1
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
3
|
Calagua-Bedoya EA, Rajasekaran V, De Witte L, Perez-Rodriguez MM. The Role of Inflammation in Depression and Beyond: A Primer for Clinicians. Curr Psychiatry Rep 2024; 26:514-529. [PMID: 39187612 DOI: 10.1007/s11920-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW We evaluate available evidence for the role of inflammation in depression. We reappraise literature involving systemic inflammation, neuroinflammation and neurotransmission and their association with depression. We review the connection between depression, autoimmunity and infectious diseases. We revise anti-inflammatory treatments used in depression. RECENT FINDINGS Peripheral inflammatory markers are present in a subset of patients with depression and can alter common neurotransmitters in this population but there is no clear causality between depression and systemic inflammation. Infectious conditions and autoimmune illnesses do not have a clear correlation with depression. Certain medications have positive evidence as adjunctive treatments in depression but studies are heterogenic, hence they are sparsely used in clinical settings. The current evidence does not fully support inflammation, infections or autoimmunity as possible etiologies of depression. The available studies have numerous confounders that obscure the findings. Anti-inflammatory agents may have potential for treatment of depression, but further research is needed to clarify their usefulness in routine clinical practice.
Collapse
Affiliation(s)
- Eduardo Andres Calagua-Bedoya
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA.
| | | | - Lotje De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | |
Collapse
|
4
|
Kammeyer R, Ogbu EA, Cooper JC, Stolz E, Piquet AL, Fuhlbrigge RC, Bennett JL, Hutaff-Lee C. [Formula: see text] Cognitive dysfunction in pediatric systemic lupus erythematosus: current knowledge and future directions. Child Neuropsychol 2024; 30:818-846. [PMID: 37902575 PMCID: PMC11058121 DOI: 10.1080/09297049.2023.2273573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Cognitive dysfunction (CD) is a neurologic complication of pediatric systemic lupus erythematosus (SLE) that remains poorly understood and understudied, despite the potential negative effects of CD on long-term socioeconomic status and quality of life. Data regarding the prevalence and risk factors for CD in pediatric SLE as well as the optimal screening, treatment, and long-term outcomes for CD are lacking. In this review, we present current knowledge on CD in pediatric SLE with a focus on the application to clinical practice. We discuss the challenges in diagnosis, clinical screening methods, potential impacts, and interventions for this complication. Finally, we discuss the remaining gaps in our knowledge of CD in pediatric SLE, and avenues for future research efforts.
Collapse
Affiliation(s)
- Ryan Kammeyer
- Departments of Pediatrics and Neurology, Sections of Child Neurology and Neuroimmunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ekemini A. Ogbu
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer C. Cooper
- Department of Pediatrics, Section of Pediatric Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin Stolz
- Department of Child and Adolescent Psychiatry, Section of Pediatric Medical Psychology, John Hopkins Medicine, Baltimore, MA, USA
| | - Amanda L. Piquet
- Department of Neurology, Section of Neuroimmunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert C. Fuhlbrigge
- Department of Pediatrics, Section of Pediatric Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christa Hutaff-Lee
- Department of Pediatrics, Section of Neurology-Neuropsychology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Justiz-Vaillant AA, Gopaul D, Soodeen S, Arozarena-Fundora R, Barbosa OA, Unakal C, Thompson R, Pandit B, Umakanthan S, Akpaka PE. Neuropsychiatric Systemic Lupus Erythematosus: Molecules Involved in Its Imunopathogenesis, Clinical Features, and Treatment. Molecules 2024; 29:747. [PMID: 38398500 PMCID: PMC10892692 DOI: 10.3390/molecules29040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an idiopathic chronic autoimmune disease that can affect any organ in the body, including the neurological system. Multiple factors, such as environmental (infections), genetic (many HLA alleles including DR2 and DR3, and genes including C4), and immunological influences on self-antigens, such as nuclear antigens, lead to the formation of multiple autoantibodies that cause deleterious damage to bodily tissues and organs. The production of autoantibodies, such as anti-dsDNA, anti-SS(A), anti-SS(B), anti-Smith, and anti-neuronal DNA are characteristic features of this disease. This autoimmune disease results from a failure of the mechanisms responsible for maintaining self-tolerance in T cells, B cells, or both. Immune complexes, circulating antibodies, cytokines, and autoreactive T lymphocytes are responsible for tissue injury in this autoimmune disease. The diagnosis of SLE is a rheumatological challenge despite the availability of clinical criteria. NPSLE was previously referred to as lupus cerebritis or lupus sclerosis. However, these terms are no longer recommended because there is no definitive pathological cause for the neuropsychiatric manifestations of SLE. Currently, the treatment options are primarily based on symptomatic presentations. These include the use of antipsychotics, antidepressants, and anxiolytic medications for the treatment of psychiatric and mood disorders. Antiepileptic drugs to treat seizures, and immunosuppressants (e.g., corticosteroids, azathioprine, and mycophenolate mofetil), are directed against inflammatory responses along with non-pharmacological interventions.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | - Odette Arozarena Barbosa
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
| | - Chandrashehkar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Bijay Pandit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Srikanth Umakanthan
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| |
Collapse
|
7
|
Xu J, Yang C, Zeng S, Wang X, Yang P, Qin L. Disturbance of neuron-microglia crosstalk mediated by GRP78 in Neuropsychiatric systemic lupus erythematosus mice. J Neuroinflammation 2023; 20:150. [PMID: 37365565 DOI: 10.1186/s12974-023-02832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious phenotype of systemic lupus erythematosus (SLE). The disturbance of neuron-microglia crosstalk is recently revealed in many neuropsychiatric diseases but was not well studied in NPSLE. We found glucose regulatory protein 78 (GRP78), a marker of endoplasmic reticulum stress, was significantly increased in the cerebrospinal fluid (CSF) of our NPSLE cohort. We, therefore, investigated whether GRP78 can act as a mediator between the neuron-microglia crosstalk and is involved in the pathogenic process of NPSLE. METHODS Serum and CSF parameters were analyzed in 22 NPSLE patients and controls. Anti-DWEYS IgG was injected intravenously into mice to establish a model of NPSLE. Behavioral assessment, histopathological staining, RNA-seq analyses, and biochemical assays were performed to examine the neuro-immunological alterations in the mice. Rapamycin was intraperitoneally administered to define the therapeutic effect. RESULTS The level of GRP78 was elevated significantly in the CSF of the patients with NPSLE. An increase in GRP78 expression, accompanied by neuroinflammation and cognitive impairment, was also found in the brain tissues of the NPSLE model mice induced by anti-DWEYS IgG deposition on hippocampal neurons. In vitro experiments demonstrated that anti-DWEYS IgG could stimulate neurons to release GRP78, which activated microglia via TLR4/MyD88/NFκB pathway to produce more pro-inflammatory cytokines and promote migration and phagocytosis. Rapamycin ameliorated GRP78-inducing neuroinflammation and cognitive impairment in anti-DWEYS IgG-transferred mice. CONCLUSION GRP78 acts as a pathogenic factor in neuropsychiatric disorders via interfering neuron-microglia crosstalk. Rapamycin may be a promising therapeutic candidate for NPSLE.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Siyuan Zeng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
8
|
Tomalla V, Schmeisser MJ, Weinmann-Menke J. Mouse models, antibodies, and neuroimaging: Current knowledge and future perspectives in neuropsychiatric systemic lupus erythematosus (NPSLE). Front Psychiatry 2023; 14:1078607. [PMID: 36970286 PMCID: PMC10031066 DOI: 10.3389/fpsyt.2023.1078607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
As a chronic autoimmune disease systemic lupus erythematosus (SLE) can also affect the central and the peripheral nervous system causing symptoms which are summed up as neuropsychiatric systemic lupus erythematosus (NPSLE). These symptoms are heterogenous including cognitive impairment, seizures, and fatigue, leading to morbidity or even mortality. At present, little is known about the pathophysiological processes involved in NPSLE. This review focuses on the current knowledge of the pathogenesis of NPSLE gained from the investigation of animal models, autoantibodies, and neuroimaging techniques. The antibodies investigated the most are anti-ribosomal P protein antibodies (Anti-rib P) and anti-N-Methyl-D-Aspartic Acid Receptor 2 antibodies (Anti-NR2), which represent a subpopulation of anti-dsDNA autoantibodies. Experimental data demonstrates that Anti-rib P and Anti-NR2 cause different neurological pathologies when applied intravenously (i.v.), intrathecally or intracerebrally in mice. Moreover, the investigation of lupus-prone mice, such as the MRL/MpJ-Faslpr/lpr strain (MRL/lpr) and the New Zealand black/New Zealand white mice (NZB × NZW F1) showed that circulating systemic antibodies cause different neuropsychiatric symptoms compared to intrathecally produced antibodies. Furthermore, neuroimaging techniques including magnetic resonance imaging (MRI) and positron emission tomography (PET) are commonly used tools to investigate structural and functional abnormalities in NPSLE patients. Current research suggests that the pathogenesis of NPSLE is heterogenous, complex and not yet fully understood. However, it demonstrates that further investigation is needed to develop individual therapy in NPSLE.
Collapse
Affiliation(s)
- Vanessa Tomalla
- Department of Internal Medicine, Division of Nephrology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine, Division of Nephrology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Julia Weinmann-Menke,
| |
Collapse
|
9
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
10
|
Liu Y, Tu Z, Zhang X, Du K, Xie Z, Lin Z. Pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus: A review. Front Cell Dev Biol 2022; 10:998328. [PMID: 36133921 PMCID: PMC9484581 DOI: 10.3389/fcell.2022.998328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease with a complex pathogenesis. Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of SLE that involves the nervous system and produces neurological or psychiatric symptoms. After decades of research, it is now believed that the diverse clinical manifestations of NPSLE are associated with intricate mechanisms, and that genetic factors, blood-brain barrier dysfunction, vascular lesions, multiple autoimmune antibodies, cytokines, and neuronal cell death may all contribute to the development of NPSLE. The complexity and diversity of NPSLE manifestations and the clinical overlap with other related neurological or psychiatric disorders make its accurate diagnosis difficult and time-consuming. Therefore, in this review, we describe the known pathogenesis and potential causative factors of NPSLE and briefly outline its treatment that may help in the diagnosis and treatment of NPSLE.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Rheumatology, Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihua Tu
- Department of Rheumatology, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Xi Zhang
- Department of Rheumatology, Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Keqian Du
- Department of Rheumatology, Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengquan Xie
- Department of Rheumatology, Panyu Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhiming Lin, ; Zhengquan Xie,
| | - Zhiming Lin
- Department of Rheumatology, Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhiming Lin, ; Zhengquan Xie,
| |
Collapse
|
11
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
12
|
Wang M, Wang Z, Zhang S, Wu Y, Zhang L, Zhao J, Wang Q, Tian X, Li M, Zeng X. Progress in the Pathogenesis and Treatment of Neuropsychiatric Systemic Lupus Erythematosus. J Clin Med 2022; 11:4955. [PMID: 36078885 PMCID: PMC9456588 DOI: 10.3390/jcm11174955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) has a broad spectrum of subtypes with diverse severities and prognoses. Ischemic and inflammatory mechanisms, including autoantibodies and cytokine-mediated pathological processes, are key components of the pathogenesis of NPSLE. Additional brain-intrinsic elements (such as the brain barrier and resident microglia) are also important facilitators of NPSLE. An improving understanding of NPSLE may provide further options for managing this disease. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for novel targeted therapies. Conventional therapeutic algorithms include symptomatic, anti-thrombotic, and immunosuppressive agents that are only supported by observational cohort studies, therefore performing controlled clinical trials to guide further management is essential and urgent. In this review, we aimed to present the latest pathogenetic mechanisms of NPSLE and discuss the progress in its management.
Collapse
Affiliation(s)
| | | | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | | | | | | | | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | |
Collapse
|
13
|
Progress in the mechanism of neuronal surface P antigen modulating hippocampal function and implications for autoimmune brain disease. Curr Opin Neurol 2022; 35:436-442. [PMID: 35674087 DOI: 10.1097/wco.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.
Collapse
|
14
|
Qiao X, Lu L, Zhou K, Tan L, Liu X, Ni J, Hou Y, Liang J, Dou H. The correlation between proteoglycan 2 and neuropsychiatric systemic lupus erythematosus. Clin Immunol 2022; 239:109042. [PMID: 35568106 DOI: 10.1016/j.clim.2022.109042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
The proposed pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) mainly includes ischemia and neuroinflammation mechanisms. Protein encoded by Proteoglycan 2 (PRG2) mRNA is involved in the immune process related to eosinophils, also being found in the placenta and peripheral blood of pregnant women. We evaluated the correlation between PRG2 and NPSLE for the first time and found that PRG2 protein is overexpressed in the serum of patients with NPSLE and correlated with the SLE disease activity index (SLEDAI) subset scores of psychosis. Moreover, we investigated the correlation between hippocampal PRG2 level and hippocampally dependent learning and memory ability in MRL/lpr mice, and discovered that the number of PRG2+GFAP+ astrocytes in the cortex and hypothalamus and the number of PRG2+IBA-1+ microglia in the hippocampus and cortex significantly increased in the MRL/lpr mice. These data provided a reference for the follow-up exploration of the role of PRG2 in SLE or other diseases.
Collapse
Affiliation(s)
- Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Hoang TT, Ichinose K, Morimoto S, Furukawa K, Le LH, Kawakami A. Measurement of anti-suprabasin antibodies, multiple cytokines and chemokines as potential predictive biomarkers for neuropsychiatric systemic lupus erythematosus. Clin Immunol 2022; 237:108980. [DOI: 10.1016/j.clim.2022.108980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
16
|
Abstract
Neuropsychiatric diseases have traditionally been studied from brain, and mind-centric perspectives. However, mounting epidemiological and clinical evidence shows a strong correlation of neuropsychiatric manifestations with immune system activation, suggesting a likely mechanistic interaction between the immune and nervous systems in mediating neuropsychiatric disease. Indeed, immune mediators such as cytokines, antibodies, and complement proteins have been shown to affect various cellular members of the central nervous system in multitudinous ways, such as by modulating neuronal firing rates, inducing cellular apoptosis, or triggering synaptic pruning. These observations have in turn led to the exciting development of clinical therapies aiming to harness this neuro-immune interaction for the treatment of neuropsychiatric disease and symptoms. Besides the clinic, important theoretical fundamentals can be drawn from the immune system and applied to our understanding of the brain and neuropsychiatric disease. These new frameworks could lead to novel insights in the field and further potentiate the development of future therapies to treat neuropsychiatric disease.
Collapse
|
17
|
Zhao X, Yang P. Hydroxychloroquine alleviates the neurotoxicity induced by anti-ribosomal P antibodies. J Neuroimmunol 2021; 358:577648. [PMID: 34229206 DOI: 10.1016/j.jneuroim.2021.577648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/27/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a wide spectrum of autoantibodies, among which anti-ribosomal P (anti-P) antibodies are considered to be closely related to the neuropsychiatric SLE (NPSLE). Hydroxychloroquine (HCQ) has been proven to be effective against a variety of autoimmune diseases and is an essential drug for the treatment of SLE. In this study, we investigated the effects of anti-ribosomal P (anti-P) antibodies on neural cells and determined whether hydroxychloroquine (HCQ) influenced the anti-P antibodies-induced changes. The results showed that the binding of anti-P antibodies with mouse neuroblastoma- 2a (N2a) cells and rat primary neurons resulted in elevated intracellular calcium levels, inducing decreased cell viability and cell apoptosis. These inhibitory effects were alleviated by HCQ in a concentration-dependent manner by reducing the intracellular calcium levels and modulating the expression of apoptotic proteins. In summary, our study demonstrates that anti-P antibodies induce neural cell damage. HCQ could ease the damage effects and may play a neuroprotective role in NPSLE.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of China Medical University, Nanjing North Street 155, Heping District, Shenyang, Liaoning, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of China Medical University, Nanjing North Street 155, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Marín JD, Vargas S, Ruiz-Ordoñez I, Posso-Osorio I, Nieto-Aristizábal I, Barrera MC, Ríos-Serna LJ, Tobón GJ. Association of Antiribosomal P Antibody with Neurological and Systemic Manifestations in Patients with Systemic Lupus Erythematosus in Southwestern Colombia. J Appl Lab Med 2021; 7:3-11. [PMID: 34086896 DOI: 10.1093/jalm/jfab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by heterogeneous pathogenesis, various clinical manifestations, and a broad spectrum of autoantibodies which recognize different cellular components. This study examines the clinical significance and serological associations of serum antiribosomal P antibodies (anti-P) derived from SLE patients in a population from southwestern Colombia. METHODS We performed a cross-sectional study of 66 SLE patients. Serum antiribosomal P0 autoantibodies were detected by line immunoassay using the ANA-LIA MAXX kit and processed on the automated HumaBlot 44FA system (Human Diagnostics, Germany). RESULTS Of the 66 SLE patients included in the study, 17 patients (25.76%) showed anti-P positivity by line immunoassay (IA), 47 (71.21%) were negative, and results from 2 patients were indeterminate. We did not find an association with neuropsychiatric SLE (NPSLE), renal, or hepatic disorders (P > 0.05). Laboratory findings indicated that anti-P positivity was significantly associated to anti-Smith (P = 0.001), anti-Ro60/SSA (P = 0.046), and anti-dsDNA antibodies (P = 0.034), the latter being true only when performed using indirect immunofluorescence (IIF). CONCLUSION The anti-P antibodies are not associated with clinical manifestations such as NPSLE, lupus nephritis, or hepatic involvement in the southwest Colombian SLE population. Moreover, we confirmed previously reported association between anti-P antibody, serum anti-dsDNA, and anti-Smith.
Collapse
Affiliation(s)
| | | | - Ingrid Ruiz-Ordoñez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Iván Posso-Osorio
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | | | - María Claudia Barrera
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Universidad Icesi, Cali, Colombia
| | - Lady J Ríos-Serna
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Universidad Icesi, Cali, Colombia
| | - Gabriel J Tobón
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Unit of Rheumatology, Cali, Colombia
| |
Collapse
|
19
|
Seet D, Allameen NA, Tay SH, Cho J, Mak A. Cognitive Dysfunction in Systemic Lupus Erythematosus: Immunopathology, Clinical Manifestations, Neuroimaging and Management. Rheumatol Ther 2021; 8:651-679. [PMID: 33993432 PMCID: PMC8217391 DOI: 10.1007/s40744-021-00312-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunction (CD) is a common yet often clinically subtle manifestation that considerably impacts the health-related quality of life in patients with systemic lupus erythaematosus (SLE). Given the inconsistencies in CD assessment and challenges in its attribution to SLE, the reported prevalence of CD differs widely, ranging from 3 to 88%. The clinical presentation of CD in SLE is non-specific and may manifest concurrently with overt neuropsychiatric illness such as psychosis or mood disorders or as isolated impairment of attention, working memory, executive dysfunction or processing speed. Despite the lack of standardized and sensitive neuropsychological tests and validated diagnostic biomarkers of CD in SLE, significant progress has been made in identifying pathogenic neural pathways and neuroimaging. Furthermore, several autoantibodies, cytokines, pro-inflammatory mediators and metabolic factors have been implicated in the pathogenesis of CD in SLE. Abrogation of the integrity of the blood-brain barrier (BBB) and ensuing autoantibody-mediated neurotoxicity, complement and microglial activation remains the widely accepted mechanism of SLE-related CD. Although several functional neuroimaging modalities have consistently demonstrated abnormalities that correlate with CD in SLE patients, a consensus remains to be reached as to their clinical utility in diagnosing CD. Given the multifactorial aetiology of CD, a multi-domain interventional approach that addresses the risk factors and disease mechanisms of CD in a concurrent fashion is the favourable therapeutic direction. While cognitive rehabilitation and exercise training remain important, specific pharmacological agents that target microglial activation and maintain the BBB integrity are potential candidates for the treatment of SLE-related CD.
Collapse
Affiliation(s)
- Dominic Seet
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Nur Azizah Allameen
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiacai Cho
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Villar J, Salazar ML, Jiménez JM, Campo MD, Manubens A, Gleisner MA, Ávalos I, Salazar-Onfray F, Salazar F, Mitchell DA, Alshahrani MY, Martínez-Pomares L, Becker MI. C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur J Immunol 2021; 51:1715-1731. [PMID: 33891704 DOI: 10.1002/eji.202149225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.
Collapse
Affiliation(s)
- Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Daniel A Mitchell
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| |
Collapse
|
21
|
Cho T, Sato H, Wakamatsu A, Ohashi R, Ajioka Y, Uchiumi T, Goto S, Narita I, Kaneko Y. Mood Disorder in Systemic Lupus Erythematosus Induced by Antiribosomal P Protein Antibodies Associated with Decreased Serum and Brain Tryptophan. THE JOURNAL OF IMMUNOLOGY 2021; 206:1729-1739. [PMID: 33789980 DOI: 10.4049/jimmunol.2000260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Antiribosomal P protein (anti-P) autoantibodies commonly develop in patients with systemic lupus erythematosus. We have previously established hybridoma clones producing anti-P mAbs. In this study, we explored the pathogenesis of behavioral disorders induced by anti-P Abs using these mAbs. New Zealand Black × New Zealand White F1, New Zealand White, C57BL/6, and BALB/c mice were treated with 1 mg of anti-P Abs once every 2 wk. The behavioral disorder was evaluated by the tail suspension test, forced swim test, and open field test. Following administration of anti-P Abs, New Zealand Black × New Zealand White F1 and C57BL/6 mice developed depressive behavior and showed increased anxiety with elevated serum TNF-α and IL-6 levels. Anti-P Abs were not deposited in the affected brain tissue; instead, this mood disorder was associated with lower serum and brain tryptophan concentrations. Tryptophan supplementation recovered serum tryptophan levels and prevented the behavioral disorder. TNF-α and IL-6 were essential for the decreased serum tryptophan and disease development, which were ameliorated by treatment with anti-TNF-α neutralizing Abs or dexamethasone. Peritoneal macrophages from C57BL/6 mice produced TNF-α, IL-6, and IDO-1 via interaction with anti-P Abs through activating FcγRs, which were required for disease development. IVIg, which has an immunosuppressive effect partly through the regulation of FcγR expression, also prevented the decrease in serum tryptophan and disease development. Furthermore, serum tryptophan concentrations were decreased in the sera of systemic lupus erythematosus patients with anti-P Abs, and lower tryptophan levels correlated with disease activity. Our study revealed some of the molecular mechanisms of mood disorder induced by anti-P Abs.
Collapse
Affiliation(s)
- Takamasa Cho
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan
| | - Hiroe Sato
- Health Administration Center, Niigata University, Niigata 9502181, Japan
| | - Ayako Wakamatsu
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan
| | - Riuko Ohashi
- Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata 9518510, Japan.,Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan; and
| | - Yoichi Ajioka
- Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata 9518510, Japan.,Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan; and
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Niigata 9502181, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9518510, Japan;
| |
Collapse
|
22
|
Zarfeshani A, Carroll KR, Volpe BT, Diamond B. Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Curr Rheumatol Rep 2021; 23:25. [PMID: 33782842 PMCID: PMC11207197 DOI: 10.1007/s11926-021-00992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
A wide range of patients with systemic lupus erythematosus (SLE) suffer from cognitive dysfunction (CD) which severely impacts their quality of life. However, CD remains underdiagnosed and poorly understood. Here, we discuss current findings in patients and in animal models. Strong evidence suggests that CD pathogenesis involves known mechanisms of tissue injury in SLE. These mechanisms recruit brain resident cells, in particular microglia, into the pathological process. While systemic immune activation is critical to central nervous system injury, the current focus of therapy is the microglial cell and not the systemic immune perturbation. Further studies are critical to examine additional potential therapeutic targets and more specific treatments based on the cause and progress of the disease.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kaitlin R Carroll
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
23
|
Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021; 39:800-814. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 10/21/2022]
Abstract
The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.
Collapse
Affiliation(s)
| | | | | | - Isabela Zignani
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
24
|
Espinoza S, Arredondo SB, Barake F, Carvajal F, Guerrero FG, Segovia-Miranda F, Valenzuela DM, Wyneken U, Rojas-Fernández A, Cerpa W, Massardo L, Varela-Nallar L, González A. Neuronal surface P antigen (NSPA) modulates postsynaptic NMDAR stability through ubiquitination of tyrosine phosphatase PTPMEG. BMC Biol 2020; 18:164. [PMID: 33158444 PMCID: PMC7648380 DOI: 10.1186/s12915-020-00877-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cognitive dysfunction (CD) is common among patients with the autoimmune disease systemic lupus erythematosus (SLE). Anti-ribosomal P autoantibodies associate with this dysfunction and have neuropathogenic effects that are mediated by cross-reacting with neuronal surface P antigen (NSPA) protein. Elucidating the function of NSPA can then reveal CD pathogenic mechanisms and treatment opportunities. In the brain, NSPA somehow contributes to glutamatergic NMDA receptor (NMDAR) activity in synaptic plasticity and memory. Here we analyze the consequences of NSPA absence in KO mice considering its structural features shared with E3 ubiquitin ligases and the crucial role of ubiquitination in synaptic plasticity. Results Electrophysiological studies revealed a decreased long-term potentiation in CA3-CA1 and medial perforant pathway-dentate gyrus (MPP-DG) hippocampal circuits, reflecting glutamatergic synaptic plasticity impairment in NSPA-KO mice. The hippocampal dentate gyrus of these mice showed a lower number of Arc-positive cells indicative of decreased synaptic activity and also showed proliferation defects of neural progenitors underlying less adult neurogenesis. All this translates into poor spatial and recognition memory when NSPA is absent. A cell-based assay demonstrated ubiquitination of NSPA as a property of RBR-type E3 ligases, while biochemical analysis of synaptic regions disclosed the tyrosine phosphatase PTPMEG as a potential substrate. Mice lacking NSPA have increased levels of PTPMEG due to its reduced ubiquitination and proteasomal degradation, which correlated with lower levels of GluN2A and GluN2B NMDAR subunits only at postsynaptic densities (PSDs), indicating selective trafficking of these proteins out of PSDs. As both GluN2A and GluN2B interact with PTPMEG, tyrosine (Tyr) dephosphorylation likely drives their endocytic removal from the PSD. Actually, immunoblot analysis showed reduced phosphorylation of the GluN2B endocytic signal Tyr1472 in NSPA-KO mice. Conclusions NSPA contributes to hippocampal plasticity and memory processes ensuring appropriate levels of adult neurogenesis and PSD-located NMDAR. PTPMEG qualifies as NSPA ubiquitination substrate that regulates Tyr phosphorylation-dependent NMDAR stability at PSDs. The NSPA/PTPMEG pathway emerges as a new regulator of glutamatergic transmission and plasticity and may provide mechanistic clues and therapeutic opportunities for anti-P-mediated pathogenicity in SLE, a still unmet need.
Collapse
Affiliation(s)
- Sofía Espinoza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Sebastián B Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Francisca Barake
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.,Fundación Ciencia y Vida, 7780272, Santiago, Chile
| | - Francisco Carvajal
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330028, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), 6213029, Punta Arenas, Chile
| | - Fernanda G Guerrero
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Fabian Segovia-Miranda
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | | | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de los Andes, 7620001, Santiago, Chile
| | - Alejandro Rojas-Fernández
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330028, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), 6213029, Punta Arenas, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile. .,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile. .,Fundación Ciencia y Vida, 7780272, Santiago, Chile.
| |
Collapse
|
25
|
Mimica M, Padilla O, Bravo-Zehnder M, Massardo L, González A. Letter to the Editor in response to the article "A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus." by Choi M, FitzPatrick R, Buhler K, Mahler M, Fritzler M, Autoimmun Rev. 2020 March;19(3):102463. Autoimmun Rev 2020; 19:102667. [PMID: 32942030 DOI: 10.1016/j.autrev.2020.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Milena Mimica
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Oslando Padilla
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Bravo-Zehnder
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
26
|
Kondo-Ishikawa S, Fujii T, Ishigooka N, Murakami K, Nakashima R, Hashimoto M, Yoshifuji H, Tanaka M, Ohmura K, Mimori T. Association of anti-NR2 and U1RNP antibodies with neurotoxic inflammatory mediators in cerebrospinal fluid from patients with neuropsychiatric systemic lupus erythematosus. Lupus 2020; 29:1673-1682. [PMID: 32883159 DOI: 10.1177/0961203320954918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Autoantibodies (auto Abs) and inflammatory mediators (IMs) in cerebrospinal fluid (CSF) may be involved in the pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE). It is suggested that anti-N-methyl D-aspartate receptor NR2 subunit (NR2) Ab can develop NP manifestation after blood-brain barrier (BBB) abruption. We also reported the association between NPSLE and CSF anti-U1RNP Ab. In the present study, combined effects of CSF anti-NR2 and anti-U1RNP Abs on IMs in patients with NPSLE were examined. METHODS CSF samples were collected from 69 patients with NPSLE and 13 non-NPSLE controls. CSF anti-NR2 and anti-U1RNP Abs were determined using ELISA. Levels of IL-6, IL-8, and monokine induced by IFN-γ (MIG) in CSF were measured by quantitative multiplex cytokine analysis. RESULTS CSF IL-6 levels were higher in CSF anti-NR2-positive than in CSF anti-NR2-negative patients (p = 0.003) and non-NPSLE controls (p = 0.015) and were positively correlated with anti-NR2 titer (r = 0.42). CSF IL-8 levels were higher in CSF anti-U1RNP-positive than in CSF anti-U1RNP-negative patients (p = 0.041). CSF MIG levels were more elevated in CSF anti-NR2-positive (p = 0.043) and anti-U1RNP-positive patients (p = 0.029) than in non-NPSLE controls. Additionally, in double positive (DP; both anti-NR2 and U1RNP Ab positive) group, CSF IL-6 and MIG levels were significantly higher than in the double negative (DN; both anti-NR2 and U1RNP Ab negative) group. However, combined effect of both Abs on IM elevation and clinical manifestation was not clear. CONCLUSIONS CSF anti-NR2 and anti-U1RNP Abs have different effects on the elevation of CSF IM levels in patients with NPSLE. Additional effect of anti-U1RNP Abs on anti-NR2 Ab-mediated NP manifestation, however, was not recognized in our study.
Collapse
Affiliation(s)
- Seiko Kondo-Ishikawa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Rheumatology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Nozomi Ishigooka
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- Department of the Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Tanaka
- Department of the Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Abstract
PROPOSE OF REVIEW Neuropsychiatric systemic lupus erythematosus (NPSLE) is an emerging frontier in lupus care encompassing a wide spectrum of clinical manifestations. Its pathogenesis remains poorly understood because of the complexity of pathophysiologic mechanisms involved and limited access to tissue. We highlight recent advances in the pathophysiology of neuropsychiatric lupus. RECENT FINDINGS Disruption of blood-brain barrier (BBB) facilitating entrance of neurotoxic antibodies into the central nervous system (CNS), neuroinflammation and cerebral ischemia are the key mechanisms. Disruption of the BBB may occur not only at the traditional BBB, but also at the blood-cerebrospinal fluid barrier. Certain autoantibodies, such as anti-N-methyl-D-aspartate receptors, antiribosomal P and antiphospholipid antibodies may cause injury in subsets of patients with diffuse neuropsychiatric disease. Activation of microglia via autoantibodies, interferon-a or other immune reactants, may amplify the inflammatory response and promote neuronal damage. New inflammatory pathways, such as TWEAK/Fn14, Bruton's tyrosine kinase, Nogo-a and ACE may represent additional potential targets of therapy. Novel neuroimaging techniques suggest alterations in brain perfusion and metabolism, increased concentration of neurometabolites, indicative of glial activation, vasculopathy and neuronal impairment. SUMMARY NPSLE encompasses a diverse phenotype with distinct pathogenic mechanisms, which could be targeted by novel therapies or repositioning of existing drugs.
Collapse
|
28
|
Deijns SJ, Broen JCA, Kruyt ND, Schubart CD, Andreoli L, Tincani A, Limper M. The immunologic etiology of psychiatric manifestations in systemic lupus erythematosus: A narrative review on the role of the blood brain barrier, antibodies, cytokines and chemokines. Autoimmun Rev 2020; 19:102592. [PMID: 32561462 DOI: 10.1016/j.autrev.2020.102592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The aim of this narrative review is to provide an overview of the literature on the possible immunologic pathophysiology of psychiatric manifestations of neuropsychiatric systemic lupus erythematosus (NPSLE). METHODS A systematic search on PubMed was conducted. English studies with full text availability that investigated the correlation between blood-brain barrier (BBB) dysfunction, intrathecal synthesis of antibodies, antibodies, cytokines, chemokines, metalloproteinases, complement and psychiatric NPSLE manifestations in adults were included. RESULTS Both transient BBB-dysfunction with consequent access of antibodies to the cerebrospinal fluid (CSF) and intrathecal synthesis of antibodies could occur in psychiatric NPSLE. Anti-phospholipid antibodies, anti-NMDA antibodies and anti-ribosomal protein p antibodies seem to mediate concentration dependent neuronal dysfunction. Interferon-α may induce microglial engulfment of neurons, direct neuronal damage and production of cytokines and chemokines in psychiatric NPSLE. Several cytokines, chemokines and matrix metalloproteinase-9 may contribute to the pathophysiology of psychiatric NPSLE by attracting and activating Th1-cells and B-cells. DISCUSSION This potential pathophysiology may help understand NPSLE and may have implications for the diagnostic management and therapy of psychiatric NPSLE. However, the presented pathophysiological model is based on correlations between potential immunologic etiologies and psychiatric NPSLE that remain questionable. More research on this topic is necessary to further elucidate the pathophysiology of NPSLE.
Collapse
Affiliation(s)
- Sander J Deijns
- University Medical Centre Utrecht and Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Jasper C A Broen
- Regional Rheumatology Centre, Máxima Medical Centre, 5631 BM Eindhoven and 5504 DB, Veldhoven, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Centre, Leiden 2333 ZA, the Netherlands.
| | - Chris D Schubart
- Department of Psychiatry, Tergooi Ziekenhuis, 1261 AN Blaricum, Hilversum 1213 XZ, the Netherlands.
| | - Laura Andreoli
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, BS 25123, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25123, Italy.
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, BS 25123, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25123, Italy; I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
29
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterised by diverse organ damages resulting from various autoantibodies, such as antinuclear or anti-DNA antibodies. Neuropsychiatric lupus (NPSLE) refers to the neurological and psychiatric disorders complicated with SLE and can be challenging for physicians to manage. NPSLE has a broad spectrum and high heterogeneity of clinical phenotypes, including headaches, psychiatric symptoms and peripheral neuropathy. Additionally, various immune effectors have been reported to contribute to the pathogenesis, including cytokines, cell-mediated inflammation and brain-reactive autoantibodies. In some patients with SLE, neuropsychiatric symptoms develop for the first time after the initiation of the steroid treatment, hindering the differentiation from steroid psychosis. The administration of high doses of steroids in patients with SLE is believed to trigger psychiatric symptoms. No clear evidence has yet been found regarding the treatment of NPSLE. Therefore, NPSLE-specific markers need to be developed, and treatment guidelines should be established. This article provides an overview of NPSLE as well as its pathogenesis and treatment.
Collapse
Affiliation(s)
- Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Sato S, Temmoku J, Fujita Y, Yashiro-Furuya M, Matsuoka N, Asano T, Kobayashi H, Watanabe H, Migita K. Autoantibodies associated with neuropsychiatric systemic lupus erythematosus: the quest for symptom-specific biomarkers. Fukushima J Med Sci 2020; 66:1-9. [PMID: 32173681 PMCID: PMC7269884 DOI: 10.5387/fms.2020-02] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs, including the central nervous system. Neuropsychiatric SLE (NPSLE) is a severe and potentially fatal condition. Several factors including autoantibodies have been implicated in the pathogenesis of NPSLE. However, definitive biomarkers of NPSLE are yet to be identified owing to the complexity of this disease. This is a major barrier to accurate and timely diagnosis of NPSLE. Studies have identified several autoantibodies associated with NPSLE;some of these autoantibodies are well investigated and regarded as symptom-specific. In this review, we discuss recent advances in our understanding of the manifestations and pathogenesis of NPSLE. In addition, we describe representative symptom-specific autoantibodies that are considered to be closely associated with the pathogenesis of NPSLE.
Collapse
Affiliation(s)
- Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | | | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| |
Collapse
|
31
|
Seth G, Sundaresh A, Mariaselvam CM, Kumar G, Chengappa KG, Adarsh MB, Tamouza R, Negi VS. Immunological biomarkers in neuropsychiatric systemic lupus erythematosus: a comparative cross-sectional study from a tertiary care center in South India. Lupus 2020; 29:413-420. [PMID: 32106787 DOI: 10.1177/0961203320908940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The prevalence of various immunological biomarkers in neuropsychiatric systemic lupus erythematosus (NPSLE) differs among various patients with varied neuropsychiatric manifestations and different populations. We studied the prevalence of these biomarkers; especially the neuron specific autoantibodies in patients with systemic lupus erythematosus (SLE) and compared them among patients with and without neuropsychiatric involvement. METHODOLOGY This is a comparative cross-sectional study conducted in a tertiary care hospital in South India. The prevalence of immunological biomarkers including complement levels, systemic and brain specific autoantibodies (anti-myelin antibody, anti-myelin oligodendrocyte glycoprotein and anti-myelin-associated glycoprotein antibody) were assessed and compared among those with and without NPSLE and with different NPSLE manifestations. RESULTS A total of 522 SLE patients were enrolled in the study. The mean age of the study participants was 28.5 ± 8.8 years and 93.5% were women. Neuropsychiatric manifestations were seen in 167 (32%) patients. Seizure was the most common neuropsychiatric manifestation seen in 41.3%, followed by psychosis (18.6%), mood disorder (16.8%), stroke (10.8%), mononeuropathy (10.2%), headache (9.6%), acute confusional state (6.6%) and aseptic meningitis (5.4%). Patients with NPSLE had a higher SLE disease activity index score. Most of the autoantibodies, that is anticardiolipin antibody (aCL), anti-β2 glycoprotein 1 antibody (β2GP1), lupus anticoagulant (LA), anti-nucleosome, anti-ribosomal P, anti-Ro52, anti-Ro60 and anti-La, were seen in higher proportion in the NPSLE group, although the difference failed to reach statistical significance. On subgroup analysis, psychosis was significantly higher in patients with anti-ribosomal P positivity than without (11.8% versus 4.1%, p.0.007; odds ratio (OR) 3.1, confidence interval (CI) 1.4-6.8), while stroke had a higher proportion among those with positive b2GP1 IgG (6.3% versus 1.8%, p.0.03; OR 3.6, CI 1.2-11.0). A higher proportion of demyelination was seen among the LA positive than the negative (10.3% versus 0.2%, p.0.03; OR 5.39, CI 1.15-24.17) and anti-myelin oligodendrocyte glycoprotein in mood disorder (14.3% versus 3.4%, p = 0.03; OR 4.66, CI 1.13-19.13). CONCLUSION No single biomarker correlated with NPSLE. Among different NPSLE manifestations, the prevalence of IgG β2GP1 in stroke, LA in demyelination, anti-ribosomal P in psychosis and anti-myelin oligodendrocyte glycoprotein in mood disorder were higher. Further studies on the pathogenic mechanisms underlying NPSLE and its different manifestations may help us to identify better biomarkers.
Collapse
Affiliation(s)
- G Seth
- Department of Rheumatology, Aakash Healthcare Super Speciality Hospital, Dwarka, India
| | - A Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - C M Mariaselvam
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - G Kumar
- Knowledge Integration and Translation Platform, Center for Health Research and Development, Society for Applied Studies, Kalu Sarai, India
| | - K G Chengappa
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - M B Adarsh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - R Tamouza
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, DHU PePSY, Department of Psychiatry, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - V S Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
32
|
Neuroprotective effect of microglia against impairments of auditory steady-state response induced by anti-P IgG from SLE patients in naïve mice. J Neuroinflammation 2020; 17:31. [PMID: 31973738 PMCID: PMC6977246 DOI: 10.1186/s12974-020-1716-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Autoantibodies against ribosomal P proteins (anti-P antibodies) are strongly associated with the neuropsychiatric manifestations of systemic lupus erythematosus (NPSLE). The present study was designed to assess whether anti-P antibodies can induce abnormal brain electrical activities in mice and investigate the potential cytopathological mechanism. METHODS Affinity-purified human anti-ribosomal P antibodies were injected intravenously into mice after blood-brain barrier (BBB) disruption. The auditory steady-state response (ASSR) was evaluated based on electroencephalography (EEG) signals in response to 40-Hz click-train stimuli, which were recorded from electrodes implanted in the skull of mice. Immunofluorescence staining was used to examine the morphology and density of neurons and glia in the hippocampus and cortex. The presence of apoptosis in the brain tissues was studied using the TUNEL assay. A PLX3397 diet was used to selectively eliminate microglia from the brains of mice. RESULTS Circulating anti-P antibodies caused an enhancement of the ASSR and the activation of microglia through the disrupted BBB, while no obvious neural apoptosis was observed. In contrast, when microglia were depleted, anti-P antibodies induced a serious reduction in the ASSR and neural apoptosis. CONCLUSION Our study indicates that anti-P antibodies can directly induce the dysfunction of auditory-evoked potentials in the brain and that microglia are involved in the protection of neural activity after the invasion of anti-P antibodies, which could have important implications for NPSLE.
Collapse
|
33
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
34
|
Predictors of damage accrual in systemic lupus erythematosus: a longitudinal observational study with focus on neuropsychological factors and anti-neuronal antibodies. Clin Rheumatol 2019; 38:3129-3137. [PMID: 31367942 DOI: 10.1007/s10067-019-04707-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/27/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Central nervous system disease occurs in over 20% of patients with systemic lupus erythematosus (SLE) resulting in major morbidity and damage. Cognitive dysfunction is common in SLE, but the cause remains uncertain and treatment options are limited. This study explores the influence of clinical, neuropsychological factors and anti-neuronal antibodies on lupus damage accrual. METHOD A prospective cohort with 99 SLE patients recruited between 2008 and 2013 and followed up in 2016 was established. Baseline evaluations were depression (MINI-Plus), cognitive function evaluating attention, visuospatial memory and executive functions, and anti-neuronal antibodies. Activity index (SLEDAI-2K) and SLICC/ACR Damage Index (SDI) were assessed at baseline and last follow-up. RESULTS At baseline, median (interquartile range) age was 36.0 years (27.0-45.0), disease duration 3.7 years (0.4-12.4), SLEDAI-2K 6.0 (3.0-12.0), and SDI score 1.0 (0-1.0). Major depression was present in 23%, cognitive deficit in 18%, and received immunomodulators in 36%. Anti-dsDNA/N-methyl-D-aspartate receptor antibodies were present in 19%, anti-ribosomal P in 12%, and anti-neuronal surface P antigen (NSPA) in 5%. After a median follow-up of 55 months (interquartile range 39-78), 11% had damage accrual. In a multivariate analysis, baseline SDI, SLEDAI-2K, and immunomodulators use were associated with final damage, whereas SLEDAI-2K and immunomodulator use were also associated with accrual damage. Models including anti-NSPA showed impact on final and accrual damage. Cognitive deficit, depression, and other autoantibodies were not predictors. CONCLUSIONS Disease activity and immunomodulator use associate with lupus damage. Of the anti-neuronal antibodies examined, anti-NSPA emerged as a potential poor prognostic factor, probably related to severe SLE onset requiring elevated corticosteroid doses. Key Points • Anti-NSPA may be a worse prognostic factor in SLE. • Other neuropsychological factors do not influence damage.
Collapse
|
35
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
36
|
Kang D, Mok CC. Management of Psychosis in Neuropsychiatric Lupus. JOURNAL OF CLINICAL RHEUMATOLOGY AND IMMUNOLOGY 2019. [DOI: 10.1142/s2661341719300015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manifestations of neuropsychiatric systemic lupus erythematosus (NPSLE) are heterogeneous. Acute psychosis is an uncommon but well-recognized manifestation of NPSLE. With no specific biomarkers to date, the diagnosis of NPSLE relies on clinical acumen for circumstantial evidence and exclusion of important differential diagnoses. The attribution of psychosis to NPSLE is facilitated by the application attribution models. In particular, the American College of Rheumatology nomenclature, Systemic Lupus International Collaborating Clinics attribution models and Italian algorithm for the attribution of psychosis to NPSLE are revisited. The mainstay of treatment for psychosis attributable to NPSLE is immunosuppression and symptomatic control. In refractory cases, immunomodulatory and emerging biological agents may be considered. This article reviews the diagnostic dilemma, pathogenic mechanisms and treatment of psychosis in SLE patients.
Collapse
Affiliation(s)
- Di Kang
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| |
Collapse
|
37
|
Gata-Garcia A, Diamond B. Maternal Antibody and ASD: Clinical Data and Animal Models. Front Immunol 2019; 10:1129. [PMID: 31191521 PMCID: PMC6547809 DOI: 10.3389/fimmu.2019.01129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Over the past several decades there has been an increasing interest in the role of environmental factors in the etiology of neuropsychiatric and neurodevelopmental disorders. Epidemiologic studies have shifted from an exclusive focus on the identification of genetic risk alleles for such disorders to recognizing and understanding the contribution of xenobiotic exposures, infections, and the maternal immune system during the prenatal and early post-natal periods. In this review we discuss the growing literature regarding the effects of maternal brain-reactive antibodies on fetal brain development and their contribution to the development of neuropsychiatric and neurodevelopmental disorders. Autoimmune diseases primarily affect women and are more prevalent in mothers of children with neurodevelopmental disorders. For example, mothers of children with Autism Spectrum Disorder (ASD) are significantly more likely to have an autoimmune disease than women of neurotypically developing children. Moreover, they are four to five times more likely to harbor brain-reactive antibodies than unselected women of childbearing age. Many of these women exhibit no apparent clinical consequence of harboring these antibodies, presumably because the antibodies never access brain tissue. Nevertheless, these maternal brain-reactive antibodies can access the fetal brain, and some may be capable of altering brain development when present during pregnancy. Several animal models have provided evidence that in utero exposure to maternal brain-reactive antibodies can permanently alter brain anatomy and cause persistent behavioral or cognitive phenotypes. Although this evidence supports a contribution of maternal brain-reactive antibodies to neurodevelopmental disorders, an interplay between antibodies, genetics, and other environmental factors is likely to determine the specific neurodevelopmental phenotypes and their severity. Additional modulating factors likely also include the microbiome, sex chromosomes, and gonadal hormones. These interactions may help to explain the sex-bias observed in neurodevelopmental disorders. Studies on this topic provide a unique opportunity to learn how to identify and protect at risk pregnancies while also deciphering critical pathways in neurodevelopment.
Collapse
Affiliation(s)
- Adriana Gata-Garcia
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
38
|
Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmun Rev 2019; 18:426-432. [DOI: 10.1016/j.autrev.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
|
39
|
Antibodies and the brain: anti-N-methyl-D-aspartate receptor antibody and the clinical effects in patients with systemic lupus erythematosus. Curr Opin Neurol 2019; 31:294-299. [PMID: 29474315 DOI: 10.1097/wco.0000000000000554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Neuropsychiatric manifestations are one of the fatal complications in patients with systemic lupus erythematosus (SLE). However, the diagnosis and monitoring of that aspect of SLE is still challenging, as there are no reliable biomarkers linked to central nervous system (CNS) damage. This review emphasizes potential candidate autoantibodies that appear to be associated with development of behavioral and psychiatric manifestations in SLE patients. RECENT FINDINGS Developments in the pathogenesis in SLE, not surprising for this immune disorder, point to specific, autoantibody toxicity. Namely, the discovery of an antibody which reacts with DNA and with the extracellular domain of N-methyl-D-aspartate (NMDA) receptor subunit GluN2A and 2B (anti-NMDA), an important receptor on neurons that is ubiquitous in the CNS, may lead to new insights into the behavioral and psychiatric manifestations in SLE. These anti-NMDA antibodies induce neuronal apoptosis and degeneration of surviving neurons in murine models. This functional antibody is also detected in SLE patients who have behavioral and psychiatric manifestations. The presence of anti-NMDA in cerebrospinal fluid but not in serum is associated significantly with overwhelming CNS abnormalities, suggesting importance of direct access of autoantibodies to brain dysfunction. SUMMARY As anti-NMDA autoantibodies are present in patients who develop psychiatric manifestations in SLE, it is possible that novel therapeutic approaches will depend on altering the activity of these autoantibodies.
Collapse
|
40
|
Abstract
Connective tissue diseases (CTDs), also known as systemic autoimmune diseases, involve a variety of autoantibodies against cellular components. An important factor regarding these autoantibodies is that each antibody is exclusively related to a certain clinical feature of the disease type, which may prove useful in clinical practice. Thus far, more than 100 types of autoantibodies have been found in CTDs, and most of their target antigens have been identified. Many of these autoantigens are enzymes or regulators involved in important cellular functions, such as gene replication, transcription, repair/recombination, RNA processing, and protein synthesis, as well as proteins that form complexes with RNA and DNA. This article reviews the autoantibodies for each CTD, along with an assessment of their clinical significance, and provides suggestions regarding their utilization for clinical practice.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
41
|
Lauvsnes MB, Tjensvoll AB, Maroni SS, Kvivik I, Grimstad T, Greve OJ, Harboe E, Gøransson LG, Putterman C, Omdal R. The blood-brain barrier, TWEAK, and neuropsychiatric involvement in human systemic lupus erythematosus and primary Sjögren's syndrome. Lupus 2018; 27:2101-2111. [PMID: 30282561 DOI: 10.1177/0961203318804895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE A prevailing hypothesis for neuropsychiatric involvement in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome is that brain reactive autoantibodies enter the brain through a disrupted blood-brain barrier. Our aim was to investigate whether TNF-like weak inducer of apoptosis (TWEAK) plays a role in cerebral involvement in human SLE and primary Sjögren's syndrome, and whether an impaired blood-brain barrier is a prerequisite for neuropsychiatric manifestations. METHODS TWEAK was measured in the cerebrospinal fluid and serum and compared with markers of blood-brain barrier permeability (Q-albumin and MRI contrast-enhanced lesions) and S100B, an astrocyte activation marker in 50 SLE and 52 primary Sjögren's syndrome patients. Furthermore, we estimated the general intrathecal B-cell activation (IgG index), measured anti-NR2 antibodies in cerebrospinal fluid, and explored whether these variables were associated with neuropsychiatric manifestations. RESULTS No associations were found between TWEAK in the cerebrospinal fluid or serum and neuropsychiatric manifestations in SLE nor in primary Sjögren's syndrome patients. Furthermore, no associations were found between neuropsychiatric manifestations and indicators of blood-brain barrier integrity or astroglial activity. Anti-NR2 antibodies were associated with impaired visuospatial processing (odds ratio 4.9, P = 0.03) and motor functioning (odds ratio 6.0, P = 0.006). CONCLUSION No clinical neuropsychiatric manifestations could be attributed to impaired integrity of the blood-brain barrier, or to TWEAK levels in cerebrospinal fluid or serum in either patient group. The TWEAK concentration was considerably higher in the cerebrospinal fluid than in blood, which indicates intrathecal production. We hypothesize that increased TWEAK and S100B result from immunological stress caused by brain-reactive antibodies produced by brain residing immune cells.
Collapse
Affiliation(s)
- M B Lauvsnes
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - A B Tjensvoll
- 2 Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - S S Maroni
- 3 Clinical Neuropsychology Unit, Stavanger University Hospital, Stavanger, Norway
| | - I Kvivik
- 4 Research Department, Stavanger University Hospital, Stavanger, Norway
| | - T Grimstad
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - O J Greve
- 5 Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - E Harboe
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - L G Gøransson
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - C Putterman
- 7 Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, New York, USA
| | - R Omdal
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Rosetti F, Crispín JC. Intrathecal anti-suprabasin antibodies in SLE, a cause of local concern? Clin Immunol 2018; 193:131-132. [DOI: 10.1016/j.clim.2017.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 11/26/2022]
|
43
|
McGlasson S, Wiseman S, Wardlaw J, Dhaun N, Hunt DPJ. Neurological Disease in Lupus: Toward a Personalized Medicine Approach. Front Immunol 2018; 9:1146. [PMID: 29928273 PMCID: PMC5997834 DOI: 10.3389/fimmu.2018.01146] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The brain and nervous system are important targets for immune-mediated damage in systemic lupus erythematosus (SLE), resulting in a complex spectrum of neurological syndromes. Defining nervous system disease in lupus poses significant challenges. Among the difficulties to be addressed are a diversity of clinical manifestations and a lack of understanding of their mechanistic basis. However, despite these challenges, progress has been made in the identification of pathways which contribute to neurological disease in SLE. Understanding the molecular pathogenesis of neurological disease in lupus will inform both classification and approaches to clinical trials.
Collapse
Affiliation(s)
- Sarah McGlasson
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart Wiseman
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P. J. Hunt
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
|
45
|
Editorial. Curr Opin Neurol 2018; 31:291-293. [PMID: 29547403 DOI: 10.1097/wco.0000000000000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Ichinose K, Ohyama K, Furukawa K, Higuchi O, Mukaino A, Satoh K, Nakane S, Shimizu T, Umeda M, Fukui S, Nishino A, Nakajima H, Koga T, Kawashiri SY, Iwamoto N, Tamai M, Nakamura H, Origuchi T, Yoshida M, Kuroda N, Kawakami A. Novel anti-suprabasin antibodies may contribute to the pathogenesis of neuropsychiatric systemic lupus erythematosus. Clin Immunol 2017; 193:123-130. [PMID: 29162406 DOI: 10.1016/j.clim.2017.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/19/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is often difficult to diagnose and distinguish from other diseases, because no NPSLE-specific antibodies have been identified. We developed a novel proteomic strategy for identifying and profiling antigens in immune complexes in the cerebrospinal fluid (CSF), and applied this strategy to 26 NPSLE patients. As controls, we also included 25 SLE patients without neuropsychiatric manifestations (SLE), 15 with relapsing remitting multiple sclerosis (MS) and 10 with normal pressure hydrocephalus (NPH). We identified immune complexes of suprabasin (SBSN) in the CSF of the NPSLE group. The titer of anti-SBSN antibodies was significantly higher in the CSF of the NPSLE group compared to those of the SLE, MS and NPH groups. Microarray data showed that the senescence and autophagy pathways were significantly changed in astrocytes exposed to anti-SBSN antibodies. Our findings indicate that SBSN could be a novel autoantibody for the evaluation of suspected NPSLE.
Collapse
Affiliation(s)
- Kunihiro Ichinose
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kaname Ohyama
- Course of Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Osamu Higuchi
- Department of Clinical Research, Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Akihiro Mukaino
- Department of Neurology and Strokology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shunya Nakane
- Department of Clinical Research, Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayako Nishino
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakajima
- Department of Neurology and Strokology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
47
|
Jafri K, Patterson SL, Lanata C. Central Nervous System Manifestations of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2017; 43:531-545. [DOI: 10.1016/j.rdc.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Kapadia M, Bijelić D, Zhao H, Ma D, Stojanovich L, Milošević M, Andjus P, Šakić B. Effects of sustained i.c.v. infusion of lupus CSF and autoantibodies on behavioral phenotype and neuronal calcium signaling. Acta Neuropathol Commun 2017; 5:70. [PMID: 28882191 PMCID: PMC5590168 DOI: 10.1186/s40478-017-0473-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal autoimmune disease that is often accompanied by brain atrophy and diverse neuropsychiatric manifestations of unknown origin. More recently, it was observed that cerebrospinal fluid (CSF) from patients and lupus-prone mice can be neurotoxic and that acute administration of specific brain-reactive autoantibodies (BRAs) can induce deficits in isolated behavioral tasks. Given the chronic and complex nature of CNS SLE, the current study examines broad behavioral performance and neuronal Ca2+ signaling in mice receiving a sustained infusion of cerebrospinal fluid (CSF) from CNS SLE patients and putative BRAs (anti-NR2A, anti-ribosomal P, and anti-α-tubulin). A 2-week intracerebroventricular (i.c.v.) infusion of CSF altered home-cage behavior and induced olfactory dysfunction, excessive immobility in the forced swim test, and perseveration in a learning task. Conversely, sustained administration of purified BRAs produced relatively mild, both inhibitory and stimulatory effects on olfaction, spatial learning/memory, and home-cage behavior. In vitro studies revealed that administration of some CSF samples induces a rapid influx of extracellular Ca2+ into murine neurons, an effect that could be partially mimicked with the commercial anti-NR2A antibody and blocked with selective N-methyl-D-aspartate (NMDA) receptor antagonists. The current findings confirm that the CSF from CNS SLE patients can be neuroactive and support the hypothesis that intrathecal BRAs induce synergistically diverse effects on all domains of behavior. In addition, anti-NMDA receptor antibodies may alter Ca2+ homeostasis of central neurons, thus accounting for excitotoxicity and contributing to the heterogeneity of psychiatric manifestations in CNS SLE and other autoantibody-related brain disorders.
Collapse
|
49
|
Sustained Immunosuppression Alters Olfactory Function in the MRL Model of CNS Lupus. J Neuroimmune Pharmacol 2017; 12:555-564. [PMID: 28401431 DOI: 10.1007/s11481-017-9745-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is frequently accompanied by diverse neuropsychiatric manifestations. An increased frequency of olfactory deficits has been recently reported as another marker of CNS involvement in SLE patients. Similarly, we observed that spontaneous development of lupus-like disease in MRL/lpr mice is accompanied by altered olfaction-related behaviors. However, it remained unclear whether the behavioral deficits are due to systemic autoimmunity, or the distinct genetic make-up. To address this question, we presently examine whether prolonged treatment with the immunosuppressive drug cyclophosphamide (CY) restores odor-guided behaviors in MRL/lpr mice. Over 12 weekends, MRL/lpr and control MRL +/+ males were given ad lib access to a sweetened CY solution or a vehicle. Their responsiveness to different scents was assessed at ages corresponding to mild, modest, and severe disease. Odor-guided exploratory behavior was further examined in the novel object test at 21 weeks of age, shortly before terminal assessment of immunopathology. In comparison to control groups, MRL/lpr mice exposed to CY exhibited normal spleen size and antibody levels, as well as increased responsiveness to an attractant and a novel object. However, CY treatment also exacerbated their aberrant response to a repellent, suggesting a dual mode of action on brain olfactory systems. The present results reveal that generalized immunosuppression modulates odor-guided behaviors in lupus-prone animals. Although key pathogenic mechanisms are not clear, the findings strengthen the construct validity of the MRL model by supporting the hypothesis that onset of systemic autoimmunity alters the activity of olfactory circuits.
Collapse
|
50
|
Abstract
The identity of the protein antigens targeted by anti-cytoplasmic antibodies in lupus was discovered 30 years ago. These antigens are three acidic ribosomal phosphoproteins, P0, P1, and P2. Precise identification of the shared epitope on these three proteins enabled sensitive and specific immunoassays to be developed. Anti-P antibodies are highly specific for systemic lupus erythematosus (SLE) and occur in 15%–35% of patients, depending on ethnicity as well as the age of onset. Increased frequencies of detection of anti-P have been reported in childhood SLE as well as in neuropsychiatric, renal, and hepatic disease. While longitudinal studies by the Systemic Lupus International Collaborating Clinics (SLICC) consortium supported the association of anti-P with neuropsychiatric lupus, the predictive value of antibody determination remains controversial. This is likely explained by the heterogeneity of neuropsychiatric lupus as well as by the different methodologies used for assay. A number of experimental studies have suggested a direct pathogenic role for anti-P antibodies in brain disease. Findings include cross reactivity between anti-P and a neuronal surface antigen, which was detected in areas of the brain involved in memory, cognition, and emotion. Direct injection of anti-P antibodies into the brains of rodents was also associated with abnormal electrical activity and behavioral disturbances. Taken together, research over the last 30 years has established anti-P antibodies as a useful diagnostic marker of SLE and at least a subset of patients with neuropsychiatric disease. Further research is required to fine tune the association of anti-P with clinical manifestations and establish beyond high probability a pathophysiologic role for the antibodies.
Collapse
Affiliation(s)
- V T Viana
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Brazil
| | - L Durcan
- Division of Rheumatology, University of Washington, USA
| | - E Bonfa
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Brazil
| | - K B Elkon
- Division of Rheumatology, University of Washington, USA
| |
Collapse
|