1
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Johansson K, Maouia A, Rebetz J, Marcoux G, Shannon O, Italiano JE, Narayanan P, Henry S, Shen L, Semple JW. CpG oligonucleotides induce acute murine thrombocytopenia dependent on toll-like receptor 9 and spleen tyrosine kinase pathways. J Thromb Haemost 2024; 22:3266-3276. [PMID: 39155024 DOI: 10.1016/j.jtha.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND CpG oligonucleotides (ODNs) are synthetic single-stranded DNA sequences that act as immunostimulants. They have been increasingly used to treat several cancers; however, thrombocytopenia is a potential recognized side effect of some sequences. OBJECTIVES We tested the ability of 2 CpG ODNs (ODN 2395 and ISIS 120704) to induce thrombocytopenia when administered to BALB/c mice and determined mechanisms associated with thrombocytopenia. METHODS BALB/c mice were prebled and then injected with titrated doses of CpG ODNs, and platelet counts were determined. The mice were treated with intravenous immunoglobulin (IVIg) or various inhibitors and antagonists of toll-like receptor 9 (TLR9) and spleen tyrosine kinase (Syk) to determine their effects on thrombocytopenia. RESULTS Compared with saline-treated mice or mice treated with 2'-O-methoxyethyl-modified antisense ODN, both ODN 2395 and ISIS 120704 induced acute dose-dependent thrombocytopenia within 3 and 24 hours, respectively. The thrombocytopenia was associated with significant increases in plasma monocyte chemoattractant protein 1. IVIg administration significantly rescued the CpG ODN-induced thrombocytopenia, as did treatment with either a Syk inhibitor or TLR9 antagonists. In vitro, CpG ODN could activate human platelets and this correlated significantly with enhanced IVIg- and Syk-dependent phagocytosis by THP-1 monocytes. CONCLUSION These results suggest that CpG ODNs induce acute inflammatory-associated (IVIg-sensitive) thrombocytopenia that can be alleviated by Syk- or TLR9-blockade, and an IVIg- and Syk-dependent platelet clearance pathway appears primarily responsible for the thrombocytopenia.
Collapse
Affiliation(s)
- Karl Johansson
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Lund University, Lund, Sweden
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Scott Henry
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Lijiang Shen
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
3
|
Erion DM, Liu LY, Brown CR, Rennard S, Farah H. Editing Approaches to Treat Alpha-1 Antitrypsin Deficiency. Chest 2024:S0012-3692(24)05302-9. [PMID: 39401571 DOI: 10.1016/j.chest.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 11/09/2024] Open
Abstract
TOPIC IMPORTANCE Alpha-1 antitrypsin (AAT) deficiency is a genetic disorder most commonly due to a single G to A point mutation (E342K), leading to debilitating lung and/or liver disorders and is associated with increased mortality. The E342K point mutation causes a conformational change of the AAT protein resulting in its retention in liver hepatocytes. This reduces AAT secretion into the serum resulting in higher protease activities due to the lack of inhibition from AAT, causing damage to healthy lung tissue. The current standard of care for lung manifestations involves weekly IV augmentation therapy and is considered suboptimal for these patients. Furthermore, there is currently no approved treatment for liver manifestations. The unmet medical need for patients with AAT deficiency remains high, and new treatment options are needed to treat the underlying disease etiology. REVIEW FINDINGS Advances in genomic medicines may enable treatment by editing the DNA or RNA sequence to produce wild-type AAT instead of the mutated AAT caused by the E342K mutation. One approach can be achieved by directing endogenous adenosine deaminases that act on RNA to the E342K RNA site, where they catalyze adenosine to inosine conversion through a process known as RNA editing. The A-I RNA change will be read as a G during protein translation, resulting in an altered amino acid and restoration of wild-type AAT secretion and function. SUMMARY In this review, we will discuss the pathophysiology of AAT deficiency and emerging treatment options with particular focus on RNA editing as a disease-modifying treatment for both liver and lung disease.
Collapse
Affiliation(s)
| | | | | | - Stephen Rennard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
4
|
Alameh MG, Tavakoli Naeini A, Dwivedi G, Lesage F, Buschmann MD, Lavertu M. Chitosan siRNA Nanoparticles Produce Significant Non-Toxic Functional Gene Silencing in Kidney Cortices. Polymers (Basel) 2024; 16:2547. [PMID: 39274180 PMCID: PMC11398103 DOI: 10.3390/polym16172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Chitosan shows effective nucleic acid delivery. To understand the influence of chitosan's molecular weight, dose, payload, and hyaluronic acid coating on in vivo toxicity, immune stimulation, biodistribution and efficacy, precisely characterized chitosans were formulated with unmodified or chemically modified siRNA to control for innate immune stimulation. The hemocompatibility, cytokine induction, hematological and serological responses were assessed. Body weight, clinical signs, in vivo biodistribution and functional target knockdown were monitored. Hemolysis was found to be dose- and MW-dependent with the HA coating abrogating hemolysis. Compared to cationic lipid nanoparticles, uncoated and HA-coated chitosan nanoparticles did not induce immune stimulation or hematologic toxicity. Liver and kidney biomarkers remained unchanged with chitosan formulations, while high doses of cationic lipid nanoparticles led to increased transaminase levels and a decrease in body weight. Uncoated and HA-coated nanoparticles accumulated in kidneys with functional knockdown for uncoated chitosan formulations reaching 60%, suggesting potential applications in the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mohamad-Gabriel Alameh
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Ashkan Tavakoli Naeini
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Frederic Lesage
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Michael D Buschmann
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Marc Lavertu
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Harada K, Wenlong W, Shinozawa T. Physiological platelet aggregation assay to mitigate drug-induced thrombocytopenia using a microphysiological system. Sci Rep 2024; 14:14109. [PMID: 38898080 PMCID: PMC11187140 DOI: 10.1038/s41598-024-64063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Developing a reliable method to predict thrombocytopenia is imperative in drug discovery. Here, we establish an assay using a microphysiological system (MPS) to recapitulate the in-vivo mechanisms of platelet aggregation and adhesion. This assay highlights the role of shear stress on platelet aggregation and their interactions with vascular endothelial cells. Platelet aggregation induced by soluble collagen was detected under agitated, but not static, conditions using a plate shaker and gravity-driven flow using MPS. Notably, aggregates adhered on vascular endothelial cells under gravity-driven flow in the MPS, and this incident increased in a concentration-dependent manner. Upon comparing the soluble collagen-induced aggregation activity in platelet-rich plasma (PRP) and whole blood, remarkable platelet aggregate formation was observed at concentrations of 30 µg/mL and 3 µg/mL in PRP and whole blood, respectively. Moreover, ODN2395, an oligonucleotide, induced platelet aggregation and adhesion to vascular endothelial cells. SYK inhibition, which mediated thrombogenic activity via glycoprotein VI on platelets, ameliorated platelet aggregation in the system, demonstrating that the mechanism of platelet aggregation was induced by soluble collagen and oligonucleotide. Our evaluation system partially recapitulated the aggregation mechanisms in blood vessels and can contribute to the discovery of safe drugs to mitigate the risk of thrombocytopenia.
Collapse
Affiliation(s)
- Kosuke Harada
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Wang Wenlong
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
6
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
7
|
Borsa BA, Hernandez LI, Jiménez T, Tellapragada C, Giske CG, Hernandez FJ. Therapeutic-oligonucleotides activated by nucleases (TOUCAN): A nanocarrier system for the specific delivery of clinical nucleoside analogues. J Control Release 2023; 361:260-269. [PMID: 37541593 DOI: 10.1016/j.jconrel.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Nucleoside analogues have been in clinical use since 1960s and they are still used as the first therapeutic option for several cancers and viral infections, due to their high therapeutic efficacy. However, their wide clinical acceptance has been limited due to their high toxicity and severe side effects to patients. Herein, we report on a nanocarrier system that delivers nucleosides analogues in a target-specific manner, making nucleoside-based therapeutics safer and with the possibility to be used in other human conditions. This system, named, Therapeutic OligonUCleotides Activated by Nucleases" (TOUCAN) combines: i) the recognition power of oligonucleotides as substrates, ii) the use of nucleases as enzymatic biomarkers and iii) the clinical efficacy of nucleoside analogues, in a single approach. As a proof-of-concept, we report on a TOUCAN that is activated by a specific nuclease produced by bacteria and releases a therapeutic nucleoside, floxuridine. We demonstrate, for the first time, that, by incorporating a therapeutic nucleoside analogue into oligonucleotide probes, we can specifically inhibit bacterial growth in cultures. In this study, Staphylococcus aureus was selected as the targeted bacteria and the TOUCAN strategy successfully inhibited its growth with minimal inhibitory concentration (MIC) values ranging from 0.62 to 40 mg/L across all tested strains. Moreover, our results indicate that the intravenous administration of TOUCANs at a dose of 20 mg/kg over a 24-h period is a highly effective method for treating bacterial infections in a mouse model of pyomyositis. Importantly, no signs of toxicity were observed in our in vitro and in vivo studies. This work can significantly impact the current management of bacterial infections, laying the grounds for the development of a different class of antibiotics. Furthermore, it can provide a safer delivery platform for clinical nucleoside therapeutics in any human conditions, such as cancer and viral infection, where specific nuclease activity has been reported.
Collapse
Affiliation(s)
- Baris A Borsa
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Sweden; SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Tania Jiménez
- SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Frank J Hernandez
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden.
| |
Collapse
|
8
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
9
|
Larouche M, Brisson D, Morissette MC, Gaudet D. Post-prandial analysis of fluctuations in the platelet count and platelet function in patients with the familial chylomicronemia syndrome. Orphanet J Rare Dis 2023; 18:167. [PMID: 37370069 DOI: 10.1186/s13023-023-02743-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The familial chylomicronemia syndrome (FCS) is an ultra rare disease caused by lipoprotein lipase (LPL) deficiency associated with potentially lethal acute pancreatitis risk. Thrombocytopenia (platelet count < 150,000 × 109/L) has been reported in patients with FCS, treated or not with volanesorsen, a second generation APOC3 anti-sense oligonucleotide. Chylomicrons are the lipoproteins delivering fat after a meal and FCS thus has a post-prandial origin. Platelet count and function have not been studied post-prandially in FCS. OBJECTIVE To evaluate post-prandial fluctuations in the platelet count (PLC) and functional defects of hemostasis in FCS. METHODS PLC, functional defects in hemostasis and hematologic variables were measured up-to 5 h after a meal in 6 homozygotes for FCS causing gene variants (HoLPL), 6 heterozygotes for LPL loss-of-function variants (HeLPL) and 7 normolipidemic controls. RESULTS Hourly post-prandial PLC was significantly lower in HoLPL than in controls (P < 0.009). Compared to the other groups, the PLC tended to decrease rapidly (in the first hour) post-meal in HoLPL (P = 0.03) and remained lower than baseline 5-h post-meal (P = 0.02) whereas it tended to slightly increase in normolipidemic controls (P = 0.02). Platelet function was not affected by the prandial status. In HoLPL, post-prandial fluctuations in the PLC positively correlated with the lymphocyte count (P = 0.005) and negatively with neutrophil/lymphocyte ratio (NLR). CONCLUSION The PLC decreases post-prandially in FCS (HoLPL), is not associated with changes in functional defects of hemostasis and correlates with the NLR, a marker of acute pancreatitis severity.
Collapse
Affiliation(s)
- Miriam Larouche
- Department of Medicine, Université de Montréal, ECOGENE-21, 930 Jacques Cartier Est, Chicoutimi, G7H 7K9, Canada
| | - Diane Brisson
- Department of Medicine, Université de Montréal, ECOGENE-21, 930 Jacques Cartier Est, Chicoutimi, G7H 7K9, Canada
| | - Marie-Claude Morissette
- Department of Medicine, Université de Montréal, ECOGENE-21, 930 Jacques Cartier Est, Chicoutimi, G7H 7K9, Canada
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, ECOGENE-21, 930 Jacques Cartier Est, Chicoutimi, G7H 7K9, Canada.
| |
Collapse
|
10
|
Trivigno SMG, Guidetti GF, Barbieri SS, Zarà M. Blood Platelets in Infection: The Multiple Roles of the Platelet Signalling Machinery. Int J Mol Sci 2023; 24:ijms24087462. [PMID: 37108623 PMCID: PMC10138547 DOI: 10.3390/ijms24087462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Platelets are classically recognized for their important role in hemostasis and thrombosis but they are also involved in many other physiological and pathophysiological processes, including infection. Platelets are among the first cells recruited to sites of inflammation and infection and they exert their antimicrobial response actively cooperating with the immune system. This review aims to summarize the current knowledge on platelet receptor interaction with different types of pathogens and the consequent modulations of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Silvia M G Trivigno
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- University School for Advanced Studies, IUSS, 27100 Pavia, Italy
| | | | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| |
Collapse
|
11
|
Valenzuela A, Ayuso M, Buyssens L, Bars C, Van Ginneken C, Tessier Y, Van Cruchten S. Platelet Activation by Antisense Oligonucleotides (ASOs) in the Göttingen Minipig, including an Evaluation of Glycoprotein VI (GPVI) and Platelet Factor 4 (PF4) Ontogeny. Pharmaceutics 2023; 15:pharmaceutics15041112. [PMID: 37111598 PMCID: PMC10143489 DOI: 10.3390/pharmaceutics15041112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Antisense oligonucleotide (ASO) is a therapeutic modality that enables selective modulation of undruggable protein targets. However, dose- and sequence-dependent platelet count reductions have been reported in nonclinical studies and clinical trials. The adult Göttingen minipig is an acknowledged nonclinical model for ASO safety testing, and the juvenile Göttingen minipig has been recently proposed for the safety testing of pediatric medicines. This study assessed the effects of various ASO sequences and modifications on Göttingen minipig platelets using in vitro platelet activation and aggregometry assays. The underlying mechanism was investigated further to characterize this animal model for ASO safety testing. In addition, the protein abundance of glycoprotein VI (GPVI) and platelet factor 4 (PF4) was investigated in the adult and juvenile minipigs. Our data on direct platelet activation and aggregation by ASOs in adult minipigs are remarkably comparable to human data. Additionally, PS ASOs bind to platelet collagen receptor GPVI and directly activate minipig platelets in vitro, mirroring the findings in human blood samples. This further corroborates the use of the Göttingen minipig for ASO safety testing. Moreover, the differential abundance of GPVI and PF4 in minipigs provides insight into the influence of ontogeny in potential ASO-induced thrombocytopenia in pediatric patients.
Collapse
|
12
|
The mechanism of thrombocytopenia caused by cholesterol-conjugated antisense oligonucleotides. Toxicol In Vitro 2023; 89:105569. [PMID: 36801361 DOI: 10.1016/j.tiv.2023.105569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/25/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
In this study, we investigated thrombocytopenia caused by cholesterol-conjugated antisense oligonucleotides (Chol-ASO). First, we evaluated platelet activation induced by Chol-ASO in mice by flow cytometry after administration of platelet-rich plasma (PRP). An increase in the number of large particle-size events with platelet activation was detected in the Chol-ASO-treated group. In a smear study, numerous platelets were observed to attach to nucleic acid-containing aggregates. A competition binding assay showed that the conjugation of cholesterol to ASOs increased their affinity for glycoprotein VI. Platelet-free plasma was then mixed with Chol-ASO to form aggregates. The assembly of Chol-ASO was confirmed by dynamic light scattering measurements in the concentration range in which the formation of aggregates with plasma components was observed. In conclusion, the mechanism by which Chol-ASOs causes thrombocytopenia is proposed to be as follows: (1) Chol-ASOs form polymers, (2) the nucleic acid portion of the polymers interacts with plasma proteins and platelets, which cross-links them to form aggregates, and (3) platelets bound to aggregates become activated, resulting in platelet aggregation, leading to a decrease in platelet count in vivo. The details of the mechanism revealed in this study could contribute to creating safer oligonucleotide therapies without the risk of thrombocytopenia.
Collapse
|
13
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
14
|
Shaharyar MA, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, Kazmi I, Karmakar S. Vaccine Formulation Strategies and Challenges Involved in RNA Delivery for Modulating Biomarkers of Cardiovascular Diseases: A Race from Laboratory to Market. Vaccines (Basel) 2023; 11:vaccines11020241. [PMID: 36851119 PMCID: PMC9963957 DOI: 10.3390/vaccines11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
It has been demonstrated that noncoding RNAs have significant physiological and pathological roles. Modulation of noncoding RNAs may offer therapeutic approaches as per recent findings. Small RNAs, mostly long noncoding RNAs, siRNA, and microRNAs make up noncoding RNAs. Inhibiting or promoting protein breakdown by binding to 3' untranslated regions of target mRNA, microRNAs post-transcriptionally control the pattern of gene expression. Contrarily, long non-coding RNAs perform a wider range of tasks, including serving as molecular scaffolding, decoys, and epigenetic regulators. This article provides instances of long noncoding RNAs and microRNAs that may be a biomarker of CVD (cardiovascular disease). In this paper we highlight various RNA-based vaccine formulation strategies designed to target these biomarkers-that are either currently in the research pipeline or are in the global pharmaceutical market-along with the physiological hurdles that need to be overcome.
Collapse
Affiliation(s)
- Md. Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| |
Collapse
|
15
|
Kim H, Jeong IH, Choi YK, Lee YK, Moon E, Huh YH, Im W, Jin JO, Kwak M, Lee PCW. Suppression of Lung Cancer Malignancy by Micellized siRNA through Cell Cycle Arrest. Adv Healthc Mater 2023; 12:e2202358. [PMID: 36644959 DOI: 10.1002/adhm.202202358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Indexed: 01/17/2023]
Abstract
UBA6-specific E2 conjugation enzyme 1 (USE1) is frequently overexpressed in lung cancer patients. Moreover, the critical role of USE1 in the progression of human lung cancer is also indicated. As the next step, the authors aim to develop USE1-targeted therapeutic agents based on RNA interference (RNAi). In this study, a lipid-modified DNA carrier, namely U4T, which consists of four consecutive dodec-1-ynyluracil (U) nucleobases to increase the cell permeability of siRNA targeting of USE1 is introduced. The U4Ts aggregate to form micelles, and the USE1-silencing siRNA-incorporated soft spherical nucleic acid aggregate (siSNA) can be created simply through base-pairing with siRNA. Treatment with siSNA is effective in suppressing tumor growth in vivo as well as cell proliferation, migration, and invasion of lung cancer cells. Furthermore, siSNA inhibited tumor cell growth by inducing cell cycle arrest in the G1 phase and apoptosis. Thus, the anti-tumor efficacy of siSNA in lung cancer cell lines and that siSNA possesses effective cell-penetrating ability without using cationic transfection moieties are confirmed. Collectively, these results suggest that siSNA can be applied to the clinical application of RNAi-based therapeutics for lung cancer treatment.
Collapse
Affiliation(s)
- Haejoo Kim
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.,Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - In-Ho Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeol Kyo Choi
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yeon Kyung Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eunyoung Moon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jun-O Jin
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.,Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
16
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
17
|
Bege M, Borbás A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals (Basel) 2022; 15:ph15080909. [PMID: 35893733 PMCID: PMC9330994 DOI: 10.3390/ph15080909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
18
|
Flynn LL, Li R, Pitout IL, Aung-Htut MT, Larcher LM, Cooper JAL, Greer KL, Hubbard A, Griffiths L, Bond CS, Wilton SD, Fox AH, Fletcher S. Single Stranded Fully Modified-Phosphorothioate Oligonucleotides can Induce Structured Nuclear Inclusions, Alter Nuclear Protein Localization and Disturb the Transcriptome In Vitro. Front Genet 2022; 13:791416. [PMID: 35464859 PMCID: PMC9019733 DOI: 10.3389/fgene.2022.791416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2′ O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects.
Collapse
Affiliation(s)
- Loren L Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Black Swan Pharmaceuticals, Wake Forest, NC, United States
| | - Ruohan Li
- Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, WA, Australia.,School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,PYC Therapeutics, Nedlands, WA, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jack A L Cooper
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Kane L Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Nedlands, WA, Australia
| | - Lisa Griffiths
- Anatomical Pathology, Department of Health, Nedlands, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,PYC Therapeutics, Nedlands, WA, Australia
| |
Collapse
|
19
|
Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9—A Narrative Review. Cardiovasc Ther 2022; 2022:8129513. [PMID: 35237348 PMCID: PMC8853778 DOI: 10.1155/2022/8129513] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
As dyslipidemias remain one of the main risk factors for developing cardiovascular disease, the question of maintaining optimal lipid levels with pharmacotherapy remains a subject of interest worldwide. In contrast to conventional pharmacotherapy, human monoclonal antibodies directed against proprotein convertase subtilisin/kexin type 9 (PSCK9) and small interfering RNA- (siRNA-) based drug targeting PCSK9 represent a new strategy for managing lipid disorders and reducing cardiovascular risk. Inclisiran is a long-acting, synthetic siRNA that targets hepatic production of PCSK9 and consequently causes a reduction in LDL-C concentrations by approximately 50% compared to placebo. The structural modification of inclisiran has led to better stability and prolonged biological activity of the drug. The main advantage over conventional pharmacotherapy and anti-PCSK9 monoclonal antibodies is its favorable administration regimen (0–90–180 days), which should lead to much better compliance. Clinical trials conducted so far have confirmed the tolerability and efficacy of inclisiran in long-term PCSK9 and LDL-C level reductions. Moreover, a short-term follow-up on the safety of inclisiran showed a relatively good safety profile of the drug. However, it is still of great importance for ongoing and forthcoming clinical trials to be continued on a larger group of patients in order to assess long-term tolerability, efficacy, and safety of inclisiran.
Collapse
|
20
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
21
|
Brunet de Courssou JB, Durr A, Adams D, Corvol JC, Mariani LL. Antisense therapies in neurological diseases. Brain 2021; 145:816-831. [PMID: 35286370 DOI: 10.1093/brain/awab423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Advances in targeted regulation of gene expression allowed new therapeutic approaches for monogenic neurological diseases. Molecular diagnosis has paved the way to personalized medicine targeting the pathogenic roots: DNA or its RNA transcript. These antisense therapies rely on modified nucleotides sequences (single-strand DNA or RNA, both belonging to the antisense oligonucleotides family, or double-strand interfering RNA) to act specifically on pathogenic target nucleic acids, thanks to complementary base pairing. Depending on the type of molecule, chemical modifications and target, base pairing will lead alternatively to splicing modifications of primary transcript RNA or transient messenger RNA degradation or non-translation. The key to success for neurodegenerative diseases also depends on the ability to reach target cells. The most advanced antisense therapies under development in neurological disorders are presented here, at the clinical stage of development, either at phase 3 or market authorization stage, such as in spinal amyotrophy, Duchenne muscular dystrophy, transthyretin-related hereditary amyloidosis, porphyria and amyotrophic lateral sclerosis; or in earlier clinical phase 1 B, for Huntington disease, synucleinopathies and tauopathies. We also discuss antisense therapies at the preclinical stage, such as in some tauopathies, spinocerebellar ataxias or other rare neurological disorders. Each subtype of antisense therapy, antisense oligonucleotides or interfering RNA, has proved target engagement or even clinical efficacy in patients; undisputable recent advances for severe and previously untreatable neurological disorders. Antisense therapies show great promise, but many unknowns remain. Expanding the initial successes achieved in orphan or rare diseases to other disorders will be the next challenge, as shown by the recent failure in Huntington disease or due to long-term preclinical toxicity in multiple system atrophy and cystic fibrosis. This will be critical in the perspective of new planned applications to premanifest mutation carriers, or other non-genetic degenerative disorders such as multiple system atrophy or Parkinson disease.
Collapse
Affiliation(s)
- Jean-Baptiste Brunet de Courssou
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Alexandra Durr
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - David Adams
- Department of Neurology, Bicêtre hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence National des Neuropathies Périphériques Rares, Paris Saclay University, INSERM U 1195, Le Kremlin Bicêtre, France
| | - Jean-Christophe Corvol
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Louise-Laure Mariani
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
22
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
23
|
Inclisiran: A Novel Agent for Lowering Apolipoprotein B-Containing Lipoproteins. J Cardiovasc Pharmacol 2021; 78:e157-e174. [PMID: 33990512 DOI: 10.1097/fjc.0000000000001053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
ABSTRACT Hypercholesterolemia is a leading cause of cardiovascular morbidity and mortality. Accordingly, efforts to lower apolipoprotein B-containing lipoproteins in plasma are the centerpiece of strategies for cardiovascular prevention and treatment in primary and secondary management. Despite the importance of this endeavor, many patients do not achieve appropriate low density lipoprotein cholesterol (LDL-C) and non-high density lipoprotein cholesterol (non-HDL-C) goals, even among those who have experienced atherosclerotic cardiovascular disease (ASCVD). The development of new LDL-C-lowering medications with alternative mechanisms of action will facilitate improved goal achievement in high risk patients. Inclisiran is a novel small interfering ribonucleic acid (siRNA)-based drug that is experimental in the US and approved for clinical use in the EU. It lowers LDL-C and other apolipoprotein B-containing lipoproteins by reducing production of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), a protein that normally contributes to LDL-receptor (LDLR) degradation, thereby increasing LDLR density and recycling in hepatocytes. Although the lipid-lowering efficacy of inclisiran is comparable to results achieved with PCSK9-blocking monoclonal antibodies (PCSK9i) (alirocumab and evolocumab), there are several important differences between the two drug classes. First, inclisiran reduces levels of PCSK9 both intracellularly and extracellularly by blocking translation of and degrading PCSK9 messenger RNA. Second, the long biological half-life of inclisiran produces sustained LDL-C-lowering with twice yearly dosing. Third, although PCSK9i drugs are proven to reduce ASCVD events, clinical outcomes trials with inclisiran are still in progress. In this manuscript, we review the clinical development of inclisiran, its mechanism of action, lipid-lowering efficacy, safety and tolerability, and potential clinical role of this promising new agent.
Collapse
|
24
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
25
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
Udofia IA, Gbayo KO, Oloba-Whenu OA, Ogunbayo TB, Isanbor C. In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 10:22. [PMID: 33786291 PMCID: PMC7992627 DOI: 10.1007/s13721-021-00299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
An outbreak of a cluster of viral pneumonia cases, subsequently identified as coronavirus disease 2019 (COVID-19), due to a novel SARS-CoV-2 necessitates an urgent need for a vaccine to prevent infection or an approved medication for a cure. In our in silico molecular docking study, a total of 173 compounds, including FDA-approved antiviral drugs, with good ADME descriptors, and some other nucleotide analogues were screened. The results show that these compounds demonstrate strong binding affinity for the residues at the active sites of RNA-dependent RNA-polymerase (RdRp) modelled structures and Chymotrypsin-like cysteine protease (3CLpro) of the HCoV proteins. Free energies (ΔG's) of binding for SARS-CoV-2 and SARS-CoV RdRp range from - 5.4 to - 8.8 kcal/mol and - 4.9 to - 8.7 kcal/mol, respectively. Also, SARS-CoV-2 and SARS-CoV 3CLpro gave ΔG values ranging from - 5.1 to - 8.4 kcal/mol and - 5.5 to - 8.6 kcal/mol, respectively. Interesting results are obtained for ivermectin, an antiparasitic agent with broad spectrum activity, which gave the highest binding energy value (- 8.8 kcal/mol) against the 3CLpro of SARS-CoV-2 and RdRps of both SARS-CoV and SARS-CoV-2. The reason for such high binding energy values is probably due to the presence of hydroxy, methoxy and sugar moieties in its structure. The stability of the protein-ligand complexes of polymerase inhibitors considered in this investigation, such as Sofosbuvir, Remdesivir, Tenofovir, Ribavirin, Galidesivir, 5c3, 5h1 and 7a1, show strong to moderate hydrogen bonding and hydrophobic interactions (π-π stacked, π-π T-shaped, π-sigma and π-alkyl). The stability provided from such interactions translate into greater antiviral activity or inhibitory effect of the ligands. Assessment of the average free energies of binding of the FDA approved drugs are highly comparable for conformers of a particular inhibitor, indicating similar modes of binding within the pockets. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-021-00299-2.
Collapse
|
27
|
Slingsby MHL, Vijey P, Tsai IT, Roweth H, Couldwell G, Wilkie AR, Gaus H, Goolsby JM, Okazaki R, Terkovich BE, Semple JW, Thon JN, Henry SP, Narayanan P, Italiano JE. Sequence-specific 2'-O-methoxyethyl antisense oligonucleotides activate human platelets through glycoprotein VI, triggering formation of platelet-leukocyte aggregates. Haematologica 2021; 107:519-531. [PMID: 33567808 PMCID: PMC8804562 DOI: 10.3324/haematol.2020.260059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2’MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2’MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface P-selectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 μM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2’MOE ASO 487660 had no detectable platelet effects, while 2’MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.
Collapse
Affiliation(s)
- Martina H Lundberg Slingsby
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Prakrith Vijey
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - I-Ting Tsai
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Harvey Roweth
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Genevieve Couldwell
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Adrian R Wilkie
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Gaus
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | - Jazana M Goolsby
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ross Okazaki
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brooke E Terkovich
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - John W Semple
- Departments of Pharmacology and Medicine, University of Toronto, Toronto, Canada; Division of Hematology and Transfusion Medicine, Lund University, Lund
| | - Jonathan N Thon
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Scott P Henry
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | | | - Joseph E Italiano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Zaslavsky A, Adams M, Cao X, Yamaguchi A, Henderson J, Busch-Østergren P, Udager A, Pitchiaya S, Tourdot B, Kasputis T, Church SJ, Lee SK, Ohl S, Patel S, Morgan TM, Alva A, Wakefield TW, Reichert Z, Holinstat M, Palapattu GS. Antisense oligonucleotides and nucleic acids generate hypersensitive platelets. Thromb Res 2021; 200:64-71. [PMID: 33540294 DOI: 10.1016/j.thromres.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite the great promise for therapies using antisense oligonucleotides (ASOs), their adverse effects, which include pro-inflammatory effects and thrombocytopenia, have limited their use. Previously, these effects have been linked to the phosphorothioate (PS) backbone necessary to prevent rapid ASO degradation in plasma. The main aim of this study was to assess the impact of the nucleic acid portion of an ASO-type drug on platelets and determine if it may contribute to thrombosis or thrombocytopenia. METHODS Platelets were isolated from healthy donors and men with advanced prostate cancer. Effects of antisense oligonucleotides (ASO), oligonucleotides, gDNA, and microRNA on platelet activation and aggregation were evaluated. A mouse model of lung thrombosis was used to confirm the effects of PS-modified oligonucleotides in vivo. RESULTS Platelet exposure to gDNA, miRNA, and oligonucleotides longer than 16-mer at a concentration above 8 mM resulted in the formation of hypersensitive platelets, characterized by an increased sensitivity to low-dose thrombin (0.1 nM) and increase in p-Selectin expression (6-8 fold greater than control; p < 0.001). The observed nucleic acid (NA) effects on platelets were toll-like receptor (TLR) -7 subfamily dependent. Injection of a p-Selectin inhibitor significantly (p = 0.02) reduced the formation of oligonucleotide-associated pulmonary microthrombosis in vivo. CONCLUSION Our results suggest that platelet exposure to nucleic acids independent of the presence of a PS modification leads to a generation of hypersensitive platelets and requires TLR-7 subfamily receptors. ASO studies conducted in cancer patients may benefit from testing the ASO effects on platelets ex vivo before initiation of patient treatment.
Collapse
Affiliation(s)
- Alexander Zaslavsky
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Mackenzie Adams
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xiu Cao
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Henderson
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Aaron Udager
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Tourdot
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tadas Kasputis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samuel J Church
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha K Lee
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sydney Ohl
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shivam Patel
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ajjai Alva
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine-Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zachery Reichert
- Department of Internal Medicine-Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ganesh S Palapattu
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Grieco GE, Brusco N, Licata G, Fignani D, Formichi C, Nigi L, Sebastiani G, Dotta F. The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. Int J Mol Sci 2021; 22:ijms22020803. [PMID: 33466949 PMCID: PMC7830142 DOI: 10.3390/ijms22020803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-231283
| |
Collapse
|
30
|
Burn OK, Prasit KK, Hermans IF. Modulating the Tumour Microenvironment by Intratumoural Injection of Pattern Recognition Receptor Agonists. Cancers (Basel) 2020; 12:E3824. [PMID: 33352882 PMCID: PMC7765936 DOI: 10.3390/cancers12123824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Signalling through pattern recognition receptors (PRRs) leads to strong proinflammatory responses, enhancing the activity of antigen presenting cells and shaping adaptive immune responses against tumour associated antigens. Unfortunately, toxicities associated with systemic administration of these agonists have limited their clinical use to date. Direct injection of PRR agonists into the tumour can enhance immune responses by directly modulating the cells present in the tumour microenvironment. This can improve local antitumour activity, but importantly, also facilitates systemic responses that limit tumour growth at distant sites. As such, this form of therapy could be used clinically where metastatic tumour lesions are accessible, or as neoadjuvant therapy. In this review, we summarise current preclinical data on intratumoural administration of PRR agonists, including new strategies to optimise delivery and impact, and combination studies with current and promising new cancer therapies.
Collapse
Affiliation(s)
- Olivia K. Burn
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| | - Kef K. Prasit
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
31
|
An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability. Sci Rep 2020; 10:14845. [PMID: 32908235 PMCID: PMC7481297 DOI: 10.1038/s41598-020-71896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Abstract
Small interfering RNAs (siRNAs) are potential tools for gene-silencing therapy, but their instability is one of the obstacles in the development of siRNA-based drugs. To improve siRNA stability, we synthesised a double-stranded RNA-binding cationic oligodiaminogalactose 4mer (ODAGal4) and investigated here its characteristics for siRNA stabilisation in vitro. ODAGal4 improved the resistance of various siRNAs against serum degradation. The effect of ODAGal4 on siRNA stabilisation was further amplified by introduction of modified nucleotides into the siRNA. In particular, a combination of ODAGal4 and incorporation of phosphorothioate linkages into the siRNA prominently prevented degradation by serum. The half-lives of fully phosphorothioate-modified RNA duplexes with ODAGal4 were more than 15 times longer than those of unmodified siRNAs without ODAGal4; this improvement in serum stability was superior to that observed for other chemical modifications. Serum degradation assays of RNAs with multiple chemical modifications showed that ODAGal4 preferentially improves the stability of RNAs with phosphorothioate modification among chemical modifications. Furthermore, melting temperature analysis showed that ODAGal4 greatly increases the thermal stability of phosphorothioate RNAs. Importantly, ODAGal4 did not interrupt gene-silencing activity of all the RNAs tested. Collectively, these findings demonstrate that ODAGal4 is a potent stabiliser of siRNAs, particularly nucleotides with phosphorothioate linkages, representing a promising tool in the development of gene-silencing therapies.
Collapse
|
32
|
Ly S, Echeverria D, Sousa J, Khvorova A. Single-Stranded Phosphorothioated Regions Enhance Cellular Uptake of Cholesterol-Conjugated siRNA but Not Silencing Efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:991-1005. [PMID: 32818923 PMCID: PMC7452107 DOI: 10.1016/j.omtn.2020.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Small interfering RNAs (siRNAs) have potential to silence virtually any disease-causing gene but require chemical modifications for delivery to the tissue and cell of interest. Previously, we demonstrated that asymmetric, phosphorothioate (PS)-modified, chemically stabilized, cholesterol-conjugated siRNAs, called hsiRNAs, support rapid cellular uptake and efficient mRNA silencing both in cultured cells and in vivo. Here, we systematically evaluated the impact of number, structure, and sequence context of PS-modified backbones on cellular uptake and RNAi-mediated silencing efficacy. We find that PS enhances cellular internalization in a sequence-dependent manner but only when present in a single-stranded but not double-stranded region. Furthermore, the observed increase in cellular internalization did not correlate with functional silencing improvement, indicating that PS-mediated uptake may drive compounds to non-productive sinks. Thus, the primary contributing factor of PS modifications to functional efficacy is likely stabilization rather than enhanced cellular uptake. A better understanding of the relative impact of different chemistries on productive versus non-productive uptake will assist in improved design of therapeutic RNAs.
Collapse
Affiliation(s)
- Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
34
|
Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther 2020; 27:383-391. [PMID: 32366887 PMCID: PMC7445782 DOI: 10.1038/s41434-020-0151-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Single-strand oligonucleotides provide promising potential as new therapeutics towards various diseases. However, the efficient delivery of oligonucleotide therapeutics is still challenging due to their susceptibility to nuclease degradation and the lack of effective carriers for condensation. In this study, we reported the use of natural polyphenol to facilitate the condensation of single-strand oligonucleotides by cationic polymers. Green tea catechin complexed with single-strand oligonucleotides to form anionic nanoparticles, which were further coated by low molecular weight cationic polymers to increase their cell internalization. The resulting core-shell structured nanoparticles, so-called green nanoparticles (GNPs), showed improved cargo stability, and achieved high efficiency in the delivery of several types of single-strand oligonucleotides including antisense oligonucleotides, anti-miRNA, and DNAzyme. This study provides a facile strategy for the efficient delivery of single-strand oligonucleotides.
Collapse
|
35
|
Sakamuri S, Eltepu L, Liu D, Lam S, Meade BR, Liu B, Dello Iacono G, Kabakibi A, Luukkonen L, Leedom T, Foster M, Bradshaw CW. Impact of Phosphorothioate Chirality on Double-Stranded siRNAs: A Systematic Evaluation of Stereopure siRNA Designs. Chembiochem 2020; 21:1304-1308. [PMID: 31863714 DOI: 10.1002/cbic.201900630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Oligonucleotides are important therapeutic approaches, as evidenced by recent clinical successes with antisense oligonucleotides (ASOs) and double-stranded short interfering RNAs (siRNAs). Phosphorothioate (PS) modifications are a standard feature in the current generation of oligonucleotide therapeutics, but generate isomeric mixtures, leading to 2n isomers. All currently marketed therapeutic oligonucleotides (ASOs and siRNAs) are complex isomeric mixtures. Recent chemical methodologies for stereopure PS insertions have resulted in preliminary rules for ASOs, with multiple stereopure ASOs moving into clinical development. Although siRNAs have comparatively fewer PSs, the field has yet to embrace the idea of stereopure siRNAs. Herein, it has been investigated whether the individual isomers contribute equally to the in vivo activity of a representative siRNA. The results of a systematic evaluation of stereopure PS incorporation into antithrombin-3 (AT3) siRNA are reported and demonstrate that individual PS isomers dramatically affect in vivo activity. A standard siRNA design with six PS insertions was investigated and it was found that only about 10 % of the 64 possible isomers were as efficacious as the stereorandom control. Based on this data, it can be concluded that G1R stereochemistry is critical, G2R is important, G21S is preferable, and G22 and P1/P2 tolerate both isomers. Surprisingly, the disproportionate loss of efficacy for most isomers does not translate into significant gain for the productive isomers, and thus, warrants further mechanistic studies.
Collapse
Affiliation(s)
- Sukumar Sakamuri
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Laxman Eltepu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Dingguo Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Son Lam
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Bryan R Meade
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Bin Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | | | - Ayman Kabakibi
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Lena Luukkonen
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Tom Leedom
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Mark Foster
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Curt W Bradshaw
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| |
Collapse
|
36
|
Aupy P, Echevarría L, Relizani K, Zarrouki F, Haeberli A, Komisarski M, Tensorer T, Jouvion G, Svinartchouk F, Garcia L, Goyenvalle A. Identifying and Avoiding tcDNA-ASO Sequence-Specific Toxicity for the Development of DMD Exon 51 Skipping Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:371-383. [PMID: 31881528 PMCID: PMC7063478 DOI: 10.1016/j.omtn.2019.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Abstract
Tricyclo-DNA (tcDNA) antisense oligonucleotides (ASOs) hold promise for therapeutic splice-switching applications and the treatment of Duchenne muscular dystrophy (DMD) in particular. We have previously reported the therapeutic potential of tcDNA-ASO in mouse models of DMD, highlighting their unique pharmaceutical properties and unprecedented uptake in many tissues after systemic delivery, including the heart and central nervous system. Following these encouraging results, we developed phosphorothioate (PS)-modified tcDNA-ASOs targeting the human dystrophin exon 51 (H51). Preliminary evaluation of H51 PS-tcDNA in mice resulted in unexpected acute toxicity following intravenous administration of the selected candidate. In vivo and in vitro assays revealed complement activation, prolonged coagulation times, and platelet activation, correlating with the observed toxicity. In this study, we identify a novel PS-tcDNA sequence-specific toxicity induced by the formation of homodimer-like structures and investigate the therapeutic potential of a detoxified PS-tcDNA targeting exon 51. Modification of the H51-PS-tcDNA sequence, while maintaining target specificity through wobble pairing, abolished the observed toxicity by preventing homodimer formation. The resulting detoxified wobble-tcDNA candidate did not affect coagulation or complement pathways any longer nor activated platelets in vitro and was well tolerated in vivo in mice, confirming the possibility to detoxify specific tcDNA-ASO candidates successfully.
Collapse
Affiliation(s)
- Philippine Aupy
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Lucía Echevarría
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; SQY Therapeutics, 78180 Montigny le Bretonneux, France
| | - Karima Relizani
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; SQY Therapeutics, 78180 Montigny le Bretonneux, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | | | | | | | - Grégory Jouvion
- Sorbonne Université, INSERM, Pathophysiology of Pediatric Genetic Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, UF Génétique Moléculaire, 75012 Paris, France; Institut Pasteur, Experimental Neuropathology Unit, 75015 Paris, France
| | - Fedor Svinartchouk
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; SQY Therapeutics, 78180 Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco.
| |
Collapse
|
37
|
Inclisiran-New hope in the management of lipid disorders? J Clin Lipidol 2019; 14:16-27. [PMID: 31879073 DOI: 10.1016/j.jacl.2019.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Drugs reducing plasma concentrations of apolipoprotein B-containing lipoproteins have been demonstrated to reduce the risk of cardiovascular disease (CVD) in both primary and secondary prevention. Despite the demonstrated efficacy of statins and ezetimibe on low-density lipoprotein (LDL) concentration and long-term CVD risk, a large number of patients do not achieve their therapeutic goals. The introduction of monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) protein was a milestone in the treatment of lipid disorders, as their administration leads to unprecedentedly low LDL cholesterol concentrations. Inclisiran represents an entirely new mechanism of PSCK9 protein inhibition in hepatocytes, targeting the messenger RNA for PCSK9. Its administration is necessary only every 3 to 6 months, which is an essential advantage over statin and monoclonal antibody therapy. The infrequent administration regimen can increase the number of patients who maintain their therapeutic goals, especially in patients struggling to comply with daily or biweekly pharmacotherapy. Preclinical studies and Phase I and Phase II clinical trials of inclisiran have demonstrated its tolerability and efficacy in promoting long-term reduction of both PCSK9 protein and LDL cholesterol. The efficacy and safety of inclisiran will continue to be assessed in ongoing and forthcoming trials on larger patient groups. If the results of these trials reflect previously published data, they will add further evidence that inclisiran might be a revolutionary new tool in the pharmacologic management of plasma lipids. This review summarizes the currently available literature data on inclisiran with respect to its mechanism of action, effectiveness, and safety as a lipid-lowering drug for CVD prevention.
Collapse
|
38
|
Chen B, Shi X, Cui Y, Hou A, Zhao P. A Review of PCSK9 Inhibitors and their Effects on Cardiovascular Diseases. Curr Top Med Chem 2019; 19:1790-1817. [PMID: 31400268 DOI: 10.2174/1568026619666190809094203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular diseases remain the leading cause of morbidity and mortality in the world, with elevated Low-Density Lipoprotein-Cholesterol (LDL-C) levels as the major risk factor. Lower levels of LDL-C can effectively reduce the risk of cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating the degradation of hepatic LDL receptors that remove LDL-C from the circulation. PCSK9 inhibitors are a new class of agents that are becoming increasingly important in the treatment to reduce LDL-C levels. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved to treat hypercholesterolemia and are available in the United States and the European Union. Through the inhibition of PCSK9 and increased recycling of LDL receptors, serum LDL-C levels can be significantly reduced. OBJECTIVE This review will describe the chemistry, pharmacokinetics, and pharmacodynamics of PCSK9 inhibitors and their clinical effects.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Yanping Cui
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| | - Pengjun Zhao
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| |
Collapse
|
39
|
Munakata L, Tanimoto Y, Osa A, Meng J, Haseda Y, Naito Y, Machiyama H, Kumanogoh A, Omata D, Maruyama K, Yoshioka Y, Okada Y, Koyama S, Suzuki R, Aoshi T. Lipid nanoparticles of Type-A CpG D35 suppress tumor growth by changing tumor immune-microenvironment and activate CD8 T cells in mice. J Control Release 2019; 313:106-119. [PMID: 31629036 DOI: 10.1016/j.jconrel.2019.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
Type-A CpG oligodeoxynucleotides (ODNs), which have a natural phosphodiester backbone, is one of the highest IFN-α inducer from plasmacytoid dendritic cells (pDC) via Toll-like receptor 9 (TLR9)-dependent signaling. However, the in vivo application of Type-A CpG has been limited because the rapid degradation in vivo results in relatively weak biological effect compared to other Type-B, -C, and -P CpG ODNs, which have nuclease-resistant phosphorothioate backbones. To overcome this limitation, we developed lipid nanoparticles formulation containing a Type-A CpG ODN, D35 (D35LNP). When tested in a mouse tumor model, intratumoral and intravenous D35LNP administration significantly suppressed tumor growth in a CD8 T cell-dependent manner, whereas original D35 showed no efficacy. Tumor suppression was associated with Th1-related gene induction and activation of CD8 T cells in the tumor. The combination of D35LNP and an anti-PD-1 antibody increased the therapeutic efficacy. Importantly, the therapeutic schedule and dose of intravenous D35LNP did not induce apparent liver toxicity. These results suggested that D35LNP is a safe and effective immunostimulatory drug formulation for cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan
| | - Yoshihiko Tanimoto
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Jie Meng
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yasunari Haseda
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Hirotomo Machiyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan
| | - Kazuo Maruyama
- Laboratory of Ultrasound Theranostics, Faculty of Pharma-Science, Teikyo University, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan.
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
40
|
McFadyen JD, Fernando H, Peter K. Off-target drug effects on platelet function: Protecting an Achilles heel of drug development. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Reduction of integrin alpha 4 activity through splice modulating antisense oligonucleotides. Sci Rep 2019; 9:12994. [PMID: 31506448 PMCID: PMC6736852 DOI: 10.1038/s41598-019-49385-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
With recent approvals of antisense oligonucleotides as therapeutics, there is an increasing interest in expanding the application of these compounds to many other diseases. Our laboratory focuses on developing therapeutic splice modulating antisense oligonucleotides to treat diseases potentially amendable to intervention during pre-mRNA processing, and here we report the use of oligomers to down-regulate integrin alpha 4 protein levels. Over one hundred antisense oligonucleotides were designed to induce skipping of individual exons of the ITGA4 transcript and thereby reducing protein expression. Integrin alpha 4-mediated activities were evaluated in human dermal fibroblasts and Jurkat cells, an immortalised human T lymphocyte cell line. Peptide conjugated phosphorodiamidate morpholino antisense oligomers targeting ITGA4 were also assessed for their effect in delaying disease progression in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. With the promising results in ameliorating disease progression, we are optimistic that the candidate oligomer may also be applicable to many other diseases associated with integrin alpha 4 mediated inflammation. This highly specific strategy to down-regulate protein expression through interfering with normal exon selection during pre-mRNA processing should be applicable to many other gene targets that undergo splicing during expression.
Collapse
|
42
|
A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol 2019; 37:884-894. [PMID: 31375812 PMCID: PMC6879195 DOI: 10.1038/s41587-019-0205-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Sustained silencing of gene expression in deep regions of the brain using small interfering RNAs (siRNAs) has not been achieved. Here we describe an siRNA architecture, divalent-siRNA (Di-siRNA), that supports potent, sustained gene silencing in the central nervous system (CNS) of mice and non-human primates following a single injection into cerebrospinal fluid. Di-siRNAs are composed of two fully chemically modified, phosphorothioate-containing siRNAs connected by a linker. In mice, Di-siRNAs induced potent silencing of huntingtin, the causative gene in Huntington’s disease, reducing mRNA and protein throughout the brain. Silencing persisted for at least six months, with the degree of gene silencing correlating to guide strand tissue accumulation levels. In Cynomolgus macaques, a bolus injection of Di-siRNA showed substantial distribution and robust silencing throughout the brain and spinal cord without detectable toxicity and with minimal off-target effects. This siRNA design may enable RNAi-based gene silencing in the CNS for the treatment of neurological disorders.
Collapse
|
43
|
Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y. Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol Ther 2019; 203:107393. [PMID: 31356909 DOI: 10.1016/j.pharmthera.2019.107393] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Antiplatelet drugs serve as a first-line antithrombotic therapy for the management of acute ischemic events and the prevention of secondary complications in vascular diseases. Numerous antiplatelet therapies have been developed; however, currently available agents are still associated with inadequate efficacy, risk of bleeding, and variability in individual response. Understanding the mechanisms of platelet involvement in thrombosis and the clinical development process of antiplatelet agents is critical for the discovery of novel agents. The functions of platelets in thrombosis are regulated by two major mechanisms: the interaction between surface receptors and their ligands, and the downstream intracellular signaling pathways. Recently, most of the progress made in antiplatelet drug development has been achieved with P2Y receptor antagonists. Additionally, the usage of GP IIb/IIIa receptor antagonists has decreased, because it is associated with a higher risk of bleeding and thrombocytopenia. Agents targeting other platelet surface receptors such as PARs, TP receptor, EP3 receptor, GPIb-IX-V receptor, P-selectin, as well as intracellular signaling factors, such as PI3Kβ, have been evaluated in an attempt to develop the next generation of antiplatelet drugs, reduce or eliminate interpatient variability of drug efficacy and significantly lower the risk of drug-induced bleeding. The aim of this review is to describe the pathways of platelet activation in thrombosis, and summarize the development process of antiplatelet agents, as well as the preclinical and clinical evaluations performed on these agents.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Weikang Tao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Qi Pei
- Shanghai Hengrui Pharmaceuticals Co., 279 Wenjing Road, Shanghai, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
44
|
Narayanan P, Shen L, Curtis BR, Bourdon MA, Nolan JP, Gupta S, Hoffmaster C, Zhou F, Christian B, Schaubhut JL, Greenlee S, Burel SA, Witztum JL, Engelhardt JA, Henry SP. Investigation into the Mechanism(s) That Leads to Platelet Decreases in Cynomolgus Monkeys During Administration of ISIS 104838, a 2'-MOE-Modified Antisense Oligonucleotide. Toxicol Sci 2019; 164:613-626. [PMID: 29846725 DOI: 10.1093/toxsci/kfy119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ISIS 104838, a 2'-O-methoxyethyl (2'-MOE)-modified antisense oligonucleotide (ASO), causes a moderate, reproducible, dose-dependent, but selflimiting decrease in platelet (PLT) counts in monkeys and humans. To determine the etiology of PLT decrease in cynomolgus monkeys, a 12-week repeat dose toxicology study in 5 cynomolgus monkeys given subcutaneous injections of ISIS 104838 (30-60 mg/kg/week). Monkeys were also injected intravenously with 111Indium(In)-oxine-labeled PLTs to investigate PLT sequestration. In response to continued dosing, PLT counts were decreased by 50%-90% by day 30 in all monkeys. PLT decreases were accompanied by 2- to 4.5-fold increases in immunoglobulin M(IgM), which were typified by a 2- to 5-fold increase in antiplatelet factor 4 (antiPF4) IgM and antiPLT IgM, respectively. Monocyte chemotactic protein 1 increased upon dosing of ISIS 104838, concomitant with a 2- to 6-fold increase in monocyte-derived extracellular vesicles (EVs), indicating monocyte activation but not PLT activation. Despite a 2- to 3-fold increase in von Willebrand factor antigen in all monkeys following ASO administration, only 2 monkeys showed a 2- to 4-fold increase in endothelial EVs. Additionally, a ∼60 - 80%% increase in PLT sequestration in liver and spleen was also observed. Collectively, these results suggest the overall increase in total IgM, antiPLT IgM and/or antiPF4 IgM, in concert with monocyte activation contributed to increased PLT sequestration in spleen and liver, leading to decreased PLTs in peripheral blood.
Collapse
Affiliation(s)
| | - Lijiang Shen
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Brian R Curtis
- Blood Research Institute Blood Center Wisconsin, Milwaukee, Wisconsin 53236
| | | | - John P Nolan
- Cellarcus Technologies, La Jolla, California 92037
| | - Shipra Gupta
- Shin Nippon Biomedical Laboratories (SNBL), Everett, Washington
| | | | - Fangli Zhou
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| | | | | | - Sarah Greenlee
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Sebastien A Burel
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Joe L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| | | | - Scott P Henry
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| |
Collapse
|
45
|
Pitout I, Flynn LL, Wilton SD, Fletcher S. Antisense-mediated splice intervention to treat human disease: the odyssey continues. F1000Res 2019; 8. [PMID: 31164976 PMCID: PMC6534073 DOI: 10.12688/f1000research.18466.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Recent approvals of oligonucleotide analogue drugs to alter gene expression have been welcomed by patient communities but not universally supported. These compounds represent a class of drugs that are designed to target a specific gene transcript, and they include a number of chemical entities to evoke different antisense mechanisms, depending upon the disease aetiology. To date, oligonucleotide therapeutics that are in the clinic or at advanced stages of translation target rare diseases, posing challenges to clinical trial design, recruitment and evaluation and requiring new evaluation paradigms. This review discusses the currently available and emerging therapeutics that alter exon selection through an effect on pre-mRNA splicing and explores emerging concerns over safety and efficacy. Although modification of synthetic nucleic acids destined for therapeutic application is common practice to protect against nuclease degradation and to influence drug function, such modifications may also confer unexpected physicochemical and biological properties. Negatively charged oligonucleotides have a strong propensity to bind extra- and intra-cellular proteins, whereas those analogues with a neutral backbone show inefficient cellular uptake but excellent safety profiles. In addition, the potential for incorporation of chemically modified nucleic acid monomers, yielded by nuclease degradation of exogenous oligonucleotides, into biomolecules has been raised and the possibility not entirely discounted. We conclude with a commentary on the ongoing efforts to develop novel antisense compounds and enhance oligonucleotide delivery in order to further improve efficacy and accelerate implementation of antisense therapeutics for human disease.
Collapse
Affiliation(s)
| | - Loren L Flynn
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| | - Steve D Wilton
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| |
Collapse
|
46
|
Abstract
Nanotechnology offers new solutions for the development of cancer therapeutics that display improved efficacy and safety. Although several nanotherapeutics have received clinical approval, the most promising nanotechnology applications for patients still lie ahead. Nanoparticles display unique transport, biological, optical, magnetic, electronic, and thermal properties that are not apparent on the molecular or macroscale, and can be utilized for therapeutic purposes. These characteristics arise because nanoparticles are in the same size range as the wavelength of light and display large surface area to volume ratios. The large size of nanoparticles compared to conventional chemotherapeutic agents or biological macromolecule drugs also enables incorporation of several supportive components in addition to active pharmaceutical ingredients. These components can facilitate solubilization, protection from degradation, sustained release, immunoevasion, tissue penetration, imaging, targeting, and triggered activation. Nanoparticles are also processed differently in the body compared to conventional drugs. Specifically, nanoparticles display unique hemodynamic properties and biodistribution profiles. Notably, the interactions that occur at the bio-nano interface can be exploited for improved drug delivery. This review discusses successful clinically approved cancer nanodrugs as well as promising candidates in the pipeline. These nanotherapeutics are categorized according to whether they predominantly exploit multifunctionality, unique electromagnetic properties, or distinct transport characteristics in the body. Moreover, future directions in nanomedicine such as companion diagnostics, strategies for modifying the microenvironment, spatiotemporal nanoparticle transitions, and the use of extracellular vesicles for drug delivery are also explored.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
47
|
Beck S, Buhimschi IA, Summerfield TL, Ackerman WE, Guzeloglu-Kayisli O, Kayisli UA, Zhao G, Schatz F, Lockwood CJ, Buhimschi CS. Toll-like receptor 9, maternal cell-free DNA and myometrial cell response to CpG oligodeoxynucleotide stimulation. Am J Reprod Immunol 2019; 81:e13100. [PMID: 30758898 DOI: 10.1111/aji.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 01/05/2023] Open
Abstract
PROBLEM Among mechanisms triggering onset of parturition, it has been recently postulated that Toll-Like Receptor (TLR)9 engagement by cell-free DNA (cfDNA) triggers inflammation, myometrial contractions, and labor in absence of infection. The current study evaluated whether direct (myometrial) or indirect (decidual) TLR9 engagement enhances human myometrial contractility. METHOD OF STUDY Toll-like receptor 9 expression and cellular localization were surveyed by immunohistochemistry of placenta, fetal membranes, and myometrium in term (gestational age [GA]: >37 weeks) labor (TL, n = 7) or term non-labor (TNL, n = 7) tissues. Non-pregnant myometrium (n = 4) served as reference. TLR9 mRNA expression relative to other TLRs was evaluated through the mining of an RNA-seq dataset and confirmed by RT-PCR. Immortalized human myometrial cells (hTERT-HM) were treated with incremental concentrations of TLR9 agonist ODN2395, TNF-α, or LPS. Secreted cytokines were quantified by multiplex immunoassay, and contractility was assessed by an in-gel cell contraction assay (n = 9). Induction of hTERT-HM contractility was also evaluated indirectly following exposure to conditioned media from primary term decidual cells (n = 4) previously stimulated with ODN2395. RESULTS Toll-like receptor 9 immunostaining in placenta and amniochorion was strongest in decidual cells, but unrelated to labor. TLR9 staining intensity was significantly decreased in TL compared with TNL myometrium (P = 0.002). Although total cfDNA in maternal circulation increased in TL (P = 0.025 vs TNL), difference in cffDNA was non-significant. Myometrial TLR9 mRNA levels were unaffected by contractile status and far less abundant than other pro-inflammatory TLRs. hTERT-HM contractility was enhanced by LPS (P = 0.002) and TNF-α (P = 0.003), but not by ODN2395 (P = 0.345) or supernatant of TLR9-stimulated decidual cells. CONCLUSION Myometrial and decidual TLR9 are unlikely to directly regulate human parturition.
Collapse
Affiliation(s)
- Stacy Beck
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Irina A Buhimschi
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Taryn L Summerfield
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - William E Ackerman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Catalin S Buhimschi
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
48
|
Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng 2019; 3:318-327. [PMID: 30952978 DOI: 10.1038/s41551-019-0351-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/14/2019] [Indexed: 01/13/2023]
Abstract
Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure-activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure-activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.
Collapse
|
49
|
EnanDIM - a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy. J Immunother Cancer 2019; 7:5. [PMID: 30621769 PMCID: PMC6323716 DOI: 10.1186/s40425-018-0470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Toll-like receptor 9 agonists are potent activators of the immune system. Their clinical potential in immunotherapy against metastatic cancers is being evaluated across a number of clinical trials. TLR9 agonists are DNA-based molecules that contain several non-methylated CG-motifs for TLR9 recognition. Chemical modifications of DNA backbones are usually employed to prevent degradation by nucleases. These, however, can promote undesirable off-target effects and therapeutic restrictions. Methods Within the EnanDIM® family members of TLR9 agonists described here, D-deoxyribose nucleotides at the nuclease-accessible 3′-ends are replaced by nuclease-resistant L-deoxyribose nucleotides. EnanDIM® molecules with varying sequences were screened for their activation of human peripheral blood mononuclear cells based on secretion of IFN-alpha and IP-10 as well as activation of immune cells. Selected molecules were evaluated in mice in a maximum feasible dose study and for analysis of immune activation. The ability to modulate the tumor-microenvironment and anti-tumor responses after EnanDIM® administration was analyzed in syngeneic murine tumor models. Results The presence of L-deoxyribose containing nucleotides at their 3′-ends is sufficient to prevent EnanDIM® molecules from nucleolytic degradation. EnanDIM® molecules show broad immune activation targeting specific components of both the innate and adaptive immune systems. Activation was strictly dependent on the presence of CG-motifs, known to be recognized by TLR9. The absence of off-target effects may enable a wide therapeutic window. This advantageous anti-tumoral immune profile also promotes increased T cell infiltration into CT26 colon carcinoma tumors, which translates into reduced tumor growth. EnanDIM® molecules also drove regression of multiple other murine syngeneic tumors including MC38 colon carcinoma, B16 melanoma, A20 lymphoma, and EMT-6 breast cancer. In A20 and EMT-6, EnanDIM® immunotherapy cured a majority of mice and established persistent anti-tumor immune memory as evidenced by the complete immunity of these mice to subsequent tumor re-challenge. Conclusions In summary, EnanDIM® comprise a novel family of TLR9 agonists that facilitate an efficacious activation of both innate and adaptive immunity. Their proven potential in onco-immunotherapy, as shown by cytotoxic activity, beneficial modulation of the tumor microenvironment, inhibition of tumor growth, and induction of long-lasting, tumor-specific memory, supports EnanDIM® molecules for further preclinical and clinical development. Electronic supplementary material The online version of this article (10.1186/s40425-018-0470-3) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|