1
|
Quarta S, Sandre M, Ruvoletto M, Campagnolo M, Emmi A, Biasiolo A, Pontisso P, Antonini A. Inhibition of Protease-Activated Receptor-2 Activation in Parkinson's Disease Using 1-Piperidin Propionic Acid. Biomedicines 2024; 12:1623. [PMID: 39062196 PMCID: PMC11274518 DOI: 10.3390/biomedicines12071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
In Parkinson's disease, neuroinflammation is a double-edged sword; when inflammation occurs it can have harmful effects, despite its important role in battling infections and healing tissue. Once triggered by microglia, astrocytes acquire a reactive state and shift from supporting the survival of neurons to causing their destruction. Activated microglia and Proteinase-activated receptor-2 (PAR2) are key points in the regulation of neuroinflammation. 1-Piperidin Propionic Acid (1-PPA) has been recently described as a novel inhibitor of PAR2. The aim of our study was to evaluate the effect of 1-PPA in neuroinflammation and microglial activation in Parkinson's disease. Protein aggregates and PAR2 expression were analyzed using Thioflavin S assay and immunofluorescence in cultured human fibroblasts from Parkinson's patients, treated or untreated with 1-PPA. A significant decrease in amyloid aggregates was observed after 1-PPA treatment in all patients. A parallel decrease in PAR2 expression, which was higher in sporadic Parkinson's patients, was also observed both at the transcriptional and protein level. In addition, in mouse LPS-activated microglia, the inflammatory profile was significantly downregulated after 1-PPA treatment, with a remarkable decrease in IL-1β, IL-6, and TNF-α, together with a decreased expression of PAR2. In conclusion, 1-PPA determines the reduction in neuroglia inflammation and amyloid aggregates formation, suggesting that the pharmacological inhibition of PAR2 could be proposed as a novel strategy to control neuroinflammation.
Collapse
Affiliation(s)
- Santina Quarta
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Mariagrazia Ruvoletto
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Aron Emmi
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| |
Collapse
|
2
|
Reches G, Piran R. Par2-mediated responses in inflammation and regeneration: choosing between repair and damage. Inflamm Regen 2024; 44:26. [PMID: 38816842 PMCID: PMC11138036 DOI: 10.1186/s41232-024-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing β-cells in mice, whereas the introduction of a β-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel.
| |
Collapse
|
3
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
4
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
5
|
Scarisbrick IA. PARting Neuroinflammation with Protease-Activated Receptor 2 Pepducins. J Pharmacol Exp Ther 2024; 388:8-11. [PMID: 38169447 DOI: 10.1124/jpet.123.001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Isobel A Scarisbrick
- Center for Regenerative Biotherapeutics, Department of Physical Medicine and Rehabilitation, and Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Regenerative Sciences, Rochester, Minnesota
| |
Collapse
|
6
|
Bianchimano P, Iwanowski K, Smith EM, Cantor A, Leone P, Bongers G, Gonzalez CG, Hongsup Y, Elias J, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment suppresses gut trypsin activity and preserves intestinal barrier function during EAE. iScience 2023; 26:108143. [PMID: 37915599 PMCID: PMC10616394 DOI: 10.1016/j.isci.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Cantor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Yoon Hongsup
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian-University, Martinsried, Germany
- Hertie Senior Professor Group, Max-Plank-Institute of Neurobiology, Martinsried, Germany
| | - Joshua Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jose C. Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K. Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
8
|
Reches G, Blondheim Shraga NR, Carrette F, Malka A, Saleev N, Gubbay Y, Ertracht O, Haviv I, Bradley LM, Levine F, Piran R. Resolving the conflicts around Par2 opposing roles in regeneration by comparing immune-mediated and toxic-induced injuries. Inflamm Regen 2022; 42:52. [PMID: 36447218 PMCID: PMC9706915 DOI: 10.1186/s41232-022-00238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Different factors may lead to hepatitis. Among which are liver inflammation and poisoning. We chose two hepatitis models, typical for these two underlying causes. Thus, we aimed to characterize the role of protease-activated receptor 2 (Par2) in liver regeneration and inflammation to reconcile Par2 conflicting role in many damage models, which sometimes aggravates the induced damage and sometimes alleviates it. METHODS WT and knockout (Par2KO) mice were injected with concanavalin A (ConA) to induce immune-mediated hepatitis or with carbon tetrachloride (CCl4) to elicit direct hepatic damage. To distinguish the immune component from the liver regenerative response, we conducted bone marrow (BM) replacements of WT and Par2KO mice and repeated the damage models. RESULTS ConA injection caused limited damage in Par2KO mice livers, while in the WT mice severe damage followed by leukocyte infiltration was evident. Reciprocal BM replacement of WT and Par2KO showed that WT BM-reconstituted Par2KO mice displayed marked liver damage, while in Par2KO BM-reconstituted WT mice, the tissue was generally protected. In the CCl4 direct damage model, hepatocytes regenerated in WT mice, whereas Par2KO mice failed to recover. Reciprocal BM replacement did not show significant differences in hepatic regeneration. In Par2KO mice, hepatitis was more apparent, while WT recovered regardless of the BM origin. CONCLUSIONS We conclude that Par2 activation in the immune system aggravates hepatitis and that Par2 activation in the damaged tissue promotes liver regeneration. When we incorporate this finding and revisit the literature reports, we reconciled the conflicts surrounding Par2's role in injury, recovery, and inflammation.
Collapse
Affiliation(s)
- Gal Reches
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Netta R. Blondheim Shraga
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Florent Carrette
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Assaf Malka
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Natalia Saleev
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Yehuda Gubbay
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Offir Ertracht
- grid.415839.2Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Izhak Haviv
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Linda M. Bradley
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fred Levine
- grid.479509.60000 0001 0163 8573Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ron Piran
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| |
Collapse
|
9
|
Abstract
It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.
Collapse
Affiliation(s)
- Petr SUHAJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas OLEJAR
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav MATEJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Department of Pathology, University Hospital Kralovske Vinohrady, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Protease-activated receptor 2 activation induces behavioural changes associated with depression-like behaviour through microglial-independent modulation of inflammatory cytokines. Psychopharmacology (Berl) 2022; 239:229-242. [PMID: 34888704 PMCID: PMC8770450 DOI: 10.1007/s00213-021-06040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a leading cause of disability worldwide but currently prescribed treatments do not adequately ameliorate the disorder in a significant portion of patients. Hence, a better appreciation of its aetiology may lead to the development of novel therapies. OBJECTIVES In the present study, we have built on our previous findings indicating a role for protease-activated receptor-2 (PAR2) in sickness behaviour to determine whether the PAR2 activator, AC264613, induces behavioural changes similar to those observed in depression-like behaviour. METHODS AC264613-induced behavioural changes were examined using the open field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), and novel object recognition test (NOR). Whole-cell patch clamping was used to investigate the effects of PAR2 activation in the lateral habenula with peripheral and central cytokine levels determined using ELISA and quantitative PCR. RESULTS Using a blood-brain barrier (BBB) permeable PAR2 activator, we reveal that AC-264613 (AC) injection leads to reduced locomotor activity and sucrose preference in mice but is without effect in anxiety and memory-related tasks. In addition, we show that AC injection leads to elevated blood sera IL-6 levels and altered cytokine mRNA expression within the brain. However, neither microglia nor peripheral lymphocytes are the source of these altered cytokine profiles. CONCLUSIONS These data reveal that PAR2 activation results in behavioural changes often associated with depression-like behaviour and an inflammatory profile that resembles that seen in patients with MDD and therefore PAR2 may be a target for novel antidepressant therapies.
Collapse
|
11
|
Liu Y, Li H, Hu J, Wu Z, Meng J, Hayashi Y, Nakanishi H, Qing H, Ni J. Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury. Mol Neurobiol 2021; 59:717-730. [PMID: 34762231 DOI: 10.1007/s12035-021-02594-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Regulation of microglial activation and neuroinflammation are critical factors in the pathogenesis of ischemic brain injury. Interest in protease-activated receptor 2 (PAR2) as a pharmaceutical target for various diseases is creasing. However, it is unclear the expression and functions of PAR2 in hypoxia-ischemic (HI) brain injury. Mice with HI and cells with oxygen-glucose deprivation and reoxygenation (OGD/R) were studied. Immunoblot and qRT-PCR were used to study the differential gene expression in cultured microglia and neurons. Immunofluorescent staining was used to study the expression pattern of PAR2 in the HI brain and phagocytotic activity of microglia after OGD/R. In neonatal mice brain after HI, we found PAR2 expression was abundant in neurons, but barely in microglia from the contralateral side of cortex and hippocampus. Conversely, PAR2 expression was barely in neurons while significantly increased in activated microglia from the ipsilateral side of cortex and hippocampus. The activations of PAR2 were increased in both microglia and neuron in a cell model of OGD/R. PAR2 activation mediated the cross-talk between microglia and neurons including the following: microglial PAR2 mediated inflammatory responses that induced neuronal damage; neuronal PAR2 regulated chemokines that recruited activated microglia to damage area; microglia PAR2 controlled the phagocytosis of degenerating neurons. These data suggested differential expression and distinct roles of PAR2 in microglia and neurons after HI injury; thereby, interventions targeting PAR2 may provide insights into the inflammatory-related diseases.
Collapse
Affiliation(s)
- Yicong Liu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100081, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jie Meng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Shawki MA, Elsayed NS, Mantawy EM, Said RS. Promising drug repurposing approach targeted for cytokine storm implicated in SARS-CoV-2 complications. Immunopharmacol Immunotoxicol 2021; 43:395-409. [PMID: 34057871 PMCID: PMC8171013 DOI: 10.1080/08923973.2021.1931302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
A global threat has emerged in 2019 due to the rapid spread of Coronavirus disease (COVID-19). As of January 2021, the number of cases worldwide reached 103 million cases and 2.22 million deaths which were confirmed as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This global pandemic galvanized the scientific community to study the causative virus (SARS-CoV2) pathogenesis, transmission, and clinical symptoms. Remarkably, the most common complication associated with this disease is the cytokine storm which is responsible for COVID-19 mortality. Thus, targeting the cytokine storm with new medications is needed to hamper COVID-19 complications where the most prominent strategy for the treatment is drug repurposing. Through this strategy, several steps are skipped especially those required for testing drug safety and thus may help in reducing the dissemination of this pandemic. Accordingly, the aim of this review is to outline the pathogenesis, clinical features, and immune complications of SARS-CoV2 in addition to suggesting several repurposed drugs with their plausible mechanism of action for possible management of severe COVID-19 cases.
Collapse
Affiliation(s)
- May Ahmed Shawki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha Salah Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M. Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S. Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
13
|
Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Front Immunol 2021; 12:665300. [PMID: 33981312 PMCID: PMC8107207 DOI: 10.3389/fimmu.2021.665300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its rapid spread and virulence. COVID-19 patients experience respiratory, digestive and neurological symptoms. Distinctive symptom as anosmia, suggests a potential neurotropism of this virus. Amongst the several pathways of entry to the nervous system, we propose an alternative pathway from the infection of the gut, involving Toll-like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain receptor. Possible use of zonulin antagonists could be investigated to attenuate neurological manifestations caused by SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Sílvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Eduardo Nava
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Mónica Muñoz-López
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | - Tomás Segura
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Servicio de Neurología, Hospital General Universitario de Albacete, Albacete, Spain.,Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
14
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Spinal PAR2 Activation Contributes to Hypersensitivity Induced by Peripheral Inflammation in Rats. Int J Mol Sci 2021; 22:ijms22030991. [PMID: 33498178 PMCID: PMC7863954 DOI: 10.3390/ijms22030991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of inflammatory pain need to be identified in order to find new superior treatments. Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) are highly co-expressed in dorsal root ganglion neurons and implicated in pain development. Here, we examined the role of spinal PAR2 in hyperalgesia and the modulation of synaptic transmission in carrageenan-induced peripheral inflammation, using intrathecal (i.t.) treatment in the behavioral experiments and recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs and eEPSCs) in spinal cord slices. Intrathecal PAR2-activating peptide (AP) administration aggravated the carrageenan-induced thermal hyperalgesia, and this was prevented by a TRPV1 antagonist (SB 366791) and staurosporine i.t. pretreatment. Additionally, the frequency of the mEPSC and sEPSC and the amplitude of the eEPSC recorded from the superficial dorsal horn neurons were enhanced after acute PAR2 AP application, while prevented with SB 366791 or staurosporine pretreatment. PAR2 antagonist application reduced the thermal hyperalgesia and decreased the frequency of mEPSC and sEPSC and the amplitude of eEPSC. Our findings highlight the contribution of spinal PAR2 activation to carrageenan-induced hyperalgesia and the importance of dorsal horn PAR2 and TRPV1 receptor interactions in the modulation of nociceptive synaptic transmission.
Collapse
|
16
|
Secreted gingipains from Porphyromonas gingivalis induce microglia migration through endosomal signaling by protease-activated receptor 2. Neurochem Int 2020; 140:104840. [DOI: 10.1016/j.neuint.2020.104840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
|
17
|
Buhl T, Ikoma A, Kempkes C, Cevikbas F, Sulk M, Buddenkotte J, Akiyama T, Crumrine D, Camerer E, Carstens E, Schön MP, Elias P, Coughlin SR, Steinhoff M. Protease-Activated Receptor-2 Regulates Neuro-Epidermal Communication in Atopic Dermatitis. Front Immunol 2020; 11:1740. [PMID: 32903402 PMCID: PMC7435019 DOI: 10.3389/fimmu.2020.01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Activation of protease-activated receptor-2 (PAR2) has been implicated in inflammation, pruritus, and skin barrier regulation, all characteristics of atopic dermatitis (AD), as well as Netherton syndrome which has similar characteristics. However, understanding the precise role of PAR2 on neuro-immune communication in AD has been hampered by the lack of appropriate animal models. Methods: We used a recently established mouse model with epidermal overexpression of PAR2 (PAR2OE) and littermate WT mice to study the impact of increased PAR2 expression in epidermal cells on spontaneous and house dust mite (HDM)-induced skin inflammation, itch, and barrier dysfunction in AD, in vivo and ex vivo. Results: PAR2OE newborns displayed no overt abnormalities, but spontaneously developed dry skin, severe pruritus, and eczema. Dermatological, neurophysiological, and immunological analyses revealed the hallmarks of AD-like skin disease. Skin barrier defects were observed before onset of skin lesions. Application of HDM onto PAR2OE mice triggered pruritus and the skin phenotype. PAR2OE mice displayed an increased density of nerve fibers, increased nerve growth factor and endothelin-1 expression levels, alloknesis, enhanced scratching (hyperknesis), and responses of dorsal root ganglion cells to non-histaminergic pruritogens. Conclusion: PAR2 in keratinocytes, activated by exogenous and endogenous proteases, is sufficient to drive barrier dysfunction, inflammation, and pruritus and sensitize skin to the effects of HDM in a mouse model that mimics human AD. PAR2 signaling in keratinocytes appears to be sufficient to drive several levels of neuro-epidermal communication, another feature of human AD.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Akihiko Ikoma
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - Cordula Kempkes
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ferda Cevikbas
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mathias Sulk
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Joerg Buddenkotte
- Department of Dermatology and Venerology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology, Temple Itch Center, Temple University, Philadelphia, PA, United States.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Debbie Crumrine
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Elias
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Steinhoff
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland.,Department of Dermatology and Venerology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Medical School, University of Qatar, Doha, Qatar.,School of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury. Mediators Inflamm 2020; 2020:4243953. [PMID: 32684835 PMCID: PMC7333064 DOI: 10.1155/2020/4243953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI.
Collapse
|
19
|
Gonzalez CG, Tankou SK, Cox LM, Casavant EP, Weiner HL, Elias JE. Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. Sci Rep 2019; 9:12460. [PMID: 31462662 PMCID: PMC6713765 DOI: 10.1038/s41598-019-48495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 01/20/2023] Open
Abstract
Diseases are often diagnosed once overt symptoms arise, ignoring the prior latent period when effective prevention may be possible. Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, exhibits such disease latency, but the molecular processes underlying this asymptomatic period remain poorly characterized. Gut microbes also influence EAE severity, yet their impact on the latent period remains unknown. Here, we show the latent period between immunization and EAE's overt symptom onset is characterized by distinct host responses as measured by stool proteomics. In particular, we found a transient increase in protease inhibitors that inversely correlated with disease severity. Vancomycin administration attenuated both EAE symptoms and protease inhibitor induction potentially by decreasing immune system reactivity, supporting a subset of the microbiota's role in modulating the host's latent period response. These results strengthen previous evidence of proteases and their inhibitors in EAE and highlight the utility stool-omics for revealing complex, dynamic biology.
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Stephanie K Tankou
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
- Department Of Neurology, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Cox
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Ellen P Casavant
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Howard L Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Joshua E Elias
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA.
- Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
20
|
Han C, Guo L, Yang Y, Li W, Sheng Y, Wang J, Guan Q, Zhang X. Study on antrodia camphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome. Phytother Res 2019; 33:2288-2297. [PMID: 31359520 DOI: 10.1002/ptr.6388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/03/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and the role of neuroinflammation in the pathogenesis and progression of PD has been confirmed. The polysaccharides and triterpenoids of antrodia camphorata (a polyporous fungus) harbor diverse and powerful pharmacological effects. In this study, 6-hydroxydopamine was used to construct a PD mouse model. After antrodia camphorata polysaccharide (ACP) intervention, neurobehavioral changes were detected, neurotransmitter changes in striatum were determined by high-performance liquid chromatography, the alterations of striatal NOD-like receptor pyrin domain containing three (NLRP3) were examined by immunohistochemistry, and the expression of NLRP3, IL-1β, Caspase-1, and proCaspase-1 were detected by western blot. To be specific, the items of neurobehavioral test included open field activity, rotary test, pole test, gait analysis, and swimming test. As a result, 6-hydroxydopamine could lead to PD-like lesions, including tremor, stiffness, attenuated spontaneous activity, and bradykinesia in mice, and the expression of tyrosine hydroxylase in the striatum was decreased. After ACP intervention, the neuroethology of mice was significantly improved, as demonstrated by the elevated levels of dopamine in the striatum and the decreased expression of dopamine in the striatum in NLRP3 inflammasome. NLRP3 inflammasome played an important role in neuroinflammation in PD mice. ACP could reduce the activation of NLRP3 and expression of related inflammatory factors.
Collapse
Affiliation(s)
- Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - Li Guo
- Department of Central Laboratory, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - WenYan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - YongJia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| | - Xiaoling Zhang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, JiaXing, China
| |
Collapse
|
21
|
Eftekhari R, de Lima SG, Liu Y, Mihara K, Saifeddine M, Noorbakhsh F, Scarisbrick IA, Hollenberg MD. Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation. Biol Chem 2019; 399:1023-1039. [PMID: 29924723 DOI: 10.1515/hsz-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Abstract
We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Stacy G de Lima
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Yu Liu
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mahmoud Saifeddine
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
22
|
Yoon H, Radulovic M, Scarisbrick IA. Kallikrein-related peptidase 6 orchestrates astrocyte form and function through proteinase activated receptor-dependent mechanisms. Biol Chem 2019; 399:1041-1052. [PMID: 29604205 DOI: 10.1515/hsz-2018-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 02/01/2023]
Abstract
Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of β-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Sachan V, Lodge R, Mihara K, Hamelin J, Power C, Gelman BB, Hollenberg MD, Cohen ÉA, Seidah NG. HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death Differ 2019; 26:1942-1954. [PMID: 30683917 DOI: 10.1038/s41418-018-0264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.
Collapse
Affiliation(s)
- Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Robert Lodge
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Josée Hamelin
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB, T6G2S2, Canada
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch Houston, Galveston, 77555, TX, USA
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada.
| |
Collapse
|
24
|
Li TZ, Deng H, Liu Q, Xia YZ, Darwazeh R, Yan Y. Protease-activated receptor-2 regulates glial scar formation via JNK signaling. Physiol Res 2019; 68:305-316. [PMID: 30628825 DOI: 10.33549/physiolres.933908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The study aimed to determine the effects of protease-activated receptor-2 (PAR-2) on glial scar formation after spinal cord injury (SCI) in Sprague-Dawley (SD) rats and the underlying mechanisms. Rivlin and Tator's acute extradural clip compression injury (CCI) model of severe SCI was established in this study. Animals were divided into four groups: 1) sham group (laminectomy only); 2) model group, treated with normal saline; 3) PAR-2 inhibitor group; 4) PAR-2 activator group. Enhanced GFAP and vimentin expression were the markers of glial scar formation. To determine whether JNK was involved in the effects of PAR-2 on GFAP and vimentin expression, we administered anisomycin (a JNK activator) in the presence of PAR-2 inhibitor and SP600125 (a JNK inhibitor) in the presence of PAR-2 activator. At 1, 7, 14 and 28 day after SCI, Basso, Beattie, and Bresnahan (BBB) locomotor score test was used to assess the locomotor functional recovery; immunofluorescence and western blot analysis were used to assess the expression level of GFAP, vimentin and p-JNK. Double immunofluorescence staining with GFAP and tubulin beta was used to assess the glial scar formation and the remaining neurons. Results suggested that PAR-2 is involved in glial scar formation and reduces neurons residues which can cause a further worsening in the functional outcomes after SCI via JNK signaling. Therefore, it may be effective to target PAR-2 in the treatment of SCI.
Collapse
Affiliation(s)
- Tian-Zun Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
25
|
Masoumi F, Ghorbani S, Talebi F, Branton WG, Rajaei S, Power C, Noorbakhsh F. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 328:50-59. [PMID: 30583215 DOI: 10.1016/j.jneuroim.2018.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the contributions of the MALAT1 long noncoding RNA to autoimmune neuroinflammation in central nervous system tissues from patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE). Expression of MALAT1 was decreased in the spinal cords of EAE mice as well as in stimulated splenocytes and primary macrophages. MALAT1 downregulation by specific siRNAs enhanced the polarization of macrophages towards the M1 phenotype. Interestingly, siRNA-mediated MALAT1 downregulation shifted the pattern of T-cell differentiation towards a Th1/Th17 cell profile and decreased differentiation towards a Tregs phenotype. Proliferation of T-cells was also increased following MALAT1 downregulation. These data point to a potential anti-inflammatory effect for MALAT1 in the context of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Farimah Masoumi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada; Multiple Sclerosis Centre, University of Alberta, Edmonton, AB, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
27
|
Yoon H, Radulovic M, Walters G, Paulsen AR, Drucker K, Starski P, Wu J, Fairlie DP, Scarisbrick IA. Protease activated receptor 2 controls myelin development, resiliency and repair. Glia 2017; 65:2070-2086. [PMID: 28921694 DOI: 10.1002/glia.23215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Grant Walters
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Alex R Paulsen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Kristen Drucker
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
28
|
Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, Baker GB, Noorbakhsh F, Power C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia 2017; 65:1590-1606. [PMID: 28707358 DOI: 10.1002/glia.23179] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Neurosteroids are reported to exert anti-inflammatory effects in several neurological disorders. We investigated the expression and actions of the neurosteroid, dehydroepiandrosterone (DHEA), and its more stable 3β-sulphated ester, DHEA-S, in MS and associated experimental models. CNS tissues from patients with MS and animals with experimental autoimmune encephalomyelitis (EAE) displayed reduced DHEA concentrations, accompanied by diminished expression of the DHEA-synthesizing enzyme CYP17A1 in oligodendrocytes (ODCs), in association with increased expression of inflammatory genes including interferon (IFN)-γ and interleukin (IL)-1β. CYP17A1 was expressed variably in different human neural cell types but IFN-γ exposure selectively reduced CYP17A1 detection in ODCs. DHEA-S treatment reduced IL-1β and -6 release from activated human myeloid cells with minimal effect on lymphocyte viability. Animals with EAE receiving DHEA-S treatment showed reduced Il1b and Ifng transcript levels in spinal cord compared to vehicle-treated animals with EAE. DHEA-S treatment also preserved myelin basic protein immunoreactivity and reduced axonal loss in animals with EAE, relative to vehicle-treated EAE animals. Neurobehavioral deficits were reduced in DHEA-S-treated EAE animals compared with vehicle-treated animals with EAE. Thus, CYP17A1 expression in ODCs and its product DHEA were downregulated in the CNS during inflammatory demyelination while DHEA-S provision suppressed neuroinflammation, demyelination, and axonal injury that was evident as improved neurobehavioral performance. These findings indicate that DHEA production is an immunoregulatory pathway within the CNS and its restoration represents a novel treatment approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roobina Boghozian
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Brienne A McKenzie
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Leina B Saito
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Ninad Mehta
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - William G Branton
- Department of, Medicine, University of Alberta Edmonton, Alberta, Canada
| | - JianQiang Lu
- Department of Laboratory Medicine & Pathology, University of Alberta Edmonton, Alberta, Canada
| | - Glen B Baker
- Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| | - Farshid Noorbakhsh
- Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of, Medicine, University of Alberta Edmonton, Alberta, Canada.,Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 2017; 13:e1006360. [PMID: 28594894 PMCID: PMC5464672 DOI: 10.1371/journal.ppat.1006360] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) represent a spectrum neurological syndrome that affects up to 25% of patients with HIV/AIDS. Multiple pathogenic mechanisms contribute to the development of HAND symptoms including chronic neuroinflammation and neurodegeneration. Among the factors linked to development of HAND is altered expression of host cell microRNAs (miRNAs) in brain. Here, we examined brain miRNA profiles among HIV/AIDS patients with and without HAND. Our analyses revealed differential expression of 17 miRNAs in brain tissue from HAND patients. A subset of the upregulated miRNAs (miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p), are predicted to target peroxisome biogenesis factors (PEX2, PEX7, PEX11B and PEX13). Expression of these miRNAs in transfected cells significantly decreased levels of peroxisomal proteins and concomitantly decreased peroxisome numbers or affected their morphology. The levels of miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p were not only elevated in the brains of HAND patients, but were also upregulated during HIV infection of primary macrophages. Moreover, concomitant loss of peroxisomal proteins was observed in HIV-infected macrophages as well as in brain tissue from HIV-infected patients. HIV-induced loss of peroxisomes was abrogated by blocking the functions of the upregulated miRNAs. Overall, these findings point to previously unrecognized miRNA expression patterns in the brains of HIV patients. Targeting peroxisomes by up-regulating miRNAs that repress peroxisome biogenesis factors may represent a novel mechanism by which HIV-1 subverts innate immune responses and/or causes neurocognitive dysfunction.
Collapse
Affiliation(s)
- Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Eugene L. Asahchop
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - William G. Branton
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Hanusova Z, Mosko T, Matej R, Holada K. Precision in the design of an experimental study deflects the significance of proteinase-activated receptor 2 expression in scrapie-inoculated mice. J Gen Virol 2017; 98:1563-1569. [DOI: 10.1099/jgv.0.000803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Zdenka Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, Prague 2, 128 00, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, Prague 2, 128 00, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Teaching Hospital, Videnska 800, Prague 4, 14059, Czech Republic
- Department of Pathology, First Faculty of Medicine, Charles University, Studnickova 2, Prague 2, 12800, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, Prague 2, 128 00, Czech Republic
| |
Collapse
|
31
|
Talebi F, Ghorbani S, Chan WF, Boghozian R, Masoumi F, Ghasemi S, Vojgani M, Power C, Noorbakhsh F. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 2017; 14:55. [PMID: 28302134 PMCID: PMC5356264 DOI: 10.1186/s12974-017-0832-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs have emerged as an important class of modulators of gene expression. These molecules influence protein synthesis through translational repression or degradation of mRNA transcripts. Herein, we investigated the potential role of miR-142a isoforms, miR-142a-3p and miR-142a-5p, in the context of autoimmune neuroinflammation. Methods The expression levels of two mature isoforms of miR-142 were measured in the brains of patients with multiple sclerosis (MS) and the CNS tissues from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Expression analyses were also performed in mitogen and antigen-stimulated splenocytes, as well as macrophages and astrocytes using real-time RT-PCR. The role of the mature miRNAs was then investigated in T cell differentiation by transfection of CD4+ T cells, followed by flow cytometric analysis of intracellular cytokines. Luciferase assays using vectors containing the 3′UTR of predicted targets were performed to confirm the interaction of miRNA sequences with transcripts. Expression of targets were then analyzed in activated splenocytes and MS/EAE tissues. Results Expression of miR-142-5p was significantly increased in the frontal white matter from MS patients compared with white matter from non-MS controls. Likewise, expression levels of miR-142a-5p and miR-142a-3p showed significant upregulation in the spinal cords of EAE mice at days 15 and 25 post disease induction. Splenocytes stimulated with myelin oligodendrocyte glycoprotein (MOG) peptide or anti-CD3/anti-CD28 antibodies showed upregulation of miR-142a-5p and miR-142a-3p isoforms, whereas stimulated bone marrow-derived macrophages and primary astrocytes did not show any significant changes in miRNA expression levels. miR-142a-5p overexpression in activated lymphocytes shifted the pattern of T cell differentiation towards Th1 cells. Luciferase assays revealed SOCS1 and TGFBR1 as direct targets of miR-142a-5p and miR-142a-3p, respectively, and overexpression of miRNA mimic sequences suppressed the expression of these target transcripts in lymphocytes. SOCS1 levels were also diminished in MS white matter and EAE spinal cords. Conclusions Our findings suggest that increased expression of miR-142 isoforms might be involved in the pathogenesis of autoimmune neuroinflammation by influencing T cell differentiation, and this effect could be mediated by interaction of miR-142 isoforms with SOCS1 and TGFBR-1 transcripts. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0832-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wing Fuk Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roobina Boghozian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farimah Masoumi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghasemi
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Mohammed Vojgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada.,Multiple Sclerosis Centre, University of Alberta, Edmonton, AB, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Shavit-Stein E, Artan-Furman A, Feingold E, Ben Shimon M, Itzekson-Hayosh Z, Chapman J, Vlachos A, Maggio N. Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4). Front Mol Neurosci 2017; 10:42. [PMID: 28303089 PMCID: PMC5332813 DOI: 10.3389/fnmol.2017.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of N-methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Avital Artan-Furman
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Ekaterina Feingold
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | | | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Duesseldorf, Germany
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical CenterTel HaShomer, Israel
| |
Collapse
|
33
|
Morihara R, Yamashita T, Kono S, Shang J, Nakano Y, Sato K, Hishikawa N, Ohta Y, Heitmeier S, Perzborn E, Abe K. Reduction of intracerebral hemorrhage by rivaroxaban after tPA thrombolysis is associated with downregulation of PAR-1 and PAR-2. J Neurosci Res 2016; 95:1818-1828. [PMID: 28035779 DOI: 10.1002/jnr.24013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
This study aimed to assess the risk of intracerebral hemorrhage (ICH) after tissue-type plasminogen activator (tPA) treatment in rivaroxaban compared with warfarin-pretreated male Wistar rat brain after ischemia in relation to activation profiles of protease-activated receptor-1, -2, -3, and -4 (PAR-1, -2, -3, and -4). After pretreatment with warfarin (0.2 mg/kg/day), low-dose rivaroxaban (60 mg/kg/day), high-dose rivaroxaban (120 mg/kg/day), or vehicle for 14 days, transient middle cerebral artery occlusion was induced for 90 min, followed by reperfusion with tPA (10 mg/kg/10 ml). Infarct volume, hemorrhagic volume, immunoglobulin G leakage, and blood parameters were examined. Twenty-four hours after reperfusion, immunohistochemistry for PARs was performed in brain sections. ICH volume was increased in the warfarin-pretreated group compared with the rivaroxaban-treated group. PAR-1, -2, -3, and -4 were widely expressed in the normal brain, and their levels were increased in the ischemic brain, especially in the peri-ischemic lesion. Warfarin pretreatment enhanced the expression of PAR-1 and PAR-2 in the peri-ischemic lesion, whereas rivaroxaban pretreatment did not. The present study shows a lower risk of brain hemorrhage in rivaroxaban-pretreated compared with warfarin-pretreated rats following tPA administration to the ischemic brain. It is suggested that the relative downregulation of PAR-1 and PAR-2 by rivaroxaban compared with warfarin pretreatment might be partly involved in the mechanism of reduced hemorrhagic complications in patients receiving rivaroxaban in clinical trials. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryuta Morihara
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Syoichiro Kono
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Kota Sato
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Stefan Heitmeier
- Bayer Pharma AG, Drug Discovery-Global Therapeutic Research Groups, Cardiovascular Pharmacology, Wuppertal, Germany
| | - Elisabeth Perzborn
- Bayer Pharma AG, Drug Discovery-Global Therapeutic Research Groups, Cardiovascular Pharmacology, Wuppertal, Germany
| | - Koji Abe
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Branton WG, Lu JQ, Surette MG, Holt RA, Lind J, Laman JD, Power C. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 2016; 6:37344. [PMID: 27892518 PMCID: PMC5125007 DOI: 10.1038/srep37344] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Microbial communities reside in healthy tissues but are often disrupted during disease. Bacterial genomes and proteins are detected in brains from humans, nonhuman primates, rodents and other species in the absence of neurological disease. We investigated the composition and abundance of microbiota in frozen and fixed autopsied brain samples from patients with multiple sclerosis (MS) and age- and sex-matched nonMS patients as controls, using neuropathological, molecular and bioinformatics tools. 16s rRNA sequencing revealed Proteobacteria to be the dominant phylum with restricted diversity in cerebral white matter (WM) from MS compared to nonMS patients. Both clinical groups displayed 1,200–1,400 bacterial genomes/cm3 and low bacterial rRNA:rDNA ratios in WM. RNAseq analyses showed a predominance of Proteobacteria in progressive MS patients’ WM, associated with increased inflammatory gene expression, relative to a broader range of bacterial phyla in relapsing-remitting MS patients’ WM. Although bacterial peptidoglycan (PGN) and RNA polymerase beta subunit immunoreactivities were observed in all patients, PGN immunodetection was correlated with demyelination and neuroinflammation in MS brains. Principal component analysis revealed that demyelination, PGN and inflammatory gene expression accounted for 86% of the observed variance. Thus, inflammatory demyelination is linked to an organ-specific dysbiosis in MS that could contribute to underlying disease mechanisms.
Collapse
Affiliation(s)
- W G Branton
- Department of Medicine, University of Alberta, Edmonton AB Canada.,Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada
| | - J Q Lu
- Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada.,Department of Psychiatry, University of Alberta, Edmonton AB Canada
| | - M G Surette
- Department of Medicine, McMaster University, Hamilton ON Canada
| | - R A Holt
- Genome Sciences Centre, Vancouver BC, Canada
| | - J Lind
- Department of Neurosciences, Section of Medical Physiology, Faculty of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| | - J D Laman
- Multiple Sclerosis Centre, University of Alberta, Edmonton AB Canada
| | - C Power
- Department of Medicine, University of Alberta, Edmonton AB Canada.,Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada.,Department of Neurosciences, Section of Medical Physiology, Faculty of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| |
Collapse
|
35
|
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A. Neuroinflammation Induces Neurodegeneration. JOURNAL OF NEUROLOGY, NEUROSURGERY AND SPINE 2016; 1:1003. [PMID: 28127589 PMCID: PMC5260818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca+ elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- D Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - R Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - PA Natteru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - GP Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - D Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - H Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - S Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - SS Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| |
Collapse
|
36
|
Mrozkova P, Spicarova D, Palecek J. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors. PLoS One 2016; 11:e0163991. [PMID: 27755539 PMCID: PMC5068818 DOI: 10.1371/journal.pone.0163991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022] Open
Abstract
Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception.
Collapse
Affiliation(s)
- Petra Mrozkova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Diana Spicarova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
37
|
Mamik MK, Hui E, Branton WG, McKenzie BA, Chisholm J, Cohen EA, Power C. HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: implications for HIV-1 Associated Neuroinflammation. J Neuroimmune Pharmacol 2016; 12:233-248. [PMID: 27726055 DOI: 10.1007/s11481-016-9708-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Human Immunodeficiency virus (HIV) enters the brain soon after seroconversion and induces chronic neuroinflammation by infecting and activating brain macrophages. Inflammasomes are cytosolic protein complexes that mediate caspase-1 activation and ensuing cleavage and release of IL-1β and -18 by macrophages. Our group recently showed that HIV-1 infection of human microglia induced inflammasome activation in NLRP3-dependent manner. The HIV-1 viral protein R (Vpr) is an accessory protein that is released from HIV-infected cells, although its effects on neuroinflammation are undefined. Infection of human microglia with Vpr-deficient HIV-1 resulted in reduced caspase-1 activation and IL-1β production, compared to cells infected with a Vpr-encoding HIV-1 virus. Vpr was detected at low nanomolar concentrations in cerebrospinal fluid from HIV-infected patients and in supernatants from HIV-infected primary human microglia. Exposure of human macrophages to Vpr caused caspase-1 cleavage and IL-1β release with reduced cell viability, which was dependent on NLRP3 expression. Increased NLRP3, caspase-1, and IL-1β expression was evident in HIV-1 Vpr transgenic mice compared to wild-type littermates, following systemic immune stimulation. Treatment with the caspase-1 inhibitor, VX-765, suppressed NLRP3 expression with reduced IL-1β expression and associated neuroinflammation. Neurobehavioral deficits showed improvement in Vpr transgenic animals treated with VX-765. Thus, Vpr-induced NLRP3 inflammasome activation, which contributed to neuroinflammation and was abrogated by caspase-1 inhibition. This study provides a new therapeutic perspective for HIV-associated neuropsychiatric disease.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Elizabeth Hui
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Brienne A McKenzie
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Jesse Chisholm
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal (IRCM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada.
| |
Collapse
|
38
|
Ha D, Bing SJ, Ahn G, Kim J, Cho J, Kim A, Herath KHINM, Yu HS, Jo SA, Cho IH, Jee Y. Blocking glutamate carboxypeptidase II inhibits glutamate excitotoxicity and regulates immune responses in experimental autoimmune encephalomyelitis. FEBS J 2016; 283:3438-56. [DOI: 10.1111/febs.13816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Danbee Ha
- College of Veterinary Medicine; Jeju National University; South Korea
| | - So Jin Bing
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences; Chonnam National University; Yeosu South Korea
| | - Jinhee Kim
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Jinhee Cho
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Areum Kim
- Department of Advanced Convergence Technology & Science; Jeju National University; South Korea
| | | | - Hak Sun Yu
- Department of Parasitology; School of Medicine; Pusan National University; Yangsan South Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science; Brain Korea 21 Plus Program, and Institute of Korean Medicine; College of Korean Medicine, Kyung Hee University; Seoul South Korea
| | - Youngheun Jee
- College of Veterinary Medicine; Jeju National University; South Korea
- Department of Advanced Convergence Technology & Science; Jeju National University; South Korea
- Veterinary Medical Research Institute; Jeju National University; South Korea
| |
Collapse
|
39
|
Proteinase-activated receptor 2 is involved in the behavioural changes associated with sickness behaviour. J Neuroimmunol 2016; 295-296:139-47. [DOI: 10.1016/j.jneuroim.2016.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
40
|
Nikolakopoulou AM, Georgakopoulos A, Robakis NK. Presenilin 1 promotes trypsin-induced neuroprotection via the PAR2/ERK signaling pathway. Effects of presenilin 1 FAD mutations. Neurobiol Aging 2016; 42:41-9. [PMID: 27143420 PMCID: PMC4857890 DOI: 10.1016/j.neurobiolaging.2016.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 11/18/2022]
Abstract
Mutants of presenilin 1 (PS1) increase neuronal cell death causing autosomal-dominant familial Alzheimer's disease (FAD). Recent literature shows that treatment of neuronal cultures with low concentrations of trypsin, a member of the serine family of proteases, protects neurons from toxic insults by binding to the proteinase-activated receptor 2 and stimulating survival kinase extracellular signal-regulated kinase (ERK 1/2). Other studies show that PS1 is necessary for the neuroprotective activity of specific neurotrophic factors, such as brain-derived neurotrophic factor, against excitotoxicity and oxidative stress. Here, we show that treatment of mouse cortical neuronal cultures with trypsin activates ERK1/2 and protects neurons against glutamate excitoxicity. The trypsin-dependent ERK activation and neuroprotection requires both alleles of PS1 because neither PS1 knockout nor PS1 hemizygous neuronal cultures can use exogenous trypsin to activate ERK1/2 or increase neuronal survival. The protective effect of PS1 does not depend on its γ-secretase activity because inhibitors of γ-secretase have no effect on trypsin-mediated neuroprotection. Importantly, cortical neuronal cultures either heterozygous or homozygous for PS1 FAD mutants are unable to use trypsin to activate ERK1/2 and rescue neurons from excitotoxicity, indicating that FAD mutants inhibit trypsin-dependent neuroprotection in an autosomal-dominant manner. Furthermore, our data support the theory that PS FAD mutants increase neurodegeneration by inhibiting the ability of neurons to use cellular factors as protective agents against toxic insults.
Collapse
Affiliation(s)
- Angeliki M Nikolakopoulou
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Wang S, Reeves B, Pawlinski R. Astrocyte tissue factor controls CNS hemostasis and autoimmune inflammation. Thromb Res 2016; 141 Suppl 2:S65-7. [DOI: 10.1016/s0049-3848(16)30369-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Mrozkova P, Palecek J, Spicarova D. The role of protease-activated receptor type 2 in nociceptive signaling and pain. Physiol Res 2016; 65:357-67. [PMID: 27070742 DOI: 10.33549/physiolres.933269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments.
Collapse
Affiliation(s)
- P Mrozkova
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
43
|
The Importance of Thrombin in Cerebral Injury and Disease. Int J Mol Sci 2016; 17:ijms17010084. [PMID: 26761005 PMCID: PMC4730327 DOI: 10.3390/ijms17010084] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified in neuronal cells and astrocytes via mRNA measurement. The actual amount of brain derived prothrombin is expected to be 1% or less compared to that in the liver. The role in brain injury depends upon its concentration, as higher amounts cause neuroinflammation and apoptosis, while lower concentrations might even be cytoprotective. Its involvement in numerous diseases like Alzheimer’s, multiple sclerosis, cerebral ischemia and haemorrhage is becoming increasingly clear. This review focuses on elucidation of the cerebral thrombin expression, local generation and its role in injury and disease of the central nervous system.
Collapse
|
44
|
Zuo P, Zuo Z, Wang X, Chen L, Zheng Y, Ma G, Zhou Q. Factor Xa induces pro-inflammatory cytokine expression in RAW 264.7 macrophages via protease-activated receptor-2 activation. Am J Transl Res 2015; 7:2326-2334. [PMID: 26807180 PMCID: PMC4697712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Coagulation proteases have been suggested to trigger a diversity of inflammatory responses in addition to their critical role in the coagulation cascade. It has been well established that the inflammatory and coagulation pathways are invariably linked. However, the mechanisms through which coagulation protease factor Xa (FXa) causes inflammation remain unclear. Thus, we assessed the pro-inflammatory effects of FXa in RAW 264.7 macrophages. We show that FXa elicits signal transduction in RAW 264.7 macrophages. FXa-induced signal transduction was dependent on the activation of protease-activated receptor 2 (PAR-2), PAR-2 desensitization but not PAR-1 desensitization abolished FXa-induced ERK1/2 phosphorylation. The PAR-2-dependent cellular effects of FXa led to the expression of pro-inflammatory cytokines IL-6, IL-8, TNF-α and IFN-γ in RAW 264.7 macrophages. Furthermore, a specific inhibitor of the ERK1/2 pathway, U0126, decreased the FXa-induced pro-inflammatory cytokines expression significantly. Taken together, our data indicate that FXa induces PAR-2-dependent pro-inflammatory activity in RAW 264.7 macrophages through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Pengfei Zuo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Zhi Zuo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Long Chen
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Yueyue Zheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| | - Qianxing Zhou
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University Nanjing, Jiangsu, P.R. China
| |
Collapse
|
45
|
Kim HN, Kim YR, Ahn SM, Lee SK, Shin HK, Choi BT. Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier. J Neurochem 2015; 135:577-88. [PMID: 26285165 DOI: 10.1111/jnc.13285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
To evaluate the question of whether protease activated receptor-1 (PAR-1) antagonist is a potential therapeutic target in multiple sclerosis, we treated experimental autoimmune encephalomyelitis (EAE) mice with two PAR-1 antagonists, KC-A0590 and SCH-530348. Treatment with both antagonists resulted in a significant decrease in the clinical characteristics of EAE mice by suppressing demyelination and infiltration of inflammatory cells in the spinal cord and brain, as well as a significantly reducing the increased thrombin and tumor necrosis factor-α. Profound leakage of dextran was observed in the brain of EAE mice. However, treatment with PAR-1 antagonists resulted in the stabilization of vascular endothelial cells and reduced blood-brain barrier breakdown with suppression of inflammatory response. Treatment with PAR-1 antagonists also resulted in down-regulated expression of matrix metalloproteinase-9 and preserved expression of occludin and zonula occludens (ZO)-1 in the brain and their significant expression was confirmed in neurons, astrocytes, and vascular endothelial cells. Finally, endothelial cells and primary cultured astrocytes were treated with PAR-1 antagonists; both antagonists suppressed thrombin-induced breakdown of ZO-1 in endothelial cells and secretion of matrix metalloproteinase-9 in astrocytes. Collectively, our results suggest that PAR-1 antagonist is effective in attenuation of the clinical symptoms of EAE mice by stabilizing the blood-brain barrier and may have therapeutic potential for treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Korean Medical Science, Pusan National University, Yangsan, Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, Pusan National University, Yangsan, Korea
| | - Sung Min Ahn
- Department of Korean Medical Science, Pusan National University, Yangsan, Korea
| | - Sun Kyung Lee
- Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, Pusan National University, Yangsan, Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Korea
| |
Collapse
|
46
|
Radulovic M, Yoon H, Wu J, Mustafa K, Fehlings MG, Scarisbrick IA. Genetic targeting of protease activated receptor 2 reduces inflammatory astrogliosis and improves recovery of function after spinal cord injury. Neurobiol Dis 2015; 83:75-89. [PMID: 26316358 DOI: 10.1016/j.nbd.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/01/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammatory-astrogliosis exacerbates damage in the injured spinal cord and limits repair. Here we identify Protease Activated Receptor 2 (PAR2) as an essential regulator of these events with mice lacking the PAR2 gene showing greater improvements in motor coordination and strength after compression-spinal cord injury (SCI) compared to wild type littermates. Molecular profiling of the injury epicenter, and spinal segments above and below, demonstrated that mice lacking PAR2 had significantly attenuated elevations in key hallmarks of astrogliosis (glial fibrillary acidic protein (GFAP), vimentin and neurocan) and in expression of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor (TNF) and interleukin-1 beta (IL-1β)). SCI in PAR2-/- mice was also accompanied by improved preservation of protein kinase C gamma (PKCγ)-immunopositive corticospinal axons and reductions in GFAP-immunoreactivity, expression of the pro-apoptotic marker BCL2-interacting mediator of cell death (BIM), and in signal transducer and activator of transcription 3 (STAT3). The potential mechanistic link between PAR2, STAT3 and astrogliosis was further investigated in primary astrocytes to reveal that the SCI-related serine protease, neurosin (kallikrein 6) promotes IL-6 secretion in a PAR2 and STAT3-dependent manner. Data point to a signaling circuit in primary astrocytes in which neurosin signaling at PAR2 promotes IL-6 secretion and canonical STAT3 signaling. IL-6 promotes expression of GFAP, vimentin, additional IL-6 and robust increases in both neurosin and PAR2, thereby driving the PAR2-signaling circuit forward. Given the significant reductions in astrogliosis and inflammation as well as superior neuromotor recovery observed in PAR2 knockout mice after SCI, we suggest that this receptor and its agonists represent new drug targets to foster neuromotor recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Michael G Fehlings
- Department of Surgery, Toronto Western Research Institute, Toronto, ON M5T 2S8, Canada
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
47
|
Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder. Mol Cell Biol 2015; 35:3684-700. [PMID: 26283733 DOI: 10.1128/mcb.00764-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023] Open
Abstract
The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND.
Collapse
|
48
|
Fongsupa S, Soodvilai S, Muanprasat C, Chatsudthipong V, Soodvilai S. Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicol Lett 2015; 236:145-53. [DOI: 10.1016/j.toxlet.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
|
49
|
Lorefice L, Tranquilli S, Fenu G, Murru MR, Frau J, Rolesu M, Coghe GC, Marrosu F, Marrosu MG, Cocco E. A genetic study of the FMR1 gene in a Sardinian multiple sclerosis population. Neurol Sci 2015; 36:2213-20. [PMID: 26194536 DOI: 10.1007/s10072-015-2339-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 02/04/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease originated from the interplay between genetic and environmental factors. An overlap of clinical and neuroradiological parameters has been described between MS and an adult-onset neurodegenerative disorder, the fragile-X-associated tremor/ataxia syndrome (FXTAS). This syndrome is caused by a trinucleotide premutation expansion of a CGG sequence in the 55-200 repeat range, which is located in the fragile-X mental retardation 1 (FMR1) gene. Female premutation carriers have an increased propensity for immune-mediated disorders. Recently, a case of co-occurrence of MS and FXTAS was reported. Assuming that the premutation expansion may play a role in the MS susceptibility, we evaluated its frequency in a cohort of MS patients from Sardinia, an island characterized by a very high frequency of MS. Nuclear DNA was extracted by standard methods, purified with bisulfite treatment and then amplified twice by PCR with specific primers. Microsatellite analysis was performed and emizogotic subjects were sequenced. Clinical data of patients were also collected. Only 1/755 MS patients exhibited the premutation expansion with a heterozygosis pattern (30/58). No pathogenic repeat expansions (>200 repeats) were found in the entire cohort. Repeats labeled as the gray zone (45-60 repeats) were observed in 15/755 patients. No specific clinical features concerning disease course, disease activity, and disability were reported for these patients. Our results do not support a possible role for premutation or gray zone alleles in MS Sardinian patients. Further studies are needed to better understand the relationship between FXTAS and MS.
Collapse
Affiliation(s)
- L Lorefice
- Department of Public Health and Clinical and Molecular Medicine, Multiple Sclerosis Center, University of Cagliari, Ospedale "Binaghi", via Is Guadazzonis, 2, 09126, Cagliari, Italy.
| | - S Tranquilli
- Department of Medical Sciences, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - G Fenu
- Department of Public Health and Clinical and Molecular Medicine, Multiple Sclerosis Center, University of Cagliari, Ospedale "Binaghi", via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - M R Murru
- ASL8-Department of Medical Sciences, Multiple Sclerosis Center, University of Cagliari, Cagliari, Italy
| | - J Frau
- Department of Public Health and Clinical and Molecular Medicine, Multiple Sclerosis Center, University of Cagliari, Ospedale "Binaghi", via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - M Rolesu
- ASL8-Department of Medical Sciences, Multiple Sclerosis Center, University of Cagliari, Cagliari, Italy
| | - G C Coghe
- Department of Public Health and Clinical and Molecular Medicine, Multiple Sclerosis Center, University of Cagliari, Ospedale "Binaghi", via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - F Marrosu
- Department of Medical Sciences, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - M G Marrosu
- Department of Medical Sciences, Multiple Sclerosis Center, University of Cagliari, Cagliari, Italy
| | - E Cocco
- Department of Public Health and Clinical and Molecular Medicine, Multiple Sclerosis Center, University of Cagliari, Ospedale "Binaghi", via Is Guadazzonis, 2, 09126, Cagliari, Italy
| |
Collapse
|
50
|
Hurley MJ, Durrenberger PF, Gentleman SM, Walls AF, Dexter DT. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease. J Mol Neurosci 2015; 57:48-62. [PMID: 25982926 DOI: 10.1007/s12031-015-0576-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in neuroinflammation, drugs that mitigate these changes may be neuroprotective when administered to patients with Parkinson's disease.
Collapse
Affiliation(s)
- Michael J Hurley
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK,
| | | | | | | | | |
Collapse
|