1
|
Wu J, Liu S, Song Q, Tao F, Zhu W, Zhuang F, Fang W, Li Z, Wang D. Triple regulation of oxidative-acetylation cycling pathways in COPD glucocorticoid resistance by HuaTanJiangQi capsules. 3 Biotech 2025; 15:72. [PMID: 40060290 PMCID: PMC11883076 DOI: 10.1007/s13205-025-04249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/12/2025] [Indexed: 04/13/2025] Open
Abstract
Glucocorticoid (GC) resistance in chronic obstructive pulmonary disease (COPD) induced by long-term smoking, significantly reduces the quality of life of patients. The complex interaction between antioxidants and acetylation is an important factor that contributes to the slow progression of treatment. This study highlights the development of GC resistance in COPD through 4-hydroxynonenal (4-HNE), multidrug resistance-associated protein 1 (MRP1), histone deacetylase 2 (HDAC2), and nuclear related factor 2 (Nrf2), using enzyme-linked immunosorbent assays, western blotting, and siRNA silencing. Our results suggest that long-term exposure to cigarette smoke can increase 4-HNE toxicity via reactive oxygen species (ROS)-induced lipid peroxidation and decrease the expression of MRP1, histone HDAC2, and Nrf2. Together, these molecules form and enhance the cyclic resistance pathway in COPD, including MRP1 reducing 4-HNE efflux, 4-HNE down-regulating HDAC2 expression by oxidation, HDAC2 reducing Nrf2 transcription by deacetylation, and Nrf2 reducing MRP1 expression through acetylation. The HuaTanJiangQi Capsule (HTJQ) reduces GC resistance via a triple regulatory pathway by enhancing the activity of HDAC2, promoting the transcription of Nrf2, up-regulating the expression of MRP1, and reducing lipid peroxidation induced by ROS. Thus, this cyclic mechanism of GC resistance in COPD may open new avenues for robust therapies using HTJQ.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - Sen Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - QiQi Song
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - FuLin Tao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - WenTao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - FuPing Zhuang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - Wei Fang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| | - ZeGeng Li
- The First Affiliated Hospital to Anhui University of Chinese Medicine, Hefei, Anhui 230031 People’s Republic of China
| | - DianLei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012 People’s Republic of China
| |
Collapse
|
2
|
Khalil B, Sharif-Askari NS, Selvakumar B, Mdkhana B, Hachim I, Zakri A, Hundt J, Hamid Q, Halwani R. Vitamin D3 suppresses NLRP3 inflammasome pathway and enhances steroid sensitivity in a neutrophilic steroid hyporesponsive asthma mouse model. Inflamm Res 2025; 74:51. [PMID: 40082319 DOI: 10.1007/s00011-025-02009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Severe steroid hyporesponsive asthma is a heterogeneous group of chronic inflammatory diseases characterized by irreversible airflow limitation, hyperresponsiveness, inflammation, and remodelling of the airways. Severe asthmatics account for more than 60% of asthma-related healthcare cost worldwide given they are hyporesponsive to corticosteroids and due to the absence of targeted treatment specifically for the T helper-17 (Th-17) high endotype. Hence, there is a clear unmet need to investigate other treatment options to control patients' symptoms. The role of the NLRP3 inflammasome pathway has been highlighted in the literature to contribute to disease pathogenesis and severity. Interestingly, vitamin D3 is an important regulator of the NLRP3 inflammasome pathway. METHODS Using house dust mite (HDM) and lipopolysaccharide (LPS), we induced a neutrophilic steroid hyporesponsive asthma mouse model to investigate the effect of vitamin D3 on downregulating the NLRP3 inflammasome pathway and enhancing steroid sensitivity. RESULTS We showed that calcitriol, the active form of vitamin D3, could downregulate the NLRP3 inflammasome pathway. This was associated with a significant reduction in airway hyperresponsiveness, IL-17 release, neutrophil infiltration, and mucus secretion. Further, calcitriol enhanced steroid sensitivity by inhibiting the expression of GR-β. Mechanistically, calcitriol targeted the NLRP3 inflammasome to ubiquitination. CONCLUSIONS Our research highlights the potential use of calcitriol as a low cost and accessible supplement to ameliorate airway inflammation during severe steroid hyporesponsive asthma.
Collapse
Affiliation(s)
- Bariaa Khalil
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Hachim
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel Zakri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Ma W, Brenmoehl J, Trakooljul N, Wimmers K, Murani E. Dexamethasone has profound influence on the energy metabolism of porcine blood leukocytes and prevents the LPS-induced glycolytic switch. Front Immunol 2025; 16:1514061. [PMID: 40070837 PMCID: PMC11893826 DOI: 10.3389/fimmu.2025.1514061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
In farm animals, little is known about the relationship between energy metabolism of immune cells and their activation state. Moreover, there has recently been evidence that dexamethasone, a powerful glucocorticoid-based drug, can exert its anti-inflammatory effects by interfering with the energy metabolism of immune cells, but the mechanisms are not yet fully understood. To address these knowledge gaps, we explored the connection between the energy metabolism of porcine peripheral blood mononuclear cells (PBMCs) and their response to pro- and anti-inflammatory stimulation with lipopolysaccharide (LPS) and dexamethasone (DEX) in vitro. Interventions in the metabolism of PBMCs with the glycolysis inhibitor 2-deoxy-D-glucose or the HIF-1α inhibitor KC7F2 reduced the LPS-induced TNF-α production, but the mitochondrial ATP synthesis inhibitor oligomycin showed no significant effect. The anti-inflammatory action of DEX was not affected by any of the inhibitors. To investigate the metabolic actions of LPS and DEX in PBMCs, we evaluated glycolysis and mitochondrial respiration following 24 hours stimulation using the Seahorse XFe96 flux analyzer. Our results revealed significantly higher glycolysis in LPS-treated PBMCs, but provided no evidence for a change in mitochondrial respiration. In contrast, DEX reduced LPS-induced glycolysis and, especially when administered alone, significantly lowered mitochondrial respiration. Pretreatment with KC7F2 counteracted the effects of LPS and DEX on glycolysis, and reduced mitochondrial respiration regardless of the inflammatory state of the PBMCs. Gene expression analysis identified the glucose transporter SLC2A3, and the tricarboxylic acid cycle genes IDH1 and SDHB as the main switches for the antagonistic metabolic actions of LPS and DEX, which are closely associated with the inflammatory state of PBMCs.
Collapse
Affiliation(s)
- Wenjuan Ma
- Working Group Physiological Genomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Julia Brenmoehl
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Working Group Physiological Genomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Working Group Physiological Genomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Working Group Physiological Genomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Tahri S, Fakhfakh R, Bahloul E, Charfi S, Sellami K, Hachicha H, Boudawara T, Turki H, Masmoudi H, Abida O. Exploring the role of glucocorticoid receptors and co-chaperones in Pemphigus foliaceus stratification. Arch Dermatol Res 2025; 317:479. [PMID: 39988616 DOI: 10.1007/s00403-025-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
Glucocorticoids (GC) are the main treatment for pemphigus foliaceus (PF). The effects of GC are mediated through glucocorticoid receptors (GR), with GRα and GRβ being the most significant isoforms. Several molecules are involved in mediating the cellular response to GC and can affect the response to treatment. However, the relationship between sensitivity to GC and the expression of GRα, GRβ, FKBP5, FKBP4, HAT1 and HDAC2 in PF disease has not yet been studied. The purpose of this study was to determine the expression of these molecules in patients with different types of response to treatment. Quantitative real-time PCR was used for gene expression profiling in systemic and cutaneous levels. The protein expression levels of GRα and GRβ and FKBP5 was accomplished through immunohistochemical staining. We studied the association of rs1360780 > FKBP5 SNP with PF disease using TaqMan SNP genotyping. Our findings showed downregulation in the gene expression levels of GRα (p = 0.016), HDAC2 (p = 0.004) and FKBP5 (p = 0.032) genes in PF patients compared to healthy controls in PBMC and an up-regulation in GRα (p = 0.041) and HAT1 (p = 0.008) in remittent patients compared to newly diagnosed patients in skin biopsies. GRα and GRβ proteins were less abundant at the cytoplasmic level in patients (p = 0.048 and 0.005, respectively). The nuclear score of FKBP5 was downregulated in patients (p = 0.028). Moreover, our results revealed that the rs1360780 > T allele is a risk factor to the endemic PF form. This study reported for the first-time the involvement of GRα, GRβ, FKBP5, FKBP4, HAT1 and HDAC2 in PF disease in Tunisian population.
Collapse
Affiliation(s)
- Safa Tahri
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia.
| | - Raouia Fakhfakh
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Emna Bahloul
- Dermatology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Pathology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Khadija Sellami
- Dermatology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Tahya Boudawara
- Pathology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Hamida Turki
- Dermatology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
5
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
6
|
Zhou L, Roth M, Papakonstantinou E, Tamm M, Stolz D. Expression of glucocorticoid receptor and HDACs in airway smooth muscle cells is associated with response to steroids in COPD. Respir Res 2024; 25:227. [PMID: 38812021 PMCID: PMC11137987 DOI: 10.1186/s12931-024-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Steroid insensitivity in Chronic Obstructive Pulmonary Disease (COPD) presents a problem for controlling the chronic inflammation of the airways. The glucocorticoid receptor (GR) mediates the intracellular signaling of inhaled corticosteroids (ICS) by interacting with transcription factors and histone deacetylases (HDACs). The aim of this study was to assess if COPD patients' response to ICS in vivo, may be associated with the expression of GR, the complex of GR with transcription factors, and the expression of various HDACs in vitro. METHODS Primary airway smooth muscle cells (ASMC) were established from endobronchial biopsies obtained from patients with asthma (n = 10), patients with COPD (n = 10) and subjects that underwent diagnostic bronchoscopy without pathological findings and served as controls (n = 6). ASMC were also established from 18 COPD patients, 10 responders and 8 non-responders to ICS, who participated in the HISTORIC study, an investigator-initiated and driven clinical trial that proved the hypothesis that COPD patients with high ASMC in their endobronchial biopsies respond better to ICS than patients with low ASMC. Expression of GR and its isoforms GRα and GRβ and HDACs was investigated in primary ASMC in the absence or in the presence of dexamethasone (10- 8M) by western blotting. The complex formation of GR with transcription factors was assessed by co-immunoprecipitation. RESULTS Expression of GR and its isoform GRα but not GRβ was significantly reduced in ASMC from COPD patients as compared to controls. There were no significant differences in the expression of GR, GRα and GRβ between responders and non-responders to ICS. However, treatment with dexamethasone upregulated the expression of total GR (p = 0.004) and GRα (p = 0.005) after 30 min in responders but not in non-responders. Τhe formation of the complex GR-c-Jun was increased 60 min after treatment with dexamethasone only in responders who exhibited significantly lower expression of HDAC3 (p = 0.005) and HDAC5 (p < 0.0001) as compared to non-responders. CONCLUSIONS These data suggest that ASMC from COPD patients who do not respond to treatment with ICS, are characterized by reduced GR-c-Jun complex formation and increased expression of HDAC3 and HDAC5. TRIAL REGISTRATION ISRCTN11017699 (Registration date: 15/11/2016).
Collapse
MESH Headings
- Humans
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Histone Deacetylases/metabolism
- Histone Deacetylases/biosynthesis
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Middle Aged
- Female
- Aged
- Cells, Cultured
- Adrenal Cortex Hormones/therapeutic use
- Glucocorticoids/pharmacology
- Dexamethasone/pharmacology
- Treatment Outcome
- Administration, Inhalation
- Bronchi/drug effects
- Bronchi/metabolism
- Bronchi/pathology
- Bronchi/enzymology
Collapse
Affiliation(s)
- Liang Zhou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michael Roth
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Eleni Papakonstantinou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Tamm
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Daiana Stolz
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Shen CL, Santos JM, Elmassry MM, Bhakta V, Driver Z, Ji G, Yakhnitsa V, Kiritoshi T, Lovett J, Hamood AN, Sang S, Neugebauer V. Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:502. [PMID: 38790607 PMCID: PMC11118883 DOI: 10.3390/antiox13050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut-brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Viren Bhakta
- Department of Biology, Texas Tech University, Lubbock, TX 79401, USA
| | - Zarek Driver
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79401, USA
| | - Guangchen Ji
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Vadim Yakhnitsa
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Takaki Kiritoshi
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Jacob Lovett
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, NC 28081, USA;
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| |
Collapse
|
8
|
Negasi ZH, Nommi N, Liu C, Tesfaigzi Y. Persistence of emphysema following cessation of cigarette smoke exposure requires a susceptibility factor. Am J Physiol Lung Cell Mol Physiol 2024; 326:L431-L439. [PMID: 38349118 PMCID: PMC11281787 DOI: 10.1152/ajplung.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by cigarette smoke (CS) exposure but can often be progressive even in former smokers. Exposure of mice to CS for 22 wk causes emphysema, but whether emphysema persists after cessation of CS exposure is not clear. The purpose of this study was to determine whether emphysema persists in mice following a recovery period of 22 wk and whether a susceptibility factor, such as deficiency in the Bcl-2-interacting killer (Bik), is required for this persistence. Therefore, bik+/+ and bik-/- mice at 6-10 wk of age were exposed to 250 mg/m3 total particulate matter of CS or filtered air (FA) for 3 or 22 wk and were kept in FA for an additional 22 wk. Lungs were lavaged to quantify inflammatory cells, and sections were stained with hematoxylin and eosin to assess severity of emphysema. Exposure to CS for 3 wk increased the number of inflammatory cells in bik-/- mice compared with bik+/+ mice but not at 22 wk of exposure. At 22 wk of CS exposure, extent of emphysema was similar in bik+/+ and bik-/- mice. However, when mice were exposed to CS over the first 22 wk and were kept in FA for an additional 22 wk, emphysema remained similar in bik+/+ mice but was enhanced in bik-/- mice. These findings link increased inflammation with persistent emphysematous changes even after smoking cessation and demonstrate that a preexisting susceptibility condition is required to sustain enhanced emphysema that was initiated by long-term CS exposure.NEW & NOTEWORTHY Exposure of mice to cigarette smoke (CS) for 22 wk causes emphysema, but whether emphysema persists after an additional period of 6 mo after cessation of CS exposure has not been reported. In addition, the role of preexisting susceptibility in enhancing the persistence of CS-induced emphysema after exposure to CS has stopped has not been shown. The present study shows that a preexisting susceptibility must be present to enhance CS-induced emphysema after cessation of CS exposure.
Collapse
Affiliation(s)
- Zerihun Hailemariam Negasi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Naomi Nommi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Congjian Liu
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Yohannes Tesfaigzi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States
| |
Collapse
|
9
|
Matera MG, Rinaldi B, Calabrese C, Belardo C, Calzetta L, Cazzola M, Page C. The effect of combining an inhaled corticosteroid and a long-acting muscarinic antagonist on human airway epithelial cells in vitro. Respir Res 2024; 25:104. [PMID: 38419021 PMCID: PMC10902985 DOI: 10.1186/s12931-024-02710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Airway epithelial cells (AECs) are a major component of local airway immune responses. Direct effects of type 2 cytokines on AECs are implicated in type 2 asthma, which is driven by epithelial-derived cytokines and leads to airway obstruction. However, evidence suggests that restoring epithelial health may attenuate asthmatic features. METHODS We investigated the effects of passive sensitisation on IL-5, NF-κB, HDAC-2, ACh, and ChAT in human bronchial epithelial cells (HBEpCs) and the effects of fluticasone furoate (FF) and umeclidinium (UME) alone and in combination on these responses. RESULTS IL-5 and NF-κB levels were increased, and that of HDAC-2 reduced in sensitised HEBpCs. Pretreatment with FF reversed the effects of passive sensitisation by concentration-dependent reduction of IL-5, resulting in decreased NF-κB levels and restored HDAC-2 activity. Addition of UME enhanced these effects. Sensitized HEBpCs also exhibited higher ACh and ChAT levels. Pretreatment with UME significantly reduced ACh levels, and addition of FF caused a further small reduction. CONCLUSION This study confirmed that passive sensitisation of AECs results in an inflammatory response with increased levels of IL-5 and NF-κB, reduced levels of HDAC-2, and higher levels of ACh and ChAT compared to normal cells. Combining FF and UME was found to be more effective in reducing IL-5, NF-κB, and ACh and restoring HDAC-2 compared to the individual components. This finding supports adding a LAMA to established ICS/LABA treatment in asthma and suggests the possibility of using an ICS/LAMA combination when needed.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College, London, UK
| |
Collapse
|
10
|
Iyer-Bierhoff A, Wieczorek M, Peter SM, Ward D, Bens M, Vettorazzi S, Guehrs KH, Tuckermann JP, Heinzel T. Acetylation-induced proteasomal degradation of the activated glucocorticoid receptor limits hormonal signaling. iScience 2024; 27:108943. [PMID: 38333702 PMCID: PMC10850750 DOI: 10.1016/j.isci.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.
Collapse
Affiliation(s)
- Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Wieczorek
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Sina Marielle Peter
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dima Ward
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Karl-Heinz Guehrs
- Core Facility Proteomics, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
11
|
Liu XM, Yang L, Yang QB. Advanced Progress of Histone Deacetylases in Rheumatic Diseases. J Inflamm Res 2024; 17:947-955. [PMID: 38370467 PMCID: PMC10870932 DOI: 10.2147/jir.s447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.
Collapse
Affiliation(s)
- Xue-Mei Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Liu Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| |
Collapse
|
12
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
14
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
15
|
Shi F, Cao J, Zhou D, Wang X, Yang H, Liu T, Chen Z, Zeng J, Du S, Yang L, Jia R, Zhang S, Zhang M, Guo Y, Lin X. Revealing the clinical effect and biological mechanism of acupuncture in COPD: A review. Biomed Pharmacother 2024; 170:115926. [PMID: 38035864 DOI: 10.1016/j.biopha.2023.115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.
Collapse
Affiliation(s)
- Fangyuan Shi
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo Jia
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Mingxing Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaowei Lin
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
16
|
Lea S, Higham A, Beech A, Singh D. How inhaled corticosteroids target inflammation in COPD. Eur Respir Rev 2023; 32:230084. [PMID: 37852657 PMCID: PMC10582931 DOI: 10.1183/16000617.0084-2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 10/20/2023] Open
Abstract
Inhaled corticosteroids (ICS) are the most commonly used anti-inflammatory drugs for the treatment of COPD. COPD has been previously described as a "corticosteroid-resistant" condition, but current clinical trial evidence shows that selected COPD patients, namely those with increased exacerbation risk plus higher blood eosinophil count (BEC), can benefit from ICS treatment. This review describes the components of inflammation modulated by ICS in COPD and the reasons for the variation in response to ICS between individuals. There are corticosteroid-insensitive inflammatory pathways in COPD, such as bacteria-induced macrophage interleukin-8 production and resultant neutrophil recruitment, but also corticosteroid-sensitive pathways including the reduction of type 2 markers and mast cell numbers. The review also describes the mechanisms whereby ICS can skew the lung microbiome, with reduced diversity and increased relative abundance, towards an excess of proteobacteria. BEC is a biomarker used to enable the selective use of ICS in COPD, but the clinical outcome in an individual is decided by a complex interacting network involving the microbiome and airway inflammation.
Collapse
Affiliation(s)
- Simon Lea
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Chen L, Fan X, Yang L, Han L, Wang N, Bian K. Research progress of glucocorticoid resistance in chronic rhinosinusitis with nasal polyps: A review. Medicine (Baltimore) 2023; 102:e36024. [PMID: 37986338 PMCID: PMC10659647 DOI: 10.1097/md.0000000000036024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the common chronic inflammatory diseases in otolaryngology. Glucocorticoid (GC) acts as the first-line drug for the treatment of CRSwNP in clinical practice, and they play an irreplaceable role in reducing nasal mucosal inflammation and restoring the normal physiological function of the nasal mucosa. However, many patients are still insensitive to GC treatment, known as GC resistance, which leads to poor control of the disease, and the underlying mechanisms are still not fully elucidated. This article provides a comprehensive overview of the research progress of GC resistance of patients with CRSwNP in recent years.
Collapse
Affiliation(s)
- Langlang Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
- Medicine College of Yan’an University, Yan’an, China
| | - Xin Fan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| | - Lina Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, Air Fourth Medical University, Xi’an, China
| | - Lu Han
- Medicine College of Yan’an University, Yan’an, China
| | - Ningbo Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| |
Collapse
|
18
|
Gao J, Zhang S, Li B, Wang Z, Liu W, Zhang L. Sub-Chronic Aluminum Exposure in Rats' Learning-Memory Capability and Hippocampal Histone H4 Acetylation Modification: Effects and Mechanisms. Biol Trace Elem Res 2023; 201:5309-5320. [PMID: 36823489 DOI: 10.1007/s12011-023-03602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
Aluminum has been found to be closely related to the pathogenesis of neurodegenerative diseases and damage learning and memory functions. Many changes in epigenetics may be one of the mechanisms of aluminum neurotoxicity. The purpose of this study is to further investigate the mechanism of action of sub-chronic aluminum exposure on learning memory and histone H4 acetylation modification in Wistar rats, and the correlation between learning memory impairment and histone H4 acetylation in aluminum-exposed rats. Rats in each dose group were given 0.0 g/L, 2.0 g/L, 4.0 g/L, and 8.0 g/L of AlCl3 distilled water daily for 12 weeks. The learning and memory ability of rats was measured by the Morris water maze test; the neuronal morphology of rat hippocampus was observed by Nissl staining and transmission electron microscope; real-time PCR, and Western blot were used to detect mRNA expression and protein content in hippocampus of rats. The results suggest that aluminum may affect the gene and protein expression of HAT1 and HDAC2, and then affect histone H4 and the acetylation of H4K12 (acH4K12), which may lead to learning and memory dysfunction in rats.
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Shiming Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Bing Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ziyi Wang
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
19
|
Yu L, McGarry S, Cruickshank D, Jensen GS. Rapid increase in immune surveillance and expression of NKT and γδT cell activation markers after consuming a nutraceutical supplement containing Aloe vera gel, extracts of Poria cocos and rosemary. A randomized placebo-controlled cross-over trial. PLoS One 2023; 18:e0291254. [PMID: 37699014 PMCID: PMC10497150 DOI: 10.1371/journal.pone.0291254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/19/2023] [Indexed: 09/14/2023] Open
Abstract
GOAL To evaluate the acute impact of a nutraceutical blend on immune surveillance. STUDY DESIGN A randomized, double-blind, placebo-controlled, cross-over trial was conducted in 11 healthy subjects. Blood samples were taken immediately before and at 1, 2, and 3 hours after consuming placebo or 500 mg of UP360, which is a blend of botanicals from Aloe vera, Poria cocos, and rosemary (APR extract). Immunophenotyping and flow cytometry quantified numbers of monocytes, NK cells, NKT cells, CD8+ cytotoxic T cells, γδT cells, and total T cells, and expression of CD25 and CD69 activation markers. Plasma was tested for cytokines, chemokines, growth factors, and enzymatic activity of superoxide dismutase and catalase. RESULTS Compared to the placebo, consumption of APR extract triggered rapid increases in chemokine levels starting at 1 hour, including IP-10 (P<0.05) and MCP-1 (P<0.1), which peaked at 2 hours (P<0.01) and 3 hours (P<0.05), respectively. The stem cell-mobilizing growth factor G-CSF increased at 2 hours (P<0.05). Increased immune surveillance involved a transient effect for monocytes at 1 hour, followed by NKT cells, CD8+ cytotoxic T cells, and γδT cells at 2-3 hours. Increased immune cell alertness was seen at 1 hour by increased CD25 expression on monocytes (P<0.01), NKT cells (P<0.01), and T cells (P<0.05). NKT cells showed upregulation of CD69 at 2 hours (P<0.01). Increased enzymatic activity was seen at 2 hours for the antioxidant enzymes superoxide dismutase (P<0.05) and catalase (P<0.01). CONCLUSION Consumption of APR extract triggered acute changes to chemokine levels. In addition, immune alertness was increased via the expression of activation markers on multiple types of innate immune cells, followed by increased immune surveillance and antioxidant protection. This suggests a beneficial enhancement of natural immune surveillance, likely via a combination of gut-mediated cytokine release and vagus nerve communication, in combination with cellular protection from oxidative stress.
Collapse
Affiliation(s)
- Liu Yu
- NIS Labs, Port Dover, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
21
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
22
|
Hua HS, Wen HC, Lee HS, Weng CM, Yuliani FS, Kuo HP, Chen BC, Lin CH. Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by disrupting HDAC2/Sin3A/MeCP2 corepressor complex. J Biomed Sci 2023; 30:40. [PMID: 37312162 DOI: 10.1186/s12929-023-00931-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Reduction of histone deacetylase (HDAC) 2 expression and activity may contribute to amplified inflammation in patients with severe asthma. Connective tissue growth factor (CTGF) is a key mediator of airway fibrosis in severe asthma. However, the role of the HDAC2/Sin3A/methyl-CpG-binding protein (MeCP) 2 corepressor complex in the regulation of CTGF expression in lung fibroblasts remains unclear. METHODS The role of the HDAC2/Sin3A/MeCP2 corepressor complex in endothelin (ET)-1-stimulated CTGF production in human lung fibroblasts (WI-38) was investigated. We also evaluated the expression of HDAC2, Sin3A and MeCP2 in the lung of ovalbumin-induced airway fibrosis model. RESULTS HDAC2 suppressed ET-1-induced CTGF expression in WI-38 cells. ET-1 treatment reduced HDAC2 activity and increased H3 acetylation in a time-dependent manner. Furthermore, overexpression of HDAC2 inhibited ET-1-induced H3 acetylation. Inhibition of c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 attenuated ET-1-induced H3 acetylation by suppressing HDAC2 phosphorylation and reducing HDAC2 activity. Overexpression of both Sin3A and MeCP2 attenuated ET-1-induced CTGF expression and H3 acetylation. ET-1 induced the disruption of the HDAC2/Sin3A/MeCP2 corepressor complex and then prompted the dissociation of HDAC2, Sin3A, and MeCP2 from the CTGF promoter region. Overexpression of HDAC2, Sin3A, or MeCP2 attenuated ET-1-stimulated AP-1-luciferase activity. Moreover, Sin3A- or MeCP2-suppressed ET-1-induced H3 acetylation and AP-1-luciferase activity were reversed by transfection of HDAC2 siRNA. In an ovalbumin-induced airway fibrosis model, the protein levels of HDAC2 and Sin3A were lower than in the control group; however, no significant difference in MeCP2 expression was observed. The ratio of phospho-HDAC2/HDAC2 and H3 acetylation in the lung tissue were higher in this model than in the control group. Overall, without stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex inhibits CTGF expression by regulating H3 deacetylation in the CTGF promoter region in human lung fibroblasts. With ET-1 stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex is disrupted and dissociated from the CTGF promoter region; this is followed by AP-1 activation and the eventual initiation of CTGF production. CONCLUSIONS The HDAC2/Sin3A/MeCP2 corepressor complex is an endogenous inhibitor of CTGF in lung fibroblasts. Additionally, HDAC2 and Sin3A may be of greater importance than MeCP2 in the pathogenesis of airway fibrosis.
Collapse
Affiliation(s)
- Hung-Sheng Hua
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Heng-Ching Wen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fara Silvia Yuliani
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Han-Pin Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
24
|
Lee ZY, Tran T. Genomic and non-genomic effects of glucocorticoids in respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:1-30. [PMID: 37524484 DOI: 10.1016/bs.apha.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cortisol is an endogenous steroid hormone essential for the natural resolution of inflammation. Synthetic glucocorticoids (GCs) were developed and are currently amongst the most widely prescribed anti-inflammatory drugs in our modern clinical landscape owing to their potent anti-inflammatory activity. However, the extent of GC's effects has yet to be fully elucidated. Indeed, GCs modulate a broad spectrum of cellular activity, from their classical regulation of gene expression to acute non-genomic mechanisms of action. Furthermore, tissue specific effects, disease specific conditions, and dose-dependent responses complicate their use, with side-effects potentially plaguing their use. It is thus vital to outline and consolidate the effects of GCs, to demystify and maximize their therapeutic potential while avoiding pitfalls that would otherwise render them obsolete.
Collapse
Affiliation(s)
- Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Nadeem A, Alshehri S, Al-Harbi NO, Ahmad SF, Albekairi NA, Alqarni SA, Ibrahim KE, Alfardan AS, Alshamrani AA, Bin Salman SB, Attia SM. Bruton's tyrosine kinase inhibition suppresses neutrophilic inflammation and restores histone deacetylase 2 expression in myeloid and structural cells in a mixed granulocytic mouse model of asthma. Int Immunopharmacol 2023; 117:109920. [PMID: 36827920 DOI: 10.1016/j.intimp.2023.109920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Asthmatic inflammation is not a single homogenous inflammation but may be categorized into several phenotypes/endotypes. Severe asthma is characterized by mixed granulocytic inflammation in which there is increased presence of neutrophilic numbers and unresponsiveness to corticosteroids. Neutrophilic oxidative stress and histone deacetylase 2 (HDAC2) dysregulation in the pulmonary compartment are thought to lead to corticosteroid insensitivity in severe asthma with mixed granulocytic inflammation. Bruton's tyrosine kinase (BTK) is a no-receptor tyrosine kinase which is expressed in innate immune cells such as neutrophils and dendritic cells (DCs) where it is incriminated in balancing of inflammatory signaling. We hypothesized in this study that BTK inhibition strategy could be utilized to restore corticosteroid responsiveness in mixed granulocytic asthma. Therefore, combined therapy of BTK inhibitor (ibrutinib) and corticosteroid, dexamethasone was administered in cockroach allergen extract (CE)-induced mixed granulocyte airway inflammation model in mice. Our data show that CE-induced neutrophilic inflammation was concomitant with HDAC2 expression and upregulation of p-NFkB expression in airway epithelial cells (AECs), myeloid cells and pulmonary tissue. Further, there were increased expression/release of inflammatory and oxidative mediators such as MUC5AC, TNF-α, GM-CSF, MCP-1, iNOS, nitrotyrosine, MPO, lipid peroxides in AECs/myeloid cells/pulmonary tissue. Dexamethasone alone significantly attenuated eosinophilic inflammation and inflammatory cytokines but was not able to control oxidative inflammation. Ibrutinib alone markedly reduced neutrophilic infiltration and oxidative inflammation, and restored HDAC2 without having any significant effect on eosinophilic inflammation. These data suggest that BTK inhibition strategy may be used in conjunction with dexamethasone to treat both neutrophilic and eosinophilic inflammation, i.e. mixed granulocytic asthma.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Samiyah Alshehri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaild E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami B Bin Salman
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Tiao-Bu-Fei-Shen Formula Improves Glucocorticoid Resistance of Chronic Obstructive Pulmonary Disease via Downregulating the PI3K-Akt Signaling Pathway and Promoting GR α Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4359616. [PMID: 36820399 PMCID: PMC9938767 DOI: 10.1155/2023/4359616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 02/12/2023]
Abstract
Objective To predict and determine the mechanism through which Tiao-Bu-Fei-Shen (TBFS) formula improves glucocorticoid resistance in chronic obstructive pulmonary disease (COPD), using network pharmacology, molecular docking technology, and in vitro studies. Methods The main active components and associated targets of TBFS were screened using the systems pharmacology database of traditional Chinese medicine database (TCMSP). The main COPD targets were retrieved from the Human Gene (GeneCards) and DrugBank databases. A protein-protein interaction (PPI) network was constructed using the protein interaction platform STRING and Cytoscape 3.6.1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) analyses were performed using the biological information annotation database Metascape. Molecular docking was performed using the AutoDock Vina software. THP-1 monocytes were treated with TBFS-containing serum and cigarette smoke extract (CSE) for 48 h, and cell proliferation in each group was determined using cell counting kit-8 (CCK-8). A COPD cell model was constructed by stimulating THP-1 monocytes with CSE for 12 h. A lentivirus vector for RNA interference of histone deacetylase 2 (HDAC2) gene was constructed and transfected into the THP-1 monocytes, and the transfection efficiency was verified using quantitative polymerase chain reaction (qPCR) and western blotting (WB). The expression of HDAC2 in each group of cells was detected using qPCR, and the expression of HDAC2, phosphoinositide-3 kinase (PI3K) p85α, glucocorticoid receptor α (GRα), and P-AKT1 in each group of cells was detected through WB. Results A total of 344 TBFS active components, 249 related drug targets, 1,171 COPD target proteins, and 138 drug and disease intersection targets were obtained. Visual analysis of the PPI network map revealed that the core COPD targets of TBFS were AKT1, IL-6, TNF, TP53, and IL1-β. KEGG pathway enrichment analysis resulted in the identification of 20 signaling pathways as the main pathways involved in the action of TBFS against COPD, including the PI3K-Akt, TNF, and IL-17 signaling pathways. Molecular docking experiments revealed a strong binding capacity of kaempferol, luteolin, and quercetin to the ATK1 protein in TBFS, with quercetin performing the best. PCR results showed that treatment with TBFS significantly increased the expression levels of HDAC2 in the COPD model. WB results showed that TBFS treatment significantly increased the expression levels of GRα and HDAC2 in the COPD model, while reducing the expression levels of P-AKT1. Conclusion TBFS treatment improves glucocorticoid resistance observed in COPD through downregulation of the PI3K-Akt signaling pathway and promotion of GRα expression.
Collapse
|
27
|
An TJ, Kim JH, Hur J, Park CK, Lim JU, Kim S, Rhee CK, Yoon HK. Tiotropium Bromide Improves Neutrophilic Asthma by Recovering Histone Deacetylase 2 Activity. J Korean Med Sci 2023; 38:e91. [PMID: 36974400 PMCID: PMC10042725 DOI: 10.3346/jkms.2023.38.e91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The value of tiotropium bromide (TIO) in neutrophilic asthma was meaningful in previous study. We hypothesized that TIO's mechanism of action is associated with histone deacetylase 2 (HDAC2) activity, which is key for controlling the transcription of inflammatory cytokines and usually downregulated in neutrophilic asthma. METHODS The effects of TIO and dexamethasone (DEX) on HDAC2 activity, nuclear factor kappa B (NF-κB), and C-X-C motif chemokine ligand 1 (CXCL1) were evaluated in neutrophilic asthma mouse model (C57BL, 6-week-old). An in-vitro study was conducted using primary human bronchial/tracheal epithelial (HBE) cells from asthma patients. Western blot analyses were performed for phospho-phospholipase Cγ-1 (PLCγ-1) and inositol trisphosphate (IP3) receptors (IP3R) with treating lipopolysaccharide (LPS) and TIO. RESULTS Ovalbumin was used to induce eosinophilic inflammation in this study. After neutrophilic asthma was induced by LPS (O+L group), HDAC2 activity was diminished with increased NF-κB activity and CXCL1 compared to the control group. TIO significantly improved NF-κB activity, CXCL1, and HDAC2 activity compared with the O+L group in in-vivo study (P < 0.05, each). Western blot analyses showed that LPS treated HBE cells from asthma patients increased PLCγ-1 and diminished IP3 receptor levels. After TIO treatment, recovery of IP3R and improved PLCγ-1 levels were observed. CONCLUSION These results support the hypothesis that TIO modulates inflammation by recovering HDAC2 activity from the acetylcholine-stimulated inflammation cascade in neutrophilic asthma. The detailed inflammation cascade of recovering HDAC2 activity by TIO might be associated with PLCγ-1-IP3-IP3R mediated intracellular calcium ion pathway.
Collapse
Affiliation(s)
- Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hye Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seohyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
28
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
29
|
Abstract
Endogenous Cushing's syndrome (CS) is associated with morbidities (diabetes, hypertension, clotting disorders) and shortens life because of infections, pulmonary thromboembolism, and cardiovascular disease. Its clinical presentation is immensely variable, and diagnosis and treatment are often delayed. Thus, there are many opportunities for basic and clinical research leading to better tests, faster diagnosis, and optimized medical treatments. This review focuses on CS caused by excessive adrenocorticotropin (ACTH) production. It describes current concepts of the regulation of ACTH synthesis and secretion by normal corticotropes and mechanisms by which dysregulation occurs in corticotrope (termed "Cushing's disease") and noncorticotrope (so-called ectopic) ACTH-producing tumors. ACTH causes adrenal gland synthesis and pulsatile release of cortisol; the excess ACTH in these forms of CS leads to the hypercortisolism of endogenous CS. Again, the differences between healthy individuals and those with CS are highlighted. The clinical presentations and their use in the interpretation of CS screening tests are described. The tests used for screening and differential diagnosis of CS are presented, along with their relationship to cortisol dynamics, pathophysiology, and negative glucocorticoid feedback regulation in the two forms of ACTH-dependent CS. Finally, several gaps in current understanding are highlighted in the hope of stimulating additional research into this challenging disorder.
Collapse
Affiliation(s)
- Lynnette K Nieman
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Moreira JD, Iakhiaev A, Vankayalapati R, Jung BG, Samten B. Histone Deacetylase-2 Controls IL-1β Production through the Regulation of NLRP3 Expression and Activation in Tuberculosis Infection. iScience 2022; 25:104799. [PMID: 35982796 PMCID: PMC9379586 DOI: 10.1016/j.isci.2022.104799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are critical immune regulators. However, their roles in interleukin-1β (IL-1β) production remain unclear. By screening 11 zinc-dependent HDACs with chemical inhibitors, we found that HDAC1 inhibitor, 4-(dimethylamino)-N-[6-(hydroxyamino)-6-oxohexyl]-benzamide (DHOB), enhanced IL-1β production by macrophage and dendritic cells upon TLR4 stimulation or Mycobacterium tuberculosis infection through IL-1β maturation via elevated NLRP3 expression, increased cleaved caspase-1, and enhanced ASC oligomerization. DHOB rescued defective IL-1β production by dendritic cells infected with M. tuberculosis with ESAT-6 deletion, a virulence factor shown to activate NLRP3 inflammasome. DHOB increased IL-1β production and NLRP3 expression in a tuberculosis mouse model. Although DHOB inhibited HDAC activities of both HDAC1 and HDAC2 by direct binding, knockdown of HDAC2, but not HDAC1, increased IL-1β production and NLRP3 expression in M. tuberculosis-infected macrophages. These data suggest that HDAC2, but not HDAC1, controls IL-1β production through NLRP3 inflammasome activation, a mechanism with a significance in chronic inflammatory diseases including tuberculosis. HDAC1 inhibitor, DHOB, increased IL-1β production via NLRP3 inflammasome activation DHOB suppressed deacetylase activities of both HDAC1 and HDAC2 by direct interaction Deletion of HDAC2, but not HDAC1, increased IL-β production by increased NLRP3 expression DHOB increased IL-1β and NLRP3 expression in a mouse model of TB infection
Collapse
Affiliation(s)
- Jôsimar Dornelas Moreira
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alexei Iakhiaev
- Division of Natural & Computational Sciences, Texas College, 2404 North Grand Avenue, Tyler, TX 75702, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Corresponding author
| |
Collapse
|
31
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
32
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
33
|
Barnes PJ. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2022; 11:antiox11050965. [PMID: 35624831 PMCID: PMC9138026 DOI: 10.3390/antiox11050965] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
There is a marked increase in oxidative stress in the lungs of patients with COPD, as measured by increased exhaled 8-isoprostane, ethane, and hydrogen peroxide in the breath. The lung may be exposed to exogenous oxidative stress from cigarette smoking and indoor or outdoor air pollution and to endogenous oxidative stress from reactive oxygen species released from activated inflammatory cells, particularly neutrophils and macrophages, in the lungs. Oxidative stress in COPD may be amplified by a reduction in endogenous antioxidants and poor intake of dietary antioxidants. Oxidative stress is a major driving mechanism of COPD through the induction of chronic inflammation, induction of cellular senescence and impaired autophagy, reduced DNA repair, increased autoimmunity, increased mucus secretion, and impaired anti-inflammatory response to corticosteroids. Oxidative stress, therefore, drives the pathology of COPD and may increase disease progression, amplify exacerbations, and increase comorbidities through systemic oxidative stress. This suggests that antioxidants may be effective as disease-modifying treatments. Unfortunately, thiol-based antioxidants, such as N-acetylcysteine, have been poorly effective, as they are inactivated by oxidative stress in the lungs, so there is a search for more effective and safer antioxidants. New antioxidants in development include mitochondria-targeted antioxidants, NOX inhibitors, and activators of the transcription factor Nrf2, which regulates several antioxidant genes.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London SW5 9LH, UK
| |
Collapse
|
34
|
Beeraka NM, Zhou R, Wang X, Vikram P R H, Kumar TP, Liu J, Greeshma MV, Mandal SP, Gurupadayya BM, Fan R. Immune Repertoire and Advancements in Nanotherapeutics for the Impediment of Severe Steroid Resistant Asthma (SSR). Int J Nanomedicine 2022; 17:2121-2138. [PMID: 35592101 PMCID: PMC9112344 DOI: 10.2147/ijn.s364693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Severe steroid-resistant asthma (SSR) patients do not respond to the corticosteroid therapies due to the heterogeneity, and genome-wide variations. However, there are very limited reports pertinent to the molecular signaling underlying SSR and making pharmacologists, and formulation scientists to identify the effective therapeutic targets in order to produce novel therapies using novel drug delivery systems (NDDS). We have substantially searched literature for the peer-reviewed and published reports delineating the role of glucocorticoid-altered gene expression, and the mechanisms responsible for SSR asthma, and NDDS for treating SSR asthma using public databases PubMed, National Library of Medicine (NLM), google scholar, and medline. Subsequently, we described reports underlying the SSR pathophysiology through several immunological and inflammatory phenotypes. Furthermore, various therapeutic strategies and the role of signaling pathways such as mORC1-STAT3-FGFBP1, NLRP3 inflammasomes, miR-21/PI3K/HDAC2 axis, PI3K were delineated and these can be considered as the therapeutic targets for mitigating the pathophysiology of SSR asthma. Finally, the possibility of nanomedicine-based formulation and their applications in order to enhance the long term retention of several antioxidant and anti-asthmatic drug molecules as a significant therapeutic modality against SSR asthma was described vividly.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Human Anatomy, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Runze Zhou
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hemanth Vikram P R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, Karnataka, 570015, India
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - B M Gurupadayya
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Ruitai Fan, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
35
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Kadushkin AG, Tahanovich AD, Movchan LV, Dziadzichkina VV, Levandovskaya OV, Shman TV. Nortriptyline overcomes corticosteroid resistance in NK and NKT-like cells from peripheral blood of patients with chronic obstructive pulmonary disease. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: An antidepressant nortriptyline potentiates glucocorticoid (GC) action with synergistic suppression of inflammatory mediator release, but the precise molecular mechanism is unknown.
Materials and methods: Peripheral blood cells from patients with chronic obstructive pulmonary disease (COPD) (n = 21) were incubated with nortriptyline (1 µM or 10 µM), budesonide (10 nM), or their combinations, followed by stimulation with phorbol myristate acetate (PMA) and ionomycin. Cytokine production, glucocorticoid receptor β (GRβ), histone deacetylase 2 (HDAC2) and histone H4 acetylation of K8 (HAT) expression, p65 NF-kB and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in NK (CD3-CD56+) and NKT-like (CD3+CD56+) cells were analyzed by flow cytometry.
Results: We observed that nortriptyline (10 µM) significantly attenuated the effects of PMA/ionomycin on the synthesis of interferon γ (IFNγ), interleukin 4 (IL-4), and IL-8, expression of GRβ and HAT, as well as p65 NF-kB and p38 MAPK phosphorylation in NK and NKT-like cells, whereas nortriptyline (1 µM) only inhibited IL-4 production by NK and NKT-like cells.
Discussion: The combination of nortriptyline (10 µM) and budesonide decreased IFNγ, tumor necrosis factor α, IL-4, IL-8, and GRβ expression, as well as phosphorylated p38 MAPK and p65 NF-κB levels by NK and NKT-like cells above that of budesonide alone. Furthermore, the same association of drugs enhanced HDAC2 expression in NK and NKT-like cells.
Conclusion: Collectively, our results show that nortriptyline might enhance GC function through modulation of HAT, HDAC2, GRβ, phospho-p38 MAPK expression. These data provide a strong rationale for combining nortriptyline with budesonide to treat COPD.
Collapse
|
37
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
38
|
Machetanz K, Grimm F, Schäfer R, Trakolis L, Hurth H, Haas P, Gharabaghi A, Tatagiba M, Naros G. Design and Evaluation of a Custom-Made Electromyographic Biofeedback System for Facial Rehabilitation. Front Neurosci 2022; 16:666173. [PMID: 35310106 PMCID: PMC8931662 DOI: 10.3389/fnins.2022.666173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background In the rehabilitation of postoperative facial palsy, physical therapy is of paramount importance. However, in the early rehabilitation phase, voluntary movements are often limited, and thus, the motivation of patients is impacted. In these situations, biofeedback of facial electromyographic (EMG) signals enables the visual representation of the rehabilitation progress, even without apparent facial movements. In the present study, we designed and evaluated a custom-made EMG biofeedback system enabling cost-effective facial rehabilitation. Methods This prospective study describes a custom-made EMG system, consisting of a microcontroller board and muscle sensors, which was used to record the EMG of frontal and zygomatic facial muscles during frowning and smiling. First, the mean EMG amplitudes and movement onset detection rates (ACC) achieved with the custom-made EMG system were compared with a commercial EMG device in 12 healthy subjects. Subsequently, the custom-made device was applied to 12 patients with and without postoperative facial paresis after neurosurgical intervention. Here, the ratio [laterality index (LI)] between the mean EMG amplitude of the healthy and affected side was calculated and related to the facial function as measured by the House and Brackmann scale (H&B) ranging from 1 (normal) to 6 (total paralysis). Results In healthy subjects, a good correlation was measured between the mean EMG amplitudes of the custom-made and commercial EMG device for both frontal (r = 0.84, p = 0.001) and zygomatic muscles (r = 0.8, p = 0.002). In patients, the LI of the frontal and zygomatic muscles correlated significantly with the H&B (r = −0.83, p = 0.001 and r = −0.65, p = 0.023). The ACC of the custom-made EMG system varied between 65 and 79% depending on the recorded muscle and cohort. Conclusion The present study demonstrates a good application potential of our custom-made EMG biofeedback device to detect facial EMG activity in healthy subjects as well as patients with facial palsies. There is a correlation between the electrophysiological measurements and the clinical outcome. Such a device might enable cost-efficient home-based facial EMG biofeedback. However, movement detection accuracy should be improved in future studies to reach ranges of commercial devices.
Collapse
Affiliation(s)
- Kathrin Machetanz
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
- *Correspondence: Kathrin Machetanz,
| | - Florian Grimm
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ruth Schäfer
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Clinic, Tübingen, Germany
| | - Leonidas Trakolis
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Helene Hurth
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Patrick Haas
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Georgios Naros
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Georgios Naros,
| |
Collapse
|
39
|
The Use of Inhaled Corticosteroids for Patients with COPD Who Continue to Smoke Cigarettes: An Evaluation of Current Practice. Am J Med 2022; 135:302-312. [PMID: 34655541 DOI: 10.1016/j.amjmed.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
The use of inhaled corticosteroids (ICS) in combination with inhaled bronchodilators for patients with chronic obstructive pulmonary disease (COPD) is a common practice in primary care settings. However, ICS-containing therapies may be less effective in patients with COPD compared with asthma, and in individuals with COPD who continue to smoke cigarettes. Preclinical studies suggest that inflammation in COPD is very different from in asthma. Glucocorticoid receptor functioning and other innate anti-inflammatory mechanisms are altered in cells exposed to cigarette smoke. COPD may be relatively insensitive to ICS, especially in individuals who continue to smoke. ICS-containing therapies in patients with asthma who continue to smoke may also be less effective compared with patients who do not smoke. ICS-containing therapies may be inappropriately used in some patients with COPD, and their long-term use is associated with an increased risk for side effects, including pneumonia and bone fractures in some patients. Treatment for patients with COPD should be carefully evaluated, and anti-inflammatory/bronchodilatory strategies should be chosen based on individual patient characteristics and recommendations in current guidelines.
Collapse
|
40
|
Chen X, Wang D, Guo X, Li X, Ye W, Qi Y, Gu W. Curcumin-Loaded mPEG-PLGA Nanoparticles Attenuates the Apoptosis and Corticosteroid Resistance Induced by Cigarette Smoke Extract. Front Pharmacol 2022; 13:824652. [PMID: 35281918 PMCID: PMC8914114 DOI: 10.3389/fphar.2022.824652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 01/14/2023] Open
Abstract
The present study was aim to prepare curcumin-loaded methoxypolyethylene-glycols-poly (lactic-co-glycolic acid) nanoparticles (Cur-mPEG-PLGA-NPs) and investigate curcumin’s effect on reversing corticosteroid resistance induced by cigarette smoke extract (CSE) in rat tracheal epithelial (RTE) cells. The Cur-mPEG-PLGA-NPs were spherical, regular in shape with smooth surfaces, and well distributed and Cur-mPEG-PLGA-NP suspensions had good water solubility and presented prolonged release. Furthermore, we found that Cur-mPEG-PLGA-NPs were internalized more than curcumin into the cells and significantly alleviated apoptosis in RTE cells. In addition, 10% CSE reduced the maximal inhibition percentage and increased the half-inhibitory concentration of budesonide (BUD) on IL-8 secretion, and curcumin restored the efficacy of BUD inhibition. BUD in combination with Cur-mPEG-PLGA-NPs showed higher inhibitory rates for LPS- and CSE-induced IL-8 secretion than that in combination with curcumin. Moverover, the relative expression levels of HDAC2 was reduced after CSE exposure and curcumin could improve HDAC2 expression and reverse CSE-induced corticosteroid resistance. Curcumin in high concentration and Cur-mPEG-PLGA-NPs restored HDAC2 levels in RTE cells and thus Cur-mPEG-PCL-NPs have higher biological activity than curcumin.
Collapse
Affiliation(s)
- Xi Chen
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Di Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuejun Guo
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoming Li
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjing Ye
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Qi
- Department of Pharmacy, No. 900 Hospital of the Chinese PLA Joint Support Forces, Fuzhou, China
- *Correspondence: Yang Qi, ; Wen Gu,
| | - Wen Gu
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Yang Qi, ; Wen Gu,
| |
Collapse
|
41
|
Packaging and Delivery of Asthma Therapeutics. Pharmaceutics 2021; 14:pharmaceutics14010092. [PMID: 35056988 PMCID: PMC8777963 DOI: 10.3390/pharmaceutics14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.
Collapse
|
42
|
Kerkvliet CP, Truong TH, Ostrander JH, Lange CA. Stress sensing within the breast tumor microenvironment: how glucocorticoid receptors live in the moment. Essays Biochem 2021; 65:971-983. [PMID: 34132331 PMCID: PMC8627466 DOI: 10.1042/ebc20200165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.
Collapse
Affiliation(s)
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
43
|
Kadushkin AG, Tahanovich AD, Movchan LV, Kolesnikova TS, Khadasouskaya EV, Shman TV. The Effect of Glucocorticoids in Combination with Azithromycin or Theophylline on Cytokine Production by NK and NKT-Like Blood Cells of Patients with Chronic Obstructive Pulmonary Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2021. [DOI: 10.1134/s1990750821040053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:md19110586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
45
|
Kokkinopoulou I, Diakoumi A, Moutsatsou P. Glucocorticoid Receptor Signaling in Diabetes. Int J Mol Sci 2021; 22:ijms222011173. [PMID: 34681832 PMCID: PMC8537243 DOI: 10.3390/ijms222011173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.
Collapse
|
46
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
47
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
48
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
49
|
Kadushkin AG, Tahanovich AD, Movchan LV, Kolesnikova TS, Khadasouskaya AV, Shman TV. [The effect of glucocorticoids in combination with azithromycin or theophylline on cytokine production by NK and NKT-like blood cells of patients with chronic obstructive pulmonary disease]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:352-359. [PMID: 34414894 DOI: 10.18097/pbmc20216704352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by reduced sensitivity of cells to the anti-inflammatory effects of glucocorticoids (GCs). Azithromycin and a low dose theophylline have a significant impact on molecular mechanisms leading to corticosteroid resistance. The aim of this study was to evaluate the ability of azithromycin and theophylline to enhance the anti-inflammatory effects of GCs on the production of cytokines by NK and NKT-like blood cells of COPD patients. Whole blood cells from COPD patients (n=21) were incubated in the presence of budesonide (10 nM), azithromycin (10 μg/mL), theophylline (1 μM), or their combinations and stimulated with phorbol myristate acetate (50 ng/mL). Intracellular production of proinflammatory cytokines in NK (CD3-CD56+) and NKT-like (CD3+CD56+) blood cells was analyzed by flow cytometry. Budesonide reduced synthesis of interleukin 4 (IL-4), CXCL8, tumor necrosis factor α (TNFα) by NK and NKT-like cells, as well as production of interferon γ (IFNγ) by NK cells. Azithromycin suppressed production of IL-4 and CXCL8 by NK and NKT-like cells, and theophylline inhibited IL-4 synthesis by these lymphocytes. The combination of azithromycin and budesonide had a more pronounced inhibitory effect on the production of IL-4 and CXCL8 by NK and NKT-like cells than the effect of these drugs alone. The combination of theophylline and budesonide suppressed synthesis of IL-4 and CXCL8 by NK and NKT-like cells, as well as the production of TNFα and IFNγ by NK cells stronger than budesonide alone. The obtained results demonstrate the benefits for the combined use of GCs with theophylline at a low dose or azithromycin to suppress the inflammatory process in patients with COPD.
Collapse
Affiliation(s)
| | | | - L V Movchan
- Republican Scientific and Practical Center of Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | | | - T V Shman
- Republican Scientific and Practical Center of Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
50
|
Affiliation(s)
- Kazuhiro Ito
- Imperial College, National Heart & Lung Institute,, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|