1
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024:S1742-7061(24)00529-4. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
3
|
Tang H, Huang Z, Wang M, Luan X, Deng Z, Xu J, Fan W, He D, Zhou C, Wang L, Li J, Zeng F, Li D, Zhou J. Research progress of migrasomes: from genesis to formation, physiology to pathology. Front Cell Dev Biol 2024; 12:1420413. [PMID: 39206093 PMCID: PMC11349668 DOI: 10.3389/fcell.2024.1420413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Migrasomes are recently identified organelles that form at the ends or forks of retraction fibers (RFs) behind migrating cells and are expelled from the cell through cell migration. Migrasomes contain signaling molecules which are captured by surrounding cells along with migrasomes or released into the extracellular environment following the rupture of the migrasomes. Finally, through the action of these signaling molecules, migrasomes facilitate the entire process of information conveyance. In addition, migrasomes also serves as a "scavenger" by removing damaged mitochondria from the cell to ensure cellular viability. Thus, migrasomes play a pivotal role in the integration of temporal, spatial, specific chemical information and the clearance of cellular harmful substances, critical for grasping migrasomes' functions. This review delves into the latest advancements in migrasomes research, covering aspects such as migrasomes' discovery, distribution, structure and characteristics, genesis and regulation mechanisms, and their correlation with diseases. Additionally, we scrutinize the present investigational findings on migrasomes within the cancer domain, examining their potential impact on cancer and prospective research avenues.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zengfu Deng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jian Xu
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Wei Fan
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongsheng He
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Chong Zhou
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Liangbin Wang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jun Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Fanfeng Zeng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongbo Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Lim H, Choe YH, Lee J, Kim GE, Hyun JW, Hyun YM. Neutrophil Migration Is Mediated by VLA-6 in the Inflamed Adipose Tissue. Immune Netw 2024; 24:e23. [PMID: 38974215 PMCID: PMC11224672 DOI: 10.4110/in.2024.24.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
Adipose tissue, well known for its endocrine function, plays an immunological role in the body. The inflamed adipose tissue under LPS-induced systemic inflammation is characterized by the dominance of pro-inflammatory immune cells, particularly neutrophils. Although migration of macrophages toward damaged or dead adipocytes to form a crown-like structure in inflamed adipose tissue has been revealed, the neutrophilic interaction with adipocytes or the extracellular matrix remains unknown. Here, we demonstrated the involvement of adhesion molecules, particularly integrin α6β1, of neutrophils in adipocytes or the extracellular matrix of inflamed adipose tissue interaction. These results suggest that disrupting the adhesion between adipose tissue components and neutrophils may govern the accumulation of excessive neutrophils in inflamed tissues, a prerequisite in developing anti-inflammatory therapeutics by inhibiting inflammatory immune cells.
Collapse
Affiliation(s)
- Hyunseo Lim
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young Ho Choe
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jaeho Lee
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Gi Eun Kim
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Won Hyun
- Department of Biochemistry, Jeju Research Center for Natural Medicine, Jeju National University College of Medicine, Jeju 63243, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
5
|
Ortmann W, Such A, Cichon I, Baj-Krzyworzeka M, Weglarczyk K, Kolaczkowska E. Large extracellular vesicle (EV) and neutrophil extracellular trap (NET) interaction captured in vivo during systemic inflammation. Sci Rep 2024; 14:4680. [PMID: 38409254 PMCID: PMC10897202 DOI: 10.1038/s41598-024-55081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) are pivotal bioactive structures involved in various processes including inflammation. Herein we report the interactions between EVs and NETs during murine endotoxemia studied in situ directly in the vasculature (cremaster muscle, liver sinusoids) using intravital microscopy (IVM). We captured NETs and EV release in real time by both non- and polarized neutrophils in liver but not in cremaster vasculature. When comparing numbers of circulating EVs of various origin (nanoparticle tracking analysis-NTA, flow cytometry) with those interacting with endothelium and NETs (IVM) we observed that whereas platelet and monocyte/macrophage-derived EVs dominate in blood and peritoneal lavage, respectively, mostly neutrophil-derived EVs interact with the vascular lining, NETs and leukocytes. Despite the interaction, NETs do not affect EV formation as NET release inhibition did not alter EV release. However, EVs inhibit NETs formation and in particular, erythrocyte-derived EVs downregulate NET release and this effect is mediated via Siglec-E-dependent interactions with neutrophils. Overall, we report that EVs are present in NETs in vivo and they do modulate their release but the process in not bidirectional. Moreover, EVs isolated from body fluids might not reflect their importance in direct endothelial- and leukocyte-related interactions.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Anna Such
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland.
| |
Collapse
|
6
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
7
|
Jung I, Shin S, Baek MC, Yea K. Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: current advances and therapeutic applications. Exp Mol Med 2024; 56:19-31. [PMID: 38172594 PMCID: PMC10834411 DOI: 10.1038/s12276-023-01132-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer immunotherapy has revolutionized the approach to cancer treatment of malignant tumors by harnessing the body's immune system to selectively target cancer cells. Despite remarkable advances, there are still challenges in achieving successful clinical responses. Recent evidence suggests that immune cell-derived exosomes modulate the immune system to generate effective antitumor immune responses, making them a cutting-edge therapeutic strategy. However, natural exosomes are limited in clinical application due to their low drug delivery efficiency and insufficient antitumor capacity. Technological advancements have allowed exosome modifications to magnify their intrinsic functions, load different therapeutic cargoes, and preferentially target tumor sites. These engineered exosomes exert potent antitumor effects and have great potential for cancer immunotherapy. In this review, we describe ingenious modification strategies to attain the desired performance. Moreover, we systematically summarize the tumor-controlling properties of engineered immune cell-derived exosomes in innate and adaptive immunity. Collectively, this review provides a comprehensive and intuitive guide for harnessing the potential of modified immune cell-derived exosome-based approaches, offering valuable strategies to enhance and optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Inseong Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Sanghee Shin
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 43024, Republic of Korea.
| |
Collapse
|
8
|
Yang Y, Chen Y, Pei P, Fan Y, Wang S, Zhang H, Zhao D, Qian BZ, Zhang F. Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging. NATURE NANOTECHNOLOGY 2023; 18:1195-1204. [PMID: 37349506 DOI: 10.1038/s41565-023-01422-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
Optical imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500-1,700 nm) 'deep-tissue-transparent' sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er3+ (α-ErNPs) or Ho3+ (α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Collapse
Affiliation(s)
- Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Bin-Zhi Qian
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Andreata F, Clément M, Benson RA, Hadchouel J, Procopio E, Even G, Vorbe J, Benadda S, Ollivier V, Ho-Tin-Noe B, Le Borgne M, Maffia P, Nicoletti A, Caligiuri G. CD31 signaling promotes the detachment at the uropod of extravasating neutrophils allowing their migration to sites of inflammation. eLife 2023; 12:e84752. [PMID: 37549051 PMCID: PMC10431918 DOI: 10.7554/elife.84752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed β2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.
Collapse
Affiliation(s)
- Francesco Andreata
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Juliette Hadchouel
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center (PARCC)ParisFrance
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Julie Vorbe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Samira Benadda
- Cell and Tissue Imaging Platform, INSERM, CNRS, ERL8252, Centre de Recherche sur l’Inflammation (CRI)ParisFrance
| | - Véronique Ollivier
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Benoit Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico IINaplesItaly
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
- Department of Cardiology and of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Nord Val-de-Seine, Site BichatParisFrance
| |
Collapse
|
10
|
Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun Signal 2023; 21:105. [PMID: 37158915 PMCID: PMC10165304 DOI: 10.1186/s12964-023-01121-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Migrasomes are newly discovered extracellular vesicles (EVs) that are formed in migrating cells and mediate intercellular communication. However, their size, biological generation, cargo packaging, transport, and effects on recipient cells by migrasomes are different from those of other EVs. In addition to mediating organ morphogenesis during zebrafish gastrulation, discarding damaged mitochondria, and lateral transport of mRNA and proteins, growing evidence has demonstrated that migrasomes mediate a variety of pathological processes. In this review, we summarize the discovery, mechanisms of formation, isolation, identification, and mediation of cellular communication in migrasomes. We discuss migrasome-mediated disease processes, such as osteoclast differentiation, proliferative vitreoretinopathy, tumor cell metastasis by PD-L1 transport, immune cell chemotaxis to the site of infection by chemokines, angiogenesis promotion via angiogenic factors by immune cells, and leukemic cells chemotaxis to the site of mesenchymal stromal cells. Moreover, as new EVs, we propose the potential of migrasomes for disease diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, 213200, People's Republic of China.
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
11
|
Hu W, Gao W, Gong Y, Guo P, Li W, Shu X, Lü S, Zeng Z, Zhang Y, Long M. Trail Formation Alleviates Excessive Adhesion and Maintains Efficient Neutrophil Migration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17577-17591. [PMID: 36976830 DOI: 10.1021/acsami.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which β2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.
Collapse
Affiliation(s)
- Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixin Gong
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Guo
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Shi H, Shao B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023; 12:cells12081136. [PMID: 37190045 DOI: 10.3390/cells12081136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immunological synapses. LFA-1 functions through interacting with its ligands with differing affinities: low, intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and immunological synapse formation.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Li DD, Tang YL, Wang X. Challenges and exploration for immunotherapies targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:55-68. [PMID: 36684057 PMCID: PMC9850757 DOI: 10.4251/wjgo.v15.i1.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have made significant breakthroughs in the treatment of various tumors, greatly improving clinical efficacy. As the fifth most common antitumor treatment strategy for patients with solid tumors after surgery, chemotherapy, radiotherapy and targeted therapy, the therapeutic response to ICIs largely depends on the number and spatial distribution of effector T cells that can effectively identify and kill tumor cells, features that are also important when distinguishing malignant tumors from “cold tumors” or “hot tumors”. At present, only a small proportion of colorectal cancer (CRC) patients with deficient mismatch repair (dMMR) or who are microsatellite instability-high (MSI-H) can benefit from ICI treatments because these patients have the characteristics of a “hot tumor”, with a high tumor mutational burden (TMB) and massive immune cell infiltration, making the tumor more easily recognized by the immune system. In contrast, a majority of CRC patients with proficient MMR (pMMR) or who are microsatellite stable (MSS) have a low TMB, lack immune cell infiltration, and have almost no response to immune monotherapy; thus, these tumors are “cold”. The greatest challenge today is how to improve the immunotherapy response of “cold tumor” patients. With the development of clinical research, immunotherapies combined with other treatment strategies (such as targeted therapy, chemotherapy, and radiotherapy) have now become potentially effective clinical strategies and research hotspots. Therefore, the question of how to promote the transformation of “cold tumors” to “hot tumors” and break through the bottleneck of immunotherapy for cold tumors in CRC patients urgently requires consideration. Only by developing an in-depth understanding of the immunotherapy mechanisms of cold CRCs can we screen out the immunotherapy-dominant groups and explore the most suitable treatment options for individuals to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan-Ling Tang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
14
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
15
|
Marki A, Ley K. The expanding family of neutrophil-derived extracellular vesicles. Immunol Rev 2022; 312:52-60. [PMID: 35665941 PMCID: PMC10111154 DOI: 10.1111/imr.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.
Collapse
Affiliation(s)
- Alex Marki
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Klaus Ley
- La Jolla Institute for Immunology and Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Pociute A, Kottilingal Farook MF, Dagys A, Kevalas R, Laucaityte G, Jankauskaite L. Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. J Clin Med 2022; 11:jcm11216475. [PMID: 36362702 PMCID: PMC9658833 DOI: 10.3390/jcm11216475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fever is the most common complaint of children who are attending a pediatric emergency department (PED). Most of the fever cases are of viral origin; however, the most common markers, such as leucocyte, neutrophil count, or C-reactive protein, are not sensitive or specific enough to distinguish the etiology of fever, especially if children present at the early phase of infection. Currently, platelets have been attributed a role as important sentinels in viral and bacterial infection pathogenesis. Thus, our aim was to analyze different platelet indices, such as PNLR (platelet-to-neutrophil/lymphocyte ratio), PNR (platelet-to-neutrophil ratio) as well as specific secreted proteins, such as sP-selectin, CXCL4, CXCL7, and serotonin. We included 68 children who were referred to PED with the early onset of fever (<12 h). All children with comorbidities, older than five years, and psychiatric diseases, who refused to participate were excluded. All the participants were divided into viral, bacterial, or serious bacterial infection (SBI) groups. All the children underwent blood sampling, and an additional sample was collected for protein analysis. Our analysis revealed statistically significant differences between leucocyte, neutrophil, and CRP levels between SBI and other groups. However, leucocyte and neutrophil counts were within the age norms. A higher PNLR value was observed in a bacterial group, PNR-in viral. As we tested CXCL7 and sP-selectin, alone and together those markers were statistically significant to discriminate SBI and sepsis from other causes of infection. Together with tachypnoe and SpO2 < 94%, it improved the prediction value of sepsis as well as SBI. CXCL4 and serotonin did not differ between the groups. Concluding, CXCL7 and sP-selectin showed promising results in early SBI and sepsis diagnosis.
Collapse
Affiliation(s)
- Aiste Pociute
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | | | - Algirdas Dagys
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rimantas Kevalas
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Goda Laucaityte
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Jankauskaite
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
17
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
18
|
Wen L, Marki A, Wang Z, Orecchioni M, Makings J, Billitti M, Wang E, Suthahar SSA, Kim K, Kiosses WB, Mikulski Z, Ley K. A humanized β 2 integrin knockin mouse reveals localized intra- and extravascular neutrophil integrin activation in vivo. Cell Rep 2022; 39:110876. [PMID: 35649374 PMCID: PMC10375464 DOI: 10.1016/j.celrep.2022.110876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
β2 integrins are leukocyte-specific adhesion molecules that are essential for leukocyte recruitment. The lack of tools for reporting β2 integrin activation in mice hindered the study of β2 integrin-related immune responses in vivo. Here, we generated a humanized β2 integrin knockin mouse strain by targeting the human β2 integrin coding sequence into the mouse Itgb2 locus to enable imaging of β2 integrin activation using the KIM127 (extension) and mAb24 (high-affinity) reporter antibodies. Using a CXCL1-induced acute inflammation model, we show the local dynamics of β2 integrin activation in arresting neutrophils in vivo in venules of the mouse cremaster muscle. Activated integrins are highly concentrated in a small area at the rear of arresting neutrophils in vivo. In a high-dose lipopolysaccharide model, we find that β2 integrins are activated in association with elevated neutrophil adhesion in lung and liver. Thus, these mice enable studies of β2 integrin activation in vivo.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Alex Marki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zhihao Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Marco Orecchioni
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jeffrey Makings
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Monica Billitti
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Erpei Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sujit S A Suthahar
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - William B Kiosses
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
20
|
Hao J, Zhou H, Nemes K, Yen D, Zhao W, Bramlett C, Wang B, Lu R, Shen K. Membrane-bound SCF and VCAM-1 synergistically regulate the morphology of hematopoietic stem cells. J Cell Biol 2021; 220:212562. [PMID: 34402812 PMCID: PMC8374872 DOI: 10.1083/jcb.202010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound factors expressed by niche stromal cells constitute a unique class of localized cues and regulate the long-term functions of adult stem cells, yet little is known about the underlying mechanisms. Here, we used a supported lipid bilayer (SLB) to recapitulate the membrane-bound interactions between hematopoietic stem cells (HSCs) and niche stromal cells. HSCs cluster membrane-bound stem cell factor (mSCF) at the HSC-SLB interface. They further form a polarized morphology with aggregated mSCF under a large protrusion through a synergy with VCAM-1 on the bilayer, which drastically enhances HSC adhesion. These features are unique to mSCF and HSCs among the factors and hematopoietic populations we examined. The mSCF-VCAM-1 synergy and the polarized HSC morphology require PI3K signaling and cytoskeletal reorganization. The synergy also enhances nuclear retention of FOXO3a, a crucial factor for HSC maintenance, and minimizes its loss induced by soluble SCF. Our work thus reveals a unique role and signaling mechanism of membrane-bound factors in regulating stem cell morphology and function.
Collapse
Affiliation(s)
- Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Kristen Nemes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Winfield Zhao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,Department of Medicine, University of Southern California, Los Angeles, CA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,USC Stem Cell, University of Southern California, Los Angeles, CA
| |
Collapse
|
21
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
22
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
23
|
Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 Is Associated With Immune Cell Infiltration and Serves as a Favorable Prognostic Biomarker for Breast Cancer. Front Oncol 2021; 11:658547. [PMID: 34094951 PMCID: PMC8172804 DOI: 10.3389/fonc.2021.658547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background ITGA3 is a member of the integrin family, a cell surface adhesion molecule that can interact with extracellular matrix (ECM) proteins. The purpose of this study was to explore the significance of ITGA3 expression in the prognosis and clinical diagnosis of breast cancer patients. Methods Oncomine, the Human Protein Atlas (HPA) and UALCAN were used to analyze the expression of ITGA3 in various cancers. PrognoScan, GEPIA, Kaplan–Meier plotter and Easysurv were utilized to analyze the prognosis of ITGA3 in certain cancers. Based on TCGA data, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of ITGA3 expression. cBio-Portal and MethSurv were used to evaluate the genomic mechanism. LinkedOmics, NetworkAnalyst and Metascape were used to build the signaling network. TIMER is a web server for comprehensive analysis of tumor infiltrating immune cells and tumor infiltrating lymphocytes (TILs). Results The expression of ITGA3 in normal breast tissues was greater than that in breast cancer tissues at both the mRNA and protein levels. High expression of ITGA3 was associated with better prognosis of breast cancer patients. ROC analysis indicated that ITGA3 had significant diagnostic value. Genomic analysis revealed that promoter methylation of ITGA3 leads to transcriptional silencing, which may be one of the mechanisms underlying ITGA3 downregulation in BRCA. Immune infiltration analysis showed that ITGA3 may be involved in the recruitment of immune cells. Conclusions This study identified ITGA3 as a novel biomarker to estimate the diagnosis and prognosis of breast cancer. In addition, ITGA3 is involved in ECM regulation and immune cell infiltration.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
24
|
Arts JJG, Mahlandt EK, Schimmel L, Grönloh MLB, van der Niet S, Klein BJAM, Fernandez-Borja M, van Geemen D, Huveneers S, van Rijssel J, Goedhart J, van Buul JD. Endothelial Focal Adhesions Are Functional Obstacles for Leukocytes During Basolateral Crawling. Front Immunol 2021; 12:667213. [PMID: 34084168 PMCID: PMC8167051 DOI: 10.3389/fimmu.2021.667213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
An inflammatory response requires leukocytes to migrate from the circulation across the vascular lining into the tissue to clear the invading pathogen. Whereas a lot of attention is focused on how leukocytes make their way through the endothelial monolayer, it is less clear how leukocytes migrate underneath the endothelium before they enter the tissue. Upon finalization of the diapedesis step, leukocytes reside in the subendothelial space and encounter endothelial focal adhesions. Using TIRF microscopy, we show that neutrophils navigate around these focal adhesions. Neutrophils recognize focal adhesions as physical obstacles and deform to get around them. Increasing the number of focal adhesions by silencing the small GTPase RhoJ slows down basolateral crawling of neutrophils. However, apical crawling and diapedesis itself are not affected by RhoJ depletion. Increasing the number of focal adhesions drastically by expressing the Rac1 GEF Tiam1 make neutrophils to avoid migrating underneath these Tiam1-expressing endothelial cells. Together, our results show that focal adhesions mark the basolateral migration path of neutrophils.
Collapse
Affiliation(s)
- Janine J. G. Arts
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Eike K. Mahlandt
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Lilian Schimmel
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Max L. B. Grönloh
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Sanne van der Niet
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Bart J. A. M. Klein
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Mar Fernandez-Borja
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Daphne van Geemen
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Jos van Rijssel
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
26
|
Johnson LA, Banerji S, Lagerholm BC, Jackson DG. Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx. Life Sci Alliance 2021; 4:4/5/e202000908. [PMID: 33687996 PMCID: PMC8008951 DOI: 10.26508/lsa.202000908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
CD44 anchors the hyaluronan glycocalyx on migrating dendritic cells to permit docking to the endothelial receptor LYVE-1, thus orchestrating lymphatic trafficking through modulating glycocalyx density. DCs play a vital role in immunity by conveying antigens from peripheral tissues to draining lymph nodes, through afferent lymphatic vessels. Critical to the process is initial docking to the lymphatic endothelial receptor LYVE-1 via its ligand hyaluronan on the DC surface. How this relatively weak binding polymer is configured for specific adhesion to LYVE-1, however, is unknown. Here, we show that hyaluronan is anchored and spatially organized into a 400–500 nm dense glycocalyx by the leukocyte receptor CD44. Using gene knockout and by modulating CD44-hyaluronan interactions with monoclonal antibodies in vitro and in a mouse model of oxazolone-induced skin inflammation, we demonstrate that CD44 is required for DC adhesion and transmigration across lymphatic endothelium. In addition, we present evidence that CD44 can dynamically control the density of the hyaluronan glycocalyx, regulating the efficiency of DC trafficking to lymph nodes. Our findings define a previously unrecognized role for CD44 in lymphatic trafficking and highlight the importance of the CD44:HA:LYVE-1 axis in its regulation.
Collapse
Affiliation(s)
- Louise A Johnson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Suneale Banerji
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David G Jackson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Potts KS, Farley A, Dawson CA, Rimes J, Biben C, de Graaf C, Potts MA, Stonehouse OJ, Carmagnac A, Gangatirkar P, Josefsson EC, Anttila C, Amann-Zalcenstein D, Naik S, Alexander WS, Hilton DJ, Hawkins ED, Taoudi S. Membrane budding is a major mechanism of in vivo platelet biogenesis. J Exp Med 2021; 217:151972. [PMID: 32706855 PMCID: PMC7478734 DOI: 10.1084/jem.20191206] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.
Collapse
Affiliation(s)
- Kathryn S Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alison Farley
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Caleb A Dawson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Joel Rimes
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Carolyn de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Olivia J Stonehouse
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Amandine Carmagnac
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Casey Anttila
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Shalin Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
28
|
Marki A, Buscher K, Lorenzini C, Meyer M, Saigusa R, Fan Z, Yeh YT, Hartmann N, Dan JM, Kiosses WB, Golden GJ, Ganesan R, Winkels H, Orecchioni M, McArdle S, Mikulski Z, Altman Y, Bui J, Kronenberg M, Chien S, Esko JD, Nizet V, Smalley D, Roth J, Ley K. Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. J Exp Med 2021; 218:e20200551. [PMID: 33275138 PMCID: PMC7721910 DOI: 10.1084/jem.20200551] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Rolling neutrophils form tethers with submicron diameters. Here, we report that these tethers detach, forming elongated neutrophil-derived structures (ENDS) in the vessel lumen. We studied ENDS formation in mice and humans in vitro and in vivo. ENDS do not contain mitochondria, endoplasmic reticulum, or DNA, but are enriched for S100A8, S100A9, and 57 other proteins. Within hours of formation, ENDS round up, and some of them begin to present phosphatidylserine on their surface (detected by annexin-5 binding) and release S100A8-S100A9 complex, a damage-associated molecular pattern protein that is a known biomarker of neutrophilic inflammation. ENDS appear in blood plasma of mice upon induction of septic shock. Compared with healthy donors, ENDS are 10-100-fold elevated in blood plasma of septic patients. Unlike neutrophil-derived extracellular vesicles, most ENDS are negative for the tetraspanins CD9, CD63, and CD81. We conclude that ENDS are a new class of bloodborne submicron particles with a formation mechanism linked to neutrophil rolling on the vessel wall.
Collapse
Affiliation(s)
- Alex Marki
- La Jolla Institute for Immunology, La Jolla, CA
| | - Konrad Buscher
- La Jolla Institute for Immunology, La Jolla, CA
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Cristina Lorenzini
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory of Immunobiology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | | | - Zhichao Fan
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | - Yi-Ting Yeh
- Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | | | - Jennifer M. Dan
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | | | - Gregory J. Golden
- Department of Cellular and Molecular Medicine and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Rajee Ganesan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | | - Yoav Altman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jack Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | | | - Shu Chien
- Institute for Immunology, University of Muenster, Muenster, Germany
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - David Smalley
- Systems Mass Spectrometry Core, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Johannes Roth
- Institute for Immunology, University of Muenster, Muenster, Germany
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
29
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
30
|
|
31
|
Heydarian M, Schweinlin M, Schwarz T, Rawal R, Walles H, Metzger M, Rudel T, Kozjak-Pavlovic V. Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity. J Tissue Eng 2021; 12:2041731420988802. [PMID: 33796248 PMCID: PMC7970704 DOI: 10.1177/2041731420988802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment.
Collapse
Affiliation(s)
| | - Matthias Schweinlin
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Ravisha Rawal
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Research Center "Dynamic Systems: Systems Engineering" (CDS), Otto von-Guericke-University, Magdeburg, Sachsen-Anhalt, Germany
| | - Marco Metzger
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
32
|
Youn YJ, Shrestha S, Lee YB, Kim JK, Lee JH, Hur K, Mali NM, Nam SW, Kim SH, Lee S, Song DK, Jin HK, Bae JS, Hong CW. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. Am J Cancer Res 2021; 11:2770-2787. [PMID: 33456572 PMCID: PMC7806483 DOI: 10.7150/thno.51756] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Aims: Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci. However, the physical and functional characteristics of neutrophil-derived EVs are incompletely understood. In this study, we aimed to investigate the differences between NDTRs and NDMVs. Methods: The generation of neutrophil-derived EVs were visualized by live-cell fluorescence images and the physical characteristics were further analyzed using nanotracking analysis assay, scanning electron microscopic analysis, and marker expressions. Functional characteristics of neutrophil-derived EVs were analyzed using assays for bactericidal activity, monocyte chemotaxis, phenotype polarization of macrophages, and miRNA sequencing. Finally, the effects of neutrophil-derived EVs on the acute and chronic inflammation were examined in vivo. Results: Both EVs share similar characteristics including stimulators, surface marker expression, bactericidal activity, and chemoattractive effect on monocytes via MCP-1. However, the integrin-mediated physical interaction was required for generation of NDTRs whereas NDMV generation was dependent on PI3K pathway. Interestingly, NDTRs contained proinflammatory miRNAs such as miR-1260, miR-1285, miR-4454, and miR-7975, while NDMVs contained anti-inflammatory miRNAs such as miR-126, miR-150, and miR-451a. Although both EVs were easily uptaken by monocytes, NDTRs enhanced proinflammatory macrophage polarization whereas NDMVs induced anti-inflammatory macrophage polarization. Moreover, NDTRs showed protective effects against lethality in a murine sepsis model and pathological changes in a murine chronic colitis model. Conclusion: These results suggest that NDTR is a proinflammatory subtype of neutrophil-derived EVs distinguished from NDMV.
Collapse
|
33
|
Jørgensen SE, Al-Mousawi A, Assing K, Hartling U, Grosen D, Fisker N, Nielsen C, Jakobsen MA, Mogensen TH. STK4 Deficiency Impairs Innate Immunity and Interferon Production Through Negative Regulation of TBK1-IRF3 Signaling. J Clin Immunol 2020; 41:109-124. [PMID: 33078349 DOI: 10.1007/s10875-020-00891-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND STK4 deficiency due to homozygous mutations in the STK4 gene encoding the STK4/MST1 kinase was first described in 2012. STK4/MST1 kinase regulates cell proliferation, survival, differentiation, and immune responses through canonical and non-canonical Hippo signaling pathways. OBJECTIVE We describe an 11-year-old girl with a clinical presentation consisting of severe recurrent herpes zoster, chronic warts, and recurrent pneumonias, as well as a somatic phenotype with hypothyroidism and low stature. Whole exome sequencing revealed STK4 deficiency due to homozygosity for a novel frameshift variant in STK4, c.523dupA, p.(L174fsTer45), resulting in a premature stop codon within the kinase domain. METHODS We performed a thorough investigation of the genetics and innate and adaptive immunological abnormalities in STK4 deficiency. RESULTS We show significantly impaired type I, II, and III interferon (IFN) responses and partly reduced proinflammatory cytokine responses to ligands of Toll-like receptor (TLR)3, TLR9, and the cytosolic RNA and DNA sensors as well as to microorganisms. Impaired IFN responses could be attributed to reduced phosphorylation of TBK1 and IRF3. Moreover, virus infection induced enhanced cell death by apoptosis. Importantly, autophagy pathways were slightly disturbed, with enhanced LC3B-Ito LCB3-II conversion at the single cell level but normal overall formation of LCB3 punctae. Finally, the patient displayed some indicators of impaired adaptive immunity in the form of insufficient vaccination responses, T cell lymphopenia, and reduced Treg fractions, although with largely normal T cell proliferation and normal IFNg production. CONCLUSION Here, we demonstrate disturbances in various immune cell populations and pathways involved in innate immune responses, cell death, autophagy, and adaptive immunity in a patient homozygous for a novel STK4 frameshift mutation.
Collapse
Affiliation(s)
- Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ali Al-Mousawi
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Ulla Hartling
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Dorthe Grosen
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Niels Fisker
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
34
|
Subramanian BC, Melis N, Chen D, Wang W, Gallardo D, Weigert R, Parent CA. The LTB4-BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J Cell Biol 2020; 219:e201910215. [PMID: 32854115 PMCID: PMC7659729 DOI: 10.1083/jcb.201910215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The eicosanoid leukotriene B4 (LTB4) relays chemotactic signals to direct neutrophil migration to inflamed sites through its receptor BLT1. However, the mechanisms by which the LTB4-BLT1 axis relays chemotactic signals during intravascular neutrophil response to inflammation remain unclear. Here, we report that LTB4 produced by neutrophils acts as an autocrine/paracrine signal to direct the vascular recruitment, arrest, and extravasation of neutrophils in a sterile inflammation model in the mouse footpad. Using intravital subcellular microscopy, we reveal that LTB4 elicits sustained cell polarization and adhesion responses during neutrophil arrest in vivo. Specifically, LTB4 signaling coordinates the dynamic redistribution of non-muscle myosin IIA and β2-integrin, which facilitate neutrophil arrest and extravasation. Notably, we also found that neutrophils shed extracellular vesicles in the vascular lumen and that inhibition of extracellular vesicle release blocks LTB4-mediated autocrine/paracrine signaling required for neutrophil arrest and extravasation. Overall, we uncover a novel complementary mechanism by which LTB4 relays extravasation signals in neutrophils during early inflammation response.
Collapse
Affiliation(s)
- Bhagawat C. Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Devorah Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
35
|
Lim K, Kim TH, Trzeciak A, Amitrano AM, Reilly EC, Prizant H, Fowell DJ, Topham DJ, Kim M. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat Immunol 2020; 21:1046-1057. [PMID: 32747818 PMCID: PMC7791396 DOI: 10.1038/s41590-020-0746-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Early recruitment of neutrophils from the blood to sites of tissue infection is a hallmark of innate immune responses. However, little is known about the mechanisms by which apoptotic neutrophils are cleared in infected tissues during resolution and the immunological consequences of in situ efferocytosis. Using intravital multiphoton microscopy, we show previously unrecognized motility patterns of interactions between neutrophils and tissue-resident phagocytes within the influenza-infected mouse airway. Newly infiltrated inflammatory monocytes become a chief pool of phagocytes and play a key role in the clearance of highly motile apoptotic neutrophils during the resolution phase. Apoptotic neutrophils further release epidermal growth factor and promote the differentiation of monocytes into tissue-resident antigen-presenting cells for activation of antiviral T cell effector functions. Collectively, these results suggest that the presence of in situ neutrophil resolution at the infected tissue is critical for optimal CD8+ T cell-mediated immune protection.
Collapse
Affiliation(s)
- Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA.
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Alissa Trzeciak
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Andrea M Amitrano
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Emma C Reilly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Hen Prizant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
36
|
Yeung L, Anderson JML, Wee JL, Demaria MC, Finsterbusch M, Liu YS, Hall P, Smith BC, Dankers W, Elgass KD, Wicks IP, Kwok HF, Wright MD, Hickey MJ. Leukocyte Tetraspanin CD53 Restrains α 3 Integrin Mobilization and Facilitates Cytoskeletal Remodeling and Transmigration in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:521-532. [PMID: 32532837 DOI: 10.4049/jimmunol.1901054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
The importance of tetraspanin proteins in regulating migration has been demonstrated in many diverse cellular systems. However, the function of the leukocyte-restricted tetraspanin CD53 remains obscure. We therefore hypothesized that CD53 plays a role in regulating leukocyte recruitment and tested this hypothesis by examining responses of CD53-deficient mice to a range of inflammatory stimuli. Deletion of CD53 significantly reduced neutrophil recruitment to the acutely inflamed peritoneal cavity. Intravital microscopy revealed that in response to several inflammatory and chemotactic stimuli, absence of CD53 had only minor effects on leukocyte rolling and adhesion in postcapillary venules. In contrast, Cd53-/- mice showed a defect in leukocyte transmigration induced by TNF, CXCL1 and CCL2, and a reduced capacity for leukocyte retention on the endothelial surface under shear flow. Comparison of adhesion molecule expression in wild-type and Cd53-/- neutrophils revealed no alteration in expression of β2 integrins, whereas L-selectin was almost completely absent from Cd53-/- neutrophils. In addition, Cd53-/- neutrophils showed defects in activation-induced cytoskeletal remodeling and translocation to the cell periphery, responses necessary for efficient transendothelial migration, as well as increased α3 integrin expression. These alterations were associated with effects on inflammation, so that in Cd53-/- mice, the onset of neutrophil-dependent serum-induced arthritis was delayed. Together, these findings demonstrate a role for tetraspanin CD53 in promotion of neutrophil transendothelial migration and inflammation, associated with CD53-mediated regulation of L-selectin expression, attachment to the endothelial surface, integrin expression and trafficking, and cytoskeletal function.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Jeremy M L Anderson
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Janet L Wee
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Maria C Demaria
- Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Michaela Finsterbusch
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Yuxin S Liu
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Brodie C Smith
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Wendy Dankers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3050, Australia.,Department of Rheumatology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; and
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region, China
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia;
| |
Collapse
|
37
|
Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, Arkill KP, Stein M, Girbl T, Golding M, Bates DO, Vestweber D, Voisin MB, Nourshargh S. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest 2020; 130:2301-2318. [PMID: 31971917 PMCID: PMC7190919 DOI: 10.1172/jci133661] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Régis Joulia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anna Barkaway
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Loïc Rolas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bin Ma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Astrid Fee Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kenton P. Arkill
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Monja Stein
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew Golding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Qi Y, Sun D, Yang W, Xu B, Lv D, Han Y, Sun M, Jiang S, Hu W, Yang Y. Mammalian Sterile 20-Like Kinase (MST) 1/2: Crucial Players in Nervous and Immune System and Neurological Disorders. J Mol Biol 2020; 432:3177-3190. [PMID: 32198112 DOI: 10.1016/j.jmb.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
As central components of the Hippo signaling pathway in mammals, the mammalian sterile 20-like kinase 1 (MST1) and MST2 protein kinases regulate cell proliferation, survival, and death and are involved in the homeostasis of many tissues. Recent studies have elucidated the roles of MST1 and MST2 in the nervous system and immune system, particularly in neurological disorders, which are influenced by aging. In this review, we provide a comprehensive overview of these research areas. First, the activation mechanisms and roles of MST1 and MST2 in neurons, non-neuronal cells, and immune cells are introduced. The roles of MST1 and MST2 in neurological disorders, including brain tumors, cerebrovascular diseases, neurodegenerative disorders, and neuromuscular disorders, are then presented. Finally, the existing obstacles for further research are discussed. Collectively, the information compiled herein provides a common framework for the function of MST1 and MST2 in the nervous system, should contribute to the design of further experiments, and sheds light on potential treatments for aging associated neurological disorders.
Collapse
Affiliation(s)
- Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dewen Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
39
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
40
|
Manley HR, Potter DL, Heddleston JM, Chew TL, Keightley MC, Lieschke GJ. Frontline Science: Dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy. J Leukoc Biol 2020; 108:455-468. [PMID: 32323898 DOI: 10.1002/jlb.3hi0120-589r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophil and macrophage (Mϕ) migration underpin the inflammatory response. However, the fast velocity, multidirectional instantaneous movement, and plastic, ever-changing shape of phagocytes confound high-resolution intravital imaging. Lattice lightsheet microscopy (LLSM) captures highly dynamic cell morphology at exceptional spatiotemporal resolution. We demonstrate the first extensive application of LLSM to leukocytes in vivo, utilizing optically transparent zebrafish, leukocyte-specific reporter lines that highlighted subcellular structure, and a wounding assay for leukocyte migration. LLSM revealed details of migrating leukocyte morphology, and permitted intricate, volumetric interrogation of highly dynamic activities within their native physiological setting. Very thin, recurrent uropod extensions must now be considered a characteristic feature of migrating neutrophils. LLSM resolved trailing uropod extensions, demonstrating their surprising length, and permitting quantitative assessment of cytoskeletal contributions to their evanescent form. Imaging leukocytes in blood vessel microenvironments at LLSM's spatiotemporal resolution displayed blood-flow-induced neutrophil dynamics and demonstrated unexpected leukocyte-endothelial interactions such as leukocyte-induced endothelial deformation against the intravascular pressure. LLSM of phagocytosis and cell death provided subcellular insights and uncovered novel behaviors. Collectively, we provide high-resolution LLSM examples of leukocyte structures (filopodia lamellipodia, uropod extensions, vesicles), and activities (interstitial and intravascular migration, leukocyte rolling, phagocytosis, cell death, and cytoplasmic ballooning). Application of LLSM to intravital leukocyte imaging sets the stage for transformative studies into the cellular and subcellular complexities of phagocyte biology.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - David L Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - John M Heddleston
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia, USA
| | - M Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Current address: Department of Pharmacy and Biomedical Sciences, Latrobe Institute of Molecular Sciences, Latrobe University, Bendigo, Victoria, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
41
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
42
|
Lee Y, Overholtzer M. After-Death Functions of Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:687-694. [PMID: 31866783 PMCID: PMC6913823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell death can occur through numerous regulated mechanisms, from apoptosis to necrosis, entosis, and others. Each has a distinct mode of regulation and effect on tissue homeostasis. While the elimination of individual cells is typically considered the relevant physiologic endpoint of cell death, in some cases the remnants left behind by death can also function to support tissue homeostasis. Here we discuss specific functions of the end products of cell death, and how "after-death" functions may contribute to the roles of programmed cell death in physiology.
Collapse
Affiliation(s)
- Yongchan Lee
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY,BCMB Allied Program, Weill Cornell Medical College, New York, NY,To whom all correspondence should be addressed: Michael Overholtzer, 411 East 67th Street, Rm. RRL-629, New York, NY 10065; Tel: 212-639-6536, Fax: 212-794-4342,
| |
Collapse
|
43
|
Shim AR, Nap RJ, Huang K, Almassalha LM, Matusda H, Backman V, Szleifer I. Dynamic Crowding Regulates Transcription. Biophys J 2019; 118:2117-2129. [PMID: 31818468 DOI: 10.1016/j.bpj.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/26/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023] Open
Abstract
The nuclear environment is highly crowded by biological macromolecules, including chromatin and mobile proteins, which alter the kinetics and efficiency of transcriptional machinery. These alterations have been described, both theoretically and experimentally, for steady-state crowding densities; however, temporal changes in crowding density ("dynamic crowding") have yet to be integrated with gene expression. Dynamic crowding is pertinent to nuclear biology because processes such as chromatin translocation and protein diffusion lend to highly mobile biological crowders. Therefore, to capture such dynamic crowding and investigate its influence on transcription, we employ a three-pronged, systems-molecular approach. A system of chemical reactions represents the transcription pathway, the rates of which are determined by molecular-scale simulations; Brownian dynamics and Monte Carlo simulations quantify protein diffusion and DNA-protein binding affinity, dependent on macromolecular density. Altogether, this approach shows that transcription depends critically on dynamic crowding as the gene expression resultant from dynamic crowding can be profoundly different than that of steady-state crowding. In fact, expression levels can display both amplification and suppression and are notably different for genes or gene populations with different chemical and structural properties. These properties can be exploited to impose circadian expression, which is asymmetric and varies in strength, or to explain expression in cells under biomechanical stress. Therefore, this work demonstrates that dynamic crowding nontrivially alters transcription kinetics and presents dynamic crowding within the bulk nuclear nanoenvironment as a novel regulatory framework for gene expression.
Collapse
Affiliation(s)
- Anne R Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Rikkert J Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Kai Huang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Hiroaki Matusda
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois; Department of Chemistry, Northwestern University, Evanston, Illinois.
| |
Collapse
|
44
|
Rohwedder I, Kurz ARM, Pruenster M, Immler R, Pick R, Eggersmann T, Klapproth S, Johnson JL, Alsina SM, Lowell CA, Mócsai A, Catz SD, Sperandio M. Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration. Haematologica 2019; 105:1845-1856. [PMID: 31699792 PMCID: PMC7327629 DOI: 10.3324/haematol.2019.225722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment into inflamed tissue is highly dependent on the activation and binding of integrins to their respective ligands, followed by the induction of various signaling events within the cell referred to as outside-in signaling. Src family kinases (SFK) are the central players in the outside-in signaling process, assigning them a critical role for proper immune cell function. Our study investigated the role of SFK on neutrophil recruitment in vivo using Hck−/- Fgr−/- Lyn−/- mice, which lack SFK expressed in neutrophils. We show that loss of SFK strongly reduces neutrophil adhesion and post-arrest modifications in a shear force dependent manner. Additionally, we found that in the absence of SFK, neutrophils display impaired Rab27a-dependent surface mobilization of neutrophil elastase, VLA3 and VLA6 containing vesicles. This results in a defect in neutrophil vascular basement membrane penetration and thus strongly impaired extravasation. Taken together, we demonstrate that SFK play a role in neutrophil post-arrest modifications and extravasation during acute inflammation. These findings may support the current efforts to use SFK-inhibitors in inflammatory diseases with unwanted neutrophil recruitment.
Collapse
Affiliation(s)
- Ina Rohwedder
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Angela R M Kurz
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Monika Pruenster
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tanja Eggersmann
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sarah Klapproth
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergi Masgrau Alsina
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Markus Sperandio
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
45
|
Hyun YM, Choe YH, Park SA, Kim M. LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp Mol Med 2019; 51:1-13. [PMID: 30967528 PMCID: PMC6456621 DOI: 10.1038/s12276-019-0227-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/21/2023] Open
Abstract
Precise spatiotemporal regulation of leukocyte extravasation is key for generating an efficient immune response to injury or infection. The integrins LFA-1(CD11a/CD18) and Mac-1(CD11b/CD18) play overlapping roles in neutrophil migration because they bind the same as well as different ligands in response to extracellular signaling. Using two-photon intravital imaging and transmission electron microscopy, we observed the existence of preferred sites for neutrophil entrance into the endothelial cell monolayer and exit from the basement membrane and pericyte sheath during neutrophil extravasation, namely, hotspots I and II, by elucidating distinctive roles of LFA-1 and Mac-1. To penetrate the vascular endothelium, neutrophils must first penetrate the endothelial cell layer through hotspot I (i.e., the point of entry into the endothelium). Neutrophils frequently remain in the space between the endothelial cell layer and the basement membrane for a prolonged period (>20 min). Subsequently, neutrophils penetrate the basement membrane and pericyte sheath at hotspot II, which is the final stage of exiting the vascular endothelium. To further investigate the roles of LFA-1 and Mac-1, we newly generated LFA-1 FRET (CD11a-YFP/CD18-CFP) mice and Mac-1 FRET (CD11b-YFP/CD18-CFP) mice. Using both FRET mice, we were able to determine that LFA-1 and Mac-1 distinctly regulate the neutrophil extravasation cascade. Our data suggest that the vascular endothelium functions as a double-layered barrier in the steps of neutrophil extravasation. We propose that the harmonized regulation of neutrophil penetration through the endothelium via hotspots I and II may be critical for vascular homeostasis during inflammation.
Collapse
Affiliation(s)
- Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Young Ho Choe
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang A Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- School of Medicine, CHA University, Seongnam, South Korea
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
46
|
Neutrophil transendothelial migration: updates and new perspectives. Blood 2019; 133:2149-2158. [PMID: 30898863 DOI: 10.1182/blood-2018-12-844605] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophils represent the first line of cellular defense against invading microorganism by rapidly moving across the blood-endothelial cell (EC) barrier and exerting effector cell functions. The neutrophil recruitment cascade to inflamed tissues involves elements of neutrophil rolling, firm adhesion, and crawling onto the EC surface before extravasating by breaching the EC barrier. The interaction between neutrophils and ECs occurs via various adhesive modules and is a critical event determining the mode of neutrophil transmigration, either at the EC junction (paracellular) or directly through the EC body (transcellular). Once thought to be a homogenous entity, new evidence clearly points to the plasticity of neutrophil functions. This review will focus on recent advances in our understanding of the mechanism of the neutrophil transmigration process. It will discuss how neutrophil-EC interactions and the subsequent mode of diapedesis, junctional or nonjunctional, can be context dependent and how this plasticity may be exploited clinically.
Collapse
|
47
|
Lee Y, Hamann JC, Pellegrino M, Durgan J, Domart MC, Collinson LM, Haynes CM, Florey O, Overholtzer M. Entosis Controls a Developmental Cell Clearance in C. elegans. Cell Rep 2019; 26:3212-3220.e4. [PMID: 30893595 PMCID: PMC6475604 DOI: 10.1016/j.celrep.2019.02.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Metazoan cell death mechanisms are diverse and include numerous non-apoptotic programs. One program called entosis involves the invasion of live cells into their neighbors and is known to occur in cancers. Here, we identify a developmental function for entosis: to clear the male-specific linker cell in C. elegans. The linker cell leads migration to shape the gonad and is removed to facilitate fusion of the gonad to the cloaca. We find that the linker cell is cleared in a manner involving cell-cell adhesions and cell-autonomous control of uptake through linker cell actin. Linker cell entosis generates a lobe structure that is deposited at the site of gonad-to-cloaca fusion and is removed during mating. Inhibition of lobe scission inhibits linker cell death, demonstrating that the linker cell invades its host while alive. Our findings demonstrate a developmental function for entosis: to eliminate a migrating cell and facilitate gonad-to-cloaca fusion, which is required for fertility.
Collapse
Affiliation(s)
- Yongchan Lee
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Jens C Hamann
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Pellegrino
- Department of Biology, University of Texas Arlington, 500 UTA Blvd, Arlington, TX 76019, USA
| | - Joanne Durgan
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Oliver Florey
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
48
|
Radley G, Ali S, Pieper IL, Thornton CA. Mechanical shear stress and leukocyte phenotype and function: Implications for ventricular assist device development and use. Int J Artif Organs 2018; 42:133-142. [PMID: 30585115 DOI: 10.1177/0391398818817326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heart failure remains a disease of ever increasing prevalence in the modern world. Patients with end-stage heart failure are being referred increasingly for mechanical circulatory support. Mechanical circulatory support can assist patients who are ineligible for transplant and stabilise eligible patients prior to transplantation. It is also used during cardiopulmonary bypass surgery to maintain circulation while operating on the heart. While mechanical circulatory support can stabilise heart failure and improve quality of life, complications such as infection and thrombosis remain a common risk. Leukocytes can contribute to both of these complications. Contact with foreign surfaces and the introduction of artificial mechanical shear stress can lead to the activation of leukocytes, reduced functionality and the release of pro-inflammatory and pro-thrombogenic microparticles. Assessing the impact of mechanical trauma to leukocytes is largely overlooked in comparison to red blood cells and platelets. This review provides an overview of the available literature on the effects of mechanical circulatory support systems on leukocyte phenotype and function. One purpose of this review is to emphasise the importance of studying mechanical trauma to leukocytes to better understand the occurrence of adverse events during mechanical circulatory support.
Collapse
Affiliation(s)
- Gemma Radley
- Swansea University Medical School, Swansea, UK
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Sabrina Ali
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Ina Laura Pieper
- Swansea University Medical School, Swansea, UK
- Scandinavian Real Heart AB, Västerås, Sweden
| | | |
Collapse
|
49
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
50
|
Hong CW. Extracellular Vesicles of Neutrophils. Immune Netw 2018; 18:e43. [PMID: 30619629 PMCID: PMC6312893 DOI: 10.4110/in.2018.18.e43] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. As professional phagocytes, neutrophils also produce EVs in response to various inflammatory stimuli during inflammatory processes. Neutrophil-derived EVs can be categorized into 2 subtypes according to the mechanism of generation. Neutrophil-derived trails (NDTRs) are generated from migrating neutrophils. The uropods of neutrophils are elongated by adhesion to endothelial cells, and small parts of the uropods are detached, leaving submicrometer-sized NDTRs. Neutrophil-derived microvesicles (NDMVs) are generated from neutrophils which arrived at the inflammatory foci. Membrane blebbing occurs in response to various stimuli at the inflammatory foci, and small parts of the blebs are detached from the neutrophils, leaving NDMVs. These 2 subtypes of neutrophil-derived EVs share common features such as membrane components, receptors, and ligands. However, there are substantial differences between these 2 neutrophil-derived EVs. NDTRs exert pro-inflammatory functions by guiding subsequent immune cells through the inflammatory foci. On the other hand, NDMVs exert anti-inflammatory functions by limiting the excessive immune responses of nearby cells. This review outlines the current understanding of the different subtypes of neutrophil-derived EVs and provides insights into the clinical relevance of neutrophil-derived EVs.
Collapse
Affiliation(s)
- Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|