated with mass mortalities in koi and common carp Cyprinus carpio. Currently, the only available commercial vaccine is an attenuated version of the virus. This has led to concerns about its risk to reversion to virulence. Furthermore, the vaccine is currently only available in Israel and the United States. In order to investigate the antigenic profile of the virus, western blot was performed using infected cell culture supernatant and sera from carp that had survived exposure to the virus. Only one antigen could be detected, and mass spectrometry analysis identified the corresponding protein as ORF 12, a putative secreted tumour necrosis factor receptor homologue. In other herpesviruses, such proteins have been associated with the viral infectious process in a number of ways, including the entry into the host cell and the inhibition of apoptosis in infected cells. The reason why only one antigen could be detected during this study is unknown.
Collapse
Affiliation(s)
- Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | |
Collapse
|
22
|
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Früh K. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123. [PMID: 24832205 PMCID: PMC4022744 DOI: 10.1371/journal.ppat.1004123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Collapse
Affiliation(s)
- Dina Alzhanova
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erin Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Stephanie Rawlings
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Caroline A. Ray
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Ben Bimber
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| |
Collapse
|
23
|
Abstract
CD30 is a transmembrane receptor, normally not expressed by mast cells, which regulates proliferation/apoptosis and antibody responses. Aberrant expression of CD30 by mastocytosis mast cells and interaction with its ligand CD30L (CD153) appears to play an important role in the pathogenesis and clinical presentation of systemic mastocytosis. This article highlights the expression profile and role of CD30 and CD30L in physiologic and pathologic conditions, the applicability of CD30 as a marker for systemic mastocytosis, the consequences of mast cell-expressed CD30, and the possibility of future anti-CD30 based cytoreductive therapies.
Collapse
|
24
|
Tinazzi E, Barbieri A, Rigo A, Patuzzo G, Beri R, Gerli R, Argentino G, Puccetti A, Lunardi C. In rheumatoid arthritis soluble CD30 ligand is present at high levels and induces apoptosis of CD30(+)T cells. Immunol Lett 2014; 161:236-40. [PMID: 24447865 DOI: 10.1016/j.imlet.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
CD30 and CD30 ligand (CD30L) are members of TNF-receptor and TNF superfamilies respectively. CD30(+)T cells are increased in several diseases and interaction between CD30(+) and CD30L(+)T cells leads either to cell proliferation or apoptosis. In patients with rheumatoid arthritis (RA), soluble CD30 (sCD30) levels seem to reflect the recruitment of CD30(+)T cells into the inflamed joints and are predictive of a positive response to classical and biological immunosuppressive therapy. We have evaluated the presence of soluble CD30L (sCD30L) in the sera and synovial fluid of patients with RA and defined whether it binds surface CD30 molecule and is functionally active. We found high levels of sCD30L in sera and synovial fluid of RA patients; the molecule is shedded upon direct contact of CD30(+)/CD30L(+)T cells. Moreover sCD30L binds surface CD30 constitutively expressed by Jurkat cell line. Finally recombinant sCD30L and sera from patients with high levels of sCD30L are able to inhibit CD30(+)T cell proliferation by inducing cell apoptosis. Our findings suggest that circulant sCD30L is functionally active and that it may favor persistence of active inflammation by inducing apoptosis of CD30(+)T cells, known to down-modulate inflammation in rheumatoid synovitis.
Collapse
Affiliation(s)
- Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonella Rigo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Ruggero Beri
- Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Gerli
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine, University of Genova and Institute G. Gaslini, Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
25
|
Juhász K, Buzás K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol 2014; 9:335-48. [DOI: 10.1586/eci.13.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Huang X, Huang Y, Cai J, Wei S, Gao R, Qin Q. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Singapore grouper iridovirus. Virus Res 2013; 178:340-8. [DOI: 10.1016/j.virusres.2013.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/01/2022]
|
27
|
Sun X, Shibata K, Yamada H, Guo Y, Muta H, Podack ER, Yoshikai Y. CD30L/CD30 is critical for maintenance of IL-17A-producing γδ T cells bearing Vγ6 in mucosa-associated tissues in mice. Mucosal Immunol 2013; 6:1191-201. [PMID: 23549449 DOI: 10.1038/mi.2013.18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/27/2013] [Accepted: 02/27/2013] [Indexed: 02/04/2023]
Abstract
CD30 ligand (CD30L, CD153), a member of the tumor necrosis factor (TNF) superfamily, and its receptor CD30 are important for differentiation and activation of CD4(+) T helper type 17 (Th17) cells. In this report, we demonstrate that the interleukin 17A (IL-17A)-producing γδ T cells normally developed in the fetal thymus, whereas Vγ1(-)Vγ4(-) γδ T cells expressed Vγ6/Vδ1 gene transcript selectively decreased in mucosa-associated tissues in naive CD30KO or CD30LKO mice. Moreover, CD30 and CD30L were expressed preferentially by Vγ1(-)Vγ4(-) γδ T cells in naive mice. The bacteria clearance was attenuated by the impaired response of the IL-17A-producing γδ T cells and decreased infiltration of neutrophils in CD30KO or CD30LKO mice. In vivo administration of agonistic anti-CD30 monoclonal antibody restored the ability of protection against Listeria monocytogenes by enhancing Vγ1(-)Vγ4(-) γδ T cells producing IL-17A not only in wild-type but also CD30LKO mice. Taken together, it appears that CD30L/CD30 signaling plays an important role in the maintenance and activation of IL-17A-producing γδ T cells presumably bearing Vγ6 in the mucosa-associated tissues of mice.
Collapse
Affiliation(s)
- X Sun
- 1] Department of Immunology, China Medical University, Shenyang, China [2] Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [3] Research Center for Advanced Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
CD30 is required for activation of a unique subset of interleukin-17A-producing γδ T cells in innate immunity against Mycobacterium bovis Bacillus Calmette-Guerin infection. Infect Immun 2013; 81:3923-34. [PMID: 23918785 DOI: 10.1128/iai.00887-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-17A (IL-17A)-producing γδ T cells are known to be activated following Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. Here, we show that CD30, a member of the tumor necrosis factor (TNF) receptor superfamily, is important for activation of IL-17A-producing γδ T cells after BCG infection. Vγ1(-) Vγ4(-) γδ T cells preferentially expressing Vγ6/Vδ1 genes were identified as the major source of IL-17A in the peritoneal cavity during the early stage of BCG infection. The number of IL-17A-producing Vγ1(-) Vγ4(-) γδ T cells bearing Vγ6 increased in peritoneal exudate cells (PEC) of wild-type (WT) mice but not in those of CD30 knockout (KO) mice in response to BCG infection. Consistently, CD30 ligand (CD30L) or CD30 expression, predominantly by Vγ1(-) Vγ4(-) γδ T cells, was rapidly upregulated after BCG infection. Inhibition of CD30L/CD30 signaling by in vivo administration of a soluble CD30 and immunoglobulin fusion protein (CD30-Ig) severely impaired activation of IL-17A-producing Vγ1(-) Vγ4(-) γδ T cells in WT mice, while stimulating CD30L/CD30 signaling by in vivo administration of agonistic anti-CD30 monoclonal antibody (MAb) restored IL-17A production by Vγ1(-) Vγ4(-) γδ T cells in CD30L KO mice after BCG infection. These results suggest that CD30 signaling plays an important role in the activation of IL-17A-producing Vγ1(-) Vγ4(-) γδ T cells bearing Vγ6 at an early stage of BCG infection.
Collapse
|
29
|
Higher mast cell load decreases the risk of Hymenoptera venom-induced anaphylaxis in patients with mastocytosis. J Allergy Clin Immunol 2013; 132:125-30. [PMID: 23498593 DOI: 10.1016/j.jaci.2012.12.1578] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Increased basal serum tryptase (bsT) levels are a well-described risk factor for Hymenoptera venom-induced anaphylaxis (HVAn) in patients allergic to Hymenoptera venom. Increased bsT levels might also indicate the presence of mastocytosis. In this study we evaluated whether the risk of HVAn increases with increasing mast cell load in patients with mastocytosis. METHODS Consecutive patients with different subtypes of mastocytosis (n = 329) admitted to the University Medical Center Groningen were retrospectively assessed. As markers for mast cell load, levels of both bsT and the urinary histamine metabolites methylhistamine and methylimidazole acetic acid (MIMA) were used. RESULTS In the entire patient group, irrespective of disease subtype and Hymenoptera venom exposure, HVAn prevalence gradually increased with increasing marker levels to a maximum of 36% to 47% at a bsT level of 28.0 μg/L, a methylhistamine level of 231.0 μmol/mol creatinine, and a MIMA level of 2.7 mmol/mol creatinine but decreased thereafter with a further increase in these levels. In patients with indolent systemic mastocytosis with a history of Hymenoptera venom exposure after age 15 years or greater (n = 152), MIMA and age at the most recent Hymenoptera sting were independent predictors for HVAn (odds ratios of 0.723 [P = .001] and 1.062 [P < .001], respectively). CONCLUSIONS In patients with mastocytosis, HVAn prevalence does not increase constantly with increasing levels of mast cell load parameters: after a gradual increase to a maximum of near 50%, it decreases with a further increase in these levels. In the indolent systemic mastocytosis population, all mast cell load markers were independent negative predictors of HVAn. These findings suggest a complex pathophysiologic association between mast cell load and HVAn risk in patients with mastocytosis.
Collapse
|
30
|
Epperson ML, Lee CA, Fremont DH. Subversion of cytokine networks by virally encoded decoy receptors. Immunol Rev 2012; 250:199-215. [PMID: 23046131 PMCID: PMC3693748 DOI: 10.1111/imr.12009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the course of evolution, viruses have captured or created a diverse array of open reading frames, which encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses that would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing, and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine-binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks.
Collapse
Affiliation(s)
- Megan L Epperson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
31
|
Abstract
Brentuximab vedotin (SGN-35; Adcetris®) is an anti-CD30 antibody conjugated via a protease-cleavable linker to the potent anti-microtubule agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and transported to lysosomes where MMAE is released and binds to tubulin, leading to cell cycle arrest and apoptosis. Several trials have shown durable antitumor activity with a manageable safety profile in patients with relapsed/refractory Hodgkin lymphoma, systemic anaplastic large cell lymphoma, or primary cutaneous CD30-positive lymphoproliferative disorders. Peripheral sensory neuropathy is a significant adverse event associated with brentuximab vedotin administration. Neuropathy symptoms are cumulative and dose-related. Multiple ongoing trials are currently evaluating brentuximab vedotin alone or in combination with other agents in relapsed/refractory patients, as well as patients with newly diagnosed disease.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA USA.
| | | |
Collapse
|
32
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
33
|
Umeda K, Sun X, Guo Y, Yamada H, Shibata K, Yoshikai Y. Innate memory phenotype CD4+ T cells play a role in early protection against infection by Listeria monocytogenes in a CD30L-dependent manner. Microbiol Immunol 2012; 55:645-56. [PMID: 21699557 DOI: 10.1111/j.1348-0421.2011.00362.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the tumor necrosis factor family. It is shown here that CD30L knock out (KO) mice are highly susceptible to primary infection with Listeria monocytogenes as assessed by the survival rate. There were significantly more bacteria on day 3 after infection in the peritoneal cavity, spleen and liver of CD30LKO mice than in wild type (WT) mice. The innate function of memory phenotype (MP) CD44+ CD4+ T cells for interferon-gamma production was significantly lower in CD30LKO mice than in WT mice in response to interleukin (IL)-12 and IL-15 in vitro. Depletion of CD4+ T cells by in vivo administration of anti-CD4 mAb at an early stage after infection hampered protection against Listeria. Furthermore, in vivo administration of agonistic anti-CD30 mAb restored protection against Listeria in CD30LKO mice, whereas treatment with soluble mCD30-Ig hampered protection in WT mice. Taken together, it appears that CD30L/CD30 signaling plays an important role in innate MPCD4+ T cell-mediated protection against infection with L. monocytogenes.
Collapse
Affiliation(s)
- Kenji Umeda
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy. Cancer Immunol Immunother 2011; 60:1373-81. [PMID: 21739118 PMCID: PMC3176405 DOI: 10.1007/s00262-011-1068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/16/2011] [Indexed: 01/19/2023]
Abstract
Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment.
Collapse
|
36
|
Poxviral TNFRs: properties and role in viral pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:203-10. [PMID: 21153324 DOI: 10.1007/978-1-4419-6612-4_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Modulation of the host immune response by cowpox virus. Microbes Infect 2010; 12:900-9. [PMID: 20673807 PMCID: PMC3500136 DOI: 10.1016/j.micinf.2010.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022]
Abstract
Cowpox virus, a zoonotic poxvirus endemic to Eurasia, infects a large number of host species which makes its eradication impossible. The elimination of world-wide smallpox vaccination programs renders the human population increasingly susceptible to infection by orthopoxviruses resulting in a growing number of zoonotic infections including CPXV transmitted from domestic animals to humans. The ability of CPXV to infect a wide range of mammalian host is likely due to the fact that, among the orthopoxviruses, CPXV encodes the most complete set of open reading frames expected to encode immunomodulatory proteins. This renders CPXV particularly interesting for studying poxviral strategies to evade and counteract the host immune responses.
Collapse
|
38
|
Lipscomb MF, Hutt J, Lovchik J, Wu T, Lyons CR. The pathogenesis of acute pulmonary viral and bacterial infections: investigations in animal models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:223-52. [PMID: 19824827 DOI: 10.1146/annurev-pathol-121808-102153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute viral and bacterial infections in the lower respiratory tract are major causes of morbidity and mortality worldwide. The proper study of pulmonary infections requires interdisciplinary collaboration among physicians and biomedical scientists to develop rational hypotheses based on clinical studies and to test these hypotheses in relevant animal models. Animal models for common lung infections are essential to understand pathogenic mechanisms and to clarify general mechanisms for host protection in pulmonary infections, as well as to develop vaccines and therapeutics. Animal models for uncommon pulmonary infections, such as those that can be caused by category A biothreat agents, are also very important because the infrequency of these infections in humans limits in-depth clinical studies. This review summarizes our understanding of innate and adaptive immune mechanisms in the lower respiratory tract and discusses how animal models for selected pulmonary pathogens can contribute to our understanding of the pathogenesis of lung infections and to the search for new vaccines and therapies.
Collapse
Affiliation(s)
- Mary F Lipscomb
- Departments of Pathology and University of New Mexico School of Medicine, Albuquerque, New Mexico 87131.
| | | | | | | | | |
Collapse
|
39
|
Alejo A, Saraiva M, Ruiz-Argüello MB, Viejo-Borbolla A, de Marco MF, Salguero FJ, Alcami A. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants. PLoS One 2009; 4:e5175. [PMID: 19365546 PMCID: PMC2664468 DOI: 10.1371/journal.pone.0005175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/10/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. CONCLUSIONS/SIGNIFICANCE We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.
Collapse
Affiliation(s)
- Ali Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Maria Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Francisco Javier Salguero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Antonio Alcami
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Flórido M, McColl SR, Appelberg R. Delayed recruitment of lymphocytes into the lungs of CD30-deficient mice during aerogenic Mycobacterium avium infections. Immunobiology 2009; 214:643-52. [PMID: 19250702 DOI: 10.1016/j.imbio.2008.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
Abstract
CD30 is a member of the tumor necrosis factor-receptor superfamily, a group of receptors known to act as accessory molecules in the development of the immune response. Control and CD30-deficient mice were aerogenically infected with Mycobacterium avium. Although the mycobacterial loads in the lungs were similar in both strains of mice, CD30-deficient animals exhibited delayed structuring of pulmonary granulomas and reduced recruitment of lymphocytes throughout a 240 days period of infection. Discrete alterations in the chemokine network were detected in the CD30-deficient animals although they showed no clear relation to the deficient inflammatory response. Thus CD30/CD153 interactions are involved in lung immune-mediated inflammation.
Collapse
Affiliation(s)
- Manuela Flórido
- Laboratory of Microbiology and Immunology of Infection, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
41
|
Tang C, Yamada H, Shibata K, Muta H, Wajjwalku W, Podack ER, Yoshikai Y. A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection. THE JOURNAL OF IMMUNOLOGY 2009; 181:6316-27. [PMID: 18941223 DOI: 10.4049/jimmunol.181.9.6316] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the TNF family. To illustrate the potential role of CD30L in CD4(+) Th1 cell responses, we investigated the fate of Ag-specific CD4(+) T cells in CD30L-deficient (CD30L(-/-)) mice after Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. The number of bacteria was significantly higher in organs of CD30L(-/-) mice than in wild-type (WT) mice 4 wk postinfection. The numbers of purified protein derivative- or Ag85B-specific-IFN-gamma-producing-CD4(+) T cells in spleen, lung, or peritoneal exudate cells were significantly fewer in CD30L(-/-) mice than in WT mice. During the infection, CD30L was expressed mainly by CD44(+)CD3(+)CD4(+) T cells but not by CD3(+)CD8(+) T cells, B cells, dendritic cells, or macrophages. Costimulation with agonistic anti-CD30 mAb or coculturing with CD30L-transfected P815 cells restored IFN-gamma production by CD4(+) T cells from BCG-infected CD30L(-/-) mice. Coculturing with CD30L(+/+)CD4(+) T cells from BCG-infected WT mice also restored the number of IFN-gamma(+)CD30L(-/-)CD4(+) T cells. When transferred into the CD30L(+/+) mice, Ag-specific donor CD30L(-/-) CD4(+) T cells capable of producing IFN-gamma were restored to the compared level seen in CD30L(+/+) CD4(+) T cells on day 10 after BCG infection. When naive CD30L(+/+) T cells were transferred into CD30L(-/-) mice, IFN-gamma-producing-CD4(+) Th1 cells of donor origin were normally generated following BCG infection, and IFN-gamma-producing-CD30L(-/-)CD4(+) Th1 cells of host origin were partly restored. These results suggest that CD30L/CD30 signaling executed by CD30(+) T-CD30L(+) T cell interaction partly play a critical role in augmentation of Th1 response capable of producing IFN-gamma against BCG infection.
Collapse
Affiliation(s)
- Ce Tang
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Alcami A, Saraiva M. Chemokine binding proteins encoded by pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:167-79. [PMID: 20054983 DOI: 10.1007/978-1-4419-1601-3_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine bindingproteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.
Collapse
Affiliation(s)
- Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones científicas, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
43
|
Sun X, Somada S, Shibata K, Muta H, Yamada H, Yoshihara H, Honda K, Nakamura K, Takayanagi R, Tani K, Podack ER, Yoshikai Y. A critical role of CD30 ligand/CD30 in controlling inflammatory bowel diseases in mice. Gastroenterology 2008; 134:447-58. [PMID: 18242212 DOI: 10.1053/j.gastro.2007.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 10/25/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS A CD30-ligand (CD30L) is a 40-kilodalton, type II membrane-associated glycoprotein belonging to the tumor necrosis factor family. Serum levels of soluble CD30 increased in inflammatory bowel diseases (IBD), suggesting that CD30L/CD30 signaling is involved in the pathogenesis of IBD. In this study, we investigated the role of CD30L in oxazolone (OXA)- and trinitrobenzene sulfonic acid (TNBS)-induced colitis in CD30L knockout (KO) mice. METHODS Colitis was induced by OXA or TNBS in CD30LKO mice with BALB/c or C57BL/6 background, respectively, and diverse clinical signs of the disease were evaluated. Cytokine production from lamina propria T cells of the colon was assessed by enzyme-linked immunosorbent assay. Anti-interleukin (IL)-4 monoclonal antibody (mAb) or agonistic anti-CD30 mAb was inoculated in mice with colitis induced by OXA or TNBS. RESULTS CD30LKO mice were susceptible to OXA-induced colitis but resistant to TNBS-induced acute colitis. The levels of T helper cell 2 type cytokines such as IL-4 and IL-13 in the LP T cells were significantly higher, but the levels of interferon gamma were lower in OXA- or TNBS-treated CD30LKO mice than in wild-type mice. In vivo administration of agonistic anti-CD30 mAb ameliorated OXA-induced colitis but aggravated TNBS-induced colitis in CD30LKO mice. CONCLUSIONS These results suggest that CD30L/CD30 signaling is involved in development of both OXA- and TNBS-induced colitis. Modulation of CD30L/CD30 signaling by mAb could be a novel biologic therapy for IBD.
Collapse
Affiliation(s)
- Xun Sun
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cuzzocrea S, Di Paola R, Mazzon E, Crisafulli C, Genovese T, Muià C, Abdelrahman M, Esposito E, Thiemermann C. Glycogen synthase kinase 3beta inhibition reduces the development of nonseptic shock induced by zymosan in mice. Shock 2007; 27:97-107. [PMID: 17172987 DOI: 10.1097/01.shk.0000235084.56100.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen synthase kinase 3 has recently been identified as a ubiquitous serine-threonine protein kinase that participates in a multitude of cellular processes and plays an important role in the pathophysiology of a number of diseases. In the present study, we have investigated the effects of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a glycogen synthase kinase 3beta inhibitor, on the development of nonseptic shock caused by zymosan (dose, 500 mg/kg i.p. suspension in saline) in mice. Organ failure and systemic inflammation in mice was assessed 18 h after administration of zymosan and/or TDZD-8; another group of mice was monitored for 12 days (for clinical score and mortality). Treatment of mice with TDZD-8 (dose, 10 mg/kg i.p., 1 and 6 h after zymosan administration) attenuated the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan. TDZD-8 also attenuated the lung, liver, and pancreatic injury, the renal dysfunction caused by zymosan, and the increase in myeloperoxidase activity caused by zymosan in the lung and in the intestine. Immunohistochemical analysis for inducible nitric oxide synthase, nitrotyrosine, poly(ADP-ribose), CD30, CD30 ligand, and Fas ligand revealed positive staining in lung and intestinal tissues obtained from zymosan-injected mice. The degree of staining for inducible nitric oxide synthase, nitrotyrosine, poly(ADP-ribose), CD30, CD30 ligand, and Fas ligand were markedly reduced in tissue sections obtained from zymosan-injected mice that had received TDZD-8. This study provides the first evidence that TDZD-8 attenuates the degree of zymosan-induced, nonseptic shock in mice.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun M, Fink PJ. A New Class of Reverse Signaling Costimulators Belongs to the TNF Family. THE JOURNAL OF IMMUNOLOGY 2007; 179:4307-12. [PMID: 17878324 DOI: 10.4049/jimmunol.179.7.4307] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent evidence shows that many molecules of the TNF family serve as counter-receptors, inducing costimulation through reverse signals in addition to delivering signals through their respective TNF receptors. In this review, we will discuss this new class of costimulators with a focus on the mechanism of costimulation transduced by reverse signaling through Fas ligand.
Collapse
Affiliation(s)
- Mingyi Sun
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
46
|
Walsh CM, Smith P, Fallon PG. Role for CTLA-4 but not CD25+T cells during Schistosoma mansoni infection of mice. Parasite Immunol 2007; 29:293-308. [PMID: 17518948 DOI: 10.1111/j.1365-3024.2007.00947.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schistosoma mansoni infection of mice increases the frequency of cells that are CD4+ CD25+ in the acute (4 and 8 weeks) and chronic (16 week) stages of infection. Depletion of > 85% of CD25+ cells in the acute or chronic stages of schistosome infection caused no overt changes in morbidity or immunological responses. The absence of effect in mice with CD25+ cells depleted may be due to the preferential expression of IL-4 and IL-10, two cytokines that are protective in schistosome infection, on CD25- CD4+ cells. We also assessed infection-induced changes of other regulatory markers, GITR, CD103 and CTLA-4 on CD4+ cells. We identified a marked expansion of CTLA-4+ population on CD25- CD4+ cells in acute and chronic infection. Blocking of CTLA-4 during acute, but not chronic infection, caused significant weight loss and altered the type 2 cytokine response of mice, with increased IL-4 and IL-5 production associated with significantly more Th2 cells and eosinophils in the liver granuloma. This study illustrates the complexity of regulation of T cells in schistosome infection and highlights a specific role for CTLA-4+, but not CD25+ cells, in the regulation of Th2 responses in helminth infection.
Collapse
Affiliation(s)
- C M Walsh
- Institute of Molecular Medicine, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | | | | |
Collapse
|
47
|
Pickup DJ. Understanding orthopoxvirus interference with host immune responses to inform novel vaccine design. Expert Rev Vaccines 2007; 6:87-95. [PMID: 17280481 DOI: 10.1586/14760584.6.1.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jenner's original vaccine used cowpox virus. Cowpox virus and, subsequently, vaccinia virus, a closely related Orthopoxvirus, provided the means to eradicate smallpox. This history and the unique properties of the virus suggest that vaccinia virus will continue to provide a useful vaccine platform. Yet, surprisingly, it has become apparent that much of the virus genome encodes accessory proteins that interfere with host immune responses to infection. Manipulation of these genes offers the potential for new generations of orthopoxvirus vaccines in which we will have far greater control over key features of the vaccination, including the sites of virus infection, the degree of virus replication, the pathogenicity of the virus and, most importantly, the suppression or induction of immune responses of specific types.
Collapse
Affiliation(s)
- David J Pickup
- Department of Molecular Genetics and Microbiology, and Duke Human Vaccine Institute, Box 3020, Duke University Medical Center, Durham, NC 27710 USA.
| |
Collapse
|
48
|
Eichenauer DA, Simhadri VL, von Strandmann EP, Ludwig A, Matthews V, Reiners KS, von Tresckow B, Saftig P, Rose-John S, Engert A, Hansen HP. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res 2007; 67:332-8. [PMID: 17210715 DOI: 10.1158/0008-5472.can-06-2470] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD30 is a transmembrane protein selectively overexpressed on many human lymphoma cells and therefore an interesting target for antibody-based immunotherapy. However, binding of therapeutic antibodies stimulates a juxtamembrane cleavage of CD30 leading to a loss of target antigen and an enhanced release of the soluble ectodomain of CD30 (sCD30). Here, we show that sCD30 binds to CD30 ligand (CD153)-expressing non-target cells. Because antibodies bind to sCD30, this results in unwanted antibody binding to these cells via sCD30 bridging. To overcome shedding-dependent damage of normal cells in CD30-specific immunotherapy, we analyzed the mechanism involved in the release. Shedding of CD30 can be enhanced by protein kinase C (PKC) activation, implicating the disintegrin metalloproteinase ADAM17 but not free cytoplasmic calcium. However, antibody-induced CD30 shedding is calcium dependent and PKC independent. This shedding involved the related metalloproteinase ADAM10 as shown by the use of the preferential ADAM10 inhibitor GI254023X and by an ADAM10-deficient cell line generated from embryonically lethal ADAM10(-/-) mouse. In coculture experiments, the antibody-induced transfer of sCD30 from the human Hodgkin's lymphoma cell line L540 to the CD30-negative but CD153-expressing human mast cell line HMC-1 was inhibited by GI254023X. These findings suggest that selective metalloproteinase inhibitors blocking antibody-induced shedding of target antigens could be of therapeutic value to increase the specificity and reduce side effects of immunotherapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Dennis A Eichenauer
- Department of Internal Medicine I and Center for Molecular Medicine, University Hospital Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tulman ER, Delhon G, Afonso CL, Lu Z, Zsak L, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. Genome of horsepox virus. J Virol 2006; 80:9244-58. [PMID: 16940536 PMCID: PMC1563943 DOI: 10.1128/jvi.00945-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fischer M, Harvima IT, Carvalho RF, Möller C, Naukkarinen A, Enblad G, Nilsson G. Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest 2006; 116:2748-56. [PMID: 16964309 PMCID: PMC1560346 DOI: 10.1172/jci24274] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 07/18/2006] [Indexed: 11/17/2022] Open
Abstract
Mast cells are involved in many disorders where the triggering mechanism that leads to degranulation and/or cytokine secretion has not been defined. Several chronic inflammatory diseases are associated with increased mast cell numbers and upregulation of the TNF receptor family member CD30, but the role of elevated CD30 expression is poorly understood. Here we report what we believe to be a novel way to activate mast cells with CD30 that leads to degranulation-independent secretion of chemokines. CD30 induced a de novo synthesis and secretion of the chemokines IL-8, macrophage inflammatory protein-1alpha (MIP-1alpha), and MIP-1beta, a process involving the MAPK/ERK pathway. Mast cells were found to be the predominant CD30 ligand-positive (CD30L-positive) cell in the chronic inflammatory skin diseases psoriasis and atopic dermatitis, and both CD30 and CD30L expression were upregulated in lesional skin in these conditions. Furthermore, the number of IL-8-positive mast cells was elevated both in psoriatic and atopic dermatitis lesional skin as well as in ex vivo CD30-treated healthy skin organ cultures. In summary, characterization of CD30 activation of mast cells has uncovered an IgE-independent pathway that is of importance in understanding the entirety of the role of mast cells in diseases associated with mast cells and CD30 expression. These diseases include Hodgkin lymphoma, atopic dermatitis, and psoriasis.
Collapse
Affiliation(s)
- Marie Fischer
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ilkka T. Harvima
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ricardo F.S. Carvalho
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Christine Möller
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Anita Naukkarinen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Gunilla Enblad
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Gunnar Nilsson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Uppsala, Sweden.
Department of Dermatology and
Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|