1
|
Zhao Q, Duck LW, Killian JT, Rosenberg AF, Mannon PJ, King RG, Denson LA, Kugathasan S, Janoff EN, Jenmalm MC, Elson CO. Crohn's Patients and Healthy Infants Share Immunodominant B Cell Response to Commensal Flagellin Peptide Epitopes. Gastroenterology 2024:S0016-5085(24)05356-3. [PMID: 39173722 DOI: 10.1053/j.gastro.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a chronic manifestation of dysregulated immune response to the gut microbiota in genetically predisposed hosts. Nearly half of patients with Crohn's disease (CD) develop selective serum immunoglobulin (Ig)G response to flagellin proteins expressed by bacteria in the Lachnospiraceae family. This study aimed to identify the binding epitopes of these IgG antibodies and assess their relevance in CD and in homeostasis. METHODS Sera from an adult CD cohort, a treatment-naïve pediatric CD cohort, and 3 independent non-IBD infant cohorts were analyzed using novel techniques including a flagellin peptide microarray and a flagellin peptide cytometric bead array. RESULTS A dominant B cell peptide epitope in patients with CD was identified, located in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Elevated serum IgG reactivity to the hinge peptide was strongly associated with incidence of CD and the development of disease complications in children with CD up to 5 years in advance. Notably, high levels of serum IgG to the hinge epitope were also found in most infants from 3 different geographic regions (Uganda, Sweden, and the United States) at 1 year of age, which decrements rapidly afterward. CONCLUSIONS These findings identified a distinct subset of patients with CD, united by a shared reactivity to a dominant commensal bacterial flagellin epitope, that may represent failure of a homeostatic response to the gut microbiota beginning in infancy.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Lennard Wayne Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John T Killian
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama; Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter J Mannon
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lee A Denson
- Schubert-Martin Inflammatory Bowel Disease Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Edward N Janoff
- Department of Medicine, University of Colorado Denver, Denver Veterans Affairs Medical Center, Aurora, Colorado
| | - Maria C Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
2
|
Yang YN, Han B, Zhang MQ, Chai NN, Yu FL, Qi WH, Tian MY, Sun DZ, Huang Y, Song QX, Li Y, Zhu MC, Zhang Y, Li X. Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders. Inflammopharmacology 2024; 32:1983-1998. [PMID: 38642223 DOI: 10.1007/s10787-024-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wen-Hui Qi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Dong-Zhi Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Ying Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qing-Xin Song
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yan Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Cui Zhu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
3
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2024. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
4
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
5
|
Sorini C, Cardoso RF, Tripathi KP, Mold JE, Diaz OE, Holender Y, Kern BC, Czarnewski P, Gagliani N, Villablanca EJ. Intestinal damage is required for the pro-inflammatory differentiation of commensal CBir1-specific T cells. Mucosal Immunol 2024; 17:81-93. [PMID: 37952848 DOI: 10.1016/j.mucimm.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Commensal-specific clusters of differentiation (CD)4+ T cells are expanded in patients with inflammatory bowel disease (IBD) compared to healthy individuals. How and where commensal-specific CD4+ T cells get activated is yet to be fully understood. We used CBir1 TCR-transgenic CD4+ T cells, specific to a commensal bacterial antigen, and different mouse models of IBD to characterize the dynamics of commensal-specific CD4+ T-cells activation. We found that CBir1 T cells proliferate following intestinal damage and cognate antigen presentation is mediated by CD11c+ cells in the colon-draining mesenteric lymph nodes. Using assay for transposase-accessible chromatin sequencing and flow cytometry, we showed that activated CBir1 T cells preferentially acquire an effector rather than regulatory phenotype, which is plastic over time. Moreover, CBir1 T cells, while insufficient to initiate intestinal inflammation, contributed to worse disease outcomes in the presence of other CD4+ T cells. Our results suggest that the commensal-specific T-cell responses observed in IBD exacerbate rather than initiate disease.
Collapse
Affiliation(s)
- Chiara Sorini
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden.
| | - Rebeca F Cardoso
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Oscar E Diaz
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Yael Holender
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Bianca C Kern
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Nicola Gagliani
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden; Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J Villablanca
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
6
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Zhao Q, Duck LW, Killian JT, Rosenberg AF, Mannon PJ, King RG, Denson LA, Kugathasan S, Janoff EN, Jenmalm MC, Elson CO. Crohn's patients and healthy infants share immunodominant B cell response to commensal flagellin peptide epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552496. [PMID: 37609309 PMCID: PMC10441350 DOI: 10.1101/2023.08.08.552496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
About half of patients with Crohn's disease (CD) develop selective serum IgG response to flagellin proteins of the Lachnospiraceae family. Here, we identified a dominant B cell peptide epitope in CD, locating in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Serum IgG reactive to this epitope is present at an elevated level in adult CD patients and in pediatric CD patients at diagnosis. Most importantly, high levels of serum IgG to the hinge epitope were found in most infants from 3 different geographic regions (Uganda, Sweden, and the USA) at one year of age. This vigorous homeostatic response decrements with age as it is not present in healthy adults. These data identify a distinct subset of CD patients, united by a shared reactivity to this dominant flagellin epitope that may represent failure of a homeostatic response beginning in infancy.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham; Birmingham, USA
| | - Lennard Wayne Duck
- Department of Medicine, University of Alabama at Birmingham; Birmingham, USA
| | - John T. Killian
- Department of Surgery, University of Alabama at Birmingham; Birmingham, USA
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama at Birmingham; Birmingham, USA
- Informatics Institute, University of Alabama at Birmingham; Birmingham, USA
| | - Peter J. Mannon
- Department of Internal Medicine, University of Nebraska Medical Center; Omaha, USA
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham; Birmingham, USA
| | - Lee A. Denson
- Schubert-Martin Inflammatory Bowel Disease Center, Department of Pediatrics, University of Cincinnati; Cincinnati, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Children’s Healthcare of Atlanta; Atlanta, USA
| | - Edward N. Janoff
- Department of Medicine, University of Colorado Denver, Denver Veterans Affairs Medical Center; Aurora, USA
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University; Linköping, Sweden
| | - Charles O. Elson
- Department of Medicine, University of Alabama at Birmingham; Birmingham, USA
| |
Collapse
|
8
|
Muir RQ, Klocke BJ, Jennings MS, Molina PA, Hsu JS, Kellum CE, Alexander KL, Lee G, Foote JB, Lorenz RG, Pollock JS, Maynard CL. Early Life Stress in Mice Leads to Impaired Colonic Corticosterone Production and Prolonged Inflammation Following Induction of Colitis. Inflamm Bowel Dis 2023; 29:960-972. [PMID: 36661889 PMCID: PMC10233396 DOI: 10.1093/ibd/izac280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Early life stress (ELS) is an environmental trigger believed to promote increased risk of IBD. Our goal was to identify mechanisms whereby ELS in mice affects susceptibility to and/or severity of gut inflammation. METHODS We utilized 2 published animal models of ELS. In the first model, newborn mice were separated from the dam daily for 4 to 8 hours starting on postnatal day 2 and then weaned early on postnatal day 17. Control mice were left undisturbed with the dams until weaning on postnatal day 21. In the second model, dams were fed dexamethasone or vehicle ad libitum in drinking water on postpartum days 1 to 14. Plasma and colonic corticosterone were measured in juvenile and adult mice. Colitis was induced in 4-week-old mice via intraperitoneal injection of interleukin (IL)-10 receptor blocking antibody every 5 days for 15 days. Five or 15 days later, colitis scores and transcripts for Tnf, glucocorticoid receptors, and steroidogenic enzymes were measured. RESULTS Mice exposed to ELS displayed reduced plasma and colonic corticosterone. Control animals showed improvements in indices of inflammation following cessation of interleukin-10 receptor blockade, whereas ELS-exposed animals maintained high levels of Tnf and histological signs of colitis. In colitic animals, prior exposure to ELS was associated with significantly lower expression of genes associated with corticosterone synthesis and responsiveness. Finally, TNF stimulation of colonic crypt cells from ELS mice led to increased inhibition of corticosterone synthesis. CONCLUSIONS Our study identifies impaired local glucocorticoid production and responsiveness as a potential mechanism whereby ELS predisposes to chronic colitis in susceptible hosts.
Collapse
Affiliation(s)
- Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Barbara J Klocke
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Patrick A Molina
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jung-Shan Hsu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Cailin E Kellum
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Goo Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin G Lorenz
- Department of Research Pathology, Genentech, San Francisco, CAUSA
| | - Jennifer S Pollock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
9
|
Chen X, Elson CO, Dunkin D. Epicutaneous Immunotherapy with CBir1 Alleviates Intestinal Inflammation. Inflamm Bowel Dis 2023; 29:798-807. [PMID: 36651798 PMCID: PMC10152294 DOI: 10.1093/ibd/izac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Inflammatory bowel disease may be due to failed tolerance to normal gut bacteria. We demonstrate that epicutaneous immunotherapy (ET) to ovalbumin can alleviate colitis in murine models. However, most people are tolerant to or have anergy to ovalbumin. Half of Crohn's disease (CD) patients have CBir1 antibodies that can be elevated years before CD development. We determined whether ET with a CBir1 multi-epitope peptide (MEP1) could alleviate colitis. METHODS Wild type mice (C57BL/6) were transferred with CBir1 T cell receptor (TCR) T cells followed by epicutaneous application of MEP1. Proliferating Foxp3+ T cells were measured in mesenteric lymph nodes (LNs), spleen, small intestine, and colon by flow cytometry. Lymphocytes from MEP1 epicutaneously exposed and immunized C57BL/6 mice were cultured with MEP1. Interferon (IFN)-γ production was measured. Colitis was induced by transferring CD4+CD45Rbhi T cells from CBIR1 TCR or C57BL/6 mice into RAG1-/- mice. Mice were treated with ET. Body weight, colon length, colonic cytokine production, histological inflammation, inflammatory genes, and regulatory T cells (Tregs) from lamina propria were measured. RESULTS ET with 10 μg of MEP1 induced CBir1-specific Tregs that migrated to the small intestine and colon and suppressed MEP1-specific IFN-γ production. ET alleviated colitis when the model utilized CBir1 TCR T cells in mice colonized with CBir1 or A4Fla2 positive bacteria. Treated mice had improved colon length and histological inflammation and reduced colonic IFN-γ production. CONCLUSION Epicutaneous immunotherapy with MEP1 induced Tregs that migrate to intestines and suppress inflammation in mice with CBir1 or A4Fla2-positive bacterial colonization. This could be a potential strategy to treat CD and warrants further study.
Collapse
Affiliation(s)
- Xin Chen
- Division of Pediatric Gastroenterology and the Mindich Child Health and Development Institute (MCHDI), The Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Charles O Elson
- Department of Medicine, Division of Gastroenterology and Hepatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Dunkin
- Division of Pediatric Gastroenterology and the Mindich Child Health and Development Institute (MCHDI), The Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
10
|
Ishihara S, Sato M, Miyazaki H, Saito H, Sato T, Fujikado N, Sawai S, Kotani A, Katagiri K. Deletion of miR-150 Prevents Spontaneous T Cell Proliferation and the Development of Colitis. GASTRO HEP ADVANCES 2023; 2:487-496. [PMID: 39132043 PMCID: PMC11308117 DOI: 10.1016/j.gastha.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims To examine the roles of microRNAs in the development of colitis, we conducted the RNA-sequencing studies using RNA derived from normal and colitogenic CD4+ T cells. Colitogenic CD4+ T cells demonstrated the increased expression of miR-150. We focused on the involvement of miR-150 in the colitis. Methods We crossed miR-150 knockout mice and T-cell-specific Rap1KO mice, which is colitis model mice and spontaneously develop the colitis with tubular adenomas in microbiota-dependent manner. Results MiR-150 silencing completely inhibited the expansion of pathogenic Th17 cells and the development of colitis. Conclusion MiR-150 is a potential therapeutic target of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Masashi Sato
- Department of Immunology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Haruka Miyazaki
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Haruka Saito
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Noriyuki Fujikado
- Discovery Immunology, Ferring Research Institute, Ferring Pharmaceuticals, San Diego, California
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ai Kotani
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. Int J Mol Sci 2022; 23:ijms23169344. [PMID: 36012618 PMCID: PMC9409205 DOI: 10.3390/ijms23169344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.
Collapse
|
13
|
Seki N, Kimizuka T, Gondo M, Yamaguchi G, Sugiura Y, Akiyama M, Yakabe K, Uchiyama J, Higashi S, Haneda T, Suematsu M, Hase K, Kim YG. D-tryptophan suppresses enteric pathogens and pathobionts and prevents colitis by modulating microbial tryptophan metabolism. iScience 2022; 25:104838. [PMID: 35996581 PMCID: PMC9391578 DOI: 10.1016/j.isci.2022.104838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
D-Amino acids (D-AAs) have various functions in mammals and microbes. D-AAs are produced by gut microbiota and can act as potent bactericidal molecules. Thus, D-AAs regulate the ecological niche of the intestine; however, the actual impacts of D-AAs in the gut remain unknown. In this study, we show that D-Tryptophan (D-Trp) inhibits the growth of enteric pathogen and colitogenic pathobionts. The growth of Citrobacter rodentium in vitro is strongly inhibited by D-Trp treatment. Moreover, D-Trp protects mice from lethal C. rodentium infection via reduction of the pathogen. Additionally, D-Trp prevents the development of experimental colitis by the depletion of specific microbes in the intestine. D-Trp increases the intracellular level of indole acrylic acid (IA), a key molecule that determines the susceptibility of enteric microbes to D-Trp. Treatment with IA improves the survival of mice infected with C. rodentium. Hence, D-Trp could act as a gut environmental modulator that regulates intestinal homeostasis. D-Trp inhibits the growth of Citrobacter rodentium in vitro and in vivo D-Trp suppresses experimental colitis by the depletion of specific gut microbes IA is the metabolite that determines the susceptibility of enteric microbes to D-Trp
Collapse
Affiliation(s)
- Natsumi Seki
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Tatsuki Kimizuka
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Monica Gondo
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Genki Yamaguchi
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Seiichiro Higashi
- Co-Creation Center, Meiji Holdings Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Hase
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Corresponding author
| |
Collapse
|
14
|
Kuttke M, Hromadová D, Yildirim C, Brunner JS, Vogel A, Paar H, Peters S, Weber M, Hofmann M, Kerndl M, Kieler M, Datler H, Musiejovsky L, Salzmann M, Lang M, Soukup K, Halfmann A, Sharif O, Schabbauer G. PI3K Signaling in Dendritic Cells Aggravates DSS-Induced Colitis. Front Immunol 2022; 13:695576. [PMID: 35514976 PMCID: PMC9063450 DOI: 10.3389/fimmu.2022.695576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.
Collapse
Affiliation(s)
- Mario Kuttke
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dominika Hromadová
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Yildirim
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julia S. Brunner
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannah Paar
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sophie Peters
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Kerndl
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Datler
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laszlo Musiejovsky
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Department of Gastroenterology and Hepatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klara Soukup
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Angela Halfmann
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Ishihara S, Sato T, Fujikado N, Miyazaki H, Yoshimoto T, Yamamoto H, Fukuda S, Katagiri K. Rap1 prevents colitogenic Th17 cell expansion and facilitates Treg cell differentiation and distal TCR signaling. Commun Biol 2022; 5:206. [PMID: 35246619 PMCID: PMC8897436 DOI: 10.1038/s42003-022-03129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
T-cell-specific Rap1 deletion causes spontaneous colitis in mice. In the present study, we revealed that Rap1 deficiency in T cells impaired the preceding induction of intestinal RORγt+ Treg cells. In the large intestinal lamina propria (LILP) of T-cell-specific Rap1-knockout mice (Rap1KO mice), Th17 cells were found to increase in a microbiota-dependent manner, and the inhibition of IL-17A production prevented the development of colitis. In the LILP of Rap1KO mice, RORγt+ Treg cells were scarcely induced by 4 weeks of age. The expression of CTLA-4 on Rap1-deficient Treg cells was reduced and the expression of CD80 and CD86 on dendritic cells was consequently elevated in Rap1KO mice. When cultured under each polarizing condition, Rap1-deficient naïve CD4+ T cells did not show biased differentiation into Th17 cells; their differentiation into Treg cells as well as Th1 and Th2 cells was lesser than that of wild-type cells. Rap1-deficient naïve CD4+ T cells were found to exhibit the defective nuclear translocation of NFAT and formation of actin foci in response to TCR engagement. These data suggest that Rap1 amplifies the TCR signaling required for Treg-mediated control of intestinal colitogenic Th17 responses.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Noriyuki Fujikado
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Haruka Miyazaki
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Hiromitsu Yamamoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan.
| |
Collapse
|
17
|
Muschaweck M, Kopplin L, Ticconi F, Schippers A, Iljazovic A, Gálvez EJC, Abdallah AT, Wagner N, Costa IG, Strowig T, Pabst O. Cognate recognition of microbial antigens defines constricted CD4 + T cell receptor repertoires in the inflamed colon. Immunity 2021; 54:2565-2577.e6. [PMID: 34582747 DOI: 10.1016/j.immuni.2021.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Key aspects of intestinal T cells, including their antigen specificity and their selection by the microbiota and other intestinal antigens, as well as the contribution of individual T cell clones to regulatory and effector functions, remain unresolved. Here we tracked adoptively transferred T cell populations to specify the interrelation of T cell receptor repertoire and the gut antigenic environment. We show that dominant TCRα clonotypes were shared between interferon-γ- and interleukin-17-producing but not regulatory Foxp3+ T cells. Identical TCRα clonotypes accumulated in the colon of different individuals, whereas antibiotics or defined colonization correlated with the expansion of distinct expanded T cell clonotypes. Our results demonstrate key aspects of intestinal CD4+ T cell activation and suggest that few microbial species exert a dominant effect on the intestinal T cell repertoire during colitis. We speculate that dominant proinflammatory T cell clones might provide a therapeutic target in human inflammatory bowel disease.
Collapse
Affiliation(s)
- Moritz Muschaweck
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany; Department of Pediatrics, RWTH Aachen University, Aachen, Germany.
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, RWTH Aachen University, Aachen, Germany
| | - Aida Iljazovic
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
18
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
19
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Alexander KL, Zhao Q, Reif M, Rosenberg AF, Mannon PJ, Duck LW, Elson CO. Human Microbiota Flagellins Drive Adaptive Immune Responses in Crohn's Disease. Gastroenterology 2021; 161:522-535.e6. [PMID: 33844987 PMCID: PMC8489510 DOI: 10.1053/j.gastro.2021.03.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease and ulcerative colitis are characterized by dysregulated adaptive immune responses to the microbiota in genetically susceptible individuals, but the specificity of these responses remains largely undefined. Therefore, we developed a microbiota antigen microarray to characterize microbial antibody reactivity, particularly to human-derived microbiota flagellins, in inflammatory bowel disease. METHODS Sera from healthy volunteers (n = 87) at the University of Alabama at Birmingham and from patients recruited from the Kirklin Clinic of University of Alabama at Birmingham Hospital, including patients with Crohn's disease (n = 152) and ulcerative colitis (n = 170), were individually probed against microbiota bacterial flagellins of both mouse and human origin and analyzed for IgG and IgA antibody responses. Circulating flagellin-reactive T effector (CD4+CD154+) and T regulatory (CD4+CD137+) cells were isolated and evaluated in selected patients. Resulting adaptive immune responses were compared with corresponding clinical data to determine relevancy to disease behavior. RESULTS We show that patients with IBD express selective patterns of antibody reactivity to microbiota flagellins. Patients with Crohn's disease, but not patients with ulcerative colitis, display augmented serum IgG to human ileal-localized Lachnospiraceae flagellins, with a subset of patients having high responses to more than 10 flagellins. Elevated responses to CBir1, a mouse Lachnospiraceae flagellin used clinically to diagnose CD, correlated with multi-Lachnospiraceae flagellin reactivity. In this subset of patients with CD, multi-flagellin reactivity was associated with elevated flagellin-specific CD154+CD45RA- T memory cells, a reduced ratio of flagellin-reactive CD4+ T regulatory to T effector cells, and a high frequency of disease complications. CONCLUSIONS Patients with Crohn's disease display strong adaptive immune response to human-derived Lachnospiraceae flagellins, which may be targeted for prognosis and future personalized therapies.
Collapse
Affiliation(s)
- Katie L. Alexander
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama
| | - Qing Zhao
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama
| | - Meagan Reif
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama at
Birmingham, Birmingham, Alabama,Informatics Institute, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Peter J. Mannon
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama,Birmingham Veterans Affairs Medical Center, Medical
Service, Birmingham, Alabama
| | - Lennard Wayne Duck
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama
| | - Charles O. Elson
- Department of Medicine, University of Alabama at
Birmingham, Birmingham, Alabama,Department of Microbiology, University of Alabama at
Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Sartor RB. Targeting Adaptive Immune Responses to Human Bacterial Flagellins in Crohn's Disease. Gastroenterology 2021; 161:416-418. [PMID: 34015336 DOI: 10.1053/j.gastro.2021.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Affiliation(s)
- R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
23
|
Kuczma MP, Szurek EA, Cebula A, Ngo VL, Pietrzak M, Kraj P, Denning TL, Ignatowicz L. Self and microbiota-derived epitopes induce CD4 + T cell anergy and conversion into CD4 +Foxp3 + regulatory cells. Mucosal Immunol 2021; 14:443-454. [PMID: 33139845 PMCID: PMC7946630 DOI: 10.1038/s41385-020-00349-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 02/04/2023]
Abstract
The physiological role of T cell anergy induction as a key mechanism supporting self-tolerance remains undefined, and natural antigens that induce anergy are largely unknown. In this report, we used TCR sequencing to show that the recruitment of CD4+CD44+Foxp3-CD73+FR4+ anergic (Tan) cells expands the CD4+Foxp3+ (Tregs) repertoire. Next, we report that blockade in peripherally-induced Tregs (pTregs) formation due to mutation in CNS1 region of Foxp3 or chronic exposure to a selecting self-peptide result in an accumulation of Tan cells. Finally, we show that microbial antigens from Akkermansia muciniphila commensal bacteria can induce anergy and drive conversion of naive CD4+CD44-Foxp3- T (Tn) cells to the Treg lineage. Overall, data presented here suggest that Tan induction helps the Treg repertoire to become optimally balanced to provide tolerance toward ubiquitous and microbiome-derived epitopes, improving host ability to avert systemic autoimmunity and intestinal inflammation.
Collapse
Affiliation(s)
- Michal P Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta A Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Bresler P, Tejerina E, Jacob JM, Legrand A, Quellec V, Ezine S, Peduto L, Cherrier M. T cells regulate lymph node-resident ILC populations in a tissue and subset-specific way. iScience 2021; 24:102158. [PMID: 33665576 PMCID: PMC7907429 DOI: 10.1016/j.isci.2021.102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been shown to be significantly affected in the small intestine lamina propria and secondary lymphoid organs (SLOs) of conventional lymphopenic mice. How ILCs are regulated by adaptive immunity in SLOs remains unclear. In T cell-deficient mice, ILC2s are significantly increased in the mesenteric lymph nodes (MLNs) at the expense of CCR6+ ILC3s, which are nonetheless increased in the peripheral lymph nodes (PLNs). Here, we show that T cells regulate lymph node-resident ILCs in a tissue- and subset-specific way. First, reducing microbial colonization from birth restored CCR6+ ILC3s in the MLNs of T cell-deficient mice. In contrast, T cell reconstitution resulted in the contraction of both MLNs ILC2s and PLNs ILC3s, whereas antagonizing microbial colonization from birth had no impact on these populations. Finally, the accumulation of MLNs ILC2s was partly regulated by T cells through stroma-derived IL-33.
Collapse
Affiliation(s)
- Priscillia Bresler
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Emmanuel Tejerina
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Jean Marie Jacob
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Agnès Legrand
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Véronique Quellec
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Sophie Ezine
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Lucie Peduto
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France
| | - Marie Cherrier
- Institut Imagine, Université Paris Descartes, INSERM U1163, Laboratory of Intestinal Immunity, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
25
|
Abstract
Inflammatory Bowel Disease (IBD) is a term used to describe a group of complex disorders of the gastrointestinal (GI) tract. IBDs include two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC), which share similar clinical symptoms but differ in the anatomical distribution of the inflammatory lesions. The etiology of IBDs is undetermined. Several hypotheses suggest that Crohn’s Disease and Ulcerative Colitis result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. While there is no cure for IBDs, most common treatments (medication and surgery) aim to reduce inflammation and help patients to achieve remission. There is growing evidence and focus on the prophylactic and therapeutic potential of probiotics in IBDs. Probiotics are live microorganisms that regulate the mucosal immune system, the gut microbiota and the production of active metabolites such as Short-Chain Fatty Acids (SCFAs). This review will focus on the role of intestinal dysbiosis in the immunopathogenesis of IBDs and understanding the health-promoting effects of probiotics and their metabolites.
Collapse
|
26
|
Mori G, Pasca MR. Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031312. [PMID: 33525662 PMCID: PMC7865401 DOI: 10.3390/ijms22031312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer-related death and the third most common cancer in the world. Depending on the origin of the mutation, colorectal carcinomas are classified as sporadic or hereditary. Cancers derived from mutations appearing during life, affecting individual cells and their descendants, are called sporadic and account for almost 95% of the CRCs. Less than 5% of CRC cases result from constitutional mutations conferring a very high risk of developing cancer. Screening for hereditary-related cancers is offered to individuals at risk for hereditary CRC, who have either not undergone genetic evaluation or have uncertain genetic test results. In this review, we briefly summarize the main findings on the correlation between sporadic CRC and the gut microbiota, and we specifically focus on the few evidences about the role that gut microorganisms have on the development of CRC hereditary syndromes. The characterization of a gut microbiota associated with an increased risk of developing CRC could have a profound impact for prevention purposes. We also discuss the potential role of the gut microbiota as therapeutic treatment.
Collapse
Affiliation(s)
- Giorgia Mori
- Correspondence: (G.M.); (M.R.P.); Tel.: +61-4-66344648 (G.M.); +39-0382-985576 (M.R.P.)
| | - Maria Rosalia Pasca
- Correspondence: (G.M.); (M.R.P.); Tel.: +61-4-66344648 (G.M.); +39-0382-985576 (M.R.P.)
| |
Collapse
|
27
|
Morgan NN, Mannon PJ. Flagellin-Specific CD4 Cytokine Production in Crohn Disease and Controls Is Limited to a Small Subset of Antigen-Induced CD40L + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:345-354. [PMID: 33298614 DOI: 10.4049/jimmunol.2000918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023]
Abstract
Flagellin is an immunodominant Ag in Crohn disease, with many patients showing anti-flagellin Abs. To study the clonality of flagellin-reactive CD4 cells in Crohn patients, we used a common CD154-based enrichment method following short-term Ag exposure to identify Ag-reactive CD4 cells. CD154 expression and cytokine production following Ag exposure compared with negative control responses (no Ag exposure) revealed that only a small fraction of CD154-enriched cells could be defined by Ag-reactive cytokine responses. This was especially true for low-frequency flagellin-reactive CD4 cells compared with polyclonal stimulation or Candida albicans Ag exposure. Moreover, we found that culture conditions used for the assay contributed to background CD40L (CD154) expression in the CD154-enriched CD4 cells. Using a cut-off rule based on flow cytometry results of the negative control CD154-enriched CD4 cells, we could reliably find the fraction of Ag-reactive cells in the CD154-enriched population. Ag-reactive CD4 cytokine production was restricted to CD4 cells with an effector memory phenotype and the highest levels of induced CD154 expression. This has important implications for identifying Ag-specific T cells of interest for single cell cloning, phenotyping, and transcriptomics.
Collapse
Affiliation(s)
- Nadine N Morgan
- Department of Medicine and Program in Immunology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Peter J Mannon
- Birmingham VA Medical Center, Medical Service and Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
28
|
Wu WJH, Zegarra-Ruiz DF, Diehl GE. Intestinal Microbes in Autoimmune and Inflammatory Disease. Front Immunol 2020; 11:597966. [PMID: 33424846 PMCID: PMC7786055 DOI: 10.3389/fimmu.2020.597966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses resulting in excessive and uncontrolled tissue inflammation. Multiple factors including genetic variation, environmental stimuli, and infection are all thought to contribute to continued inflammation and pathology. Current evidence supports the microbiota as one such factor with emerging data linking commensal organisms to the onset and progression of disease. In this review, we will discuss links between the microbiota and specific diseases as well as highlight common pathways that link intestinal microbes with multiple autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wan-Jung H. Wu
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
29
|
Shim YA, Weliwitigoda A, Campbell T, Dosanjh M, Johnson P. Splenic erythroid progenitors decrease TNF-α production by macrophages and reduce systemic inflammation in a mouse model of T cell-induced colitis. Eur J Immunol 2020; 51:567-579. [PMID: 33180325 DOI: 10.1002/eji.202048687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
In inflammatory bowel disease (IBD), inflammation can occur beyond the intestine and spread systemically causing complications such as arthritis, cachexia, and anemia. Here, we determine the impact of CD45, a pan-leukocyte marker and tyrosine phosphatase, on IBD. Using a mouse model of T cell transfer colitis, CD25- CD45RBhigh CD4+ T cells were transferred into Rag1-deficient mice (RAGKO) and CD45-deficient RAGKO mice (CD45RAGKO). Weight loss and systemic wasting syndrome were delayed in CD45RAGKO mice compared to RAGKO mice, despite equivalent inflammation in the colon. CD45RAGKO mice had reduced serum levels of TNF-α, and reduced TNF-α production by splenic myeloid cells. CD45RAGKO mice also had increased numbers of erythroid progenitors in the spleen, which had previously been shown to be immunosuppressive. Adoptive transfer of these erythroid progenitors into RAGKO mice reduced their weight loss and TNF-α expression by splenic red pulp macrophages. In vitro, erythroid cells suppressed TNF-α expression in red pulp macrophages in a phagocytosis-dependent manner. These findings show a novel role for erythroid progenitors in suppressing the pro-inflammatory function of splenic macrophages and cachexia associated with IBD.
Collapse
Affiliation(s)
- Yaein Amy Shim
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| | - Asanga Weliwitigoda
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Teresa Campbell
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| |
Collapse
|
30
|
Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL, Mannon PJ, Elson CO. CD4 + T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol 2020; 5:5/54/eabc6373. [PMID: 33310866 DOI: 10.1126/sciimmunol.abc6373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Microbiota-reactive CD4+ T memory (TM) cells are generated during intestinal infections and inflammation, and can revert to pathogenic CD4+ T effector (TE) cells, resulting in chronicity of inflammatory bowel disease (IBD). Unlike TE cells, TM cells have a low rate of metabolism unless they are activated by reencountering cognate antigen. Here, we show that the combination of cell activation and metabolic checkpoint inhibition (CAMCI), by targeting key metabolic regulators mTORC and AMPK, resulted in cell death and anergy, but enhanced the induction of the regulatory subset. Parenteral application of this treatment with a synthetic peptide containing multiple flagellin T cell epitopes (MEP1) and metabolic inhibition successfully prevented the development of CD4+ T cell-driven colitis. Microbiota-specific CD4+ T cells, especially the pathogenic TE subsets, were decreased 10-fold in the intestinal lamina propria. Furthermore, using the CAMCI strategy, we were able to prevent antigen-specific TM cell formation upon initial antigen encounter, and ablate existing TM cells upon reactivation in mice, leading to an altered transcriptome in the remaining CD4+ T cells after ablation. Microbiota flagellin-specific CD4+ T cells from patients with Crohn's disease were ablated in a similar manner after CAMCI in vitro, with half of the antigen-specific T cells undergoing cell death. These results indicate that parenteral activation of microbiota-specific CD4+ T cells with concomitant metabolic inhibition is an effective way to ablate pathogenic CD4+ TM cells and to induce T regulatory (Treg) cells that provide antigen-specific and bystander suppression, supporting a potential immunotherapy to prevent or ameliorate IBD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennard W Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengyuan Huang
- Department of Genetics, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter J Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, Yao S, Maynard CL, Singh N, Dann SM, Liu Z, Cong Y. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020; 11:4457. [PMID: 32901017 PMCID: PMC7478978 DOI: 10.1038/s41467-020-18262-6] [Citation(s) in RCA: 527] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid cells (ILCs) and CD4+ T cells produce IL-22, which is critical for intestinal immunity. The microbiota is central to IL-22 production in the intestines; however, the factors that regulate IL-22 production by CD4+ T cells and ILCs are not clear. Here, we show that microbiota-derived short-chain fatty acids (SCFAs) promote IL-22 production by CD4+ T cells and ILCs through G-protein receptor 41 (GPR41) and inhibiting histone deacetylase (HDAC). SCFAs upregulate IL-22 production by promoting aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor 1α (HIF1α) expression, which are differentially regulated by mTOR and Stat3. HIF1α binds directly to the Il22 promoter, and SCFAs increase HIF1α binding to the Il22 promoter through histone modification. SCFA supplementation enhances IL-22 production, which protects intestines from inflammation. SCFAs promote human CD4+ T cell IL-22 production. These findings establish the roles of SCFAs in inducing IL-22 production in CD4+ T cells and ILCs to maintain intestinal homeostasis.
Collapse
MESH Headings
- Animals
- Butyrates/immunology
- Butyrates/metabolism
- Butyrates/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- Citrobacter rodentium
- Colitis/immunology
- Colitis/microbiology
- Colitis/prevention & control
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/microbiology
- Enterobacteriaceae Infections/prevention & control
- Fatty Acids, Volatile/immunology
- Fatty Acids, Volatile/metabolism
- Fatty Acids, Volatile/pharmacology
- Gastrointestinal Microbiome/immunology
- Gastrointestinal Microbiome/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunity, Innate
- In Vitro Techniques
- Interleukins/biosynthesis
- Interleukins/deficiency
- Interleukins/genetics
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tianming Yu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, 200072, Shanghai, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leiqi Xu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yao Lu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Sara M Dann
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, 200072, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
32
|
Huang X, Yang W, Yao S, Bilotta AJ, Lu Y, Zhou Z, Kumar P, Dann SM, Cong Y. IL-21 Promotes Intestinal Memory IgA Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:1944-1952. [PMID: 32859726 DOI: 10.4049/jimmunol.1900766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
The role of IL-21, produced mainly by Th17 cells and T follicular helper cells, has been intensively investigated in B cell differentiation and Ab class switch. However, how IL-21 regulates memory IgA+ B cell development and memory IgA responses in the intestines is still not completely understood. In this study, we found the total IgA+ B cells as well as CD38+CD138-IgA+ memory B cells were significantly increased in intestinal lamina propria (LP) of TCRβxδ-/- mice after transfer of microbiota Ag-specific Th17 cells but not Th1 cells. Although IL-21R-/- mice or IL-17R-/- mice showed decreased Ag-specific memory IgA production in the intestines upon infection with Citrobacter rodentium, the percentage of IgA+CD38+CD138- memory B cells in Peyer's patches and LP was decreased only in IL-21R-/- mice, but not in IL-17R-/- mice, after reinfection with C. rodentium compared with wild-type mice. Blockade IL-21 in vivo suppressed intestinal C. rodentium-specific IgA production as well as IgA+CD38+CD138- memory B cells in Peyer's patches and LP. Furthermore, IL-21 significantly induced B cell IgA production in vitro, with the increased expression of genes related with class-switching and memory B cell development, including Aicda, Ski, Bmi1, and Klf2. Consistently, Aicda and Ski expression was decreased in B cells of IL-21R-/- mice after C. rodentium reinfection. In conclusion, our study demonstrated that IL-21 promotes intestinal memory IgA B cell development, possibly through upregulating differentiation-related and class switching-related genes, indicating a potential role of IL-21 in memory IgA+ B cell responses in the intestines.
Collapse
Affiliation(s)
- Xiangsheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Yao Lu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Zheng Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Sara M Dann
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555; and
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
33
|
Iacob SA, Olariu MC, Iacob DG. Eosinophilic Colitis and Clostridioides difficile Sepsis With Rapid Remission After Antimicrobial Treatment; A Rare Coincidence and Its Pathogenic Implications. Front Med (Lausanne) 2020; 7:328. [PMID: 32903297 PMCID: PMC7396602 DOI: 10.3389/fmed.2020.00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/03/2020] [Indexed: 11/24/2022] Open
Abstract
Eosinophilic colitis is a rare inflammatory disorder of the digestive tract with chronic evolution and unknown pathophysiological mechanisms. The article describes the case of a 64-year old woman with a history of asthma and hypereosinophilia, who presented to a surgical department for persistent abdominal pain in the past 4 months, weight loss and malabsorption. She was diagnosed with eosinophilic colitis based on the colonoscopic result indicating extensive eosinophilic infiltration of the colonic mucosa correlated with the laboratory data and abdominal CT scan results. Following the colonoscopy, the patient developed fever, hypotension and diarrhea and was transferred to an Infectious Diseases Department with a presumptive diagnosis of abdominal sepsis. Treatment with ertapenem was immediately started. Metronidazole was also added due to a PCR positive stool test for Clostridioides difficile toxins encoding-genes. The patient displayed a rapid remission of the fever and of the intestinal complaints following antibiotic therapy and was discharged after 14 days. During a 3 months follow-up, the patient remained asymptomatic with normal values of laboratory parameters except for a persistent hypereosinophilia. The case outlines two distinguishing features: a histopathologic diagnosis of eosinophilic colitis, a rare diagnosis of a patient with chronic abdominal pain and an unexpected and rapid remission of the eosinophilic colitis following the antibiotic treatment and the restoration of the intestinal eubiosis.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Mihaela Cristina Olariu
- Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania.,Gastroenterology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
34
|
Harbour SN, DiToro DF, Witte SJ, Zindl CL, Gao M, Schoeb TR, Jones GW, Jones SA, Hatton RD, Weaver CT. T H17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol 2020; 5:5/49/eaaw2262. [PMID: 32680955 DOI: 10.1126/sciimmunol.aaw2262] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/31/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Acting in concert with TGF-β, interleukin-6 (IL-6) signaling induces T helper 17 (TH17) cell development by programming TH17-related genes via signal transducers and activators of transcription 3 (STAT3). A role for IL-6 signaling beyond the inductive phase of TH17 cell development has not been defined because IL-23 signaling downstream of TH17 cell induction also activates STAT3 and is thought responsible for TH17 cell maintenance. Here, we find that IL-6 signaling is required for both induction and maintenance of mouse TH17 cells; IL-6Rα-deficient TH17 cells rapidly lost their TH17 phenotype and did not cause disease in two models of colitis. Cotransfer of wild-type TH17 cells with IL-6Rα-deficient TH17 cells induced colitis but was unable to rescue phenotype loss of the latter. High IL-6 expression in the colon promoted classic, or cis, rather than transreceptor signaling that was required for maintenance of TH17 cells. Thus, ongoing classic IL-6 signaling underpins the TH17 program and is required for TH17 cell maintenance and function.
Collapse
Affiliation(s)
- Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel F DiToro
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Simon A Jones
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Gonçalves P, El Daker S, Vasseur F, Serafini N, Lim A, Azogui O, Decaluwe H, Guy-Grand D, Freitas AA, Di Santo JP, Rocha B. Microbiota stimulation generates LCMV-specific memory CD8 + T cells in SPF mice and determines their TCR repertoire during LCMV infection. Mol Immunol 2020; 124:125-141. [PMID: 32563081 DOI: 10.1016/j.molimm.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Both mouse and human harbour memory phenotype CD8+ T cells specific for antigens in hosts that have not been previously exposed to these antigens. The origin and the nature of the stimuli responsible for generation of CD44hi CD8+ T cells in specific pathogen-free (SPF) mice remain controversial. It is known that microbiota plays a crucial role in the prevention and resolution of systemic infections by influencing myelopoiesis, regulating dendritic cells, inflammasome activation and promoting the production of type I and II interferons. By contrast, here we suggest that microbiota has a direct effect on generation of memory phenotype CD44hiGP33+CD8+ T cells. In SPF mice, it generates a novel GP33+CD44hiCD8+ T cell sub-population associating the properties of innate and genuine memory cells. These cells are highly enriched in the bone marrow, proliferate rapidly and express immediate effector functions. They dominate the response to LCMV and express particular TCRβ chains. The sequence of these selected TCRβ chains overlaps with that of GP33+CD8+ T cells directly selected by microbiota in the gut epithelium of SPF mice, demonstrating a common selection mechanism in gut and peripheral CD8+ T cell pool. Therefore microbiota has a direct role in priming T cell immunity in SPF mice and in the selection of TCRβ repertoires during systemic infection. We identify a mechanism that primes T cell immunity in SPF mice and may have a major role in colonization resistance and protection from infection.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France; Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France.
| | - Sary El Daker
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Florence Vasseur
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Nicolas Serafini
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | | | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Helene Decaluwe
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Delphine Guy-Grand
- INSERM U1223, Paris 75015, France; Lymphopoiesis Unit, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris 75015, France
| | - Antonio A Freitas
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | - Benedita Rocha
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France.
| |
Collapse
|
36
|
The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
|
37
|
Bretscher PA, Al‐Yassin G, Anderson CC. On T cell development, T cell signals, T cell specificity and sensitivity, and the autoimmunity facilitated by lymphopenia. Scand J Immunol 2020; 91:e12888. [DOI: 10.1111/sji.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Peter A. Bretscher
- Department of Biochemistry, Microbiology, and Immunology College of Medicine University of Saskatchewan Saskatoon SK Canada
| | - Ghassan Al‐Yassin
- Department of Biochemistry, Microbiology, and Immunology College of Medicine University of Saskatchewan Saskatoon SK Canada
| | - Colin C. Anderson
- Department of Surgery Alberta Diabetes Institute Alberta Transplant Institute University of Alberta Edmonton AB Canada
- Department of Medical Microbiology & Immunology Alberta Diabetes Institute Alberta Transplant Institute University of Alberta Edmonton AB Canada
| |
Collapse
|
38
|
Hou G, Bishu S. Th17 Cells in Inflammatory Bowel Disease: An Update for the Clinician. Inflamm Bowel Dis 2020; 26:653-661. [PMID: 31970388 PMCID: PMC11491631 DOI: 10.1093/ibd/izz316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Studies in humans strongly implicate Th17 cells in the pathogenesis of inflammatory bowel disease. Thus, Th17 cells are major targets of approved and emerging biologics. Herein, we review the role of Th17 in IBD with a clinical focus.
Collapse
Affiliation(s)
- Guoqing Hou
- Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| | - Shrinivas Bishu
- Crohn's and Colitis Center, Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| |
Collapse
|
39
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
40
|
Fitzgibbon G, Mills KHG. The microbiota and immune-mediated diseases: Opportunities for therapeutic intervention. Eur J Immunol 2020; 50:326-337. [PMID: 31991477 DOI: 10.1002/eji.201948322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
A multitude of diverse microorganisms, termed the microbiota, reside in the gut, respiratory tract, skin, and genital tract of humans and other animals. Recent advances in metagenomic sequencing and bioinformatics have enabled detailed characterization of these vital microbial communities. Studies in animal models have uncovered vital previously unrecognized roles for the microbiota in normal function of the immune responses, and when perturbed, in the pathogenesis of diseases of the gastrointestinal tract and lungs, but also at distant sites in the body including the brain. The composition of gut and respiratory microbiota can influence systemic inflammatory responses that mediate asthma, allergy, inflammatory bowel disease, obesity-related diseases, and neurodevelopmental or neurodegenerative conditions. Experiments in mouse models as well as emerging clinical studies have revealed that therapeutic manipulation of the microbiota, using fecal microbiota transplantation, probiotics, or engineered probiotics represent effective nontoxic approaches for the treatment or prevention of Clostridium difficile infection, allergy, and autoimmune diseases and may enhance the efficacy of certain cancer immunotherapeutics. This review discusses how commensal bacteria can influence immune responses that mediate a range of human diseases and how the microbiota are being targeted to treat these diseases, especially those resistant to pharmacological therapies.
Collapse
Affiliation(s)
- Gillian Fitzgibbon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
41
|
Hsu CC, Patil K, Seamons A, Brabb TL, Treuting PM, Paik J, Meeker SM, Maggio-Price L. Lack of Effect of Murine Norovirus Infection on the CD4 + CD45RB high T-cell Adoptive Transfer Mouse Model of Inflammatory Bowel Disease. Comp Med 2020; 70:16-24. [PMID: 31937392 PMCID: PMC7024779 DOI: 10.30802/aalas-cm-19-000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/24/2019] [Accepted: 04/22/2019] [Indexed: 11/05/2022]
Abstract
Murine norovirus (MNV) infection is highly prevalent in laboratory mice. Although MNV infection does not typically induce clinical disease in most laboratory mice, infection may nonetheless affect mouse models of disease by altering immune responses. We previously reported that MNV altered the bacterial-induced mouse model of inflammatory bowel disease (IBD) using Helicobacter-infected Mdr1a-/- mice. Therefore, we hypothesized that MNV infection would exacerbate another mouse model of IBD, the T-cell adoptive transfer (AT) model. In this model, Helicobacter infection is used to accelerate the progression of IBD induced by AT of naïve CD4+CD45RBhigh T cells into B6.129S7- Rag1tm1Mom/J (Rag1-/-) mice. We evaluated the effects of MNV infection in both Helicobacter-accelerated as well as Helicobacter-free AT models. In our studies, Helicobacter-infected Rag1-/- mice that received CD4+CD45RBhigh T cells through AT rapidly developed weight loss and typhlocolitis; MNV infection had no effect on disease severity or rate of progression. In the absence of Helicobacter infection, progression of IBD caused by AT of CD4+CD45RBhigh T cells was slower and typhlocolitis was less severe; this inflammation likewise was unaltered by MNV infection. These results indicate that MNV infection does not alter IBD progression and severity in the CD4+CD45RBhigh T-cell AT model in Rag1-/- mice.
Collapse
Affiliation(s)
- Charlie C Hsu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington;,
| | | | - Audrey Seamons
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Thea L Brabb
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Piper M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Stacey M Meeker
- University Laboratory Animal Resources, Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio
| | - Lillian Maggio-Price
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Pool L, Rivollier A, Agace WW. Deletion of IRF4 in Dendritic Cells Leads to Delayed Onset of T Cell-Dependent Colitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1047-1055. [PMID: 31900340 DOI: 10.4049/jimmunol.1900775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Classical dendritic cells (cDC) can be classified into two major subsets: Irf8-dependent cDC1 and Irf4-expressing cDC2. Although these subsets play distinct roles in intestinal immune homeostasis, their functions in T cell-driven colitis remain unknown. To assess the role of IRF4 expression in cDC2 in T cell-driven colitis, CD11c-Cre.Irf4 fl/fl and Irf4 fl/fl mice were backcrossed onto a Rag-1 -/- background and used as recipients of CD45RBhiCD4+ T cells. Colitis score and innate immune cell influx were reduced in Cre+ mice 4 wk posttransfer, and these changes were associated with reduced CD4+ T cell counts in both the mesenteric lymph nodes and colon. By 7 wk, colitis score and colon CD4+ T cell numbers were similar in Cre+ and Cre- mice despite a selective reduction in Th17 cells in the colon of Cre+ mice and a continued reduction in CD4+ T cell numbers in mesenteric lymph nodes. Cotransfer of CD25+CD45RBlo CD4+ T cells prevented CD45RBhiCD4+ T cell-driven colitis in both Cre+ and Cre- recipients, demonstrating that IRF4 expression by cDC is not required for CD4+ regulatory T cell-mediated control of colitis. Collectively these results suggest a role for IRF4 expression in cDC2 in the generation of colitogenic CD4+ T cells, which becomes redundant as colitis progresses.
Collapse
Affiliation(s)
- Lieneke Pool
- Mucosal Immunology Group, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark; and
| | - Aymeric Rivollier
- Mucosal Immunology Group, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark; and
| | - William W Agace
- Mucosal Immunology Group, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark; and .,Immunology Section, Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
43
|
Cook L, Lisko DJ, Wong MQ, Garcia RV, Himmel ME, Seidman EG, Bressler B, Levings MK, Steiner TS. Analysis of Flagellin-Specific Adaptive Immunity Reveals Links to Dysbiosis in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2019; 9:485-506. [PMID: 31790809 PMCID: PMC7036547 DOI: 10.1016/j.jcmgh.2019.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Bacterial flagellin is an important antigen in inflammatory bowel disease, but the role of flagellin-specific CD4+ T cells in disease pathogenesis remains unclear. Also unknown is how changes in intestinal microbiome intersect with those in microbiota-specific CD4+ T cells. We aimed to quantify and characterize flagellin-specific CD4+ T cells in Crohn's disease (CD) and ulcerative colitis (UC) patients and study their relationship with intestinal microbiome diversity. METHODS Blood was collected from 3 cohorts that included CD patients, UC patients, and healthy controls. Flow cytometry analyzed CD4+ T cells specific for Lachnospiraceae-derived A4-Fla2 and Escherichia coli H18 FliC flagellins, or control vaccine antigens. Serum antiflagellin IgG and IgA antibodies were detected by enzyme-linked immunosorbent assay and stool samples were collected and subjected to 16S ribosomal DNA sequencing. RESULTS Compared with healthy controls, CD and UC patients had lower frequencies of vaccine-antigen-specific CD4+ T cells and, as a proportion of vaccine-specific cells, higher frequencies of flagellin-specific CD4+ T cells. The proportion of flagellin-specific CD4+ T cells that were CXCR3negCCR4+CCR6+ Th17 cells was reduced in CD and UC patients, with increased proportions of CD39+, PD-1+, and integrin β7+ cells. Microbiome analysis showed differentially abundant bacterial species in patient groups that correlated with immune responses to flagellin. CONCLUSIONS Both CD and UC patients have relative increases in the proportion of circulating Fla2-specific CD4+ T cells, which may be associated with changes in the intestinal microbiome. Evidence that the phenotype of these cells strongly correlate with disease severity provides insight into the potential roles of flagellin-specific CD4+ T cells in inflammatory bowel disease.
Collapse
Affiliation(s)
- Laura Cook
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J. Lisko
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - May Q. Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosa V. Garcia
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan E. Himmel
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ernest G. Seidman
- Division of Gastroenterology, McGill University, Montréal, Quebec, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada,Gastrointestinal Research Institute, Vancouver, British Columbia, Canada
| | - Megan K. Levings
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore S. Steiner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence Address correspondence to: Ted Steiner, MD, British Columbia Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4. fax: (604) 875-2373.
| |
Collapse
|
44
|
Chen L, Sun M, Wu W, Yang W, Huang X, Xiao Y, Ma C, Xu L, Yao S, Liu Z, Cong Y. Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells' Differentiation and Function in Induction of Colitis. Inflamm Bowel Dis 2019; 25:1450-1461. [PMID: 30918945 PMCID: PMC6701512 DOI: 10.1093/ibd/izz046] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND How the gut microbiota regulates intestinal homeostasis is not completely clear. Gut microbiota metabolite short-chain fatty acids (SCFAs) have been reported to regulate T-cell differentiation. However, the mechanisms underlying SCFA regulation of T-cell differentiation and function remain to be investigated. METHODS CBir1, an immunodominant microbiota antigen, transgenic T cells were treated with butyrate under various T-cell polarization conditions to investigate butyrate regulation of T-cell differentiation and the mechanism involved. Transfer of butyrate-treated CBir T cells into Rag1-/- mice was performed to study the in vivo role of such T cells in inducing colitis. RESULTS Although butyrate promoted Th1 cell development by promoting IFN-γ and T-bet expression, it inhibited Th17 cell development by suppressing IL-17, Rorα, and Rorγt expression. Interestingly, butyrate upregulated IL-10 production in T cells both under Th1 and Th17 cell conditions. Furthermore, butyrate induced T-cell B-lymphocyte-induced maturation protein 1 (Blimp1) expression, and deficiency of Blimp1 in T cells impaired the butyrate upregulation of IL-10 production, indicating that butyrate promotes T-cell IL-10 production at least partially through Blimp1. Rag1-/- mice transferred with butyrate-treated T cells demonstrated less severe colitis, compared with transfer of untreated T cells, and administration of anti-IL-10R antibody exacerbated colitis development in Rag-/- mice that had received butyrate-treated T cells. Mechanistically, the effects of butyrate on the development of Th1 cells was through inhibition of histone deacetylase but was independent of GPR43. CONCLUSIONS These data indicate that butyrate controls the capacity of T cells in the induction of colitis by differentially regulating Th1 and Th17 cell differentiation and promoting IL-10 production, providing insights into butyrate as a potential therapeutic for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Liang Chen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas,Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas,Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas,Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas,Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Yi Xiao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Chunyan Ma
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Leiqi Xu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China,Address correspondence to: Yingzi Cong, PhD, Department of Microbiology and Immunology, University of Texas Medical Branch, 4.142C Medical Research Building, 301 University Blvd, Galveston, TX 77555-1019 (); or Zhanju Liu, Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China ()
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas,Department of Pathology, University of Texas Medical Branch, Galveston, Texas,Address correspondence to: Yingzi Cong, PhD, Department of Microbiology and Immunology, University of Texas Medical Branch, 4.142C Medical Research Building, 301 University Blvd, Galveston, TX 77555-1019 (); or Zhanju Liu, Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China ()
| |
Collapse
|
45
|
Ma Y, Peng X, Yang J, Giovanni V, Wang C. Impacts of functional oligosaccharide on intestinal immune modulation in immunosuppressive mice. Saudi J Biol Sci 2019; 27:233-241. [PMID: 31889842 PMCID: PMC6933198 DOI: 10.1016/j.sjbs.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022] Open
Abstract
In order to research the role of soybean oligosaccharides (SBOSs) on improvements in the microenvironment of intestinal flora and immune function of cyclophosphamide (CTX) immunosuppressive mice. Via giving intragastric administration of Soybean oligosaccharide (SBOS) at the low dose (50/(kg·BW)/d), the middle dose (200 mg/(kg·BW)/d) and the high dose (500 mg/(kg·BW)/d) partly once a day, which is also 28 days in a row. At the same time, (SBOS) mice in the drug group and (CG) mice in the positive control group were given intraabdominal injection of CTX (200 mg/kg/d).The immunosuppressive mouse model (CY) was established after 72 h in the model group and the positive control group (CG) was given intragastric administration of levamisole hydrochloric acid (LMS) for 3 days, with the data of 80ug/kg/d after injection of CTX (for actually 72 h). On the 8th, 15th and 22nd day, the number of Bifidobacterium, Lactobacillus, Enterococcus and Clostridium perfringens m in the feces of mice in each dose of drug group were determined. After the test resulted, the cellular immune function, humoral immune function, monocyte/macrophage function, NK cell activity and cytokine secretion (tumor necrosis factor-α, interferon-gamma and IL-4) were measured in immunosuppressive mice each group. The results showed that 200 mg/(kg BW) soybean oligosaccharide could significantly promote the proliferation and inhibit the increase of Enterococcus in immunosuppressive mice. The soybean oligosaccharide of 500 mg/(kg BW) could dramatically promote the proliferation of both Bifidobacillus and Lactobacillus, and also inhibit the increase of both Enterobacteriaceae and Enterococcus in immunosuppressive mice. The regulatory function of SBOS on intestinal flora was positive. Soybean oligosaccharide (500 mg/(kg BW) could significantly promote the proliferation of Bifidobacillus and Lactobacillus in immunosuppressive mice and inhibit the increase of Enterococcus and Enterococcus. The proliferation of spleen lymphocytes induced by ConA, LPS in immunosuppressive mice was dose-dependent. But it was still lower than that of the normal group (CG0) (p > 0.05). The serum hemolysin level of immunosuppressive mice was significantly increased in each dose group (p < 0.05), and the level of antibody forming cells in spleen cells of each dose group was significantly increased (P < 0.05), and the level of antibody forming cells in spleen cells of each dose group was significantly higher than that of low dose group (p < 0.005), and the level of serum hemolysin in immunosuppressive mice was significantly increased in each dose group (p < 0.05). In the detection of immune effector cell activity in immunosuppressive mice, the phagocytic function of macrophages in high dose group and the natural killing activity of spleen NK cells in high dose drug group were significantly increased, which were not significantly different from those in positive control group (P < 0.05), but the expression of TNF-α, INF-γ and IL-4 cytokines in serum was increased in a dose dependent manner (p < 0.05). In conclusion, soybean oligosaccharide can significantly increase the diversity of intestinal microecology, increase the number of intestinal beneficial bacteria, has a correlation with the proliferation of Bifidobacterium and Lactobacillus in the intestinal tract, and inhibit the proliferation of harmful bacteria. The results showed that SBOS had a direct effect on the proliferation of intestinal flora under immunosuppression. Based on the improvement of intestinal microenvironment in immunosuppressive mice by soybean oligosaccharide for 25 days, the results showed that compared with the positive control group, the nonspecific and specific immunity of immunosuppressive mice in the drug group had a regulatory effect, which improved the phagocytic function of monocytes/macrophages, developed the level of antibody forming cells, enhanced the standard of the killing activity of NK cells, and promoted the expression of cytokines as well. Compared with the model group, the transformation and proliferation of spleen lymphocytes in the high and middle dose groups were remarkably increased, but all of the indexes did not reach the level of the normal blank group. By studying the improvement of intestinal microenvironment in immunosuppressive mice, to some extent, it is concluded that the proliferation of intestinal flora can improve the immunomodulatory function of the body, but it still lowers the normal immune degree, which reflects the immunomodulatory effect of the body on the stimulation of continuous external intake. The results demonstrate that the immunomodulatory ability of immunosuppressive body was insensitive to SBOS and provided a theoretical basis for the study of health care function of intestinal microenvironment improvement when SBOS acted on abnormal immune function. The results also improved the practical application value of SBOS.
Collapse
Affiliation(s)
- Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xia Peng
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Jingyu Yang
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Vigna Giovanni
- College of Food, University of Florence, Firenze 50100, Italy
| | - Chen Wang
- Center of Food Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
46
|
Coufal S, Galanova N, Bajer L, Gajdarova Z, Schierova D, Jiraskova Zakostelska Z, Kostovcikova K, Jackova Z, Stehlikova Z, Drastich P, Tlaskalova-Hogenova H, Kverka M. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells 2019; 8:cells8070719. [PMID: 31337064 PMCID: PMC6678638 DOI: 10.3390/cells8070719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Crohn’s disease (CD), ulcerative colitis (UC) and inflammatory bowel disease (IBD) associated with primary sclerosing cholangitis (PSC-IBD), share three major pathogenetic mechanisms of inflammatory bowel disease (IBD)-gut dysbiosis, gut barrier failure and immune system dysregulation. While clinical differences among them are well known, the underlying mechanisms are less explored. To gain an insight into the IBD pathogenesis and to find a specific biomarker pattern for each of them, we used protein array, ELISA and flow cytometry to analyze serum biomarkers and specific anti-microbial B and T cell responses to the gut commensals. We found that decrease in matrix metalloproteinase (MMP)-9 and increase in MMP-14 are the strongest factors discriminating IBD patients from healthy subjects and that PSC-IBD patients have higher levels of Mannan-binding lectin, tissue inhibitor of metalloproteinases 1 (TIMP-1), CD14 and osteoprotegerin than patients with UC. Moreover, we found that low transforming growth factor-β1 (TGF-β1) is associated with disease relapse and low osteoprotegerin with anti-tumor necrosis factor-alpha (TNF-α) therapy. Patients with CD have significantly decreased antibody and increased T cell response mainly to genera Eubacterium, Faecalibacterium and Bacteroides. These results stress the importance of the gut barrier function and immune response to commensal bacteria and point at the specific differences in pathogenesis of PSC-IBD, UC and CD.
Collapse
Affiliation(s)
- Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Zuzana Gajdarova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | | | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zuzana Stehlikova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
47
|
Alamer E, Carpio VH, Ibitokou SA, Kirtley ML, Phoenix IR, Opata MM, Wilson KD, Cong Y, Dann SM, Chopra AK, Stephens R. Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity. Parasitol Res 2019; 118:2277-2285. [PMID: 31119381 DOI: 10.1007/s00436-019-06349-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/09/2019] [Indexed: 01/18/2023]
Abstract
Malaria-associated bacteremia accounts for up to one-third of deaths from severe malaria, and non-typhoidal Salmonella (NTS) has been reported as a major complication of severe malarial infection. Patients who develop NTS bacteremia during Plasmodium infection show higher mortality rates than individuals with malaria alone. Systemic bacteremia can be caused by a wound or translocation from epithelial or endothelial sites. NTS is an intestinal pathogen, however the contribution of bacterial translocation from the intestinal tract during Plasmodium infection is not well studied. Here, we investigated the integrity of the intestinal barrier function of P. chabaudi-infected mice using large molecules and Salmonella infection. Intestinal histology and the adaptive immune response to malaria were also studied using light microscopy and flow cytometry. P. chabaudi infection compromised intestinal barrier function, which led to increased intestinal cellular infiltration. In addition, we observed increased serum lipopolysaccharide binding protein and leakage of soluble molecules from the intestine into the blood in infected mice. Plasmodium infection also increased intestinal translocation and dissemination of NTS to the liver. The adaptive immune response to P. chabaudi infection was also significantly impacted by NTS translocation. Reduced B and T cell activation were observed in co-infected animals, suggesting interference in the malaria-specific immune responses by bacteremia. These studies demonstrate that P. chabaudi infection induces failure of the barrier function of the intestinal wall and enhanced intestinal bacterial translocation, affecting anti-malarial immunity.
Collapse
Affiliation(s)
- Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Samad A Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Inaia R Phoenix
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Michael M Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Sara M Dann
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
48
|
Abstract
Gnotobiotics or gnotobiology is a research field exploring organisms with a known microbiological state. In animal research, the development of gnotobiotics started in the late 19th century with the rederivation of germ-free guinea pigs. Cutting-edge achievements were accomplished by scientists in the Laboratories of Bacteriology at the University of Notre Dame (LOBUND). The primary goals of gnotobiotics were not only the development of the equipment required for long-term husbandry but also phenotypic characterization of germ-free animals. The first isolators were designed by Reynolds and Gustafsson as rigid-wall stainless steel autoclave-like chambers, which were subsequently replaced by Trexler’s flexible-film polyvinyl plastic isolators. Flexible-film or semi-rigid isolators are commonly used today. The long-term maintenance of gnotobiotic rodents is performed in positive-pressure isolators. However, to facilitate gnotobiotic experimental procedures, short-term husbandry systems have been developed. Gnotobiotic animal husbandry is laborious and requires experienced staff. Germ-free animals can be rederived from existing rodent colonies by hysterectomy or embryo transfer. The physiology and anatomy of germ-free rodents are different from those of specified pathogen-free (SPF) rodents. Furthermore, to guarantee gnotobiotic status, the colonies need to be regularly microbiologically monitored. Today, gnotobiotics provides a powerful tool to analyse functional effects of host-microbe interactions, especially in complex disease models. Gnotobiotic models combined with ‘omics’ approaches will be indispensable for future advances in microbiome research. Furthermore, these approaches will contribute to the development of novel therapeutic targets. In addition, regional or national gnotobiotic core facilities should be established in the future to support further applications of gnotobiotic models.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
49
|
Wu T, Li F, Chen Y, Wei H, Tian Z, Sun C, Sun R. CD4 + T Cells Play a Critical Role in Microbiota-Maintained Anti-HBV Immunity in a Mouse Model. Front Immunol 2019; 10:927. [PMID: 31114580 PMCID: PMC6503042 DOI: 10.3389/fimmu.2019.00927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
The ability of the host to clear hepatitis B virus (HBV) is closely correlated to the establishment of commensal microbiota. However, how microbiota affects anti-HBV immunity is still unclear. Using a well-known hydrodynamical HBV transfection mouse model and treatment with antibiotics (Atb), we explored the change in adaptive immunity (CD4+ cells, germinal center B cells and anti-HBs Ab). In our setting, normal mice exhibited complete clearance of HBV within 6 weeks post-hydrodynamic injection (HDI) of HBV-containing plasmid, whereas Atb-treated mice lost this capacity, showing high serum level of hepatitis B surface antigen (HBsAg) without hepatitis B surface antibodies (anti-HBs), similar as what happened in Rag1−/− mice or CD4−/− mice, suggesting that microbiota may influence the function of CD4+ T cells. Furthermore, the numbers of splenic and hepatic effector CD4+ T cells (CD44hiCD62L−CD4+ T cells) both decreased with impaired function (IFN-γ synthesis), resulting in lower frequency of germinal center B cells and CD4+ follicular helper T cells, and impaired anti-HBs production. We further tried to find the bacterial species responsible for maintaining anti-HBV immunity, and found that each antibiotic alone could not significantly influence HBV clearance compared to antibiotic combination, suggesting that global commensal microbial load is critical for promoting HBV clearance. We also confirmed that TLRs (e.g., TLR2, 4, 9) are not major players in immune clearance of HBV using their agonists and knock-out mice. These results suggest that commensal microbiota play an important role in maintaining CD4+ T cell immunity against HBV infection.
Collapse
Affiliation(s)
- Tingxin Wu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Fenglei Li
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China.,Transplantation and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,School of Life Science, Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
50
|
Yi J, Jung J, Han D, Surh CD, Lee YJ. Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine. Mol Cells 2019; 42:228-236. [PMID: 30759969 PMCID: PMC6449712 DOI: 10.14348/molcells.2018.0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
CD4 T cells differentiate into RORγt/IL-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.
Collapse
Affiliation(s)
- Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Jisun Jung
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, CA 92037,
USA
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|