1
|
Varghese R, Emerson A, Vannier B, George Priya Doss C, Priyadharshini R, Efferth T, Ramamoorthy S. Substantial Effects of Carotenoids on Skin Health: A Mechanistic Perspective. Phytother Res 2025. [PMID: 40159662 DOI: 10.1002/ptr.8480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 04/02/2025]
Abstract
There has been an upsurge in the incidences of skin disorders and their mortalities owing to various environmental, hormonal, and epigenetic risk factors. Melanoma, atopic dermatitis, psoriasis, and photoaging and associated consequences are largely observed in the population globally. The social stigma, economic burden, and adverse effects from chronic medication endured by the patients emphasize the necessity of more effective natural therapeutics. Carotenoids are economically valuable tetraterpenoid pigments synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Extensive in vitro and in vivo investigations evidenced that phytopigments like carotenoids target multiple intracellular signaling pathways involving the mitogen-activated protein kinases, Janus kinase/signal transducers, and activators of transcription, apoptotic, and autophagy proteins to ameliorate melanoma. Besides, carotenoids curbed the activation and the release of immunoregulatory molecules such as cytokines and chemokines to abrogate skin immune disorders, photoaging, and associated consequences. Here, we provide a holistic discussion on the pathophysiology of prominent skin disorders and the ameliorating effects of carotenoids as evidenced in the in vitro, in vivo, and clinical interventions. We also advocate the requisite of formulating carotenoid medications after extensive clinical interventions and validation for mitigating various skin dysfunctions.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arnold Emerson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Brigitte Vannier
- CoMeT Laboratory (UR 24344), Cell Communications and Microenvironment of Tumours, Université of Poitiers, Poitiers Cedex 9, France
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Chaudhary V, Mishra B, Ah Kioon MD, Du Y, Ivashkiv LB, Crow MK, Barrat FJ. Mechanosensing regulates pDC activation in the skin through NRF2 activation. J Exp Med 2025; 222:e20240852. [PMID: 39670996 PMCID: PMC11639951 DOI: 10.1084/jem.20240852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmacytoid DCs (pDCs) infiltrate the skin, chronically produce type I interferon (IFN-I), and promote skin lesions and fibrosis in autoimmune patients. However, what controls their activation in the skin is unknown. Here, we report that increased stiffness inhibits the production of IFN-I by pDCs. Mechanistically, mechanosensing activates stress pathways including NRF2, which induces the pentose phosphate pathway and reduces pyruvate levels, a product necessary for pDC responses. Modulating NRF2 activity in vivo controlled the pDC response, leading to resolution or chronic induction of IFN-I in the skin. In systemic sclerosis (SSc) patients, although NRF2 was induced in skin-infiltrating pDCs, as compared with blood pDCs, the IFN response was maintained. We observed that CXCL4, a profibrotic chemokine elevated in fibrotic skin, was able to overcome stiffness-mediated IFN-I inhibition, allowing chronic IFN-I responses by pDCs in the skin. Hence, these data identify a novel regulatory mechanism exerted by the skin microenvironment and identify points of dysregulation of this mechanism in patients with skin inflammation and fibrosis.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bikash Mishra
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Yong Du
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary K. Crow
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA
| | - Franck J. Barrat
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
3
|
Park J, Kim D. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2025; 14:e2304496. [PMID: 38716543 PMCID: PMC11834384 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji‐Eun Park
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
4
|
Muhsen A, Hertz A, Amital H. The association between physical trauma and autoimmune articular and dermatological disorders. Autoimmun Rev 2025; 24:103711. [PMID: 39586388 DOI: 10.1016/j.autrev.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This review investigates the association between physical trauma and the onset and progression of various inflammatory diseases, including psoriatic arthritis (PsA), rheumatoid arthritis (RA), spondyloarthropathies (SpA), and Familial Mediterranean Fever (FMF). In addition, we will refer to the linkage between physical injury and skin manifestations in patients with psoriasis, sarcoidosis and systemic sclerosis. The aim is to summarize the current evidence and explore the potential mechanisms through which trauma may affect these conditions. METHODS A detailed literature review was conducted, focusing on studies linking physical trauma with the development of psoriasis, SpA, PsA, RA, FMF, systemic sclerosis and sarcoidosis. The review includes observational data, case reports, and experimental studies that highlight the impact of trauma on disease initiation and exacerbation. RESULTS Physical trauma is implicated in the pathogenesis of several dermatological and rheumatological conditions. Biomechanical stress and microdamage at entheses contribute to the development of SpA. In PsA, trauma is associated with the onset of enthesitis and arthritis, supported by increased prevalence in affected patients and is often regarded as "deep Koebner phenomenon". The Koebner phenomenon links skin trauma with psoriasis, where new lesions appear at injury sites. RA shows a notable association with physical trauma, with retrospective studies suggesting that trauma can trigger disease onset, although the exact mechanisms remain unclear. The concept of the synovio-entheseal complex is discussed in order to elucidate how mechanical stress and immune responses interplay in SpA. Physical exertion or injury might precipitate FMF attacks, though existing data remain limited. Sarcoidosis has been linked to tattoo-related trauma, suggesting a potential role of localized injury in sarcoid-like reactions. Several case reports describe the occurrence of dermatologic manifestations of scleroderma, including morphea in patients with localized disease and perifollicular hypopigmentation in patients with systemic sclerosis. CONCLUSION This review consolidates current evidence on the relationship between physical trauma and various inflammatory conditions, emphasizing the need for further research to fully understand these connections. These findings highlight the importance of considering trauma in the clinical management of these diseases and suggest avenues for future investigation.
Collapse
Affiliation(s)
- Aia Muhsen
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Hertz
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Howard Amital
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Verma SC, Enée E, Manasse K, Rebhi F, Penc A, Romeo-Guitart D, Bui Thi C, Titeux M, Oury F, Fillatreau S, Liblau R, Diana J. Cathelicidin antimicrobial peptide expression in neutrophils and neurons antagonistically modulates neuroinflammation. J Clin Invest 2024; 135:e184502. [PMID: 39656548 PMCID: PMC11785927 DOI: 10.1172/jci184502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 02/03/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We showed that, at an early stage, CNS-recruited neutrophils produced neutrophil extracellular traps (NETs) rich in CRAMP that were required for EAE initiation. NET-associated CRAMP stimulated IL-6 production by dendritic cells via the cGAS/STING pathway, thereby promoting encephalitogenic Th17 response. However, at a later disease stage, neurons also expressed CRAMP that reduced EAE severity. Camp knockdown in neurons led to disease exacerbation, while local injection of CRAMP1-39 at the peak of EAE promoted disease remission. In vitro, CRAMP1-39 regulated the activation of microglia and astrocytes through the formyl peptide receptor (FPR) 2. Finally, administration of butyrate, a gut microbiota-derived metabolite, stimulated the expression of neural CRAMP via the free fatty acids receptors 2/3 (FFAR2/3), and prevented EAE. This study shows that CRAMP produced by different cell types has opposing effects on neuroinflammation, offering therapeutic opportunities for MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Subash Chand Verma
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Emmanuelle Enée
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Kanchanadevi Manasse
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Feriel Rebhi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Axelle Penc
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - David Romeo-Guitart
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Cuc Bui Thi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Matthias Titeux
- Université Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
- APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, Université Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Julien Diana
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| |
Collapse
|
6
|
Park HJ, Lee SW, Kim TC, Park YH, Kim KS, Van Kaer L, Hong S, Hong S. Topical Application of Nano-Sized Graphene Oxide Cream Ameliorates Acute Skin Inflammation in Mice. J Invest Dermatol 2024:S0022-202X(24)02877-X. [PMID: 39522943 DOI: 10.1016/j.jid.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
We have previously shown that nano-sized graphene oxide (NGO) displays anti-inflammatory activities against NKT cell-mediated sepsis. To address whether NGO could be applied to treat acute skin inflammation, we developed a conventional skin Cetaphil cream containing NGO (denoted as NGO cream) for topical application to skin lesions and investigated its therapeutic efficacy by employing the tape-stripping-induced acute skin inflammation model. Topical application of NGO cream to the wounded area significantly reduced skin lesions compared with application of the control cream. Moreover, NGO cream treatment prevented the tape-stripping-elicited infiltration of, and IL-1β production by, skin neutrophils and dendritic cells. Furthermore, such anti-inflammatory effects of NGO cream were attributed to decreased infiltration of IL-12-producing dendritic cells and IFNγ-producing cells (eg, CD4+ T, CD8+ T, γδ T, NK, and NKT cells) into the skin. In addition, topical NGO cream administration enhanced the expression of suppressive molecules such as FR4 on skin regulatory T cells. Through RNA-sequencing analysis, we found that the preventive effect of NGO cream on acute skin inflammation may be correlated with the activation of keratinocytes located in the epidermis. Our results support NGO cream as a therapeutic option to control acute skin inflammation.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Keun Soo Kim
- Department of Physics, Sejong University, Seoul, Republic of Korea; Graphene Research Institute, Sejong University, Seoul, Republic of Korea; Korea-US-Uzbekistan Quantum Materials·Devices International Research Center, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suklyun Hong
- Department of Physics, Sejong University, Seoul, Republic of Korea; Graphene Research Institute, Sejong University, Seoul, Republic of Korea; Korea-US-Uzbekistan Quantum Materials·Devices International Research Center, Sejong University, Seoul, Republic of Korea.
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Maronese CA, Valenti M, Moltrasio C, Romagnuolo M, Ferrucci SM, Gilliet M, Costanzo A, Marzano AV. Paradoxical Psoriasis: An Updated Review of Clinical Features, Pathogenesis, and Treatment Options. J Invest Dermatol 2024; 144:2364-2376. [PMID: 38958610 DOI: 10.1016/j.jid.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 07/04/2024]
Abstract
The definition of paradoxical psoriasis (PP) encompasses 2 main scenarios, namely, (i) new-onset psoriasis in patients treated for a different disease and (ii) worsening as well as phenotypical change of pre-existing psoriasis. Originally restricted to the appearance of an untoward psoriasiform reaction under TNF inhibitors, the term has gained new meaning, with the progressive observation of psoriasis-like eruptions also with other medications. Although the conceptual framework of PP has expanded, a molecular and clinicotherapeutic classification is still lacking. In addition, a certain degree of confusion surrounds the correct terminology to indicate these eruptions. In this paper, evidence on the epidemiology, clinical features, pathogenesis, and treatment of PP is reviewed, providing a perspective on possible pathogenesis-driven therapeutic approaches.
Collapse
Affiliation(s)
- Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Mario Valenti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romagnuolo
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Mariel Ferrucci
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Antonio Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Vandenberghe-Dürr S, Gilliet M, Di Domizio J. OLFM4 regulates the antimicrobial and DNA binding activity of neutrophil cationic proteins. Cell Rep 2024; 43:114863. [PMID: 39396234 DOI: 10.1016/j.celrep.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Neutrophil cationic proteins (NCPs) are a group of granule antimicrobial and inflammatory proteins released by activated neutrophils. These proteins primarily function via their positively charged structure, which facilitates interactions with bacterial membranes and the formation of immunogenic DNA complexes, thereby contributing to the initiation of wound repair in injured skin. After analyzing the structural properties of secreted neutrophil granule proteins, we identified OLFM4 as the only negatively charged molecule that interferes with NCP oligomerization. Through this interference, OLFM4 can inhibit neutrophil-mediated bacterial killing and DNA complex-dependent activation of Toll-like receptor 9 (TLR9) in plasmacytoid dendritic cells (pDCs) and neutrophils. While addition of exogenous OLFM4 blocks these processes, OLFM4 inhibition enhances neutrophil-dependent bacterial killing and DNA complex formation, ultimately leading to accelerated closure of skin wounds.
Collapse
Affiliation(s)
- Sophie Vandenberghe-Dürr
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| | - Jeremy Di Domizio
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| |
Collapse
|
9
|
Sugumaran D, Yong ACH, Stanslas J. Advances in psoriasis research: From pathogenesis to therapeutics. Life Sci 2024; 355:122991. [PMID: 39153596 DOI: 10.1016/j.lfs.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Psoriasis is a chronic inflammatory condition affecting approximately 2 % to 3 % of the global population. The pathogenesis of psoriasis is complex, involving immune dysregulation, hyperproliferation and angiogenesis. It is a multifactorial disease which is influenced by genetic and environmental factors. The development of various therapeutic agents, such as JAK inhibitors, small molecules, and biologics with potential anti-psoriatic properties was possible with the vast understanding of the pathogenesis of psoriasis. Various signalling pathways, including NF-κB, JAK-STAT, S1P, PDE-4, and A3AR that are involved in the pathogenesis of psoriasis as well as the preclinical models utilised in the research of psoriasis have been highlighted in this review. The review also focuses on technological advancements that have contributed to a better understanding of psoriasis. Then, the molecules targeting the respective signalling pathways that are still under clinical trials or recently approved as well as the latest breakthroughs in therapeutic and drug delivery approaches that can contribute to the improvement in the management of psoriasis are highlighted in this review. This review provides an extensive understanding of the current state of research in psoriasis, giving rise to opportunities for researchers to discover future therapeutic breakthroughs and personalised interventions. Efficient treatment options for individuals with psoriasis can be achieved by an extensive understanding of pathogenesis, therapeutic agents, and novel drug delivery strategies.
Collapse
Affiliation(s)
- Dineshwar Sugumaran
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Audrey Chee Hui Yong
- Faculty of Pharmacy, Mahsa University, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
11
|
Li X, An T, Yang Y, Xu Z, Chen S, Yi Z, Deng C, Zhou F, Man Y, Hu C. TLR9 activation in large wound induces tissue repair and hair follicle regeneration via γδT cells. Cell Death Dis 2024; 15:598. [PMID: 39153998 PMCID: PMC11330466 DOI: 10.1038/s41419-024-06994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantian An
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuaidong Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
13
|
Manurung MD, Sonnet F, Hoogerwerf MA, Janse JJ, Kruize Y, Bes-Roeleveld LD, König M, Loukas A, Dewals BG, Supali T, Jochems SP, Roestenberg M, Coppola M, Yazdanbakhsh M. Controlled human hookworm infection remodels plasmacytoid dendritic cells and regulatory T cells towards profiles seen in natural infections in endemic areas. Nat Commun 2024; 15:5960. [PMID: 39013877 PMCID: PMC11252261 DOI: 10.1038/s41467-024-50313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Hookworm infection remains a significant public health concern, particularly in low- and middle-income countries, where mass drug administration has not stopped reinfection. Developing a vaccine is crucial to complement current control measures, which necessitates a thorough understanding of host immune responses. By leveraging controlled human infection models and high-dimensional immunophenotyping, here we investigated the immune remodeling following infection with 50 Necator americanus L3 hookworm larvae in four naïve volunteers over two years of follow-up and compared the profiles with naturally infected populations in endemic areas. Increased plasmacytoid dendritic cell frequency and diminished responsiveness to Toll-like receptor 7/8 ligand were observed in both controlled and natural infection settings. Despite the increased CD45RA+ regulatory T cell (Tregs) frequencies in both settings, markers of Tregs function, including inducible T-cell costimulatory (ICOS), tumor necrosis factor receptor 2 (TNFR2), and latency-associated peptide (LAP), as well as in vitro Tregs suppressive capacity were higher in natural infections. Taken together, this study provides unique insights into the immunological trajectories following a first-in-life hookworm infection compared to natural infections.
Collapse
Affiliation(s)
- Mikhael D Manurung
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Astrid Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne Kruize
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Laura de Bes-Roeleveld
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Benjamin G Dewals
- Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Simon P Jochems
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Mariateresa Coppola
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
15
|
Pinnarò V, Kirchberger S, Künig S, Gil Cantero S, Ciardulli MC, Della Porta G, Blüml S, Elbe-Bürger A, Bochkov V, Stöckl J. Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells. Int J Mol Sci 2024; 25:7600. [PMID: 39062855 PMCID: PMC11277520 DOI: 10.3390/ijms25147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.
Collapse
Affiliation(s)
- Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | | | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Sara Gil Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| |
Collapse
|
16
|
Huyan T, Fan L, Zheng ZY, Zhao JH, Han ZR, Wu P, Ma Q, Du YQ, Shi YD, Gu CY, Li XJ, Wang WH, Zhang L, Tie L. ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway. Acta Pharmacol Sin 2024; 45:1477-1491. [PMID: 38538716 PMCID: PMC11192920 DOI: 10.1038/s41401-024-01246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.
Collapse
Affiliation(s)
- Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Yuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing-Hui Zhao
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen-Ru Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qun Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Ya-Qin Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yun-di Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Chun-Yan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Wen-Hui Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Long Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
17
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
18
|
Chen R, Zou L. Combined analysis of single-cell sequencing and bulk transcriptome sequencing reveals new mechanisms for non-healing diabetic foot ulcers. PLoS One 2024; 19:e0306248. [PMID: 38950058 PMCID: PMC11216623 DOI: 10.1371/journal.pone.0306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Audu CO, Wolf SJ, Joshi AD, Moon JY, Melvin WJ, Sharma SB, Davis FM, Obi AT, Wasikowski R, Tsoi LC, Barrett EC, Mangum KD, Bauer TM, Kunkel SL, Moore BB, Gallagher KA. Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells. JCI Insight 2024; 9:e172959. [PMID: 38912581 PMCID: PMC11383169 DOI: 10.1172/jci.insight.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jadie Y Moon
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sriganesh B Sharma
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank M Davis
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel Wasikowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily C Barrett
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tyler M Bauer
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven L Kunkel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, School of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Li TM, Zyulina V, Seltzer ES, Dacic M, Chinenov Y, Daamen AR, Veiga KR, Schwartz N, Oliver DJ, Cabahug-Zuckerman P, Lora J, Liu Y, Shipman WD, Ambler WG, Taber SF, Onel KB, Zippin JH, Rashighi M, Krueger JG, Anandasabapathy N, Rogatsky I, Jabbari A, Blobel CP, Lipsky PE, Lu TT. The interferon-rich skin environment regulates Langerhans cell ADAM17 to promote photosensitivity in lupus. eLife 2024; 13:e85914. [PMID: 38860651 PMCID: PMC11213570 DOI: 10.7554/elife.85914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.
Collapse
Affiliation(s)
- Thomas Morgan Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Victoria Zyulina
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ethan S Seltzer
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Marija Dacic
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Andrea R Daamen
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Keila R Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Noa Schwartz
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
| | - David J Oliver
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Pamela Cabahug-Zuckerman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Jose Lora
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yong Liu
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Sarah F Taber
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Karen B Onel
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Inez Rogatsky
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Ali Jabbari
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Peter E Lipsky
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
21
|
Aleem MT, Munir F, Shakoor A, Gao F. mRNA vaccines against infectious diseases and future direction. Int Immunopharmacol 2024; 135:112320. [PMID: 38788451 DOI: 10.1016/j.intimp.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Vaccines are used for the control of infectious diseases of animals. Over other types of vaccinations like live attenuated or killed vaccines, mRNA-based vaccines have significant advantages. As only a small portion of the pathogen's genetic material is employed and the dose rate of mRNA-based vaccines is low, there is the least possibility that the pathogen will reverse itself. A carrier or vehicle that shields mRNA-based vaccines from the host's cellular RNases is necessary for their delivery. mRNA vaccines have been shown to be effective and to induce both a cell-mediated immune response and a humoral immune response in clinical trials against various infectious diseases (viral and parasitic) affecting the animals, including rabies, foot and mouth disease, toxoplasmosis, Zikavirus, leishmaniasis, and COVID-19. The current review aims to highlight the use of mRNA-based vaccines both in viral and parasitic diseases of animals.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Clevaland State University, Clevaland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
22
|
Zalesak M, Danisovic L, Harsanyi S. Psoriasis and Psoriatic Arthritis-Associated Genes, Cytokines, and Human Leukocyte Antigens. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:815. [PMID: 38792999 PMCID: PMC11123327 DOI: 10.3390/medicina60050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.
Collapse
Affiliation(s)
- Marek Zalesak
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| |
Collapse
|
23
|
Ah Kioon MD, Laurent P, Chaudhary V, Du Y, Crow MK, Barrat FJ. Modulation of plasmacytoid dendritic cells response in inflammation and autoimmunity. Immunol Rev 2024; 323:241-256. [PMID: 38553621 DOI: 10.1111/imr.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.
Collapse
Affiliation(s)
| | - Paôline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Mary K Crow
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Franck J Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Ugalde-Triviño L, Molina-Jiménez F, H-Vázquez J, Relaño-Rupérez C, Arias-González L, Casabona S, Pérez-Fernández MT, Martín-Domínguez V, Fernández-Pacheco J, Lucendo AJ, Bernardo D, Santander C, Majano P. Circulating immunome fingerprint in eosinophilic esophagitis is associated with clinical response to proton pump inhibitor treatment. Front Immunol 2024; 15:1374611. [PMID: 38646544 PMCID: PMC11026586 DOI: 10.3389/fimmu.2024.1374611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives The aim of the study was to characterize the circulating immunome of patients with EoE before and after proton pump inhibitor (PPI) treatment in order to identify potential non-invasive biomarkers of treatment response. Methods PBMCs from 19 healthy controls and 24 EoE patients were studied using a 39-plex spectral cytometry panel. The plasmacytoid dendritic cell (pDC) population was differentially characterized by spectral cytometry analysis and immunofluorescence assays in esophageal biopsies from 7 healthy controls and 13 EoE patients. Results Interestingly, EoE patients at baseline had lower levels of circulating pDC compared with controls. Before treatment, patients with EoE who responded to PPI therapy had higher levels of circulating pDC and classical monocytes, compared with non-responders. Moreover, following PPI therapy pDC levels were increased in all EoE patients, while normal levels were only restored in PPI-responding patients. Finally, circulating pDC levels inversely correlated with peak eosinophil count and pDC count in esophageal biopsies. The number of tissue pDCs significantly increased during active EoE, being even higher in non-responder patients when compared to responder patients pre-PPI. pDC levels decreased after PPI intake, being further restored almost to control levels in responder patients post-PPI. Conclusions We hereby describe a unique immune fingerprint of EoE patients at diagnosis. Moreover, circulating pDC may be also used as a novel non-invasive biomarker to predict subsequent response to PPI treatment.
Collapse
Affiliation(s)
- Lola Ugalde-Triviño
- Molecular Biology Unit, Hospital Universitario de la Princesa, Madrid, Spain
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la Princesa, Madrid, Spain
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Juan H-Vázquez
- Mucosal Immunology Lab, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Carlos Relaño-Rupérez
- Molecular Biology Unit, Hospital Universitario de la Princesa, Madrid, Spain
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Laura Arias-González
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sergio Casabona
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario de La Princesa, Madrid, Spain
| | - María Teresa Pérez-Fernández
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Verónica Martín-Domínguez
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Jennifer Fernández-Pacheco
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alfredo J. Lucendo
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
- Centro de Investigaciones Biomedicas en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Cecilio Santander
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la Princesa, Madrid, Spain
- Department of Molecular Biology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Cellular Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
27
|
Reider IE, Lin E, Krouse TE, Parekh NJ, Nelson AM, Norbury CC. γδ T Cells Mediate a Requisite Portion of a Wound Healing Response Triggered by Cutaneous Poxvirus Infection. Viruses 2024; 16:425. [PMID: 38543790 PMCID: PMC10975054 DOI: 10.3390/v16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αβ CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.
Collapse
Affiliation(s)
- Irene E. Reider
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eugene Lin
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tracy E. Krouse
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nikhil J. Parekh
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher C. Norbury
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
28
|
Nakamura Y, Kulkarni NN, Takahashi T, Alimohamadi H, Dokoshi T, Liu E, Shia M, Numata T, Luo EW, Gombart AF, Yang X, Secrest P, Gordts PL, Tsimikas S, Wong GC, Gallo RL. Increased LL37 in psoriasis and other inflammatory disorders promotes LDL uptake and atherosclerosis. J Clin Invest 2024; 134:e172578. [PMID: 38194294 PMCID: PMC10904043 DOI: 10.1172/jci172578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Patients with chronic inflammatory disorders such as psoriasis have an increased risk of cardiovascular disease and elevated levels of LL37, a cathelicidin host defense peptide that has both antimicrobial and proinflammatory properties. To explore whether LL37 could contribute to the risk of heart disease, we examined its effects on lipoprotein metabolism and show that LL37 enhanced LDL uptake in macrophages through the LDL receptor (LDLR), scavenger receptor class B member 1 (SR-B1), and CD36. This interaction led to increased cytosolic cholesterol in macrophages and changes in expression of lipid metabolism genes consistent with increased cholesterol uptake. Structure-function analysis and synchrotron small-angle x-ray scattering showed structural determinants of the LL37-LDL complex that underlie its ability to bind its receptors and promote uptake. This function of LDL uptake is unique to cathelicidins from humans and some primates and was not observed with cathelicidins from mice or rabbits. Notably, Apoe-/- mice expressing LL37 developed larger atheroma plaques than did control mice, and a positive correlation between plasma LL37 and oxidized phospholipid on apolipoprotein B (OxPL-apoB) levels was observed in individuals with cardiovascular disease. These findings provide evidence that LDL uptake can be increased via interaction with LL37 and may explain the increased risk of cardiovascular disease associated with chronic inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adrian F. Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | | | - Patrick Secrest
- Department of Medicine, Division of Endocrinology and Metabolism, and
| | - Philip L.S.M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, and
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | | | - Gerard C.L. Wong
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
29
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
30
|
Cohen JN, Gouirand V, Macon CE, Lowe MM, Boothby IC, Moreau JM, Gratz IK, Stoecklinger A, Weaver CT, Sharpe AH, Ricardo-Gonzalez RR, Rosenblum MD. Regulatory T cells in skin mediate immune privilege of the hair follicle stem cell niche. Sci Immunol 2024; 9:eadh0152. [PMID: 38181095 PMCID: PMC11003870 DOI: 10.1126/sciimmunol.adh0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.
Collapse
Affiliation(s)
- Jarish N. Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Courtney E. Macon
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M. Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Ian C. Boothby
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Iris K. Gratz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical, University of Salzburg, Salzburg, Austria
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Lu J, Lu Y. Paradoxical psoriasis: The flip side of idiopathic psoriasis or an autocephalous reversible drug reaction? J Transl Autoimmun 2023; 7:100211. [PMID: 37731549 PMCID: PMC10507642 DOI: 10.1016/j.jtauto.2023.100211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Psoriasis is a common, chronic skin disease that results mainly from the complex interplay between T cells, dendritic cells, and inflammatory cytokines including TNF-α, IL-17, IL-12, and IL-23. Successful therapy with anti-cytokine antibodies has proved the importance of these key cytokines, especially TNF-α. During the anti-TNF-α treatment of classical idiopathic psoriasis, a small portion of patients develop new psoriasiform lesions. This contradictory phenomenon was named paradoxical psoriasis which resembles idiopathic psoriasis clinically but presents overlapped histological patterns and distinct immunological processes. In this review, we discuss the differences between idiopathic psoriasis and paradoxical psoriasis with an emphasis on their innate immunity, as it is predominant in paradoxical psoriasis which exhibits type I IFN-mediated immunity without the activation of autoreactive T cells and memory T cells. We also put up an instructive algorithm for the management of paradoxical psoriasis. The decision on drug discontinuation or switching of biologics should be made based on the condition of underlying diseases and the severity of lesions.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
32
|
Paolino G, Ramirez GA, Calabrese C, Moroni L, Bianchi VG, Bozzolo EP, Mercuri SR, Dagna L. Anifrolumab for Moderate and Severe Muco-Cutaneous Lupus Erythematosus: A Monocentric Experience and Review of the Current Literature. Biomedicines 2023; 11:2904. [PMID: 38001905 PMCID: PMC10669425 DOI: 10.3390/biomedicines11112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Refractory cutaneous manifestations constitute a significant unmet need in patients with cutaneous lupus (CLE), even in the setting of systemic lupus erythematosus (SLE) with otherwise good control of inflammatory manifestations. Anifrolumab, an anti-interferon I receptor monoclonal antibody has recently been approved for serologically positive SLE with or without CLE, but real-life efficacy and safety data are currently limited. In addition, relatively limited evidence exists about the spectrum of cutaneous manifestations potentially benefitting from anifrolumab treatment and about the optimal clinimetrics to monitor treatment efficacy. While summarising current evidence on the topic in the literature, we report on four patients with SLE and refractory CLE who were successfully treated with anifrolumab. We also describe the potential usefulness and complementarity of the cutaneous lupus activity investigator's global assessment (CLA-IGA) in assessing cutaneous activity in patients treated with anifrolumab.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Giuseppe A. Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Chiara Calabrese
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Luca Moroni
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Vittoria Giulia Bianchi
- Unit of Dermatology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Enrica P. Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Santo Raffaele Mercuri
- Unit of Dermatology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
33
|
Coto-Segura P, Vázquez-Coto D, Velázquez-Cuervo L, García-Lago C, Coto E, Queiro R. The IFIH1/ MDA5 rs1990760 Gene Variant (946Thr) Differentiates Early- vs. Late-Onset Skin Disease and Increases the Risk of Arthritis in a Spanish Cohort of Psoriasis. Int J Mol Sci 2023; 24:14803. [PMID: 37834254 PMCID: PMC10572774 DOI: 10.3390/ijms241914803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The melanoma differentiation-associated protein 5 (MDA5; encoded by the IFIH1 gene) mediates the activation of the interferon pathway in response to a viral infection. This protein is also upregulated in autoimmune diseases and psoriasis skin lesions. IFIH1 gene variants that increase MDA5 activity have been associated with an increased risk for immune-mediated diseases, including psoriasis. Our aim is to determine the association between three IFIH1 variants (rs35337543 G/C, intron8 + 1; rs35744605 C/A, Glu627Stop; and rs1990760 C/T, Ala946Thr) and the main clinical findings in a cohort of Spanish patients with psoriasis (N = 572; 77% early-onset). Early-onset psoriasis patients (EOPs) had a significantly higher frequency of severe disease and the Cw6*0602 allele. Carriers of rs1990760 T (946Thr) were more common in the EOPs (p < 0.001), and the effect was more pronounced among Cw6*0602-negatives. This variant was also associated with an increased risk of psoriatic arthritis (PsA) independent from other factors (OR = 1.62, 95%CI = 1.11-2.37). The rs3533754 and rs35744605 polymorphisms did not show significant differences between the two onset age or PsA groups. Compared to the controls, the 946Thr variant was more common in the EOPs (nonsignificant difference) and significantly less common in patients aged >40 years (p = 0.005). In conclusion, the common IFIH1 rs1990760 T allele was significantly more frequent in early-onset compared to late-onset patients. This variant was also an independent risk factor for PsA in our cohort. Our study reinforces the widely reported role of the IFIH1 gene variants on psoriatic disease.
Collapse
Affiliation(s)
- Pablo Coto-Segura
- Dermatología, Hospital Universitario Vital Alvarez-Buylla, 33011 Mieres, Spain;
| | - Daniel Vázquez-Coto
- Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (D.V.-C.); (L.V.-C.); (C.G.-L.); (E.C.)
| | - Lucinda Velázquez-Cuervo
- Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (D.V.-C.); (L.V.-C.); (C.G.-L.); (E.C.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Claudia García-Lago
- Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (D.V.-C.); (L.V.-C.); (C.G.-L.); (E.C.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (D.V.-C.); (L.V.-C.); (C.G.-L.); (E.C.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Rubén Queiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
- Reumatología, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| |
Collapse
|
34
|
Huang Y, Liu D, Chen M, Xu S, Peng Q, Zhu Y, Long J, Liu T, Deng Z, Xie H, Li J, Liu F, Xiao W. TLR7 promotes skin inflammation via activating NFκB-mTORC1 axis in rosacea. PeerJ 2023; 11:e15976. [PMID: 37780385 PMCID: PMC10540772 DOI: 10.7717/peerj.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease originated from damaged skin barrier and innate/adaptive immune dysregulation. Toll-like receptors (TLRs) sense injured skin and initiate downstream inflammatory and immune responses, whose role in rosacea is not fully understood. Here, via RNA-sequencing analysis, we found that the TLR signaling pathway is the top-ranked signaling pathway enriched in rosacea skin lesions, in which TLR7 is highlighted and positively correlated with the inflammation severity of disease. In LL37-induced rosacea-like mouse models, silencing TLR7 prevented the development of rosacea-like skin inflammation. Specifically, we demonstrated that overexpressing TLR7 in keratinocytes stimulates rapamycin-sensitive mTOR complex 1 (mTORC1) pathway via NFκB signaling. Ultimately, TLR7/NFκ B/mTORC1 axis promotes the production of cytokines and chemokines, leading to the migration of CD4+T cells, which are infiltrated in the lesional skin of rosacea. Our report reveals the crucial role of TLR7 in rosacea pathogenesis and indicatesa promising candidate for rosacea treatments.
Collapse
Affiliation(s)
- Yaqun Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Da Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Wilkie H, Timilshina M, Rahmayanti S, Das M, Pelovitz T, Geha RS. DOCK8 is essential for neutrophil mediated clearance of cutaneous S. aureus infection. Clin Immunol 2023; 254:109681. [PMID: 37385324 PMCID: PMC10529992 DOI: 10.1016/j.clim.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
DOCK8 deficient patients are susceptible to skin infection with Staphylococcus aureus which is normally cleared by neutrophils. We examined the mechanism of this susceptibility in mice. Dock8-/- mice had delayed clearance of S. aureus from skin mechanically injured by tape stripping. The numbers and viability of neutrophils in infected but not in uninfected, tape stripped skin were significantly reduced in Dock8-/- mice compared to WT controls. This is despite comparable numbers of circulating neutrophils, and normal to elevated cutaneous expression of Il17a and IL-17A inducible neutrophil attracting chemokines Cxcl1, Cxcl2 and Cxcl3. DOCK8 deficient neutrophils were significantly more susceptible to cell death upon in vitro exposure to S. aureus and exhibited reduced phagocytosis of S. aureus bioparticles but had a normal respiratory burst. Impaired neutrophil survival in infected skin and defective neutrophil phagocytosis likely underlie the susceptibility to cutaneous S. aureus infection in DOCK8 deficiency.
Collapse
Affiliation(s)
- Hazel Wilkie
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Maheshwor Timilshina
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Siti Rahmayanti
- Division of Plastic & Reconstructive Surgery, Brigham and Womens Hospital, Harvard Medical School, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Tyler Pelovitz
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Abstract
Psoriasis is a chronic disease that is caused by multiple factors and is identified by itchiness, unpleasant, red, or white scaly patches on the skin, particularly on regularly chafed body regions such as the lateral areas of the limbs. Reports suggest that globally around 2%-3% of the population suffers from psoriasis. In this review, we have discussed the clinical classification of psoriasis and also the ideal characteristics of the biomarkers. An overview regarding the discovery of the biomarker and method for validating the study has been discussed. A growing body of research suggests a link to certain other systemic symptoms such as cardiovascular disorder, metabolic syndrome, and few other comorbidities such as hypertension and nonalcoholic fatty liver disease. Natural killer (NK) cells are lymphocyte cells that concentrate on the destruction of virally infected and malignant cells; these tend to produce a wide range of inflammatory cytokines, some of which are associated with the etiology of psoriasis. Detailed information on the molecular pathogenesis of psoriasis in which interleukin (IL)-17, IL-23, tumor necrosis factor-α (TNF-α), and CCL20 play a very significant role in the development of psoriasis. In this review, we have discussed an overview of the recent state of the biomarkers available for the diagnosis and treatment of psoriasis by emphasizing on the available biomarkers such as epigenomic, transcriptomic, glycomic, and metabolomic. The most recent advancements in molecular-targeted therapy utilizing biologics and oral systemic therapy (methotrexate, apremilast) enable to adequately treat the most serious psoriatic symptoms and also the studies have validated the efficacy of biologic therapy such as TNF-α antagonist (infliximab, adalimumab), IL-23 antagonist (guselkumab, risankizumab), and IL-17 antagonist (secukinumab, ixekizumab). Finally, an overview about the technological opportunities as well as various challenges has been discussed.
Collapse
Affiliation(s)
- Deblina Dan
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| | - Nimisha Srivastava
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
37
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
38
|
Griffin GK, Booth CAG, Togami K, Chung SS, Ssozi D, Verga JA, Bouyssou JM, Lee YS, Shanmugam V, Hornick JL, LeBoeuf NR, Morgan EA, Bernstein BE, Hovestadt V, van Galen P, Lane AA. Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 2023; 618:834-841. [PMID: 37286599 PMCID: PMC10284703 DOI: 10.1038/s41586-023-06156-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.
Collapse
Affiliation(s)
- Gabriel K Griffin
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Sook Chung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julia A Verga
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliette M Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yoke Seng Lee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vignesh Shanmugam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Center for Cutaneous Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| | - Andrew A Lane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Gong Z, van den Dries K, Migueles-Ramírez RA, Wiseman PW, Cambi A, Shenoy VB. Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nat Commun 2023; 14:2902. [PMID: 37217555 PMCID: PMC10202956 DOI: 10.1038/s41467-023-38598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Immune cells, such as macrophages and dendritic cells, can utilize podosomes, mechanosensitive actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. Individual podosomes probe their microenvironment through periodic protrusion and retraction cycles (height oscillations), while oscillations of multiple podosomes in a cluster are coordinated in a wave-like fashion. However, the mechanisms governing both the individual oscillations and the collective wave-like dynamics remain unclear. Here, by integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for podosome dynamics in clusters. Our model reveals that podosomes show oscillatory growth when actin polymerization-driven protrusion and signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers drives wave-like coordination of podosome oscillations. Our theoretical predictions are validated by different pharmacological treatments and the impact of microenvironment stiffness on chemo-mechanical waves. Our proposed framework can shed light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.
Collapse
Affiliation(s)
- Ze Gong
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Koen van den Dries
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rodrigo A Migueles-Ramírez
- Departments of Chemistry and Physics, McGill University, Montreal, QC, H3A 0B8, Canada
- Quantitative Life Sciences, McGill University, Montreal, QC, H3A 3R1, Canada
- Department of Biology, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Paul W Wiseman
- Departments of Chemistry and Physics, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Alessandra Cambi
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Nazri JM, Oikonomopoulou K, de Araujo ED, Kraskouskaya D, Gunning PT, Chandran V. Histone deacetylase inhibitors as a potential new treatment for psoriatic disease and other inflammatory conditions. Crit Rev Clin Lab Sci 2023; 60:300-320. [PMID: 36846924 DOI: 10.1080/10408363.2023.2177251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Collectively known as psoriatic disease, psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases in which patients present with cutaneous and musculoskeletal inflammation. Affecting roughly 2-3% of the world's total population, there remains unmet therapeutic needs in both psoriasis and PsA despite the availability of current immunomodulatory treatments. As a result, patients with psoriatic disease often experience reduced quality of life. Recently, a class of small molecules, commonly investigated as anti-cancer agents, called histone deacetylase (HDAC) inhibitors, have been proposed as a new promising anti-inflammatory treatment for immune- and inflammatory-related diseases. In inflammatory diseases, current evidence is derived from studies on diseases like rheumatoid arthritis (RA) and systematic lupus erythematosus (SLE), and while there are some reports studying psoriasis, data on PsA patients are not yet available. In this review, we provide a brief overview of psoriatic disease, psoriasis, and PsA, as well as HDACs, and discuss the rationale behind the potential use of HDAC inhibitors in the management of persistent inflammation to suggest its possible use in psoriatic disease.
Collapse
Affiliation(s)
- Jehan Mohammad Nazri
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Schroeder Arthritis Institute, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
41
|
Mylonas A, Hawerkamp HC, Wang Y, Chen J, Messina F, Demaria O, Meller S, Homey B, Di Domizio J, Mazzolai L, Hovnanian A, Gilliet M, Conrad C. Type I IFNs link skin-associated dysbiotic commensal bacteria to pathogenic inflammation and angiogenesis in rosacea. JCI Insight 2023; 8:151846. [PMID: 36633910 PMCID: PMC9977509 DOI: 10.1172/jci.insight.151846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Rosacea is a common chronic inflammatory skin disease with a fluctuating course of excessive inflammation and apparent neovascularization. Microbial dysbiosis with a high density of Bacillus oleronius and increased activity of kallikrein 5, which cleaves cathelicidin antimicrobial peptide, are key pathogenic triggers in rosacea. However, how these events are linked to the disease remains unknown. Here, we show that type I IFNs produced by plasmacytoid DCs represent the pivotal link between dysbiosis, the aberrant immune response, and neovascularization. Compared with other commensal bacteria, B. oleronius is highly susceptible and preferentially killed by cathelicidin antimicrobial peptides, leading to enhanced generation of complexes with bacterial DNA. These bacterial DNA complexes but not DNA complexes derived from host cells are required for cathelicidin-induced activation of plasmacytoid DCs and type I IFN production. Moreover, kallikrein 5 cleaves cathelicidin into peptides with heightened DNA binding and type I IFN-inducing capacities. In turn, excessive type I IFN expression drives neoangiogenesis via IL-22 induction and upregulation of the IL-22 receptor on endothelial cells. These findings unravel a potentially novel pathomechanism that directly links hallmarks of rosacea to the killing of dysbiotic commensal bacteria with induction of a pathogenic type I IFN-driven and IL-22-mediated angiogenesis.
Collapse
Affiliation(s)
- Alessio Mylonas
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Heike C Hawerkamp
- Department of Dermatology, Dusseldorf University Hospital, Dusseldorf, Germany
| | - Yichen Wang
- INSERM UMR 1163, Institut IMAGINE, Necker Hospital for Sick Children, Paris, France
| | - Jiaqi Chen
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Francesco Messina
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Olivier Demaria
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Stephan Meller
- Department of Dermatology, Dusseldorf University Hospital, Dusseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Dusseldorf University Hospital, Dusseldorf, Germany
| | - Jeremy Di Domizio
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Lucia Mazzolai
- Department of Angiology, University Hospital CHUV, Lausanne, Switzerland
| | - Alain Hovnanian
- INSERM UMR 1163, Institut IMAGINE, Necker Hospital for Sick Children, Paris, France
| | - Michel Gilliet
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Curdin Conrad
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| |
Collapse
|
42
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
43
|
Zhang M, Hong S, Sun X, Zhou Y, Luo Y, Liu L, Wang J, Wang C, Lin N, Li X. Exploration of and insights into advanced topical nanocarrier systems for the treatment of psoriasis. Front Med (Lausanne) 2022; 9:1017126. [PMID: 36590975 PMCID: PMC9797688 DOI: 10.3389/fmed.2022.1017126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with an underlying autoimmune pathogenesis that has brought great distress to patients. Current treatment options include topical therapy, systemic therapy, and phototherapy. By disrupting the stratum corneum, nanocarriers have unique advantages in allowing drug carriers to be tailored to achieve targeted drug delivery, improve efficacy, and minimize adverse effects. Furthermore, despite their limited success in market translatability, nanocarriers have been extensively studied for psoriasis, owing to their excellent preclinical results. As topical formulations are the first line of treatment, utilize the safest route, and facilitate a targeted approach, this study, we specifically describes the management of psoriasis using topical agents in conjunction with novel drug delivery systems. The characteristics, advantages, weaknesses, and mechanisms of individual nanocarriers, when applied as topical anti-psoriatic agents, were reviewed to distinguish each nanocarrier.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chunxiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Naixuan Lin
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Li,
| |
Collapse
|
44
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| |
Collapse
|
45
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
46
|
Paroli G, Murciano N, Mancini C, Soldaini M, Rijli S, DeSiena G, Bacci S. The role of mast cells in cellular modifications evoked by Exendin-4 in treated wounds: a preclinical study. J Wound Care 2022; 31:701-708. [PMID: 36001707 DOI: 10.12968/jowc.2022.31.8.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess the response of cellular infiltration in wounds treated with Exendin-4. METHOD In this study, 16 mice were used. On each mouse, two wounds were produced, one above the other, in order to study the effects of the various treatments carried out. The wounds then received an intradermal injection of either saline (20μl; Group 1) or Exendin-4 (Exe4, 62ng; Group 2) in the upper and lower wounds, respectively. The mice were euthanised in order to collect the wounds at time of abrasion (T0), at 48 hours (T1), 96 hours (T2) and 144 hours (T3). The expression of the glucagon-like peptide-1 receptor (GLP-1R) was evaluated by Western blot in wound lysates. Histological and histochemistry methods were applied in cryosections. RESULTS In T2 and T3 treated wounds, the mast cells degranulation index increased while GLP-1R expression, tumour necrosis factor (TNF)-α, or heat shock protein (HSP)47 antigens were detected in their cytoplasm. These cells interacted with dendritic cells, vessels or granulocytes. The density of dendritic cells increased progressively, and intercellular connections were found between these cells and vessels. Among the dendritic cells at T2, only M2 macrophages increased. However, M1 cells expressed transforming growth factor (TGF)-β and both interacted with either fibroblasts or with vessels. The number of plasmacytoid dendritic cells increased and established close contacts with regulatory T cells. CONCLUSION We propose that after treatment with Exe4, early activation of mast cells is critical in wound healing acceleration. This is crucial in understanding the potential effect of this drug for viable clinical therapies. DECLARATION OF INTEREST No potential conflict of interest was reported by the authors.
Collapse
Affiliation(s)
- Gaia Paroli
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| | - Nicoletta Murciano
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| | - Caterina Mancini
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| | - Marta Soldaini
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| | - Sarah Rijli
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| | - Gaetano DeSiena
- Department of Neurofarba, Section of Pharmacology, University of Florence, 50139 Florence, Italy
| | - Stefano Bacci
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
47
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
48
|
Topical VX-509 attenuates psoriatic inflammation through the STAT3/FABP5 pathway in keratinocytes. Pharmacol Res 2022; 182:106318. [PMID: 35728766 DOI: 10.1016/j.phrs.2022.106318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease, with lesions mainly manifesting as scaly erythematous plaques. The mild or moderate of psoriasis is the main type of patients in hospital, and topical application remains the preferred treatment option for psoriasis therapy, therefore, the development of novel topical agents has an essential role in psoriasis therapy. OBJECTIVE To identify potential drugs for psoriasis topical treatment. METHODS We performed drug screening by Imiquimod (IMQ)-induced psoriatic like inflammation in mouse model, followed mouse epidermis by RNA-seq to find the key molecules affecting the drug. The qRT-PCR, WB were performed to test mRNA and protein expression, and Chip assay had been conducted to examine Stat3 bound to promoter of FABP5. RESULTS In this study, we identified VX-509, which topical application significantly attenuated IMQ-induced psoriatic like inflammation in mouse model. And then, we verified Epidermal Fatty acid binding protein (E-FABP/FABP5) was significantly decreased in VX-509 treated mouse epidermis by RNA-seq. FABP5 is a key molecule in lipid metabolism, administration of FABP5 inhibitor or knock down of FABP5 expression remarkably abrogated psoriatic inflammation as well as lipid metabolism. Mechanistically, our finding showed that VX-509 blocked IL-22 induced signaling pathway, particular in activation of Stat3. Furthermore, we identified Stat3 is a transcriptional factor associated with FABP5 promoters and VX-509 treatment remarkably attenuated IL-22-induced FABP5 expression through Stat3 in KCs. CONCLUSIONS This study demonstrated administration of VX-509 is a potential promising topical drug for treatment of psoriasis, FABP5 is a critical targeted molecule in psoriasis therapy.
Collapse
|
49
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
50
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|