1
|
Niskala A, Heijman J, Dobrev D, Jespersen T, Saljic A. Targeting the NLRP3 inflammasome signalling for the management of atrial fibrillation. Br J Pharmacol 2024; 181:4939-4957. [PMID: 38877789 DOI: 10.1111/bph.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 06/16/2024] Open
Abstract
Inflammatory signalling via the nod-like receptor (NLR) family pyrin domain-containing protein-3 (NLRP3) inflammasome has recently been implicated in the pathophysiology of atrial fibrillation (AF). However, the precise role of the NLRP3 inflammasome in various cardiac cell types is poorly understood. Targeting components or products of the inflammasome and preventing their proinflammatory consequences may constitute novel therapeutic treatment strategies for AF. In this review, we summarise the current understanding of the role of the inflammasome in AF pathogenesis. We first review the NLRP3 inflammasome pathway and inflammatory signalling in cardiomyocytes, (myo)fibroblasts and immune cells, such as neutrophils, macrophages and monocytes. Because numerous compounds targeting NLRP3 signalling are currently in preclinical development, or undergoing clinical evaluation for other indications than AF, we subsequently review known therapeutics, such as colchicine and canakinumab, targeting the NLRP3 inflammasome and evaluate their potential for treating AF.
Collapse
Affiliation(s)
- Alisha Niskala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Schiffelers LDJ, Tesfamariam YM, Jenster LM, Diehl S, Binder SC, Normann S, Mayr J, Pritzl S, Hagelauer E, Kopp A, Alon A, Geyer M, Ploegh HL, Schmidt FI. Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application. Nat Commun 2024; 15:8266. [PMID: 39327452 PMCID: PMC11427689 DOI: 10.1038/s41467-024-52110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammasome activation results in the cleavage of gasdermin D (GSDMD) by pro-inflammatory caspases. The N-terminal domains (GSDMDNT) oligomerize and assemble pores penetrating the target membrane. As methods to study pore formation in living cells are insufficient, the order of conformational changes, oligomerization, and membrane insertion remained unclear. We have raised nanobodies (VHHs) against human GSDMD and find that cytosolic expression of VHHGSDMD-1 and VHHGSDMD-2 prevents oligomerization of GSDMDNT and pyroptosis. The nanobody-stabilized GSDMDNT monomers partition into the plasma membrane, suggesting that membrane insertion precedes oligomerization. Inhibition of GSDMD pore formation switches cell death from pyroptosis to apoptosis, likely driven by the enhanced caspase-1 activity required to activate caspase-3. Recombinant antagonistic nanobodies added to the extracellular space prevent pyroptosis and exhibit unexpected therapeutic potential. They may thus be suitable to treat the ever-growing list of diseases caused by activation of (non-) canonical inflammasomes.
Collapse
Affiliation(s)
- Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Diehl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sophie C Binder
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sabine Normann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonathan Mayr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Steffen Pritzl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Elena Hagelauer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anja Kopp
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Assaf Alon
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Li Y, Zhuang Y, Chen Y, Wang G, Tang Z, Zhong Y, Zhang Y, Wu L, Ji X, Zhang Q, Pan B, Luo Y. Euphorbia factor L2 alleviated gouty inflammation by specifically suppressing both the priming and activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 138:112598. [PMID: 38981223 DOI: 10.1016/j.intimp.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1β production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Zhuang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuehong Chen
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 6a004a, Sichuan, China
| | - Zhigang Tang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zhong
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Liang Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Ji
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Wittmann N, Bekeschus S, Biedenweg D, Kuthning D, Pohl C, Gramenz J, Otto O, Bossaller L, Meyer-Bahlburg A. Comparative Analysis of Canonical Inflammasome Activation by Flow Cytometry, Imaging Flow Cytometry and High-Content Imaging. Inflammation 2024:10.1007/s10753-024-02141-z. [PMID: 39256305 DOI: 10.1007/s10753-024-02141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Inflammasome activation occurs in various diseases, including rare diseases that require multicenter studies for investigation. Flow cytometric analysis of ASC speck+ cells in patient samples can be used to detect cell type-specific inflammasome activation. However, this requires standardized sample processing and the ability to compare data from different flow cytometers. To address this issue, we analyzed stimulated and unstimulated PBMCs from healthy donors using seven different flow cytometers. Additionally, human PBMCs were analyzed by fluorescence microscopy, imaging flow cytometry and high-content imaging (HCI). Flow cytometers differed significantly in their ability to detect ASC speck+ cells. Aria III, Astrios EQ, and Canto II performed best in separating ASC speck+ from diffuse ASC cells. Imaging flow cytometry and HCI provided additional insight into ASC speck formation based on image-based parameters. For optimal results, the ability to separate cells with diffuse ASC from ASC speck+ cells is decisive. Image-based parameters can also differentiate cells with diffuse ASC from ASC speck+ cells. For the first time, we analyzed ASC speck detection by HCI in PBMCs and demonstrated advantages of this technique, such as high-throughput, algorithm-driven image quantification and 3D-rendering. Thus, inflammasome activation by ASC speck formation can be detected by various technical methods. However, the results may vary depending on the device used.
Collapse
Affiliation(s)
- Nico Wittmann
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489, Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstraße 13, 18057, Rostock, Germany
| | - Doreen Biedenweg
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Daniela Kuthning
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Jana Gramenz
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Oliver Otto
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany.
| |
Collapse
|
6
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2024:10.1038/s41577-024-01075-9. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
7
|
Grun CN, Jain R, Schniederberend M, Shoemaker CB, Nelson B, Kazmierczak BI. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nat Commun 2024; 15:7502. [PMID: 39209859 PMCID: PMC11362561 DOI: 10.1038/s41467-024-51912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P. aeruginosa cell surface but methods to identify these are limited. Here we combine phage display with high-throughput DNA sequencing to create a high throughput, multiplexed technology for surveying bacterial cell surfaces, Phage-seq. By applying phage display panning to hundreds of bacterial genotypes and analyzing the dynamics of the phage display selection process, we capture important biological information about cell surfaces. This approach also yields camelid single-domain antibodies that recognize key P. aeruginosa virulence factors on live cells. These antibodies have numerous potential applications in diagnostics and therapeutics. We propose that Phage-seq establishes a powerful paradigm for studying the bacterial cell surface by identifying and profiling many surface features in parallel.
Collapse
Affiliation(s)
- Casey N Grun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchi Jain
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Piton Therapeutics, Watertown, MA, USA
| | - Maren Schniederberend
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Orion Corporation, Turku, Finland
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Ren L, Yang H, Wang H, Qin S, Zhan X, Li H, Wei Z, Fang Z, Li Q, Liu T, Shi W, Zhao J, Li Z, Bai Z, Xu G, Zhao J. Tryptanthrin suppresses multiple inflammasome activation to regulate NASH progression by targeting ASC protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155758. [PMID: 38843643 DOI: 10.1016/j.phymed.2024.155758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1β and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.
Collapse
Affiliation(s)
- Lutong Ren
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huijie Yang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Wang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuanglin Qin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhie Fang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Wei Shi
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.
| | - Guang Xu
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jun Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Fu J, Schroder K, Wu H. Mechanistic insights from inflammasome structures. Nat Rev Immunol 2024; 24:518-535. [PMID: 38374299 PMCID: PMC11216901 DOI: 10.1038/s41577-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
12
|
Thygesen SJ, Burgener SS, Mudai P, Monteleone M, Boucher D, Sagulenko V, Schroder K, Stacey KJ. Fluorochrome-labeled inhibitors of caspase-1 require membrane permeabilization to efficiently access caspase-1 in macrophages. Eur J Immunol 2024; 54:e2350515. [PMID: 38361219 DOI: 10.1002/eji.202350515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.
Collapse
Affiliation(s)
- Sara J Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Australia
| | - Prerna Mudai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Mercedes Monteleone
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Australia
| | - Dave Boucher
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| |
Collapse
|
13
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
14
|
Passos BBS, Araújo-Pereira M, Vinhaes CL, Amaral EP, Andrade BB. The role of ESAT-6 in tuberculosis immunopathology. Front Immunol 2024; 15:1383098. [PMID: 38633252 PMCID: PMC11021698 DOI: 10.3389/fimmu.2024.1383098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Despite major global efforts to eliminate tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), this disease remains as a major plague of humanity. Several factors associated with the host and Mtb interaction favor the infection establishment and/or determine disease progression. The Early Secreted Antigenic Target 6 kDa (ESAT-6) is one of the most important and well-studied mycobacterial virulence factors. This molecule has been described to play an important role in the development of tuberculosis-associated pathology by subverting crucial components of the host immune responses. This review highlights the main effector mechanisms by which ESAT-6 modulates the immune system, directly impacting cell fate and disease progression.
Collapse
Affiliation(s)
- Beatriz B. S. Passos
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Caian L. Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Departamento de Infectologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
15
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
16
|
Chamanara S, Hozouri V, Irandoost E. Inhibition of NLRP3 inflammasome-A potential mechanistic therapeutic for treatment of polycystic ovary syndrome? J Biochem Mol Toxicol 2024; 38:e23592. [PMID: 38054794 DOI: 10.1002/jbt.23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
This review article explores the relationship between the NOD-like receptor protein 3 (NLRP3) inflammasome and the risk of developing polycystic ovary syndrome (PCOS). The NLRP3 inflammasome, a fundamental element of the innate immune system, plays a crucial role in the production of proinflammatory mediators and pyroptosis, a type inflammatory cell death. We conducted a thorough search on scientific databases to gather relevant information on this topic, utilizing relevant keywords. The reviewed studies indicated a correlation between PCOS and a higher incidence of granulosa cell (GC) death and the presence of ovarian tissue fibrosis. NLRP3 inflammasome stimulation and subsequent pyroptosis in GCs play a significant role in the pathophysiology of PCOS. Active NLRP3 inflammasome is involved in the production of inflammatory mediators like interleukin-1β (IL-1β) and IL-18, contributing to the development of PCOS, particularly in overweight patients. Therefore, inhibiting NLRP3 activation and pyroptosis could potentially offer novel therapeutic strategies for PCOS. Some limited studies have explored the use of agents with antioxidant and anti-inflammatory properties, as well as gene therapy approaches, to target the NLRP3 and pyroptosis signaling pathways. This study overview the understanding of the relationship between NLRP3 inflammasome activation, pyroptosis, and PCOS. It highlights the potential of targeting the NLRP3 inflammasome as an approach for treating PCOS. Nonetheless, further research and clinical trials are imperative to validate these results and explore the effectiveness of NLRP3 inflammasome inhibition in the management of PCOS.
Collapse
Affiliation(s)
- Solmaz Chamanara
- Department of Gynecology and Obstetrics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Vahid Hozouri
- Internal Medicine Department, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elnaz Irandoost
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
18
|
Hurtado-Navarro L, Cuenca-Zamora EJ, Zamora L, Bellosillo B, Such E, Soler-Espejo E, Martínez-Banaclocha H, Hernández-Rivas JM, Marco-Ayala J, Martínez-Alarcón L, Linares-Latorre L, García-Ávila S, Amat-Martínez P, González T, Arnan M, Pomares-Marín H, Carreño-Tarragona G, Chen-Liang TH, Herranz MT, García-Palenciano C, Morales ML, Jerez A, Lozano ML, Teruel-Montoya R, Pelegrín P, Ferrer-Marín F. NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy. Cell Rep Med 2023; 4:101329. [PMID: 38118408 PMCID: PMC10772462 DOI: 10.1016/j.xcrm.2023.101329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1β release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1β release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.
Collapse
Affiliation(s)
| | - Ernesto José Cuenca-Zamora
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Lurdes Zamora
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Bellosillo
- Molecular Biology Laboratory, Pathology Department, Hospital Del Mar, Hospital Del Mar Medical Research Institute, IMIM, Barcelona, Spain
| | - Esperanza Such
- Hematology Department, La Fe University Hospital, Valencia, Spain
| | - Eva Soler-Espejo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Immunology Service, Hospital Universitario Virgen de La Arrixaca, Murcia, Spain
| | - Jesús M Hernández-Rivas
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Javier Marco-Ayala
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | | | - Lola Linares-Latorre
- Service of Clinical Analysis and Microbiology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Sara García-Ávila
- Department of Hematology, Hospital Del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Paula Amat-Martínez
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa González
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Montserrat Arnan
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | - Helena Pomares-Marín
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | | | - Tzu Hua Chen-Liang
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - María T Herranz
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Virgen de La Arrixaca, Murcia, Spain
| | - María Luz Morales
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Andrés Jerez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - María L Lozano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Raúl Teruel-Montoya
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
| | - Francisca Ferrer-Marín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
19
|
Glück IM, Mathias GP, Strauss S, Rat V, Gialdini I, Ebert TS, Stafford C, Agam G, Manley S, Hornung V, Jungmann R, Sieben C, Lamb DC. Nanoscale organization of the endogenous ASC speck. iScience 2023; 26:108382. [PMID: 38047065 PMCID: PMC10690566 DOI: 10.1016/j.isci.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/15/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The NLRP3 inflammasome is a central component of the innate immune system. Its activation leads to formation of the ASC speck, a supramolecular assembly of the inflammasome adaptor protein ASC. Different models, based on ASC overexpression, have been proposed for the structure of the ASC speck. Using dual-color 3D super-resolution imaging (dSTORM and DNA-PAINT), we visualized the ASC speck structure following NLRP3 inflammasome activation using endogenous ASC expression. A complete structure was only obtainable by labeling with both anti-ASC antibodies and nanobodies. The complex varies in diameter between ∼800 and 1000 nm, and is composed of a dense core with emerging filaments. Dual-color confocal fluorescence microscopy indicated that the ASC speck does not colocalize with the microtubule-organizing center at late time points after Nigericin stimulation. From super-resolution images of whole cells, the ASC specks were sorted into a pseudo-time sequence indicating that they become denser but not larger during formation.
Collapse
Affiliation(s)
- Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Grusha Primal Mathias
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Virgile Rat
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Irene Gialdini
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Thomas Sebastian Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Veit Hornung
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Sieben
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
20
|
Kopp A, Hagelueken G, Jamitzky I, Moecking J, Schiffelers LDJ, Schmidt FI, Geyer M. Pyroptosis inhibiting nanobodies block Gasdermin D pore formation. Nat Commun 2023; 14:7923. [PMID: 38040708 PMCID: PMC10692205 DOI: 10.1038/s41467-023-43707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Human Gasdermin D (GSDMD) is a key mediator of pyroptosis, a pro-inflammatory form of cell death occurring downstream of inflammasome activation as part of the innate immune defence. Upon cleavage by inflammatory caspases in the cytosol, the N-terminal domain of GSDMD forms pores in the plasma membrane resulting in cytokine release and eventually cell death. Targeting GSDMD is an attractive way to dampen inflammation. In this study, six GSDMD targeting nanobodies are characterized in terms of their binding affinity, stability, and effect on GSDMD pore formation. Three of the nanobodies inhibit GSDMD pore formation in a liposome leakage assay, although caspase cleavage was not perturbed. We determine the crystal structure of human GSDMD in complex with two nanobodies at 1.9 Å resolution, providing detailed insights into the GSDMD-nanobody interactions and epitope binding. The pore formation is sterically blocked by one of the nanobodies that binds to the oligomerization interface of the N-terminal domain in the multi-subunit pore assembly. Our biochemical and structural findings provide tools for studying inflammasome biology and build a framework for the design of GSDMD targeting drugs.
Collapse
Affiliation(s)
- Anja Kopp
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Gregor Hagelueken
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Isabell Jamitzky
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jonas Moecking
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
21
|
Pastorio C, Noettger S, Nchioua R, Zech F, Sparrer KM, Kirchhoff F. Impact of mutations defining SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 on Spike function and neutralization. iScience 2023; 26:108299. [PMID: 38026181 PMCID: PMC10661123 DOI: 10.1016/j.isci.2023.108299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Additional mutations in the viral Spike protein helped the BA.2.12.1 and BA.4/5 SARS-CoV-2 Omicron subvariants to outcompete the parental BA.2 subvariant. Here, we determined the functional impact of mutations that newly emerged in the BA.2.12.1 (L452Q, S704L) and BA.4/5 (Δ69-70, L452R, F486V, R493Q) Spike proteins. Our results show that mutation of L452Q/R or F486V typically increases and R493Q or S704L impair BA.2 Spike-mediated infection. In combination, changes of Δ69-70, L452R, and F486V contribute to the higher infectiousness and fusogenicity of the BA.4/5 Spike. L452R/Q and F486V in Spike are mainly responsible for reduced sensitivity to neutralizing antibodies. However, the combined mutations are required for full infectivity, reduced TMPRSS2 dependency, and immune escape of BA.4/5 Spike. Thus, it is the specific combination of mutations in BA.4/5 Spike that allows increased functionality and immune evasion, which helps to explain the temporary dominance and increased pathogenicity of these Omicron subvariants.
Collapse
Affiliation(s)
- Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| |
Collapse
|
22
|
Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta 2023; 1279:341840. [PMID: 37827654 DOI: 10.1016/j.aca.2023.341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) is a well-characterized biomarker for the clinical diagnosis of various cancers. Nanobodies, considered the smallest antibody fragments with intact antigen-binding capacity, have gained significant attention in disease diagnosis and therapy. Due to their peculiar properties, nanobodies have become promising alternative diagnostic reagents in immunoassay. However, nanobodies-based immunoassay is still hindered by small molecular size and low antigen capture efficacy. Therefore, there is a pressing need to develop novel nanobody-based immunoassays with superior performance. RESULTS A novel pentameric nanobodies-based immunoassay (PNIA) was developed with enhanced sensitivity and specificity for CEACAM-5 detection. The binding epitopes of three anti-CEACAM-5 nanobodies (Nb1, Nb2 and Nb3) were analyzed. To enhance the capture and detection efficacy of CEACAM-5 in the immunoassay, we engineered bispecific nanobodies (Nb1-Nb2-rFc) as the capture antibody, and developed the FITC-labeled pentameric nanobodies (Nb3-VT1B) as the detection antibody. The binding affinities of Nb1-Nb2-rFc (1.746 × 10-10) and Nb3-VT1B (1.279 × 10-11) were significantly higher than those of unmodified nanobodies (Nb1-rFc, 4.063 × 10-9; Nb2-rFc, 2.136 × 10-8; Nb3, 3.357 × 10-9). The PNIA showed a linear range of 0.625-160 ng mL-1 with a correlation coefficient R2 of 0.9985, and a limit of detection of 0.52 ng mL-1, which was 24-fold lower than the immunoassay using monomeric nanobody. The PNIA was validated with the spiked human serum. The average recoveries ranged from 91.8% to 102% and the coefficients of variation ranged from 0.026% to 0.082%. SIGNIFICANCE AND NOVELTY The advantages of nanobodies offer a promising alternative to conventional antibodies in disease diagnosis. The novel PNIA demonstrated superior sensitivity and high specificity for the detection of CEACAM-5 antigen. This bispecific or multivalent nanobody design will provide some new insights into the design of immunoassays for clinical diagnosis.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Deng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen, 518110, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| |
Collapse
|
23
|
Acevedo W, Morán-Figueroa R, Vargas-Chacoff L, Morera FJ, Pontigo JP. Revealing the Salmo salar NLRP3 Inflammasome: Insights from Structural Modeling and Transcriptome Analysis. Int J Mol Sci 2023; 24:14556. [PMID: 37834004 PMCID: PMC10572965 DOI: 10.3390/ijms241914556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The NLRP3, one of the most heavily studied inflammasome-related proteins in mammals, remains inadequately characterized in Atlantic salmon (Salmo salar), despite the significant commercial importance of this salmonid. The NLRP3 inflammasome is composed of the NLRP3 protein, which is associated with procaspase-1 via an adapter molecule known as ASC. This work aims to characterize the Salmo salar NLRP3 inflammasome through in silico structural modeling, functional transcript expression determination in the SHK-1 cell line in vitro, and a transcriptome analysis on Atlantic salmon. The molecular docking results suggested a similar arrangement of the ternary complex between NLRP3, ASC, and caspase-1 in both the Atlantic salmon and the mammalian NLRP3 inflammasomes. Moreover, the expression results confirmed the functionality of the SsNLRP3 inflammasome in the SHK-1 cells, as evidenced by the lipopolysaccharide-induced increase in the transcription of genes involved in inflammasome activation, including ASC and NLRP3. Additionally, the transcriptome results revealed that most of the inflammasome-related genes, including ASC, NLRP3, and caspase-1, were down-regulated in the Atlantic salmon following its adaptation to seawater (also known as parr-smolt transformation). This is correlated with a temporary detrimental effected on the immune system. Collectively, these findings offer novel insights into the evolutionarily conserved role of NLRP3.
Collapse
Affiliation(s)
- Waldo Acevedo
- Biological Chemistry Laboratory, Institute of Chemistry, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso 2373223, Chile;
| | - Rodrigo Morán-Figueroa
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- IDEAL Research Center for Dynamics of High Latitude Marine Ecosystems, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Francisco J. Morera
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad Ciencias de la Naturaleza, Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5090000, Chile
| |
Collapse
|
24
|
Martín-Sánchez F, Compan V, Peñín-Franch A, Tapia-Abellán A, Gómez AI, Baños-Gregori MC, Schmidt FI, Pelegrin P. ASC oligomer favors caspase-1CARD domain recruitment after intracellular potassium efflux. J Cell Biol 2023; 222:e202003053. [PMID: 37402211 DOI: 10.1083/jcb.202003053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 02/21/2023] [Accepted: 04/28/2023] [Indexed: 07/06/2023] Open
Abstract
Signaling through the inflammasome is important for the inflammatory response. Low concentrations of intracellular K+ are associated with the specific oligomerization and activation of the NLRP3 inflammasome, a type of inflammasome involved in sterile inflammation. After NLRP3 oligomerization, ASC protein binds and forms oligomeric filaments that culminate in large protein complexes named ASC specks. ASC specks are also initiated from different inflammasome scaffolds, such as AIM2, NLRC4, or Pyrin. ASC oligomers recruit caspase-1 and then induce its activation through interactions between their respective caspase activation and recruitment domains (CARD). So far, ASC oligomerization and caspase-1 activation are K+-independent processes. Here, we found that when there is low intracellular K+, ASC oligomers change their structure independently of NLRP3 and make the ASCCARD domain more accessible for the recruitment of the pro-caspase-1CARD domain. Therefore, conditions that decrease intracellular K+ not only drive NLRP3 responses but also enhance the recruitment of the pro-caspase-1 CARD domain into the ASC specks.
Collapse
Affiliation(s)
- Fátima Martín-Sánchez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
| | - Vincent Compan
- IGF, Univ. Montpellier, CNRS, INSERM , Montpellier, France
- Laboratory of Excellence in Ion Channel Science and Therapeutics (Labex ICST) , Villeneuve d'Ascq, France
| | - Alejandro Peñín-Franch
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
| | - Ana Tapia-Abellán
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
| | - Ana I Gómez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
| | - María C Baños-Gregori
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn , Bonn, Germany
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB) , Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
25
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
26
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K, Li H. Roles of inflammasomes in viral myocarditis. Front Cell Infect Microbiol 2023; 13:1149911. [PMID: 37256114 PMCID: PMC10225676 DOI: 10.3389/fcimb.2023.1149911] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Abstract
As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1β and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Front Immunol 2023; 14:1151185. [PMID: 37180116 PMCID: PMC10167027 DOI: 10.3389/fimmu.2023.1151185] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In the working-age population worldwide, diabetic retinopathy (DR), a prevalent complication of diabetes, is the main cause of vision impairment. Chronic low-grade inflammation plays an essential role in DR development. Recently, concerning the pathogenesis of DR, the Nod-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome in retinal cells has been determined as a causal factor. In the diabetic eye, the NLRP3 inflammasome is activated by several pathways (such as ROS and ATP). The activation of NPRP3 leads to the secretion of inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), and leads to pyroptosis, a rapid inflammatory form of lytic programmed cell death (PCD). Cells that undergo pyroptosis swell and rapture, releasing more inflammatory factors and accelerating DR progression. This review focuses on the mechanisms that activate NLRP3 inflammasome and pyroptosis leading to DR. The present research highlighted some inhibitors of NLRP3/pyroptosis pathways and novel therapeutic measures concerning DR treatment.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
29
|
Lynch JP, González-Prieto C, Reeves AZ, Bae S, Powale U, Godbole NP, Tremblay JM, Schmidt FI, Ploegh HL, Kansra V, Glickman JN, Leong JM, Shoemaker CB, Garrett WS, Lesser CF. Engineered Escherichia coli for the in situ secretion of therapeutic nanobodies in the gut. Cell Host Microbe 2023; 31:634-649.e8. [PMID: 37003258 PMCID: PMC10101937 DOI: 10.1016/j.chom.2023.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/20/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Drug platforms that enable the directed delivery of therapeutics to sites of diseases to maximize efficacy and limit off-target effects are needed. Here, we report the development of PROT3EcT, a suite of commensal Escherichia coli engineered to secrete proteins directly into their surroundings. These bacteria consist of three modular components: a modified bacterial protein secretion system, the associated regulatable transcriptional activator, and a secreted therapeutic payload. PROT3EcT secrete functional single-domain antibodies, nanobodies (Nbs), and stably colonize and maintain an active secretion system within the intestines of mice. Furthermore, a single prophylactic dose of a variant of PROT3EcT that secretes a tumor necrosis factor-alpha (TNF-α)-neutralizing Nb is sufficient to ablate pro-inflammatory TNF levels and prevent the development of injury and inflammation in a chemically induced model of colitis. This work lays the foundation for developing PROT3EcT as a platform for the treatment of gastrointestinal-based diseases.
Collapse
Affiliation(s)
- Jason P Lynch
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Coral González-Prieto
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Analise Z Reeves
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sena Bae
- Departments of Immunology and Infectious Diseases and Harvard T.H. Chan Center for the Microbiome in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Urmila Powale
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Neha P Godbole
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hidde L Ploegh
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Jonathan N Glickman
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA 02111, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Harvard T.H. Chan Center for the Microbiome in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Caballero-Herrero MJ, Jumilla E, Buitrago-Ruiz M, Valero-Navarro G, Cuevas S. Role of Damage-Associated Molecular Patterns (DAMPS) in the Postoperative Period after Colorectal Surgery. Int J Mol Sci 2023; 24:ijms24043862. [PMID: 36835273 PMCID: PMC9958549 DOI: 10.3390/ijms24043862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Anastomotic leakage (AL) is a defect of the intestinal wall at the anastomotic site and is one of the most severe complications in colorectal surgery. Previous studies have shown that the immune system response plays a significant role in the development of AL. In recent years, DAMPs (damage-associated molecular patterns) have been identified as cellular compounds with the ability to activate the immune system. The NLRP3 inflammasome plays an important role in the inflammatory responses which are mediated by DAMPs such as ATP, HSP proteins or uric acid crystals, when found in extracellular environments. Recent publications suggest that systemic concentration of DAMPs in patients with colorectal surgery may determine the inflammatory process and have a role in the occurrence of AL and other post-surgery complications. This review provides valuable knowledge about the current evidence supporting this hypothesis and highlights the possible role of these compounds in postoperative processes, which could open a new path to explore new strategies to prevent possible post-surgical complications.
Collapse
Affiliation(s)
- María José Caballero-Herrero
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Esther Jumilla
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Manuel Buitrago-Ruiz
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
| | - Graciela Valero-Navarro
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
- Surgical Research in Health Area, Institute of Biosanitary Research Pascual Parrilla (IMIB), Department of Surgery, Pediatrics, Obstetrics and Gynecology, University of Murcia, 30100 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| |
Collapse
|
31
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
32
|
Zhan X, Li Q, Xu G, Xiao X, Bai Z. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front Immunol 2023; 13:1109938. [PMID: 36741414 PMCID: PMC9889537 DOI: 10.3389/fimmu.2022.1109938] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is a cytosolic pattern recognition receptor (PRR) that recognizes multiple pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Once activated, NLRP3 initiates the inflammasome assembly together with the adaptor ASC and the effector caspase-1, leading to caspase-1 activation and subsequent cleavage of IL-1β and IL-18. Aberrant NLRP3 inflammasome activation is linked with the pathogenesis of multiple inflammatory diseases, such as cryopyrin-associated periodic syndromes, type 2 diabetes, non-alcoholic steatohepatitis, gout, and neurodegenerative diseases. Thus, NLRP3 is an important therapeutic target, and researchers are putting a lot of effort into developing its inhibitors. The review summarizes the latest advances in the mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiaohe Xiao, ; Zhaofang Bai,
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiaohe Xiao, ; Zhaofang Bai,
| |
Collapse
|
33
|
Xu Y, Biby S, Kaur B, Zhang S. A patent review of NLRP3 inhibitors to treat autoimmune diseases. Expert Opin Ther Pat 2023; 33:455-470. [PMID: 37470439 PMCID: PMC10440821 DOI: 10.1080/13543776.2023.2239502] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION NOD-like receptor family pyrin domain containing 3 (NLRP3) can sense a plethora of exogenous and endogenous dangers. Upon activation, a multimeric protein complex, the NLRP3 inflammasome, is formed to initiate the innate immune responses. Emerging studies have implicated the pathophysiological roles of this protein complex in human disorders, highlighting that it represents a druggable target for therapeutics development. AREAS COVERED The current review summarizes the functional facets of the NLRP3 inflammasome, its association with autoimmune diseases, and recent patents on the development of NLRP3 inhibitors. Literature search was conducted using SciFinder and Google Patents with the key word NLRP3 and NLRP3 inhibitors. EXPERT OPINION Although significant advances have been made in understanding the NLRP3 inflammasome, more studies are still needed to elucidate the molecular mechanisms underlying its roles in autoimmune diseases. A number of NLRP3 inhibitors have been patented, however, none of them have been approved for clinical use. Due to the complex nature of the NLRP3 inflammasome, novel screening assays along with target engagement methods could benefit the drug discovery and clinical translation. In addition, clinical trials on NLRP3 inhibitors are still in their early stages, and continuous investigations are needed to fully assess their safety and effectiveness.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Baljit Kaur
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
34
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
35
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
36
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
37
|
Brinkschulte R, Fußhöller DM, Hoss F, Rodríguez-Alcázar JF, Lauterbach MA, Kolbe CC, Rauen M, Ince S, Herrmann C, Latz E, Geyer M. ATP-binding and hydrolysis of human NLRP3. Commun Biol 2022; 5:1176. [PMID: 36329210 PMCID: PMC9633759 DOI: 10.1038/s42003-022-04120-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The innate immune system uses inflammasomal proteins to recognize danger signals and fight invading pathogens. NLRP3, a multidomain protein belonging to the family of STAND ATPases, is characterized by its central nucleotide-binding NACHT domain. The incorporation of ATP is thought to correlate with large conformational changes in NLRP3, leading to an active state of the sensory protein. Here we analyze the intrinsic ATP hydrolysis activity of recombinant NLRP3 by reverse phase HPLC. Wild-type NLRP3 appears in two different conformational states that exhibit an approximately fourteen-fold different hydrolysis activity in accordance with an inactive, autoinhibited state and an open, active state. The impact of canonical residues in the nucleotide binding site as the Walker A and B motifs and sensor 1 and 2 is analyzed by site directed mutagenesis. Cellular experiments show that reduced NLRP3 hydrolysis activity correlates with higher ASC specking after inflammation stimulation. Addition of the kinase NEK7 does not change the hydrolysis activity of NLRP3. Our data provide a comprehensive view on the function of conserved residues in the nucleotide-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activity. Analysis of the inflammasome-forming protein NLRP3 provides insights into the function of conserved residues in the ATP-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activation.
Collapse
Affiliation(s)
- Rebecca Brinkschulte
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - David M Fußhöller
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian Hoss
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Mario A Lauterbach
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Rauen
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr University Bochum, 44780, Bochum, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
38
|
Jenster LM, Lange KE, Normann S, vom Hemdt A, Wuerth JD, Schiffelers LD, Tesfamariam YM, Gohr FN, Klein L, Kaltheuner IH, Ebner S, Lapp DJ, Mayer J, Moecking J, Ploegh HL, Latz E, Meissner F, Geyer M, Kümmerer BM, Schmidt FI. P38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection. J Exp Med 2022; 220:213626. [PMID: 36315050 PMCID: PMC9623368 DOI: 10.1084/jem.20220837] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.
Collapse
Affiliation(s)
- Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Karl-Elmar Lange
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sabine Normann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D. Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Yonas M. Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian N. Gohr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Klein
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ines H. Kaltheuner
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dorothee J. Lapp
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jacob Mayer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonas Moecking
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Beate M. Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany,German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Florian I. Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany,Correspondence to Florian I. Schmidt:
| |
Collapse
|
39
|
Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med 2022; 9:927061. [PMID: 36204568 PMCID: PMC9530053 DOI: 10.3389/fcvm.2022.927061] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
Collapse
|
40
|
Pastorio C, Zech F, Noettger S, Jung C, Jacob T, Sanderson T, Sparrer KMJ, Kirchhoff F. Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2. Cell Host Microbe 2022; 30:1255-1268.e5. [PMID: 35931073 PMCID: PMC9289044 DOI: 10.1016/j.chom.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2 Omicron rapidly outcompeted other variants and currently dominates the COVID-19 pandemic. Its enhanced transmission and immune evasion are thought to be driven by numerous mutations in the Omicron Spike protein. Here, we systematically introduced BA.1 and/or BA.2 Omicron Spike mutations into the ancestral Spike protein and examined the impacts on Spike function, processing, and susceptibility to neutralization. Individual mutations of S371F/L, S375F, and T376A in the ACE2-receptor-binding domain as well as Q954H and N969K in the hinge region 1 impaired infectivity, while changes to G339D, D614G, N764K, and L981F moderately enhanced it. Most mutations in the N-terminal region and receptor-binding domain reduced the sensitivity of the Spike protein to neutralization by sera from individuals vaccinated with the BNT162b2 vaccine and by therapeutic antibodies. Our results represent a systematic functional analysis of Omicron Spike adaptations that have allowed this SARS-CoV-2 variant to dominate the current pandemic.
Collapse
Affiliation(s)
- Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; Electrochemical Energy Storage, Helmholtz-Institute-Ulm (HIU), 89081 Ulm, Germany; Karlsruhe Institute of Technology (KIT), 76344 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany.
| |
Collapse
|
41
|
Lin C, Jiang Z, Cao L, Zou H, Zhu X. Role of NLRP3 inflammasome in systemic sclerosis. Arthritis Res Ther 2022; 24:196. [PMID: 35974386 PMCID: PMC9380340 DOI: 10.1186/s13075-022-02889-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune rheumatic disease with high mortality, which is featured by inflammation, vascular damage, and aggressive fibrosis. To date, the pathogenesis of SSc remains unclear and effective treatments are still under research. Active NLRP3 recruits downstream proteins such as ASC and caspase-1 and assembles into inflammasome, resulting in excretion of inflammatory cytokines including IL-1β and IL-18, as well as in pyroptosis mediated by gasdermin D. Various studies demonstrated that NLRP3 inflammasome might be involved in the mechanism of tenosynovitis, arthritis, fibrosis, and vascular damage. The pathophysiological changes might be due to the activation of proinflammatory Th2 cells, profibrotic M2 macrophages, B cells, fibroblasts, and endothelial cells. Here, we review the studies focused on NLRP3 inflammasome activation, its association with innate and adaptive immune cells, endothelium injury, and differentiation of fibroblasts in SSc. Furthermore, we summarize the prospect of therapy targeting NLRP3 pathway.
Collapse
Affiliation(s)
- Cong Lin
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhixing Jiang
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ling Cao
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, 200040, China. .,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
43
|
Ma X, Di Q, Li X, Zhao X, Zhang R, Xiao Y, Li X, Wu H, Tang H, Quan J, Wu Z, Xiao W, Chen W. Munronoid I Ameliorates DSS-Induced Mouse Colitis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Via Modulation of NLRP3. Front Immunol 2022; 13:853194. [PMID: 35865528 PMCID: PMC9296101 DOI: 10.3389/fimmu.2022.853194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/07/2022] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are increasingly common diseases characterized by chronic and relapsing inflammation of the gastrointestinal tract. NLRP3 might be a crucial regulator of the homeostatic balance of the intestine, but its upregulation leads to pyroptosis. Munronoid I is extracted and purified from Munronia sinica, which has shown an anti-inflammatory effect, but the efficacy of Munronoid I in IBD remains unproven. In this study, we attempted to determine the effect of Munronoid I on NLRP3 to regulate the inflammasome activation and pyroptosis in IBD. Our data demonstrated that Munronoid I treatment attenuated DSS-induced body weight loss, pathological injury of the colon, the production of IL-1β and IL-18, and the expression of pyroptosis-associated proteins in colon tissue in mice. Moreover, Munronoid I inhibited LPS/ATP-induced pyroptosis in mouse peritoneal macrophages, MODE-K cells, and DSS-induced pyroptosis in mouse colonic epithelial cells, and decreased the release of inflammatory cytokines IL-1β and IL-18 in mouse peritoneal macrophages. Mechanically, Munronoid I could suppress the NLRP3 inflammasome activation and pyroptosis by promoting the K48-linked ubiquitination and NLRP3 degradation. It is suggested that Munronoid I might be a potential therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Xingyu Ma
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xibao Zhao
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Yue Xiao
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xunwei Li
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Han Wu
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, China
- *Correspondence: Weilie Xiao, ; Weilin Chen,
| | - Weilin Chen
- Marshall Laboratory of Biomedical Engineering, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
- *Correspondence: Weilie Xiao, ; Weilin Chen,
| |
Collapse
|
44
|
Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022; 22:397-413. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
45
|
Li Q, Zhang F, Lu Y, Hu H, Wang J, Guo C, Deng Q, Liao C, Wu Q, Hu T, Chen Z, Lu J. Highly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve phage display library. J Nanobiotechnology 2022; 20:231. [PMID: 35568912 PMCID: PMC9107221 DOI: 10.1186/s12951-022-01417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a re-emerged mosquito-borne alphavirus that can cause musculoskeletal diseases, imposing a substantial threat to public health globally. High-affinity antibodies are need for diagnosis and treatment of CHIKV infections. As a potential diagnostic and therapeutic agent, the multivalent VHH antibodies is a promising tookit in nanomedicine. Here, we developed potent multivalent VHH antibodies from an alpaca naïve phage display library targeting the E2 glycoprotein of the CHIKV virus. Results In the present study, we generated 20 VHH antibodies using a naïve phage display library for binders to the CHIKV E2 glycoprotein. Of these, multivalent VHH antibodies Nb-2E8 and Nb-3C5 had specific high-affinity binding to E2 protein within the nanomolar range. The equilibrium dissociation constant (KD) was between 2.59–20.7 nM, which was 100-fold stronger than the monovalent antibodies’ affinity. Moreover, epitope mapping showed that Nb-2E8 and Nb-3C5 recognized different linear epitopes located on the E2 glycoprotein domain C and A, respectively. A facile protocol of sandwich ELISA was established using BiNb-2E8 as a capture antibody and HRP-conjugated BiNb-3C5 as a detection antibody. A good linear correlation was achieved between the OD450 value and the E2 protein concentration in the 5–1000 ng/mL range (r = 0.9864, P < 0.0001), indicating its potential for quantitative detection of the E2 protein. Conclusions Compared to monovalent antibodies, multivalent VHH antibodies Nb-2E8 and Nb-3C5 showed high affinity and are potential candidates for diagnostic applications to better detect CHIKV virions in sera. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01417-6.
Collapse
Affiliation(s)
- Qianlin Li
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Fuqiang Zhang
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China
| | - Yi Lu
- Health Effects Institute, Boston, 02169, USA
| | - Huan Hu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jin Wang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qiang Deng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Qin Wu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Tingsong Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China.
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
47
|
Lin Y, Li Z, Wang Y, Tian T, Jia P, Ye Y, He M, Yang Z, Li C, Guo D, Hou P. CCDC50 suppresses NLRP3 inflammasome activity by mediating autophagic degradation of NLRP3. EMBO Rep 2022; 23:e54453. [PMID: 35343634 PMCID: PMC9066065 DOI: 10.15252/embr.202154453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The NLRP3-directed inflammasome complex is crucial for the host to resist microbial infection and monitor cellular damage. However, the hyperactivation of NLRP3 inflammasome is implicated in pathogenesis of inflammatory diseases, including inflammatory bowel disease (IBD). Autophagy and autophagy-related genes are closely linked to NLRP3-mediated inflammation in these inflammatory disorders. Here, we report that CCDC50, a novel autophagy cargo receptor, negatively regulates NLRP3 inflammasome assembly and suppresses the cleavage of pro-caspase-1 and interleukin 1β (IL-1β) release by delivering NLRP3 for autophagic degradation. Transcriptome analysis showed that knockdown of CCDC50 results in upregulation of signaling pathways associated with autoinflammatory diseases. CCDC50 deficiency leads to enhanced proinflammatory cytokine response triggered by a wide range of endogenous and exogenous NLRP3 stimuli. Ccdc50-deficient mice are more susceptible to dextran sulfate (DSS)-induced colitis and exhibit more severe gut inflammation with elevated NLRP3 inflammasome activity. These results illustrate the physiological significance of CCDC50 in the pathogenicity of inflammatory diseases, suggesting protective roles of CCDC50 in keeping gut inflammation under control.
Collapse
Affiliation(s)
- Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tian Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zixiao Yang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
48
|
Peste Des Petits Ruminants Virus N Protein Is a Critical Proinflammation Factor That Promotes MyD88 and NLRP3 Complex Assembly. J Virol 2022; 96:e0030922. [PMID: 35502911 DOI: 10.1128/jvi.00309-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses play a central role in host defense against invading pathogens. Peste des petits ruminants virus (PPRV) causes highly contagious acute or subacute disease of small ruminants. However, the precise mechanism by which PPRV regulates inflammatory responses remains unknown. Here, we revealed a novel mechanism by which PPRV induces inflammation. Our study showed that PPRV induced the secretion of interleukin 1β (IL-1β) by activating the NF-κB signaling pathway and the NLRP3 inflammasome. Moreover, PPRV replication and protein synthesis were essential for NLRP3 inflammasome activation. Importantly, PPRV N protein promoted NF-κB signaling pathway and NLRP3 inflammasome via direct binding of MyD88 and NLPR3, respectively, and induced caspase-1 cleavage and IL-1β maturation. Biochemically, N protein interacted with MyD88 to potentiate the assembly of MyD88 complex and interacted with NLPR3 to facilitate NLRP3 inflammasome complex assembly by forming an N-NLRP3-ASC ring-like structure, leading to IL-1β secretion. These findings demonstrate a new function of PPRV N protein as an important proinflammation factor and identify a novel underlying mechanism modulating inflammasome assembly and function induced by PPRV. IMPORTANCE An important part of the innate immune response is the activation of NF-κB signaling pathway and NLPR3 inflammasome, which is induced upon exposure to pathogens. Peste des petits ruminants virus (PPRV) is a highly contagious virus causing fever, stomatitis, and pneumoenteritis in goats by inducing many proinflammatory cytokines. Although the NF-κB signaling pathway and NLRP3 inflammasome play an important role in regulating host immunity and viral infection, the precise mechanism by which PPRV regulates inflammatory responses remains unknown. This study demonstrates that PPRV induces inflammatory responses. Mechanistically, PPRV N protein facilitates the MyD88 complex assembly by directly binding to MyD88 and promotes the NLRP3 inflammasome complex assembly by directly binding to NLRP3 to form ring-like structures of N-NLRP3-ASC. These findings provide insights into the prevention and treatment of PPRV infection.
Collapse
|
49
|
Nakanishi H, Yamada S, Kita J, Shinmura D, Hosokawa K, Sahara S, Misawa K. Auditory and Vestibular Characteristics of NLRP3 Inflammasome Related Autoinflammatory Disorders: Monogenic Hearing Loss Can Be Improved by Anti-interleukin-1 Therapy. Front Neurol 2022; 13:865763. [PMID: 35572943 PMCID: PMC9099043 DOI: 10.3389/fneur.2022.865763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are large multimeric protein complexes which regulate the activation of the proinflammatory cytokines interleukins-1β and−18 and inflammatory cell death called pyroptosis. NLRP1, NLRP3, NLRC4, AIM2, and pyrin can induce the formation of inflammasomes. Of these, the NLRP3 inflammasome is the most well-characterized. Recent studies revealed that variants of the NLRP3 gene cause genetic diseases, including systemic inflammatory syndrome called cryopyrin-associated periodic syndrome (CAPS) and non-syndromic sensorineural hearing loss DFNA34. NLRP3 variants cause CAPS and DFNA34 by constitutively activating the NLRP3 inflammasome and increasing IL-1β release. Patients with CAPS show systemic inflammatory symptoms, and hearing loss is a characteristic feature. Patients with CAPS and DFNA34 show progressive bilateral sensorineural hearing loss. Hearing loss has unique characteristics that can be improved or stabilized by anti-interluekin-1 therapy, although it is usually difficult to alleviate genetic hearing loss by drugs. However, it should be noted that there is a window of opportunity to respond to treatment, and younger patients are most likely to respond. It is important to know the characteristics of CAPS and DFNA34 for early diagnosis, and mutation analysis of NLRP3 will lead to a definite diagnosis. In this review, we summarize the current understanding of the mechanisms of the NLRP3 inflammasome and characteristics of patients with CAPS and DFNA34, especially focused on auditory and vestibular findings.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Hiroshi Nakanishi
| | - Satoshi Yamada
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Kita
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daichi Shinmura
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Hosokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sosuke Sahara
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Otorhinolaryngology, Numazu City Hospital, Numazu, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
50
|
Barclay WE, Aggarwal N, Deerhake ME, Inoue M, Nonaka T, Nozaki K, Luzum NA, Miao EA, Shinohara ML. The AIM2 inflammasome is activated in astrocytes during the late phase of EAE. JCI Insight 2022; 7:155563. [PMID: 35451371 PMCID: PMC9089781 DOI: 10.1172/jci.insight.155563] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here, we used multiple genetically modified mouse models to monitor activated inflammasomes in situ based on oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC) in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation during EAE was dependent on absent in melanoma 2 (AIM2), but low IL-1β release and no significant signs of cell death were found. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- William E. Barclay
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - M. Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Toshiaki Nonaka
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kengo Nozaki
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nathan A. Luzum
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward A. Miao
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|