1
|
Shapiro JR, Corrado M, Perry J, Watts TH, Bolotin S. The contributions of T cell-mediated immunity to protection from vaccine-preventable diseases: A primer. Hum Vaccin Immunother 2024; 20:2395679. [PMID: 39205626 PMCID: PMC11364080 DOI: 10.1080/21645515.2024.2395679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mario Corrado
- Division of General Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Julie Perry
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tania H. Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shelly Bolotin
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Protection, Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
2
|
Ding D, Gao R, Lei Y, Liu J, Zhou C, Wen Y, Zhou S, Guo J, Li T. Synergistic immune augmentation enabled by covalently conjugating TLR4 and NOD2 agonists. Eur J Med Chem 2024; 278:116792. [PMID: 39217861 DOI: 10.1016/j.ejmech.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Enhancing the efficacy of subunit vaccines relies significantly on the utilization of potent adjuvants, particularly those capable of triggering multiple immune pathways. To achieve synergistic immune augmentation by Toll-like receptor 4 agonist (TLR4a) and nucleotide-binding oligomerization-domain-containing protein 2 agonist (NOD2a), in this work, we conjugated RC529 (TLR4a) and MDP (NOD2a) to give RC529-MDP, and evaluated its adjuvanticity for OVA antigen. Compared to the unconjugated RC529+MDP, RC529-MDP remarkably enhanced innate immune responses with 6.8-fold increase in IL-6 cytokine, and promoted the maturation of antigen-presenting cells (APCs), possibly because of the conjugation of multiple agonists ensuring their delivery to the same cell and activation of various signaling pathways within that cell. Furthermore, RC529-MDP improved OVA-specific antibody response, T cells response and the memory T cells ratio relative to the unconjugated mixture. Therefore, covalently conjugating TLR4 agonist and NOD2 agonist was an effective strategy to enhance immune responses, providing the potential to design and develop more effective vaccines.
Collapse
Affiliation(s)
- Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Runing Gao
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yujuan Lei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jianing Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengkai Zhou
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shihao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
3
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Muccilli SG, Schwarz B, Jessop F, Shannon JG, Bohrnsen E, Shue B, Hong SH, Hsu T, Ashbrook AW, Guarnieri JW, Lack J, Wallace DC, Bosio CM, MacDonald MR, Rice CM, Yewdell JW, Best SM. Mitochondrial Hyperactivity and Reactive Oxygen Species Drive Innate Immunity to the Yellow Fever Virus-17D Live-Attenuated Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611167. [PMID: 39282299 PMCID: PMC11398391 DOI: 10.1101/2024.09.04.611167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The yellow fever virus 17D (YFV-17D) live attenuated vaccine is considered one of the successful vaccines ever generated associated with high antiviral immunity, yet the signaling mechanisms that drive the response in infected cells are not understood. Here, we provide a molecular understanding of how metabolic stress and innate immune responses are linked to drive type I IFN expression in response to YFV-17D infection. Comparison of YFV-17D replication with its parental virus, YFV-Asibi, and a related dengue virus revealed that IFN expression requires RIG-I-like Receptor signaling through MAVS, as expected. However, YFV-17D uniquely induces mitochondrial respiration and major metabolic perturbations, including hyperactivation of electron transport to fuel ATP synthase. Mitochondrial hyperactivity generates reactive oxygen species (mROS) and peroxynitrite, blocking of which abrogated IFN expression in non-immune cells without reducing YFV-17D replication. Scavenging ROS in YFV-17D-infected human dendritic cells increased cell viability yet globally prevented expression of IFN signaling pathways. Thus, adaptation of YFV-17D for high growth uniquely imparts mitochondrial hyperactivity generating mROS and peroxynitrite as the critical messengers that convert a blunted IFN response into maximal activation of innate immunity essential for vaccine effectiveness.
Collapse
Affiliation(s)
- Samantha G. Muccilli
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD
| | | | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, NIAID, NIH, Hamilton, MT
| | - Jeffrey G. Shannon
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Eric Bohrnsen
- Research Technologies Branch, NIAID, NIH, Hamilton, MT
| | - Byron Shue
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Thomas Hsu
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, NIAID, NIH, Hamilton, MT
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| |
Collapse
|
5
|
Goetz M, Thotathil N, Zhao Z, Mitragotri S. Vaccine adjuvants for infectious disease in the clinic. Bioeng Transl Med 2024; 9:e10663. [PMID: 39036089 PMCID: PMC11256182 DOI: 10.1002/btm2.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Adjuvants, materials added to vaccines to enhance the resulting immune response, are important components of vaccination that are many times overlooked. While vaccines always include an antigen to tell the body what to vaccinate to, of equal importance the adjuvant provides the how, a significant factor in producing a complete response. The adjuvant space has been slow to develop with the first use of an adjuvant in a licensed vaccine occurring in the 1930s, and remaining the only adjuvant in licensed vaccines for the next 80 years. However, with vaccination at the forefront of protection against new and complex pathogens, it is important to consider all components when designing an effective vaccine. Here we summarize the adjuvant space in licensed vaccines as well as the novel adjuvant space in clinical trials with a specific focus on the materials utilized and their resulting impact on the immune response. We discuss five major categories of adjuvant materials: aluminum salts, nanoparticles, viral vectors, TLR agonists, and emulsions. For each category, we delve into the current clinical trials space, the impact of these materials on vaccination, as well as some of the ways in which they could be improved. Adjuvants present an exciting opportunity to improve vaccine responses and stability, this review will help inform about the current progress of this space. Translational impact statement In the aftermath of the COVID-19 pandemic, vaccines for infectious diseases have come into the spotlight. While antigens have always been an important focus of vaccine design, the adjuvant is a significant tool for enhancing the immune response to the vaccine that has been largely underdeveloped. This article provides a broad review of the history of adjuvants and, the current vaccine adjuvant space, and the progress seen in adjuvants in clinical trials. There is specific emphasis on the material landscape for adjuvants and their resulting mechanism of action. Looking ahead, while the novel vaccine adjuvant space features exciting new technologies and materials, there is still a need for more to meet the protective needs of new and complex pathogens.
Collapse
Affiliation(s)
- Morgan Goetz
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Naaz Thotathil
- University of Massachusetts AmherstAmherstMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
6
|
Gilmour BC, Corthay A, Øynebråten I. High production of IL-12 by human dendritic cells stimulated with combinations of pattern-recognition receptor agonists. NPJ Vaccines 2024; 9:83. [PMID: 38702320 PMCID: PMC11068792 DOI: 10.1038/s41541-024-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
The cytokine IL-12p70 is crucial for T helper 1 (Th1) polarization and the generation of type 1 immunity required to fight cancer and pathogens. Therefore, strategies to optimize the production of IL-12p70 by human dendritic cells (DCs) may significantly improve the efficacy of vaccines and immunotherapies. However, the rules governing the production of IL-12p70 remain obscure. Here, we stimulated pattern recognition receptors (PRRs) representing five families of PRRs, to evaluate their ability to elicit high production of IL-12p70 by monocyte-derived DCs. We used ten well-characterized agonists and stimulated DCs in vitro with either single agonists or 27 different combinations. We found that poly(I:C), which engages the RNA-sensing PRRs TLR3 and MDA5, and LPS which stimulates TLR4, were the only agonists that could elicit notable IL-12p70 production when used as single ligands. We identified six different combinations of PRR agonists, all containing either the TLR3/MDA5 agonist poly(I:C) or the TLR7/8 agonist R848, that could synergize to elicit high production of IL-12p70 by human DCs. Five of the six combinations also triggered high production of the antiviral and antitumor cytokine IFNβ. Overall, the tested PRR ligands could be divided into three groups depending on whether they triggered production of both IL-12p70 and IFNβ, only one of the two, or neither. Thus, combinations of PRR agonists were found to increase the production of IL-12p70 by human DCs in a synergistic manner, and we identified six PRR agonist combinations that may represent strong adjuvant candidates, in particular for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Brian C Gilmour
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
8
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
10
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
11
|
Zhang C, Zhao Z, Jia YJ, Zhang PQ, Sun Y, Zhou YC, Wang GX, Zhu B. Rationally Designed Self-Assembling Nanovaccines Elicit Robust Mucosal and Systemic Immunity against Rhabdovirus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:228-244. [PMID: 38055273 DOI: 10.1021/acsami.3c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Viral diseases have constantly caused great threats to global public health, resulting in an urgent need for effective vaccines. However, the current viral vaccines often show low immunogenicity. To counter this, we report a smart strategy of a well-designed modular nanoparticle (LSG-TDH) that recapitulates the dominant antigen SG, low-molecular-weight protamine, and tetralysine-modified H-chain apoferritin (TDH). The constructed LSG-TDH nanovaccine could self-assemble into a nanocage structure, which confers excellent mucus-penetrating, cellular affinity, and uptake ability. Studies demonstrate that the LSG-TDH nanovaccine could strongly activate both mucosal and systemic immune responses. Importantly, by immunizing wild-type and TLR2 knockout (TLR2-KO) zebrafish, we found that TLR2 could mediate LSG-TDH-induced adaptive mucosal and systemic immune responses by activating antigen-presenting cells. Collectively, our findings offer new insights into rational viral vaccine design and provide additional evidence of the vital role of TLR2 in regulating adaptive immunity.
Collapse
Affiliation(s)
- Chen Zhang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yun Sun
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
| | - Yong-Can Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Bin Zhu
- College of Animal Science and Technology, Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
12
|
Martinez-Murillo PA, Huttner A, Lemeille S, Medaglini D, Ottenhoff THM, Harandi AM, Didierlaurent AM, Siegrist CA. Refined innate plasma signature after rVSVΔG-ZEBOV-GP immunization is shared among adult cohorts in Europe and North America. Front Immunol 2024; 14:1279003. [PMID: 38235127 PMCID: PMC10791923 DOI: 10.3389/fimmu.2023.1279003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background During the last decade Ebola virus has caused several outbreaks in Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVΔG-ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We previously identified the first innate plasma signature response after vaccination in Geneva as composed of five monocyte-related biomarkers peaking at day 1 post-immunization that correlates with adverse events, biological outcomes (haematological changes and viremia) and antibody titers. In this follow-up study, we sought to identify additional biomarkers in the same Geneva cohort and validate those identified markers in a US cohort. Methods Additional biomarkers were identified using multiplexed protein biomarker platform O-link and confirmed by Luminex. Principal component analysis (PCA) evaluated if these markers could explain a higher variability of the vaccine response (and thereby refined the initial signature). Multivariable and linear regression models evaluated the correlations of the main components with adverse events, biological outcomes, and antibody titers. External validation of the refined signature was conducted in a second cohort of US vaccinees (n=142). Results Eleven additional biomarkers peaked at day 1 post-immunization: MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL and IL15. PCA analysis retained three principal components (PC) that accounted for 79% of the vaccine response variability. PC1 and PC2 were very robust and had different biomarkers that contributed to their variability. PC1 better discriminated different doses, better defined the risk of fever and myalgia, while PC2 better defined the risk of headache. We also found new biomarkers that correlated with reactogenicity, including transient arthritis (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate biomarkers are associated with antibody levels one and six months after vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r = 0.97, P < 0.001; US: r = 0.99, P< 0.001). Conclusion Eleven additional biomarkers refined the previously found 5-biomarker Geneva signature. The refined signature better discriminated between different doses, was strongly associated with the risk of adverse events and with antibody responses and was validated in a separate cohort.
Collapse
Affiliation(s)
- Paola Andrea Martinez-Murillo
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvain Lemeille
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Centre, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud M. Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
13
|
Meyers G, Tews BA. Self-Replicating RNA Derived from the Genomes of Positive-Strand RNA Viruses. Methods Mol Biol 2024; 2786:25-49. [PMID: 38814389 DOI: 10.1007/978-1-0716-3770-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Self-replicating RNA derived from the genomes of positive-strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.
Collapse
Affiliation(s)
- Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Birke Andrea Tews
- Institut für Infektionsmedizin, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Debbag R, Torres JR, Falleiros-Arlant LH, Avila-Aguero ML, Brea-del Castillo J, Gentile A, Saez-Llorens X, Mascarenas A, Munoz FM, Torres JP, Vazquez L, Safadi MA, Espinal C, Ulloa-Gutierrez R, Pujadas M, Lopez P, López-Medina E, Ramilo O. Are the first 1,000 days of life a neglected vital period to prevent the impact on maternal and infant morbimortality of infectious diseases in Latin America? Proceedings of a workshop of experts from the Latin American Pediatric Infectious Diseases Society, SLIPE. Front Pediatr 2023; 11:1297177. [PMID: 38098643 PMCID: PMC10720332 DOI: 10.3389/fped.2023.1297177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
While the first 1,000 days of life are a critical period in child's development, limited information on the main determinants affecting this period in the Latin America and the Caribbean (LAC) region is available. Therefore, the Latin American Pediatric Infectious Diseases Society (SLIPE) held an ad hoc workshop in May 2022 with an expert panel designed to analyze the main factors impacting the development of childhood in the region during this period and the main causes of maternal infant morbimortality. The aim was to identify priorities, generate recommendations, and advise practical actions to improve this situation. Considerations were made about the challenges involved in bridging the gap that separates the region from more developed countries regarding an optimal early childhood and maternal care. Extensive discussion was conducted to reach consensus recommendations on general strategies intended to reduce maternal and infant mortality associated with infections and immune-preventable diseases during the first 1,000 days of life in LAC.
Collapse
Affiliation(s)
- Roberto Debbag
- President of Sociedad Latinoamericana de Infectología Pediátrica, SLIPE, Buenos Aires, Argentina
| | - Jaime R. Torres
- Infectious Diseases Section, Tropical Medicine Institute, Universidad Central De Venezuela, Caracas, Venezuela
| | - Luiza H. Falleiros-Arlant
- Department of Children’s Health, Faculdade De Medicina, Universidade Metropolitana De Santos, Santos, Brazil
| | - Maria L. Avila-Aguero
- Infectious Diseases Service, Hospital Nacional De Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense De Seguro Social (CCSS), San José, Costa Rica
- Affiliated Researcher Center for Infectious Disease Modeling and Analysis (CIDMA) at Yale University, New Haven, CT, United States
| | - Jose Brea-del Castillo
- Associated Researcher, Investigador Asociado Hospital Dr. Hugo Mendoza, Santo Domingo, Republic Dominicana
| | - Angela Gentile
- Epidemiology Department, Hospital de Niños “Ricardo Gutiérrez”, Buenos Aires University, Buenos Aires, Argentina
| | - Xavier Saez-Llorens
- Head of Infectious Diseases and Director of Clinical Research, Hospital del Niño “Dr. José Renán Esquivel”, Panama City, Panama
| | - Abiel Mascarenas
- Department of Pediatric Infectious Diseases, Hospital Universitario “José E. Gonzalez”, Universidad Autónoma De Nuevo León, Nuevo Leon, México
| | - Flor M. Munoz
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Juan P. Torres
- Department of Pediatrics and Children Surgery, Universidad de Chile, Santiago, Chile
| | - Liliana Vazquez
- Pediatric Infectious Diseases, Clinica y Maternidad Suizo Argentina, Sanatorio Finochietto, Buenos Aires, Argentina
| | - Marco A. Safadi
- Department of Pediatrics, Faculda de de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo, Brazil
| | - Carlos Espinal
- Global Health Consortium, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Rolando Ulloa-Gutierrez
- Infectious Diseases Service, Hospital Nacional De Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense De Seguro Social (CCSS), San José, Costa Rica
| | - Monica Pujadas
- Department of Epidemiology and Pediatric Infectious Diseases, Centro Hospitalario Pereira Rossell, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Pio Lopez
- Department of Pediatrics, Hospital Universitario del Valle, Cali, Colombia
| | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica CEIP, Department of Pediatrics, Universidad del Valle, Clinica Imbanaco Grupo Quironsalud, Cali, Colombia
| | - Octavio Ramilo
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
15
|
Nehar-Belaid D, Sokolowski M, Ravichandran S, Banchereau J, Chaussabel D, Ucar D. Baseline immune states (BIS) associated with vaccine responsiveness and factors that shape the BIS. Semin Immunol 2023; 70:101842. [PMID: 37717525 DOI: 10.1016/j.smim.2023.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.
Collapse
Affiliation(s)
| | - Mark Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
16
|
Camarão AAR, Gern OL, Stegmann F, Mulenge F, Costa B, Saremi B, Jung K, Lepenies B, Kalinke U, Steffen I. Secreted NS1 proteins of tick-borne encephalitis virus and West Nile virus block dendritic cell activation and effector functions. Microbiol Spectr 2023; 11:e0219223. [PMID: 37707204 PMCID: PMC10581055 DOI: 10.1128/spectrum.02192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023] Open
Abstract
The flavivirus non-structural protein 1 (NS1) is secreted from infected cells into the circulation and the serum levels correlate with disease severity. The effect of secreted NS1 (sNS1) on non-infected mammalian immune cells is largely unknown. Here, we expressed recombinant sNS1 proteins of tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) and investigated their effects on dendritic cell (DC) effector functions. Murine bone marrow-derived DCs (BMDCs) showed reduced surface expression of co-stimulatory molecules and decreased release of pro-inflammatory cytokines when treated with sNS1 of TBEV or WNV prior to poly(I:C) stimulation. Transcriptional profiles of BMDCs that were sNS1-exposed prior to poly(I:C) stimulation showed two gene clusters that were downregulated by TBEV or WNV sNS1 and that were associated with innate and adaptive immune responses. Functionally, both sNS1 proteins modulated the capacity for BMDCs to induce specific T-cell responses as indicated by reduced IFN-γ levels in both CD4+ and CD8+ T cells after BMDC co-cultivation. In human monocyte-derived DCs, poly(I:C)-induced upregulation of co-stimulatory molecules and cytokine responses were even more strongly impaired by TBEV sNS1 or WNV sNS1 pretreatment than in the murine system. Our findings indicate that exogenous flaviviral sNS1 proteins interfere with DC-mediated stimulation of T cells, which is crucial for the initiation of cell-mediated adaptive immune responses in human flavivirus infections. Collectively, our data determine soluble flaviviral NS1 as a virulence factor responsible for a dampened immune response to flavivirus infections. IMPORTANCE The effective initiation of protective host immune responses controls the outcome of infection, and dysfunctional T-cell responses have previously been associated with symptomatic human flavivirus infections. We demonstrate that secreted flavivirus NS1 proteins modulate innate immune responses of uninfected bystander cells. In particular, sNS1 markedly reduced the capacity of dendritic cells to stimulate T-cell responses upon activation. Hence, by modulating cellular host responses that are required for effective antigen presentation and initiation of adaptive immunity, sNS1 proteins may contribute to severe outcomes of flavivirus disease.
Collapse
Affiliation(s)
- António A. R. Camarão
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Felix Stegmann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Babak Saremi
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Imke Steffen
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Green C, McGinley J, Sande C, Capone S, Makvandi-Nejad S, Vitelli A, Silva-Reyes L, Bibi S, Otasowie C, Sheerin D, Thompson A, Dold C, Klenerman P, Barnes E, Dorrell L, Rollier C, Pollard A, O’Connor D. Transcriptomic response and immunological responses to chimpanzee adenovirus- and MVA viral-vectored vaccines for RSV in healthy adults. Clin Exp Immunol 2023; 211:269-279. [PMID: 36622786 PMCID: PMC10038321 DOI: 10.1093/cei/uxad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Cohorts of healthy younger adults (18-50yrs) and healthy older adults (60-75yrs) were immunized intramuscularly or intranasally with an adenovirus-vectored RSV vaccine (PanAd3-RSV) as a prime dose and boosted with PanAd3-RSV or a poxvirus-vectored vaccine (MVA-RSV) encoding the same insert. Whole blood gene expression was measured at baseline, 3- and 7-days post vaccination. Intramuscular prime vaccination with PanAd3-RSV induced differential expression of 643 genes (DEGs, FDR < 0.05). Intranasal prime vaccination with PanAd3-RSV did not induce any differentially expressed genes (DEGs) in blood samples at 3 days post vaccination. Intranasally primed participants showed greater numbers of DEGS on boosting than intramuscularly primed participants. The most highly enriched biological processes related to DEGs after both prime and boost vaccination were type-1 interferon related pathways, lymphocytic and humoral immune responses.
Collapse
Affiliation(s)
- C Green
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - J McGinley
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - C Sande
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - S Capone
- Experimental Vaccinology Department, ReiThera Srl, Roma, Italy
| | - S Makvandi-Nejad
- Nuffield Department of Medicine, University of Oxford NDM Research Building, Oxford, UK
| | - A Vitelli
- Experimental Vaccinology Department, ReiThera Srl, Roma, Italy
| | - L Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - S Bibi
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - C Otasowie
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - D Sheerin
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - A Thompson
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - C Dold
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - P Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Barnes
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L Dorrell
- Nuffield Department of Medicine, University of Oxford NDM Research Building, Oxford, UK
| | - C Rollier
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - A Pollard
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - D O’Connor
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
The First Assessments of Pediatric HBV Immunization Coverage in Mauritania and Persistence of Antibody Titers Post Infant Immunizations. Vaccines (Basel) 2023; 11:vaccines11030588. [PMID: 36992174 DOI: 10.3390/vaccines11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The Hepatitis B virus (HBV) vaccine is used worldwide as an efficient tool to prevent the occurrence of chronic HBV infection and the subsequent liver disease. However, despite decades of vaccination campaigns, millions of new infections are still reported every year. Here, we aimed to assess the nationwide HBV vaccination coverage in Mauritania as well as the presence of protective levels of the antibodies against HBV surface antigen (HBsAb) following vaccination in a sample of children immunized as infants. Methods: To evaluate the frequency of fully vaccinated and seroprotected children in Mauritania, a prospective serological study was conducted in the capital. First, we evaluated the pediatric HBV vaccine coverage in Mauritania between 2015 and 2020. Then, we examined the level of antibodies against HBV surface antigen (HBsAb) in 185 fully vaccinated children (aged 9 months to 12 years) by ELISA using the VIDAS hepatitis panel for Minividas (Biomerieux). These vaccinated children were sampled in 2014 or 2021. Results: In Mauritania, between 2016 and 2019, more than 85% of children received the complete HBV vaccine regimen. While 93% of immunized children between 0 and 23 months displayed HBsAb titer >10 IU/L, the frequency of children with similar titers decreased to 63, 58 and 29% in children aged between 24–47, 48–59 and 60–144 months, respectively. Conclusions: A marked reduction in the frequency of HBsAb titer was observed with time, indicating that HBsAb titer usefulness as marker of protection is short lived and prompting the need for more accurate biomarkers predictive of long-term protection.
Collapse
|
20
|
Luo W, Adamska JZ, Li C, Verma R, Liu Q, Hagan T, Wimmers F, Gupta S, Feng Y, Jiang W, Zhou J, Valore E, Wang Y, Trisal M, Subramaniam S, Osborne TF, Pulendran B. SREBP signaling is essential for effective B cell responses. Nat Immunol 2023; 24:337-348. [PMID: 36577930 PMCID: PMC10928801 DOI: 10.1038/s41590-022-01376-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/31/2022] [Indexed: 12/29/2022]
Abstract
Our previous study using systems vaccinology identified an association between the sterol regulatory binding protein (SREBP) pathway and humoral immune response to vaccination in humans. To investigate the role of SREBP signaling in modulating immune responses, we generated mice with B cell- or CD11c+ antigen-presenting cell (APC)-specific deletion of SCAP, an essential regulator of SREBP signaling. Ablation of SCAP in CD11c+ APCs had no effect on immune responses. In contrast, SREBP signaling in B cells was critical for antibody responses, as well as the generation of germinal centers,memory B cells and bone marrow plasma cells. SREBP signaling was required for metabolic reprogramming in activated B cells. Upon mitogen stimulation, SCAP-deficient B cells could not proliferate and had decreased lipid rafts. Deletion of SCAP in germinal center B cells using AID-Cre decreased lipid raft content and cell cycle progression. These studies provide mechanistic insights coupling sterol metabolism with the quality and longevity of humoral immunity.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Julia Z Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shakti Gupta
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wenxia Jiang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiehao Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erika Valore
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Timothy F Osborne
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol 2023; 14:1105655. [PMID: 36742311 PMCID: PMC9892189 DOI: 10.3389/fimmu.2023.1105655] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.
Collapse
|
22
|
Hatton AA, Guerra FE. Scratching the Surface Takes a Toll: Immune Recognition of Viral Proteins by Surface Toll-like Receptors. Viruses 2022; 15:52. [PMID: 36680092 PMCID: PMC9863796 DOI: 10.3390/v15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Early innate viral recognition by the host is critical for the rapid response and subsequent clearance of an infection. Innate immune cells patrol sites of infection to detect and respond to invading microorganisms including viruses. Surface Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that can be activated by viruses even before the host cell becomes infected. However, the early activation of surface TLRs by viruses can lead to viral clearance by the host or promote pathogenesis. Thus, a plethora of research has attempted to identify specific viral ligands that bind to surface TLRs and mediate progression of viral infection. Herein, we will discuss the past two decades of research that have identified specific viral proteins recognized by cell surface-associated TLRs, how these viral proteins and host surface TLR interactions affect the host inflammatory response and outcome of infection, and address why controversy remains regarding host surface TLR recognition of viral proteins.
Collapse
Affiliation(s)
- Alexis A. Hatton
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Fermin E. Guerra
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, Dunn P, Lee A, Levy O, Gottardo R, Sarwal MM, Tsang JS, Suárez-Fariñas M, Sékaly RP, Kleinstein SH, Pulendran B. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat Immunol 2022; 23:1788-1798. [PMID: 36316475 PMCID: PMC9869360 DOI: 10.1038/s41590-022-01328-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Systems vaccinology has defined molecular signatures and mechanisms of immunity to vaccination. However, comparative analysis of immunity to different vaccines is lacking. We integrated transcriptional data of over 3,000 samples, from 820 adults across 28 studies of 13 vaccines and analyzed vaccination-induced signatures of antibody responses. Most vaccines induced signatures of innate immunity and plasmablasts at days 1 and 7, respectively, after vaccination. However, the yellow fever vaccine induced an early transient signature of T and B cell activation at day 1, followed by delayed antiviral/interferon and plasmablast signatures that peaked at days 7 and 14-21, respectively. Thus, there was no evidence for a 'universal signature' that predicted antibody response to all vaccines. However, accounting for the asynchronous nature of responses, we defined a time-adjusted signature that predicted antibody responses across vaccines. These results provide a transcriptional atlas of immunity to vaccination and define a common, time-adjusted signature of antibody responses.
Collapse
Affiliation(s)
- Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bram Gerritsen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lewis E Tomalin
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Fourati
- Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Cambridge University, Cambridge, UK
| | - Daniel G Chawla
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Dmitri Rychkov
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Evan Henrich
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Dunn
- ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA
| | - Audrey Lee
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Minne M Sarwal
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
| | - Mayte Suárez-Fariñas
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Diray-Arce J, Miller HER, Henrich E, Gerritsen B, Mulè MP, Fourati S, Gygi J, Hagan T, Tomalin L, Rychkov D, Kazmin D, Chawla DG, Meng H, Dunn P, Campbell J, Sarwal M, Tsang JS, Levy O, Pulendran B, Sekaly R, Floratos A, Gottardo R, Kleinstein SH, Suárez-Fariñas M. The Immune Signatures data resource, a compendium of systems vaccinology datasets. Sci Data 2022; 9:635. [PMID: 36266291 PMCID: PMC9584267 DOI: 10.1038/s41597-022-01714-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023] Open
Abstract
Vaccines are among the most cost-effective public health interventions for preventing infection-induced morbidity and mortality, yet much remains to be learned regarding the mechanisms by which vaccines protect. Systems immunology combines traditional immunology with modern 'omic profiling techniques and computational modeling to promote rapid and transformative advances in vaccinology and vaccine discovery. The NIH/NIAID Human Immunology Project Consortium (HIPC) has leveraged systems immunology approaches to identify molecular signatures associated with the immunogenicity of many vaccines. However, comparative analyses have been limited by the distributed nature of some data, potential batch effects across studies, and the absence of multiple relevant studies from non-HIPC groups in ImmPort. To support comparative analyses across different vaccines, we have created the Immune Signatures Data Resource, a compendium of standardized systems vaccinology datasets. This data resource is available through ImmuneSpace, along with code to reproduce the processing and batch normalization starting from the underlying study data in ImmPort and the Gene Expression Omnibus (GEO). The current release comprises 1405 participants from 53 cohorts profiling the response to 24 different vaccines. This novel systems vaccinology data release represents a valuable resource for comparative and meta-analyses that will accelerate our understanding of mechanisms underlying vaccine responses.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Helen E R Miller
- Harvard Medical School, Boston, MA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Evan Henrich
- Harvard Medical School, Boston, MA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID NIH Center for Human Immunology, NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, Cambridge University, Atlanta, GA, USA
| | - Slim Fourati
- Emory University School of Medicine, Atlanta, GA, USA
| | - Jeremy Gygi
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Thomas Hagan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lewis Tomalin
- Department of Population Health Sciences and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dmitry Rychkov
- University of California, San Francisco, San Francisco, CA, USA
| | - Dmitri Kazmin
- The Jackson Laboratory for Genomic Medicine, Farmington CT, Rockville, MD, USA
| | - Daniel G Chawla
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | - Patrick Dunn
- ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA
| | - John Campbell
- ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA
| | - Minnie Sarwal
- University of California, San Francisco, San Francisco, CA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID NIH Center for Human Immunology, NIH, Bethesda, MD, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Bali Pulendran
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Rafick Sekaly
- Emory University School of Medicine, Atlanta, GA, USA
| | - Aris Floratos
- Columbia University Medical Center, New York, NY, USA
| | - Raphael Gottardo
- Harvard Medical School, Boston, MA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Mayte Suárez-Fariñas
- Department of Population Health Sciences and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
25
|
McMillan JKP, O’Donnell P, Chang SP. Pattern recognition receptor ligand-induced differentiation of human transitional B cells. PLoS One 2022; 17:e0273810. [PMID: 36040923 PMCID: PMC9426890 DOI: 10.1371/journal.pone.0273810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
B cells represent a critical component of the adaptive immune response whose development and differentiation are determined by antigen-dependent and antigen-independent interactions. In this study, we explored the effects of IL-4 and pattern-recognition receptor (PRR) ligands on B cell development and differentiation by investigating their capacity to drive the in vitro maturation of human transitional B cells. In the presence of IL-4, ligands for TLR7/8, TLR9, and NOD1 were effective in driving the in vitro maturation of cord blood transitional B cells into mature, naïve B cells as measured by CD23 expression, ABCB1 transporter activation and upregulation of sIgM and sIgD. In addition, several stimulation conditions, including TLR9 ligand alone, favored an expansion of CD27+ IgM memory B cells. Transitional B cells stimulated with TLR7/8 ligand + IL-4 or TLR9 ligand, with or without IL-4, induced a significant subpopulation of CD23+CD27+ B cells expressing high levels of sIgM and sIgD, a minor B cell subpopulation found in human peripheral blood. These studies illustrate the heterogeneity of the B cell populations induced by cytokine and PRR ligand stimulation. A comparison of transitional and mature, naïve B cells transcriptomes to identify novel genes involved in B cell maturation revealed that mature, naïve B cells were less transcriptionally active than transitional B cells. Nevertheless, a subset of differentially expressed genes in mature, naïve B cells was identified including genes associated with the IL-4 signaling pathway, PI3K signaling in B lymphocytes, the NF-κB signaling pathway, and the TNFR superfamily. When transitional B cells were stimulated in vitro with IL-4 and PRR ligands, gene expression was found to be dependent on the nature of the stimulants, suggesting that exposure to these stimulants may alter the developmental fate of transitional B cells. The influence of IL-4 and PRR signaling on transitional B cell maturation illustrates the potential synergy that may be achieved when certain PRR ligands are incorporated as adjuvants in vaccine formulations and presented to developing B cells in the context of an inflammatory cytokine environment. These studies demonstrate the potential of the PRR ligands to drive transitional B cell differentiation in the periphery during infection or vaccination independently of antigen mediated BCR signaling.
Collapse
Affiliation(s)
- Jourdan K. P. McMillan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
- * E-mail:
| | - Patrick O’Donnell
- Kapiolani Medical Center for Women and Children, Hawaii Pacific Health, Honolulu, HI, United States of America
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
26
|
The Biocomplex Assembled from Antigen Peptide and Toll-like Receptor Agonist Improved the Immunity against Pancreatic Adenocarcinoma In Vivo. JOURNAL OF ONCOLOGY 2022; 2022:2965496. [PMID: 36059807 PMCID: PMC9436581 DOI: 10.1155/2022/2965496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Purpose One of the biggest challenges in cancer immunotherapy is generating robust cancer-specific immunity. This work describes using a biocomplex assembled from a toll-like receptor agonist CpG oligodeoxynucleotide 1826 (CpG) and a pancreatic cancer antigen peptide mesothelin for tuning pancreatic tumor immunity. Methods This biocomplex was assembled via electrostatic interactions and characterized in size, morphology, zeta potential, and cargo loading. The effect of biocomplex on cell viability and activation of DCs and macrophages were measured by flow cytometry. The production of cytokines (GM-CSF, TNF, and IL-6) was evaluated by using ELISA kits. The effect of biocomplex on tumor cell proliferation was also evaluated by in vivo tumor model. Result We can modulate the surface charge of the biocomplex by simply varying the ratios of the two components. In cell models, this biocomplex did not impact cell viability in the antigen-presenting cell (i.e., dendritic cell and macrophage)-directed immunity. Moreover, this biocomplex regulated the secretion of tumor-related cytokines (i.e., GM-CSF, TNF, and IL-6) and promoted the activation of immune cell surface markers (i.e., CD80+, CD86+, and CD40+). In the mouse model, the biocomplex inhibited the tumor burden effectively and promoted the production of effector cytokines. Conclusion The present studies showed that the biocomplex with antigen peptide and toll-like receptor agonist was able to potentiate the antitumor immunity in vivo. This study will help understanding of immunity in pancreatic cancer and developing new immune therapeutic strategies for pancreatic adenocarcinoma.
Collapse
|
27
|
Olukitibi TA, Ao Z, Azizi H, Mahmoudi M, Coombs K, Kobasa D, Kobinger G, Yao X. Development and characterization of influenza M2 ectodomain and/or hemagglutinin stalk-based dendritic cell-targeting vaccines. Front Microbiol 2022; 13:937192. [PMID: 36003947 PMCID: PMC9393625 DOI: 10.3389/fmicb.2022.937192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hiva Azizi
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
- Galveston National Laboratory, 301 University Blvd., Galveston, TX, United States
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Xiaojian Yao,
| |
Collapse
|
28
|
Noh K, Jeong EJ, An T, Shin JS, Kim H, Han SB, Kim M. The efficacy of a 2,4-diaminoquinazoline compound as an intranasal vaccine adjuvant to protect against influenza A virus infection in vivo. J Microbiol 2022; 60:550-559. [PMID: 35437625 PMCID: PMC9014970 DOI: 10.1007/s12275-022-1661-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Adjuvants are substances added to vaccines to enhance antigen-specific immune responses or to protect antigens from rapid elimination. As pattern recognition receptors, Toll-like receptors 7 (TLR7) and 8 (TLR8) activate the innate immune system by sensing endosomal single-stranded RNA of RNA viruses. Here, we investigated if a 2,4-diaminoquinazoline-based TLR7/8 agonist, (S)-3-((2-amino-8-fluoroquinazolin-4-yl)amino)hexan-1-ol (named compound 31), could be used as an adjuvant to enhance the serological and mucosal immunity of an inactivated influenza A virus vaccine. The compound induced the production of proinflammatory cytokines in macrophages. In a dose-response analysis, intranasal administration of 1 µg compound 31 together with an inactivated vaccine (0.5 µg) to mice not only enhanced virus-specific IgG and IgA production but also neutralized influenza A virus with statistical significance. Notably, in a virus-challenge model, the combination of the vaccine and compound 31 alleviated viral infection-mediated loss of body weight and increased survival rates by 40% compared with vaccine only-treated mice. We suggest that compound 31 is a promising lead compound for developing mucosal vaccine adjuvants to protect against respiratory RNA viruses such as influenza viruses and potentially coronaviruses.
Collapse
Affiliation(s)
- Kyungseob Noh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Ju Jeong
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Timothy An
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hyejin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
- Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
29
|
Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD, Trisal M, Wimmers F, Sanyal M, Weidenbacher PA, Feng Y, Adamska JZ, Valore E, Wang Y, Verma R, Reis N, Dunham D, O'Hara R, Park H, Luo W, Gitlin AD, Kim P, Khatri P, Nadeau KC, Pulendran B. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol 2022; 23:543-555. [PMID: 35288714 PMCID: PMC8989677 DOI: 10.1038/s41590-022-01163-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.
Collapse
Affiliation(s)
- Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry & Stanford, ChEM-H, Stanford University, Stanford, CA, USA
| | - Payton A Weidenbacher
- Department of Biochemistry & Stanford, ChEM-H, Stanford University, Stanford, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Julia Z Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Erika Valore
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Noah Reis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Diane Dunham
- Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Helen Park
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander D Gitlin
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Kim
- Department of Biochemistry & Stanford, ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
30
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
31
|
Lee A, Scott MKD, Wimmers F, Arunachalam PS, Luo W, Fox CB, Tomai M, Khatri P, Pulendran B. A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nat Commun 2022; 13:549. [PMID: 35087093 PMCID: PMC8795432 DOI: 10.1038/s41467-022-28197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mark Tomai
- 3M Corporate Research and Materials Lab, St. Paul, MN, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
33
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|
34
|
Oreshkova N, Myeni SK, Mishra N, Albulescu IC, Dalebout TJ, Snijder EJ, Bredenbeek PJ, Dallmeier K, Kikkert M. A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines (Basel) 2021; 9:1492. [PMID: 34960238 PMCID: PMC8704410 DOI: 10.3390/vaccines9121492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.
Collapse
Affiliation(s)
- Nadia Oreshkova
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Sebenzile K. Myeni
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Niraj Mishra
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Irina C. Albulescu
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Tim J. Dalebout
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Eric J. Snijder
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Peter J. Bredenbeek
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Kai Dallmeier
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Marjolein Kikkert
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| |
Collapse
|
35
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
36
|
Ma J, Boudewijns R, Sanchez-Felipe L, Mishra N, Vercruysse T, Buh Kum D, Thibaut HJ, Neyts J, Dallmeier K. Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerg Microbes Infect 2021; 10:2279-2290. [PMID: 34792431 PMCID: PMC8648041 DOI: 10.1080/22221751.2021.2008772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is one of the most efficacious human vaccines and also employed as a vector for novel vaccines. However, in the lack of appropriate immunocompetent small animal models, mechanistic insight in YF17D-induced protective immunity remains limited. To better understand YF17D vaccination and to identify a suitable mouse model, we evaluated the immunogenicity and protective efficacy of YF17D in five complementary mouse models, i.e. wild-type (WT) BALB/c, C57BL/6, IFN-α/β receptor (IFNAR-/-) deficient mice, and in WT mice in which type I IFN signalling was temporally ablated by an IFNAR blocking (MAR-1) antibody. Alike in IFNAR-/- mice, YF17D induced in either WT mice strong humoral immune responses dominated by IgG2a/c isotype (Th1 type) antibodies, yet only when IFNAR was blocked. Vigorous cellular immunity characterized by CD4+ T-cells producing IFN-γ and TNF-α were mounted in MAR-1 treated C57BL/6 and in IFNAR-/- mice. Surprisingly, vaccine-induced protection was largely mouse model dependent. Full protection against lethal intracranial challenge and a massive reduction of virus loads was conferred already by a minimal dose of 2 PFU YF17D in BALB/c and IFNAR-/- mice, but not in C57BL/6 mice. Correlation analysis of infection outcome with pre-challenge immunological markers indicates that YFV-specific IgG might suffice for protection, even in the absence of detectable levels of neutralizing antibodies. Finally, we propose that, in addition to IFNAR-/- mice, C57BL/6 mice with temporally blocked IFN-α/β receptors represent a promising immunocompetent mouse model for the study of YF17D-induced immunity and evaluation of YF17D-derived vaccines.
Collapse
Affiliation(s)
- Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| |
Collapse
|
37
|
Vicente Santos AC, Guedes-da-Silva FH, Dumard CH, Ferreira VNS, da Costa IPS, Machado RA, Barros-Aragão FGQ, Neris RLS, dos-Santos JS, Assunção-Miranda I, Figueiredo CP, Dias AA, Gomes AMO, de Matos Guedes HL, Oliveira AC, Silva JL. Yellow fever vaccine protects mice against Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0009907. [PMID: 34735450 PMCID: PMC8594798 DOI: 10.1371/journal.pntd.0009907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak. Zika virus (ZIKV) is as an important infectious that may result in severe congenital neurological disorders. Our study reports that the current attenuated yellow fever vaccine is effective in immunizing against the infection caused by the Zika virus, due to the similarity between the two viruses. To study the efficacy of the vaccine, we used different mouse strains, including both animals with a healthy immune system (immunocompetent) and animals with compromised immune systems and therefore more susceptible to viral (immunocompromised) infections. The vaccine was given subcutaneously, as it does in humans. The animals were inoculated with the Zika virus directly into the brain—a protocol normally adopted in vaccine studies to simulate a high lethality infection. In all cases, the vaccinated mice developed a high degree of protection against Zika infection. Altogether, we demonstrate that the YFV vaccine elicits an immune response that protects against cerebral infection by ZIKV. Our findings suggest the possibility of using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.
Collapse
Affiliation(s)
- Ana C. Vicente Santos
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vivian N. S. Ferreira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor P. S. da Costa
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruana A. Machado
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rômulo L. S. Neris
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio S. dos-Santos
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André A. Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Andrea C. Oliveira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Jerson L. Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| |
Collapse
|
38
|
van den Biggelaar RHGA, Hoefnagel MHN, Vandebriel RJ, Sloots A, Hendriksen CFM, van Eden W, Rutten VPMG, Jansen CA. Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines. Expert Rev Vaccines 2021; 20:1221-1233. [PMID: 34550041 DOI: 10.1080/14760584.2021.1977628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on in vivo methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some in vivo tests have led to the development of in vitro alternatives. AREAS COVERED This review describes the scientific constraints that need to be overcome for replacement of in vivo batch tests, as well as potential solutions. Topics include the critical quality attributes of vaccines that require testing, the use of cell-based assays to mimic aspects of in vivo vaccine-induced immune responses, how difficulties with testing adjuvanted vaccines in vitro can be overcome, the use of altered batches to validate new in vitro test methods, and how cooperation between different stakeholders is key to moving the transition forward. EXPERT OPINION For safety testing, many in vitro alternatives are already available or at an advanced level of development. For potency testing, in vitro alternatives largely comprise immunochemical methods that assess several, but not all critical vaccine properties. One-to-one replacement by in vitro alternatives is not always possible and a combination of methods may be required.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arjen Sloots
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
39
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
40
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nat Commun 2021; 12:4351. [PMID: 34272380 PMCID: PMC8285539 DOI: 10.1038/s41467-021-24536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Small-molecule modulators of TLR8 have drawn much interests as it plays pivotal roles in the innate immune response to single-stranded RNAs (ssRNAs) derived from viruses. However, their clinical uses are limited because they can invoke an uncontrolled, global inflammatory response. The efforts described herein culminate in the fortuitous discovery of a tetrasubstituted imidazole CU-CPD107 which inhibits R848-induced TLR8 signaling. In stark contrast, CU-CPD107 shows unexpected synergistic agonist activities in the presence of ssRNA, while CU-CPD107 alone is unable to influence TLR8 signaling. CU-CPD107’s unique, dichotomous behavior sheds light on a way to approach TLR agonists. CU-CPD107 offers the opportunity to avoid the undesired, global inflammation side effects that have rendered imidazoquinolines clinically irrelevant, providing an insight for the development of antiviral drugs. Toll-like receptor 8 (TLR8) plays essential roles in the innate immune response to viral single-stranded RNA (ssRNA), so small molecule modulators of TLR8 are of interest, however adverse effects limit their use. Here, the authors report a tetrasubstituted imidazole CU-CPD107 with dichotomous behaviour, which inhibits R848-induced TLR8 signaling, but shows synergistic activity in the presence of ssRNA, making it a potential antiviral agent.
Collapse
|
42
|
Auguste AJ, Langsjoen RM, Porier DL, Erasmus JH, Bergren NA, Bolling BG, Luo H, Singh A, Guzman H, Popov VL, Travassos da Rosa APA, Wang T, Kang L, Allen IC, Carrington CVF, Tesh RB, Weaver SC. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology 2021; 562:50-62. [PMID: 34256244 DOI: 10.1016/j.virol.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
We describe the isolation and characterization of a novel insect-specific flavivirus (ISFV), tentatively named Aripo virus (ARPV), that was isolated from Psorophora albipes mosquitoes collected in Trinidad. The ARPV genome was determined and phylogenetic analyses showed that it is a dual host associated ISFV, and clusters with the main mosquito-borne flaviviruses. ARPV antigen was significantly cross-reactive with Japanese encephalitis virus serogroup antisera, with significant cross-reactivity to Ilheus and West Nile virus (WNV). Results suggest that ARPV replication is limited to mosquitoes, as it did not replicate in the sandfly, culicoides or vertebrate cell lines tested. We also demonstrated that ARPV is endocytosed into vertebrate cells and is highly immunomodulatory, producing a robust innate immune response despite its inability to replicate in vertebrate systems. We show that prior infection or coinfection with ARPV limits WNV-induced disease in mouse models, likely the result of a robust ARPV-induced type I interferon response.
Collapse
Affiliation(s)
- Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Rose M Langsjoen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jesse H Erasmus
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicholas A Bergren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bethany G Bolling
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hilda Guzman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Monroe, LA, 71203, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Irving C Allen
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
43
|
Abhyankar MM, Orr MT, Kinsey R, Sivananthan S, Nafziger AJ, Oakland DN, Young MK, Farr L, Uddin MJ, Leslie JL, Burgess SL, Liang H, De Lima I, Larson E, Guderian JA, Lin S, Kahn A, Ghosh P, Reed S, Tomai MA, Pedersen K, Petri WA, Fox CB. Optimizing a Multi-Component Intranasal Entamoeba Histolytica Vaccine Formulation Using a Design of Experiments Strategy. Front Immunol 2021; 12:683157. [PMID: 34248966 PMCID: PMC8268010 DOI: 10.3389/fimmu.2021.683157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mark T Orr
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Robert Kinsey
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sandra Sivananthan
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Andrew J Nafziger
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - David N Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mary K Young
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Laura Farr
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jhansi L Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Hong Liang
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Ines De Lima
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Elise Larson
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Jeffrey A Guderian
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Susan Lin
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Aaron Kahn
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Prakash Ghosh
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sierra Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Mark A Tomai
- 3M Corporate Research Materials Laboratory, 3M Center, St Paul, MN, United States
| | | | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Christopher B Fox
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
44
|
Chauhan S, Rathore DK, Sachan S, Lacroix-Desmazes S, Gupta N, Awasthi A, Vrati S, Kalia M. Japanese Encephalitis Virus Infected Human Monocyte-Derived Dendritic Cells Activate a Transcriptional Network Leading to an Antiviral Inflammatory Response. Front Immunol 2021; 12:638694. [PMID: 34220803 PMCID: PMC8247639 DOI: 10.3389/fimmu.2021.638694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of the human immune response to virus infection is imperative for developing effective therapies, antivirals, and vaccines. Dendritic cells (DCs) are among the first cells to encounter the virus and are also key antigen-presenting cells that link the innate and adaptive immune system. In this study, we focus on the human immune response to the mosquito-borne Japanese encephalitis virus (JEV), which is the leading cause of virus-induced encephalitis in south-east Asia and has the potential to become a global pathogen. We describe the gene regulatory circuit of JEV infection in human monocyte-derived DCs (moDCs) along with its functional validation. We observe that JEV can productively infect human moDCs leading to robust transcriptional activation of the interferon and NF-κB-mediated antiviral and inflammatory pathways. This is accompanied with DC maturation and release of pro-inflammatory cytokines and chemokines TNFα, IL-6, IL-8, IL-12, MCP-1. and RANTES. JEV-infected moDCs activated T-regulatory cells (Tregs) in allogenic mixed lymphocyte reactions (MLR) as seen by upregulated FOXP3 mRNA expression, suggestive of a host response to reduce virus-induced immunopathology. The virus also downregulated transcripts involved in Peroxisome Proliferator Activated Receptor (PPAR) signalling and fatty acid metabolism pathways suggesting that changes in cellular metabolism play a crucial role in driving the DC maturation and antiviral responses. Collectively, our data describe and corroborate the human DC transcriptional network that is engaged upon JEV sensing.
Collapse
Affiliation(s)
| | | | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Awasthi
- Translational Health Science & Technology Institute, Faridabad, India
| | - Sudhanshu Vrati
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Manjula Kalia
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
45
|
Combination Adjuvants Affect the Magnitude of Effector-Like Memory CD8 T Cells and Protection against Listeriosis. Infect Immun 2021; 89:e0076820. [PMID: 33782151 DOI: 10.1128/iai.00768-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of T cell-based subunit protein vaccines against diseases such as tuberculosis and malaria remains a challenge for immunologists. Here, we have identified a nanoemulsion adjuvant, Adjuplex (ADJ), which enhanced dendritic cell (DC) cross-presentation and elicited effective memory T cell-based immunity to Listeria monocytogenes. We further evaluated whether cross-presentation induced by ADJ can be combined with the immunomodulatory effects of Toll-like receptor (TLR) agonists (CpG or glucopyranosyl lipid adjuvant [GLA]) to evoke systemic CD8 T cell-based immunity to L. monocytogenes. Mechanistically, vaccination with ADJ, alone or in combination with CpG or GLA, augmented activation and antigen uptake by CD103+ migratory and CD8α+ resident DCs and upregulated CD69 expression on B and T lymphocytes in vaccine-draining lymph nodes. By engaging basic leucine zipper ATF-like transcription factor 3-dependent cross-presenting DCs, ADJ potently elicited effector CD8 T cells that differentiated into granzyme B-expressing CD27LO effector-like memory CD8 T cells, which provided effective immunity to L. monocytogenes in the spleen and liver. CpG or GLA alone did not elicit effector-like memory CD8 T cells and induced moderate protection in the spleen but not in the liver. Surprisingly, combining CpG or GLA with ADJ reduced the number of ADJ-induced memory CD8 T cells and compromised protective immunity to L. monocytogenes, especially in the liver. Taken together, the data presented in this study provide a glimpse of protective CD8 T cell memory differentiation induced by a nanoemulsion adjuvant and demonstrate the unexpected negative effects of TLR signaling on the magnitude of CD8 T cell memory and protective immunity to L. monocytogenes, a model intracellular pathogen.
Collapse
|
46
|
Yang D, Chu H, Lu G, Shuai H, Wang Y, Hou Y, Zhang X, Huang X, Hu B, Chai Y, Yuen TTT, Zhao X, Lee ACY, Ye Z, Li C, Chik KKH, Zhang AJ, Zhou J, Yuan S, Chan JFW. STAT2-dependent restriction of Zika virus by human macrophages but not dendritic cells. Emerg Microbes Infect 2021; 10:1024-1037. [PMID: 33979266 PMCID: PMC8205058 DOI: 10.1080/22221751.2021.1929503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that poses significant threats to global public health. Macrophages and dendritic cells are both key sentinel cells in the host immune response and play critical roles in the pathogenesis of flavivirus infections. Recent studies showed that ZIKV could productively infect monocyte-derived dendritic cells (moDCs), but the role of macrophages in ZIKV infection remains incompletely understood. In this study, we first compared ZIKV infection in monocyte-derived macrophages (MDMs) and moDCs derived from the same donors. We demonstrated that while both MDMs and moDCs were susceptible to epidemic (Puerto Rico) and pre-epidemic (Uganda) strains of ZIKV, virus replication was largely restricted in MDMs but not in moDCs. ZIKV induced significant apoptosis in moDCs but not MDMs. The restricted virus replication in MDMs was not due to inefficient virus entry but was related to post-entry events in the viral replication cycle. In stark contrast with moDCs, ZIKV failed to inhibit STAT1 and STAT2 phosphorylation in MDMs. This resulted in the lack of efficient antagonism of the host type I interferon-mediated antiviral responses. Importantly, depletion of STAT2 but not STAT1 in MDMs significantly rescued the replication of ZIKV and the prototype flavivirus yellow fever virus. Overall, our findings revealed a differential interplay between macrophages and dendritic cells with ZIKV. While dendritic cells may be exploited by ZIKV to facilitate virus replication, macrophages restricted ZIKV infection.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Ziwei Ye
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Cun Li
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
47
|
Pu J, Xu J, Chen L, Zhou H, Cao W, Hao B, Li N, Wu J, Zheng J, Hong W, Li B, Ran P. Exposure to biomass smoke induces pulmonary Th17 cell differentiation by activating TLR2 on dendritic cells in a COPD rat model. Toxicol Lett 2021; 348:28-39. [PMID: 34058311 DOI: 10.1016/j.toxlet.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
Almost three billion people in developing countries are exposed to biomass smoke (BS), which predisposes them to developing chronic obstructive pulmonary disease (COPD). COPD is associated with abnormal innate and adaptive immune responses in the lungs and systemic circulation, but the mechanisms underlying BS-COPD development are uncertain. We investigated the role of dendritic cells (DCs) and interleukin (IL)-17A in BS-COPD. We investigated T helper cell responses in the BS-exposed COPD rat model by flow cytometry, quantitative PCR, and enzyme-linked immunosorbent assays. We conducted ex vivo experiments to determine which antigen-presenting cells induce Th17 cell responses. We evaluated the in vitro effects of BS-related particulate matter (BRPM) (2.5 μm) on the function of bone marrow-derived dendritic cells (BMDCs). We found that BS exposure enhanced Th17 responses in the lungs of the COPD-modelled rats, and the stimulated DCs (but not the macrophages) were sufficient to induce naïve CD4 + T cells to produce IL-17A in ex vivo experiments. BRPM significantly enhanced the maturation and activation of DCs through Toll-like receptor 2 (TLR2), but not TLR4, and induced Th17 responses. Therefore, BS activated lung DCs through TLR2, which led to Th17 responses and emphysema in the rats. This process is possibly therapeutically targetable.
Collapse
Affiliation(s)
- Jinding Pu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Juan Xu
- Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Lu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital Xingsha Branch, People's Hospital of Changsha County, Changsha, PR China
| | - Hongbin Zhou
- GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, Guangzhou, PR China
| | - Weitao Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, PR China
| | - Naijian Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jianxiong Wu
- GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, Guangzhou, PR China
| | - JinZhen Zheng
- Department of Pulmonary and Critical Care Medicine, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, PR China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, Guangzhou, PR China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, Guangzhou, PR China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
48
|
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing Infectious Diseases Vaccines Against Cancer. Front Oncol 2021; 11:688755. [PMID: 34055652 PMCID: PMC8155725 DOI: 10.3389/fonc.2021.688755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccines used to prevent infections have long been known to stimulate immune responses to cancer as illustrated by the approval of the Bacillus Calmette-Guérin (BCG) vaccine to treat bladder cancer since the 1970s. The recent approval of immunotherapies has rejuvenated this research area with reports of anti-tumor responses with existing infectious diseases vaccines used as such, either alone or in combination with immune checkpoint inhibitors. Here, we have reviewed and summarized research activities using approved vaccines to treat cancer. Data supporting a cancer therapeutic use was found for 16 vaccines. For 10 (BCG, diphtheria, tetanus, human papillomavirus, influenza, measles, pneumococcus, smallpox, typhoid and varicella-zoster), clinical trials have been conducted or are ongoing. Within the remaining 6, preclinical evidence supports further evaluation of the rotavirus, yellow fever and pertussis vaccine in carefully designed clinical trials. The mechanistic evidence for the cholera vaccine, combined with the observational data in colorectal cancer, is also supportive of clinical translation. There is limited data for the hepatitis B and mumps vaccine (without measles vaccine). Four findings are worth highlighting: the superiority of intravesical typhoid vaccine instillations over BCG in a preclinical bladder cancer model, which is now the subject of a phase I trial; the perioperative use of the influenza vaccine to limit and prevent the natural killer cell dysfunction induced by cancer surgery; objective responses following intratumoral injections of measles vaccine in cutaneous T-cell lymphoma; objective responses induced by human papillomavirus vaccine in cutaneous squamous cell carcinoma. All vaccines are intended to induce or improve an anti-tumor (immune) response. In addition to the biological and immunological mechanisms that vary between vaccines, the mode of administration and sequence with other (immuno-)therapies warrant more attention in future research.
Collapse
|
49
|
Liang X, Li L, Li X, He T, Gong S, Zhu S, Zhang M, Wu Q, Gong C. A spontaneous multifunctional hydrogel vaccine amplifies the innate immune response to launch a powerful antitumor adaptive immune response. Theranostics 2021; 11:6936-6949. [PMID: 34093863 PMCID: PMC8171104 DOI: 10.7150/thno.58173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Substantial progress has been made with cancer immunotherapeutic strategies in recent years, most of which mainly rely on enhancing the T cell response. However, sufficient tumor antigen information often cannot be presented to T cells, resulting in a failed effector T cell response. The innate immune system can effectively recognize tumor antigens and then initiate an adaptive immune response. Here, we developed a spontaneous multifunctional hydrogel (NOCC-CpG/OX-M, Ncom Gel) vaccine to amplify the innate immune response and harness innate immunity to launch and maintain a powerful adaptive immune response. Methods: Ncom Gel was formed by a Schiff base reaction between CpG-modified carboxymethyl chitosan (NOCC-CpG) and partially oxidized mannan (OX-M). The effects of the Ncom Gel vaccine on DCs and macrophages in vitro and antigen-specific humoral immunity and cellular immunity in vivo were studied. Furthermore, the antitumor immune response of the Ncom Gel vaccine and its effect on the tumor microenvironment were evaluated. Results: The Ncom Gel vaccine enhanced antigen presentation to T cells by facilitating DC uptake and maturation and inducing macrophages to a proinflammatory subtype, further leading to a T cell-mediated adaptive immune response. Moreover, the innate immune response could be amplified via the promotion of antigen-specific antibody production. The Ncom Gel vaccine reversed the tumor immune microenvironment to an inflamed phenotype and showed a significant antitumor response in a melanoma model. Conclusions: Our research implies the potential application of injectable hydrogels as a platform for tumor immunotherapy. The strategy also opens up a new avenue for multilayered cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
50
|
Bovay A, Fuertes Marraco SA, Speiser DE. Yellow fever virus vaccination: an emblematic model to elucidate robust human immune responses. Hum Vaccin Immunother 2021; 17:2471-2481. [PMID: 33909542 PMCID: PMC8475614 DOI: 10.1080/21645515.2021.1891752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
By preventing infectious diseases, vaccines contribute substantially to public health. Besides, they offer great opportunities to investigate human immune responses. This is particularly true for live-attenuated virus vaccines which cause resolving acute infections and induce robust immunity. The fact that one can precisely schedule the time-point of vaccination enables complete characterization of the immune response over time, short-term and over many years. The live-attenuated Yellow Fever virus vaccine strain YF-17D was developed in the 1930's and gave rise to the 17D-204 and 17DD vaccine sub-strains, administered to over 600 million individuals worldwide. YF vaccination causes a systemic viral infection, which induces neutralizing antibodies that last for a lifetime. It also induces a strong T cell response resembling the ones of acute infections, in contrast to most other vaccines. In spite of its use since 1937, learning how YF vaccination stimulates such strong and persistent immune responses has gained substantial knowledge only in the last decades. Here we summarize the current state of knowledge on the immune response to YF vaccination, and discuss its contribution as a human model to address complex questions on optimal immune responses.
Collapse
Affiliation(s)
- Amandine Bovay
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Silvia A Fuertes Marraco
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|