1
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V, Maresca A. Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNA Lys. Mol Med 2022; 28:90. [PMID: 35922766 PMCID: PMC9347137 DOI: 10.1186/s10020-022-00519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. Methods We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. Results The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). Conclusions Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00519-z.
Collapse
Affiliation(s)
- Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Valentina Del Dotto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Concetta Valentina Tropeano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Largo Meneghetti 2, 3513, Padova, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
3
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
4
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
5
|
Fujimoto C, Yamasoba T. Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants (Basel) 2019; 8:E109. [PMID: 31022870 PMCID: PMC6523236 DOI: 10.3390/antiox8040109] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
- Department of Otolaryngology, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
6
|
Korzeniewski B. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. J Appl Physiol (1985) 2016; 121:424-37. [PMID: 27283913 DOI: 10.1152/japplphysiol.00358.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 01/04/2023] Open
Abstract
A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Yang L, Long Q, Liu J, Tang H, Li Y, Bao F, Qin D, Pei D, Liu X. Mitochondrial fusion provides an 'initial metabolic complementation' controlled by mtDNA. Cell Mol Life Sci 2015; 72:2585-98. [PMID: 25708700 PMCID: PMC11113443 DOI: 10.1007/s00018-015-1863-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Abstract
Heteroplasmic cells, harboring both mutant and normal mitochondrial DNAs (mtDNAs), must accumulate mutations to a threshold level before respiratory activity is affected. This phenomenon has led to the hypothesis of mtDNA complementation by inter-mitochondrial content mixing. The precise mechanisms of heteroplasmic complementation are unknown, but it depends both on the mtDNA nucleoid dynamics among mitochondria as well as the mitochondrial dynamics as influenced by mtDNA. We tracked nucleoids among the mitochondria in real time to show that they are shared after complete fusion but not 'kiss-and-run'. Employing a cell hybrid model, we further show that mtDNA-less mitochondria, which have little ATP production and extensive Opa1 proteolytic cleavage, exhibit weak fusion activity among themselves, yet remain competent in fusing with healthy mitochondria in a mitofusin- and OPA1-dependent manner, resulting in restoration of metabolic function. Depletion of mtDNA by overexpression of the matrix-targeted nuclease UL12.5 resulted in heterogeneous mitochondrial membrane potential (ΔΨm) at the organelle level in mitofusin-null cells but not in wild type. In this system, overexpression of mitofusins or application of the fusion-promoting drug M1 could partially rescue the metabolic damage caused by UL12.5. Interestingly, mtDNA transcription/translation is not required for normal mitochondria to restore metabolic function to mtDNA-less mitochondria by fusion. Thus, interplay between mtDNA and fusion capacity governs a novel 'initial metabolic complementation'.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Qi Long
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jinglei Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Haite Tang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yuxing Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Feixiang Bao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Dajiang Qin
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Xingguo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
8
|
Chen Y, Sparks M, Bhandari P, Matkovich SJ, Dorn GW. Mitochondrial genome linearization is a causative factor for cardiomyopathy in mice and Drosophila. Antioxid Redox Signal 2014; 21:1949-59. [PMID: 23909626 PMCID: PMC4208594 DOI: 10.1089/ars.2013.5432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIMS Mitofusin (Mfn)2 redundantly promotes mitochondrial outer membrane tethering and organelle fusion with Mfn1, and uniquely functions as the mitochondrial receptor for Parkin during PTEN-induced putative kinase 1 (PINK1)-Parkin-mediated mitophagy. Selective deletion of Mfn2 with retention of Mfn1 preserves mitochondrial fusion while rendering damaged mitochondria resistant to normal quality control culling mechanisms. Consequently, neuron and cardiomyocyte-specific Mfn2 gene ablation is associated with accumulation of damaged mitochondria and organ dysfunction. Here, we determined how mitochondrial DNA (mtDNA) damage contributes to cardiomyopathy in Mfn2-deficient hearts. RESULTS RNA sequencing of Mfn2-deficient hearts revealed increased expression of some nuclear-encoded mitochondrial genes, but mitochondrial-encoded transcripts were not upregulated in parallel and mtDNA content was decreased. Ultra-deep sequencing of mtDNA showed no increase in single nucleotide mutations, but copy number variations representing insertion-deletion (in-del) mutations were induced over time by cardiomyocyte-specific Mfn2 deficiency. Double-strand mtDNA breaks in the form of in-dels were confirmed by polymerase chain reaction, and in the form of linear mitochondrial genomes were identified by southern blot analysis. Linearization of Drosophila cardiomyocyte mtDNA using conditional cardiomyocyte-specific expression of mitochondrial targeted XhoI recapitulated the cardiomyopathy of Mfn2-deficient mouse hearts. INNOVATION This is the first description of mitochondrial genome linearization as a causative factor in cardiomyopathy. CONCLUSION One of the consequences of interrupting mitochondrial culling by the PINK1-Mfn2-Parkin mechanism is an increase in mtDNA double-stranded breaks, which adversely impact mitochondrial function and DNA replication.
Collapse
Affiliation(s)
- Yun Chen
- Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine , St. Louis, Missouri
| | | | | | | | | |
Collapse
|
9
|
McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. [PMID: 24499129 PMCID: PMC3853754 DOI: 10.1186/1743-7075-10-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 1, Research II, Room 120, Bremen D-28759, Germany.
| |
Collapse
|
10
|
|
11
|
Tranah GJ. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 2011; 10:238-52. [PMID: 20601194 DOI: 10.1016/j.arr.2010.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022]
Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear-mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
Collapse
|
12
|
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010; 141:280-9. [PMID: 20403324 DOI: 10.1016/j.cell.2010.02.026] [Citation(s) in RCA: 886] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/13/2009] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Abstract
Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010. [PMID: 20403324 DOI: 10.1016/j.cell.2010.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sikorska M, Sandhu JK, Simon DK, Pathiraja V, Sodja C, Li Y, Ribecco-Lutkiewicz M, Lanthier P, Borowy-Borowski H, Upton A, Raha S, Pulst SM, Tarnopolsky MA. Identification of ataxia-associated mtDNA mutations (m.4052T>C and m.9035T>C) and evaluation of their pathogenicity in transmitochondrial cybrids. Muscle Nerve 2009; 40:381-94. [PMID: 19626676 DOI: 10.1002/mus.21355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNA(Met) represented a polymorphism; however, 9035T>C conversion in the ATP6 gene was responsible for a defective F(0)-ATPase. Accordingly, mutant cybrids had a reduced oligomycin-sensitive ATP hydrolyzing activity. They had less than half of the steady-state content of ATP and nearly an 8-fold higher basal level of reactive oxygen species (ROS). Mutant cybrids were unable to cope with additional insults, i.e., glucose deprivation or tertiary-butyl hydroperoxide, and they succumbed to either apoptotic or necrotic cell death. Both of these outcomes were prevented by the antioxidants CoQ(10) and vitamin E, suggesting that the abnormally high levels of ROS were the triggers of cell death. In conclusion, the principal metabolic defects, i.e., energy deficiency and ROS burden, resulted from the 9035T>C mutation and could be responsible for the development of clinical symptoms in this family. Furthermore, antioxidant therapy might prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Marianna Sikorska
- Neurogenesis and Brain Repair Group M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Wong A, Cortopassi G. Mitochondrial Genetic Diseases. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Bacman SR, Atencio DP, Moraes CT. Decreased mitochondrial tRNALys steady-state levels and aminoacylation are associated with the pathogenic G8313A mitochondrial DNA mutation. Biochem J 2003; 374:131-6. [PMID: 12737626 PMCID: PMC1223569 DOI: 10.1042/bj20030222] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 04/10/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
Mutations in human mitochondrial tRNA genes cause a number of multisystemic disorders. A G-to-A transition at position 8313 (G8313A) transition in the mitochondrial tRNALys gene has been associated with a childhood syndrome characterized by gastrointestinal-system involvement and encephaloneuropathy. We have used transmitochondrial cybrid clones harbouring patient-derived mitochondrial DNA with the G8313A mutation for the study of the molecular pathogenesis. Our results showed that mutant mitochondrial cybrids respired poorly, and had severely defective mitochondrial protein synthesis and respiratory-chain-enzyme activity. Mutant cybrids also showed a marked decrease in tRNALys steady-state levels and aminoacylation, suggesting that these molecular abnormalities may underlie the pathogenesis of the mitochondrial G8313A mutation.
Collapse
Affiliation(s)
- Sandra R Bacman
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | |
Collapse
|
19
|
Abstract
The last decade has led to the identification of several mitochondrial DNA mutations associated with hearing loss. Since the only known function of the human mitochondrial chromosome is to participate in the production of chemical energy through oxidative phosphorylation, it was not unexpected that mitochondrial mutations interfering with energy production could cause systemic neuromuscular disorders, which have as one of their features hearing impairment. Surprisingly, however, inherited mitochondrial mutations also have been found to be a cause of non-syndromic hearing loss, and predispose to aminoglycoside induced hearing loss, while acquired mitochondrial mutations have been proposed as one of the causes of presbycusis. After a brief review of mitochondrial genetics, we will outline the different mitochondrial mutations associated with hearing loss, describe the audiological features, and discuss the clinical relevance of diagnosing these mutations. Clinical expression of these mitochondrial mutations is dependent on environmental exposures and nuclear-encoded modifier genes. Preventive and therapeutic strategies will depend on identification and avoidance of the environmental exposures, and the identification of the nuclear-encoded modifier genes. Experimental approaches to identify these modifier genes will be presented.
Collapse
Affiliation(s)
- Nathan Fischel-Ghodsian
- Department of Pediatrics, Steven Spielbert Pediatric Research Center, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
20
|
Tryoen-Tóth P, Richert S, Sohm B, Mine M, Marsac C, Van Dorsselaer A, Leize E, Florentz C. Proteomic consequences of a human mitochondrial tRNA mutation beyond the frame of mitochondrial translation. J Biol Chem 2003; 278:24314-23. [PMID: 12714596 DOI: 10.1074/jbc.m301530200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous severe neurodegenerative and neuromuscular disorders, characterized biochemically by strong perturbations in energy metabolism, are correlated with single point mutations in mitochondrial genes coding for transfer RNAs. Initial comparative proteomics performed on wild-type and Myoclonic Epilepsy and Ragged Red Fibers (MERRF) mitochondria from sibling human cybrid cell lines revealed the potential of this approach. Here a quantitative analysis of several hundred silver-stained spots separated by two-dimensional gel electrophoresis was performed in the specific case of a couple of mitochondria, containing or not mutation A8344G in the gene for mitochondrial tRNALys, correlated with MERRF syndrome. Computer-assisted analysis allowed us to detect 38 spots with significant quantitative variations, of which 20 could be assigned by mass spectrometry. These include nuclear encoded proteins located in mitochondria such as respiratory chain subunits, metabolic enzymes, a protein of the mitochondrial translation machinery, and cytosolic contaminants. Furthermore, Western blotting combined with mass spectrometry revealed the occurrence of numerous isoforms of pyruvate dehydrogenase subunits, with subtle changes in post-translational modifications. This comparative proteomic approach gives the first insight for nuclear encoded proteins that undergo the largest quantitative changes, and pinpoints new potential molecular partners involved in the cascade of events that connect genotype to phenotype.
Collapse
Affiliation(s)
- Petra Tryoen-Tóth
- UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 Rue René Descartes 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003; 370:751-62. [PMID: 12467494 PMCID: PMC1223225 DOI: 10.1042/bj20021594] [Citation(s) in RCA: 579] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 12/04/2002] [Accepted: 12/06/2002] [Indexed: 01/20/2023]
Abstract
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.
Collapse
Affiliation(s)
- Rodrigue Rossignol
- INSERM-EMI 9929, Physiologie mitochondriale, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux-cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Vielhaber S, Varlamov DA, Kudina TA, Schröder R, Kappes-Horn K, Elger CE, Seibel M, Seibel P, Kunz WS. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harboring the A3243G point mutation or large-scale deletions of mitochondrial DNA. J Neuropathol Exp Neurol 2002; 61:885-95. [PMID: 12387454 DOI: 10.1093/jnen/61.10.885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To assess the detailed expression pattern of mitochondrial-encoded proteins in skeletal muscle of patients with mitochondrial diseases we performed determinations of cytochrome content and enzyme activities of respiratory chain complexes of 12 patients harboring large-scale deletions and of 10 patients harboring the A3243G mutation. For large-scale deletions we observed a mutation gene dose-dependent linear decline of cytochrome aa3 content, cytochrome c oxidase (COX) activity, and complex I activity. The content of cytochromes b and the complex III activity was either not affected or only weakly affected by the deletion mutation and did not correlate to the degree of heteroplasmy. In contrast, in skeletal muscle harboring the A3243G mutation all investigated enzymes containing mitochondrial-encoded subunits were equally affected by the mutation, but we observed milder enzyme deficiencies at a comparable mutation gene dose. The results of single fiber analysis of selected biopsies supported these findings but revealed differences in the distribution of COX deficiency. Whereas predominantly type I fibers were affected in A3243G and deletion CPEO biopsies, we observed in MELAS and KSS biopsies higher quantities of COX-deficient type 2 fibers. Our findings indicate different pathomechanisms of deletion and A3243G mutations.
Collapse
Affiliation(s)
- Stefan Vielhaber
- Department of Epileptology, University Bonn Medical Center, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chapter 3 Molecular Genetic Basis of the Mitochondrial Encephalomyopathies. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-3419(09)70062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
25
|
Abstract
Diabetes mellitus is a collection of genetic diseases that share a common phenotype: glucose intolerance. The genetic origins of this disease are being widely investigated. An estimated 0.19% of the population with diabetes has the disorder owing to one or more mutations in the mitochondrial genome. Diet can affect the expression of the genome as well as the function of its gene products. The antioxidant nutrients serve to protect this very vulnerable genome from oxidative damage. These nutrients may affect mitochondrial DNA transcription and nutrients that affect membrane fluidity affect the function of the gene products.
Collapse
Affiliation(s)
- C D Berdanier
- Department of Foods and Nutrition, University of Georgia, Athens 30602, USA
| |
Collapse
|
26
|
Abstract
The first molecular defect for nonsyndromic hearing loss was identified in 1993, and was a mitochondrial mutation. Since then a number of inherited mitochondrial DNA (mtDNA) mutations have been implicated in hearing loss, and acquired mtDNA mutations have been proposed as one of the causes of the hearing loss associated with aging, presbyacusis. These molecular findings have raised as many questions as they have answered, however, since the pathophysiology between the mutations and the clinical phenotype remains poorly understood. This mini-review will, after a short background review of mitochondrial genetics, (1) outline the different mtDNA mutations associated with inherited syndromic, nonsyndromic, and ototoxic hearing loss, (2) summarize the data on acquired mtDNA mutations and their possible association with presbyacusis, (3) describe the biochemical consequences of the inherited mtDNA mutations, (4) suggest the clinical implications of the identification of these mutations, and (5) discuss the penetrance and tissue specificity of the hearing associated mtDNA mutations.
Collapse
Affiliation(s)
- N Fischel-Ghodsian
- Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| |
Collapse
|
27
|
Schröder R, Vielhaber S, Wiedemann FR, Kornblum C, Papassotiropoulos A, Broich P, Zierz S, Elger CE, Reichmann H, Seibel P, Klockgether T, Kunz WS. New insights into the metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle. J Neuropathol Exp Neurol 2000; 59:353-60. [PMID: 10888364 DOI: 10.1093/jnen/59.5.353] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to study putative genotype phenotype correlations in mitochondrial disorders due to large-scale mtDNA deletions we performed a quantitative analysis of biochemical, morphological, and genetic findings in 20 patients. The size of the mtDNA deletions varied from 2 to 7.5 kb with a degree of heteroplasmy ranging from 16% to 78%. Applying improved methods for measuring respiratory chain enzyme activities, we found highly significant inverse correlations between the percentage of cytochrome c oxidase (COX)- negative fibers and citrate synthase (CS) normalized COX ratios. Significant correlations were also established between CS normalized complex I and complex IV ratios as well as between the degree of heteroplasmy of mtDNA deletions and the percentage of ragged red fibers, COX-negative fibers, and CS normalized complex I and complex IV ratios. Our results indicate that the degree of heteroplasmy of mtDNA deletions is mirrored on the histological as well as the biochemical level. Furthermore, our findings suggest that single large-scale deletions equally influence the activities of all mitochondrially encoded respiratory chain enzymes. Even low degrees of heteroplasmy of mtDNA deletions were found to result in biochemical abnormalities indicating the absence of any well-defined mtDNA deletion threshold in skeletal muscle.
Collapse
MESH Headings
- Adolescent
- Adult
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/metabolism
- Female
- Gene Deletion
- Humans
- Kearns-Sayre Syndrome/genetics
- Kearns-Sayre Syndrome/metabolism
- Kearns-Sayre Syndrome/pathology
- Kearns-Sayre Syndrome/physiopathology
- Male
- Middle Aged
- Mitochondria, Muscle/genetics
- Mitochondrial Myopathies/enzymology
- Mitochondrial Myopathies/genetics
- Mitochondrial Myopathies/pathology
- Mitochondrial Myopathies/physiopathology
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Ophthalmoplegia, Chronic Progressive External/enzymology
- Ophthalmoplegia, Chronic Progressive External/genetics
- Ophthalmoplegia, Chronic Progressive External/pathology
- Ophthalmoplegia, Chronic Progressive External/physiopathology
Collapse
Affiliation(s)
- R Schröder
- Department of Neurology, University Bonn Medical Center, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 2000; 347 Pt 1:45-53. [PMID: 10727400 PMCID: PMC1220929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Metabolic control analysis has often been used for quantitative studies of the regulation of mitochondrial oxidative phosphorylations (OXPHOS). The main contribution of this work has been to show that the control of mitochondrial metabolic fluxes can be shared among several steps of the oxidative phosphorylation process, and that this distribution can vary according to the steady state and the tissue. However, these studies do not show whether this observed variation in the OXPHOS control is due to the experimental conditions or to the nature of the mitochondria. To find out if there actually exists a tissue variation in the distribution of OXPHOS control coefficients, we determined the control coefficients of seven OXPHOS complexes on the oxygen-consumption flux in rat mitochondria isolated from five different tissues under identical experimental conditions. Thus in this work, only the nature of the mitochondria can be responsible for any variation detected in the control coefficient values between different tissues. The analysis of control coefficient distribution shows two tissue groups: (i) the muscle and the heart, controlled essentially at the level of the respiratory chain; and (ii) the liver, the kidney and the brain, controlled mainly at the phosphorylation level by ATP synthase and the phosphate carrier. We propose that this variation in control coefficient according to the tissue origin of the mitochondria can explain part of the tissue specificity observed in mitochondrial cytopathies.
Collapse
Affiliation(s)
- R Rossignol
- INSERM EMI 99-29, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux-cedex, France
| | | | | | | | | |
Collapse
|
29
|
Wiedemann FR, Vielhaber S, Schröder R, Elger CE, Kunz WS. Evaluation of methods for the determination of mitochondrial respiratory chain enzyme activities in human skeletal muscle samples. Anal Biochem 2000; 279:55-60. [PMID: 10683230 DOI: 10.1006/abio.1999.4434] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The quantification of mitochondrial enzyme activities in skeletal muscle samples of patients suspected of having mitochondrial myopathies is problematic. Therefore, we have evaluated different methods for the determination of activities cytochrome c oxidase and NADH:CoQ oxidoreductase in human skeletal muscle samples. The measurement of cytochrome c oxidase activity in the presence of 200 microM ferrocytochrome c and the detection of NADH:CoQ oxidoreductase as rotenone-sensitive NADH:CoQ(1) reductase resulted in comparable citrate synthase-normalized respiratory chain enzyme activities of both isolated mitochondria and homogenates from control human skeletal muscle samples. These methods allowed the precise detection of deficiencies of respiratory chain enzymes in skeletal muscle of two patients harboring only 20 and 27% of deleted mitochondrial DNA, respectively. Therefore, citrate synthase-normalized respiratory chain activities can serve as stable reference values for the determination of a putative mitochondrial defect in human skeletal muscle.
Collapse
Affiliation(s)
- F R Wiedemann
- Department of Epileptology, Department of Neurology, University Bonn Medical Center, Sigmund-Freud-Strasse 25, Bonn, D-53105, Germany
| | | | | | | | | |
Collapse
|
30
|
Rossignol R, Malgat M, Mazat JP, Letellier T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J Biol Chem 1999; 274:33426-32. [PMID: 10559224 DOI: 10.1074/jbc.274.47.33426] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial cytopathies present a tissue specificity characterized by the fact that even if a mitochondrial DNA mutation is present in all tissues, only some will be affected and induce a pathology. Several mechanisms have been proposed to explain this phenomenon such as the appearance of a sporadic mutation in a given stem cell during embryogenesis or mitotic segregation, giving different degrees of heteroplasmy in tissues. However, these mechanisms cannot be the only ones involved in tissue specificity. In this paper, we propose an additional mechanism contributing to tissue specificity. It is based on the metabolic expression of the defect in oxidative phosphorylation (OXPHOS) complexes that can present a biochemical threshold. The value of this threshold for a given OXPHOS complex can vary according to the tissue; thus different tissues will display different sensitivities to a defect in an OXPHOS complex. To verify this hypothesis and to illustrate the pathological consequences of the variation in biochemical thresholds, we studied their values for seven OXPHOS complexes in mitochondria isolated from five different rat tissues. Two types of behavior in the threshold curves can be distinguished corresponding to two modes of OXPHOS response to a deficiency. We propose a classification of tissues according to their type of OXPHOS response to a complex deficiency and therefore to their threshold values.
Collapse
Affiliation(s)
- R Rossignol
- INSERM-EMI 9929, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
31
|
Abstract
Mitochondrial respiratory chain disorders are an established cause of liver failure in early childhood but they are probably under-diagnosed, partly due to under-recognition and partly due to the difficulty of investigation. It is particularly important to look for mitochondrial disorders if the liver disease presents with hypoglycaemia and lactic acidaemia or if it is accompanied by neurological, muscle or renal tubular abnormalities. Respiratory chain defects have been demonstrated in a number of patients who die of liver failure following severe epilepsy; this includes at least some cases of Alpers syndrome or 'progressive neuronal degeneration of childhood'. In mitochondrial liver disease, histology usually shows steatosis, often accompanied by fibrosis, cholestasis and loss of hepatocytes. Unless the clinical picture suggests a particular syndrome, such as Pearson syndrome, biochemical assays and histochemistry should be the initial investigations. Ideally, investigations should be carried out on liver as well as more standard tissues, such as muscle, since defects can be tissue-specific. Nuclear defects and mtDNA point mutations are probably responsible for many cases of mitochondrial liver disease but, as yet, the only identified molecular abnormalities are mtDNA rearrangements and mtDNA depletion. Treatment of mitochondrial liver disease is unsatisfactory. If the disease is confined to the liver, transplantation may be appropriate but in several patients transplantation has been followed by the appearance of disease in other organs, particularly the brain.
Collapse
Affiliation(s)
- A A Morris
- Department of Child Health, University of Newcastle Upon Tyne, Royal Victoria Infirmary, Newcastle, UK
| |
Collapse
|
32
|
Antonická H, Floryk D, Klement P, Stratilová L, Hermanská J, Houstková H, Kalous M, Drahota Z, Zeman J, Houstek J. Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres ('MERRF') at position 8344 nt. Biochem J 1999; 342 Pt 3:537-44. [PMID: 10477264 PMCID: PMC1220494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We have investigated pathogenic effects of the tRNA(Lys) A8344G mutation associated with the syndrome myoclonus epilepsy with ragged-red fibres (MERRF) by using fibroblasts and fibroblast-derived cytoplasmic hybrid cells harbouring different percentages of mutated mitochondrial DNA (mtDNA). The activity of cytochrome c oxidase (COX) in patient fibroblasts with 89% mutated mtDNA was decreased to 20% of the control levels. COX exhibited altered kinetics, with a decreased V(max) for both the low-affinity and high-affinity phases; however, the K(m) values were not significantly changed. The substrate-dependent synthesis of ATP was decreased to 50% of the control. Analysis of the mitochondrial membrane potential, DeltaPsi, in digitonin-treated cells with tetramethylrhodamine methyl ester (TMRM) with the use of flow cytometry showed a 80% decrease in DeltaPsi at state 4 and an increased sensitivity of DeltaPsi to an uncoupler in fibroblasts from the patient. The investigation of transmitochondrial cytoplasmic hybrid clones derived from the patient's fibroblasts enabled us to characterize the relationship between heteroplasmy of the MERRF mutation, COX activity and DeltaPsi. Within the range of 87-73% mutated mtDNA, COX activity was decreased to 5-35% and DeltaPsi was decreased to 6-78%. These results demonstrate that the MERRF mutation affects COX activity and DeltaPsi in different proportions with regard to mutation heteroplasmy and indicate that the biochemical manifestation of the MERRF mutation exerts a very steep threshold of DeltaPsi inhibition.
Collapse
Affiliation(s)
- H Antonická
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague and Department of Pediatrics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Heddi A, Stepien G, Benke PJ, Wallace DC. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 1999; 274:22968-76. [PMID: 10438462 DOI: 10.1074/jbc.274.33.22968] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have examined the transcript levels of a variety of oxidative phosphorylation (OXPHOS) and associated bioenergetic genes in tissues of a patient carrying the myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) A3243G mitochondrial DNA (mtDNA) mutation and the skeletal muscles of 14 patients harboring other pathogenic mtDNA mutations. The patients' tissues, which harbored 88% or more mutant mtDNA, had increased levels of mtDNA transcripts, increased nuclear OXPHOS gene transcripts including the ATP synthase beta subunit and the heart-muscle isoform of the adenine nucleotide translocator, and increased ancillary gene transcripts including muscle mitochondrial creatine phosphokinase, muscle glycogen phosphorylase, hexokinase I, muscle phosphofructokinase, the E1alpha subunit of pyruvate dehydrogenase, and the ubiquinone oxidoreductase. A similar coordinate induction of bioenergetic genes was observed in the muscle biopsies of severe pathologic mtDNA mutations. The more significant coordinated expression was found in muscle from patients with the MELAS, myoclonic epilepsy with ragged red fibers, and chronic progressive external ophthalmoplegia deletion syndromes, with ragged red muscle fibers and mitochondrial paracrystalline inclusions. High levels of mutant mtDNAs were linked to a high induction of the mtDNA and nuclear OXPHOS genes and of several associated bioenergetic genes. These observations suggest that human tissues attempt to compensate for OXPHOS defects associated with mtDNA mutations by stimulating mitochondrial biogenesis, possibly mediated through redox-sensitive transcription factors.
Collapse
Affiliation(s)
- A Heddi
- Department of Genetics and Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
34
|
Mansergh FC, Millington-Ward S, Kennan A, Kiang AS, Humphries M, Farrar GJ, Humphries P, Kenna PF. Retinitis pigmentosa and progressive sensorineural hearing loss caused by a C12258A mutation in the mitochondrial MTTS2 gene. Am J Hum Genet 1999; 64:971-85. [PMID: 10090882 PMCID: PMC1377821 DOI: 10.1086/302344] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Family ZMK is a large Irish kindred that segregates progressive sensorineural hearing loss and retinitis pigmentosa. The symptoms in the family are almost identical to those observed in Usher syndrome type III. Unlike that in Usher syndrome type III, the inheritance pattern in this family is compatible with dominant, X-linked dominant, or maternal inheritance. Prior linkage studies had resulted in exclusion of most candidate loci and >90% of the genome. A tentative location for a causative nuclear gene had been established on 9q; however, it is notable that no markers were found at zero recombination with respect to the disease gene. The marked variability in symptoms, together with the observation of subclinical muscle abnormalities in a single muscle biopsy, stimulated sequencing of the entire mtDNA in affected and unaffected individuals. This revealed a number of previously reported polymorphisms and/or silent substitutions. However, a C-->A transversion at position 12258 in the gene encoding the second mitochondrial serine tRNA, MTTS2, was heteroplasmic and was found in family members only. This sequence change was not present in 270 normal individuals from the same ethnic background. The consensus C at this position is highly conserved and is present in species as divergent from Homo sapiens as vulture and platypus. The mutation probably disrupts the amino acid-acceptor stem of the tRNA molecule, affecting aminoacylation of the tRNA and thereby reducing the efficiency and accuracy of mitochondrial translation. In summary, the data presented provide substantial evidence that the C12258A mtDNA mutation is causative of the disease phenotype in family ZMK.
Collapse
Affiliation(s)
- F C Mansergh
- Wellcome Ocular Genetics Unit, Genetics Department, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- S A Knight
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | | | |
Collapse
|
36
|
Abstract
It is nearly a decade since the discovery of the first mutations in mitochondrial DNA associated with mitochondrial encephalomyopathy, and the pace of discovery of new mitochondrial DNA mutations continues unabated. Nuclear gene defects in these disorders have been more difficult to identify; only one is known, but others have been mapped by linkage analysis. The rules governing transmission and segregation of mitochondrial DNA sequence variants are beginning to be unravelled and progress has been made in understanding genotype-phenotype relationships and elucidating mechanisms of pathogenesis.
Collapse
|
37
|
Poulton J, Macaulay V, Marchington DR. Mitochondrial genetics '98 is the bottleneck cracked? Am J Hum Genet 1998; 62:752-7. [PMID: 9529369 PMCID: PMC1377049 DOI: 10.1086/301811] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J Poulton
- Department of Paediatrics, University of Oxford, Oxford, OX3 0PDU, United Kingdom
| | | | | |
Collapse
|