1
|
Panchalingam S, Jayaraman M, Jeyaraman J, Kasivelu G. Harnessing marine natural products to inhibit PAD4 triple mutant: A structure-based virtual screening approach for rheumatoid arthritis therapy. Arch Biochem Biophys 2024; 761:110164. [PMID: 39326772 DOI: 10.1016/j.abb.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Peptidylarginine deiminase type4 (PAD4) is a pivotal pro-inflammatory protein within the human immune system, intricately involved in both inflammatory processes and immune responses. Its role extends to the generation of diverse immune cell types, including T cells, B cells, natural killer cells, and dendritic cells. PAD4 has recently garnered attention due to its association with a spectrum of inflammatory and autoimmune disorders, notably rheumatoid arthritis (RA). Mutations in the PAD4 gene, leading to the conversion of arginine to citrulline, have emerged as significant factors in the pathogenesis of RA and related conditions. As a calcium-dependent enzyme, PAD4 is central to the citrullination process, a crucial post-translational modification implicated in disease pathophysiology. Its critical role in autoimmune disorders and inflammation makes PAD4 a prime candidate for therapeutic intervention in RA. Inhibiting PAD4 presents a promising avenue for mitigating inflammatory responses and curtailing joint degradation and impairment. To explore its therapeutic potential, a structure-based virtual screening (SBVS) approach was employed, harnessing an array of marine natural products (MNPs) sourced from databases such as CMNPD, MNPD, and Seaweed. Notably, MNPD10752, CMNPD12680, and CMNPD2751 emerged as potential hit molecules, exhibiting adherence to essential pharmacokinetic properties and favorable toxicity profiles. Quantum mechanics studies using density functional theory (DFT) calculations revealed the inhibitory potential of these identified natural products. Further structural elucidation through molecular dynamics simulations (MDS) and principal component-based free energy landscape (FEL) analysis shed light on the stability of MNP-bound PAD4 complexes. In conclusion, this computational study serves as a stepping stone for further experimental evaluation, aiming to explore the potential of MNPs in addressing PAD4-related human pathologies.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, 600 119, Tamil Nadu, India
| | - Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, 600 119, Tamil Nadu, India.
| |
Collapse
|
2
|
Asif M, Asif A, Rahman UA, Haseeb A, Jafar U, Farooq H. Efficacy and safety of abatacept in preclinical rheumatoid arthritis: A systematic review and meta-analysis of randomized controlled trials. Semin Arthritis Rheum 2024; 69:152562. [PMID: 39393109 DOI: 10.1016/j.semarthrit.2024.152562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE Abatacept is a biological DMARD that has been used for the treatment of rheumatoid arthritis. However, the literature on its use in preclinical Rheumatoid arthritis (RA) is limited. We conducted this meta-analysis to evaluate the safety and efficacy of abatacept in preclinical RA. STUDY DESIGN This meta-analysis intends to assess the effectiveness and safety of abatacept in persons who are at a high risk of developing rheumatoid arthritis (RA) during the pre-clinical phase. The analysis comprises of three randomized controlled trials (RCTs) involving atotal of 367 participants. The study follows the procedures specified in the Cochrane Handbook for Systematic Reviews of Interventions and the PRISMA statemen RESULTS: The meta-analysis found that abatacept significantly reduced the risk of developing RA compared to placebo (RR: 0.67; 95 % CI: 0.51 to 0.89; P = 0.006) and improved tender joint count (SMD: -0.40; 95 % CI: -0.63 to -0.18; P = 0.0004). Additionally, abatacept demonstrated a significant reduction in functional disability (SMD: -1.51; 95 % CI: -1.91 to -1.11; P < 0.00001), though no significant difference was observed in pain reduction. Safety analysis revealed no significant differences in the occurrence of infections, malignancy, or discontinuation due to adverse events between the abatacept and placebo groups. CONCLUSION Abatacept is a promising treatment option for slowing down the development of RA in people who are at high risk. It has a positive safety profile. Additional studies with extended follow-up periods are required to validate these findings and offer more substantial data.
Collapse
Affiliation(s)
- Maheen Asif
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan.
| | - Aliza Asif
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Ummi Aiman Rahman
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Abdullah Haseeb
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Uzair Jafar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
3
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
4
|
Akamatsu K, Golzari S, Amariuta T. Powerful mapping of cis-genetic effects on gene expression across diverse populations reveals novel disease-critical genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24314410. [PMID: 39399015 PMCID: PMC11469471 DOI: 10.1101/2024.09.25.24314410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
While disease-associated variants identified by genome-wide association studies (GWAS) most likely regulate gene expression levels, linking variants to target genes is critical to determining the functional mechanisms of these variants. Genetic effects on gene expression have been extensively characterized by expression quantitative trait loci (eQTL) studies, yet data from non-European populations is limited. This restricts our understanding of disease to genes whose regulatory variants are common in European populations. While previous work has leveraged data from multiple populations to improve GWAS power and polygenic risk score (PRS) accuracy, multi-ancestry data has not yet been used to better estimate cis-genetic effects on gene expression. Here, we present a new method, Multi-Ancestry Gene Expression Prediction Regularized Optimization (MAGEPRO), which constructs robust genetic models of gene expression in understudied populations or cell types by fitting a regularized linear combination of eQTL summary data across diverse cohorts. In simulations, our tool generates more accurate models of gene expression than widely-used LASSO and the state-of-the-art multi-ancestry PRS method, PRS-CSx, adapted to gene expression prediction. We attribute this improvement to MAGEPRO's ability to more accurately estimate causal eQTL effect sizes (p < 3.98 × 10-4, two-sided paired t-test). With real data, we applied MAGEPRO to 8 eQTL cohorts representing 3 ancestries (average n = 355) and consistently outperformed each of 6 competing methods in gene expression prediction tasks. Integration with GWAS summary statistics across 66 complex traits (representing 22 phenotypes and 3 ancestries) resulted in 2,331 new gene-trait associations, many of which replicate across multiple ancestries, including PHTF1 linked to white blood cell count, a gene which is overexpressed in leukemia patients. MAGEPRO also identified biologically plausible novel findings, such as PIGB, an essential component of GPI biosynthesis, associated with heart failure, which has been previously evidenced by clinical outcome data. Overall, MAGEPRO is a powerful tool to enhance inference of gene regulatory effects in underpowered datasets and has improved our understanding of population-specific and shared genetic effects on complex traits.
Collapse
Affiliation(s)
- Kai Akamatsu
- School of Biological Sciences, UC San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Biomedical Informatics, UC San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, UC San Diego, La Jolla, CA, USA
| | - Stephen Golzari
- Department of Medicine, Division of Biomedical Informatics, UC San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, UC San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Tiffany Amariuta
- Department of Medicine, Division of Biomedical Informatics, UC San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Bashir U, Singh G, Bhatia A. Rheumatoid arthritis-recent advances in pathogenesis and the anti-inflammatory effect of plant-derived COX inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5363-5385. [PMID: 38358467 DOI: 10.1007/s00210-024-02982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The majority of people with autoimmune disorders, including those with rheumatoid arthritis, osteoarthritis, and tendonitis report pain, stiffness, and inflammation as major contributors to their worse quality of life in terms of overall health. Of all the available treatment options, COX inhibitors are the ones that are utilized most frequently to ease the symptoms. Various signaling cascades have been reported to be involved in the pathogenesis of rheumatoid arthritis which includes JAK/STAT, MAPK, and NF-kB signaling pathways, and several allopathic inhibitors (tofacitinib and baricitinib) have been reported to target the components of these cascades and have received approval for RA treatment. However, the prolonged use of these COX inhibitors and other allopathic drugs can pose serious health challenges due to their significant side effects. Therefore, searching for a more effective and side effect-free treatment for rheumatoid arthritis has unveiled phytochemicals as both productive and promising. Their therapeutic ability helps develop potent and safe drugs targeting immune-inflammatory diseases including RA. Various scientific databases were used for searching articles such as NCBI, SpringerLink, BioMed Central, ResearchGate, Google Scholar, Scopus, Nature, Wiley Online Library, and ScienceDirect. This review lists various phytochemicals and discusses their potential molecular targets in RA treatment, as demonstrated by various in vitro, in vivo (pre-clinical), and clinical studies. Several pre-clinical and clinical studies suggest that various phytochemicals can be an alternative promising intervention for attenuating and managing inflammation-associated pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ubaid Bashir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurjant Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
6
|
Santiago-Lamelas L, Dos Santos-Sobrín R, Carracedo Á, Castro-Santos P, Díaz-Peña R. Utility of polygenic risk scores to aid in the diagnosis of rheumatic diseases. Best Pract Res Clin Rheumatol 2024:101973. [PMID: 38997822 DOI: 10.1016/j.berh.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rheumatic diseases (RDs) are characterized by autoimmunity and autoinflammation and are recognized as complex due to the interplay of multiple genetic, environmental, and lifestyle factors in their pathogenesis. The rapid advancement of genome-wide association studies (GWASs) has enabled the identification of numerous single nucleotide polymorphisms (SNPs) associated with RD susceptibility. Based on these SNPs, polygenic risk scores (PRSs) have emerged as promising tools for quantifying genetic risk in this disease group. This chapter reviews the current status of PRSs in assessing the risk of RDs and discusses their potential to improve the accuracy of the diagnosis of these complex diseases through their ability to discriminate among different RDs. PRSs demonstrate a high discriminatory capacity for various RDs and show potential clinical utility. As GWASs continue to evolve, PRSs are expected to enable more precise risk stratification by integrating genetic, environmental, and lifestyle factors, thereby refining individual risk predictions and advancing disease management strategies.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Dos Santos-Sobrín
- Reumatología, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
7
|
van der Woude D, Toes REM. Immune response to post-translationally modified proteins in rheumatoid arthritis: what makes it special? Ann Rheum Dis 2024; 83:838-846. [PMID: 38378236 DOI: 10.1136/ard-2023-224103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) exhibits common characteristics with numerous other autoimmune diseases, including the presence of susceptibility genes and the presence of disease-specific autoantibodies. Anti-citrullinated protein antibodies (ACPA) are the hallmarking autoantibodies in RA and the anti-citrullinated protein immune response has been implicated in disease pathogenesis. Insight into the immunological pathways leading to anti-citrullinated protein immunity will not only aid understanding of RA pathogenesis, but may also contribute to elucidation of similar mechanisms in other autoantibody-positive autoimmune diseases. Similarly, lessons learnt in other human autoimmune diseases might be relevant to understand potential drivers of RA. In this review, we will summarise several novel insights into the biology of the anti-citrullinated protein response and their clinical associations that have been obtained in recent years. These insights include the identification of glycans in the variable domain of ACPA, the realisation that ACPA are polyreactive towards other post-translational modifications on proteins, as well as new awareness of the contributing role of mucosal sites to the development of the ACPA response. These findings will be mirrored to emerging concepts obtained in other human (autoimmune) disease characterised by disease-specific autoantibodies. Together with an updated understanding of genetic and environmental risk factors and fresh perspectives on how the microbiome could contribute to antibody formation, these advancements coalesce to a progressively clearer picture of the B cell reaction to modified antigens in the progression of RA.
Collapse
Affiliation(s)
| | - René E M Toes
- Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
8
|
Hall C, Pleasance J, Hickman O, Kirkham B, Panayi GS, Eggleton P, Corrigall VM. The Biologic IRL201805 Alters Immune Tolerance Leading to Prolonged Pharmacodynamics and Efficacy in Rheumatoid Arthritis Patients. Int J Mol Sci 2024; 25:4394. [PMID: 38673979 PMCID: PMC11049849 DOI: 10.3390/ijms25084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1β; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1β production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.
Collapse
Affiliation(s)
- Christopher Hall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Jill Pleasance
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Oliver Hickman
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Bruce Kirkham
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Gabriel S. Panayi
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | | | - Valerie M. Corrigall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
- Revolo Biotherapeutics, London SE1 9AP, UK
| |
Collapse
|
9
|
Dudek G, Sakowski S, Brzezińska O, Sarnik J, Budlewski T, Dragan G, Poplawska M, Poplawski T, Bijak M, Makowska J. Machine learning-based prediction of rheumatoid arthritis with development of ACPA autoantibodies in the presence of non-HLA genes polymorphisms. PLoS One 2024; 19:e0300717. [PMID: 38517871 PMCID: PMC10959370 DOI: 10.1371/journal.pone.0300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
Machine learning (ML) algorithms can handle complex genomic data and identify predictive patterns that may not be apparent through traditional statistical methods. They become popular tools for medical applications including prediction, diagnosis or treatment of complex diseases like rheumatoid arthritis (RA). RA is an autoimmune disease in which genetic factors play a major role. Among the most important genetic factors predisposing to the development of this disease and serving as genetic markers are HLA-DRB and non-HLA genes single nucleotide polymorphisms (SNPs). Another marker of RA is the presence of anticitrullinated peptide antibodies (ACPA) which is correlated with severity of RA. We use genetic data of SNPs in four non-HLA genes (PTPN22, STAT4, TRAF1, CD40 and PADI4) to predict the occurrence of ACPA positive RA in the Polish population. This work is a comprehensive comparative analysis, wherein we assess and juxtapose various ML classifiers. Our evaluation encompasses a range of models, including logistic regression, k-nearest neighbors, naïve Bayes, decision tree, boosted trees, multilayer perceptron, and support vector machines. The top-performing models demonstrated closely matched levels of accuracy, each distinguished by its particular strengths. Among these, we highly recommend the use of a decision tree as the foremost choice, given its exceptional performance and interpretability. The sensitivity and specificity of the ML models is about 70% that are satisfying. In addition, we introduce a novel feature importance estimation method characterized by its transparent interpretability and global optimality. This method allows us to thoroughly explore all conceivable combinations of polymorphisms, enabling us to pinpoint those possessing the highest predictive power. Taken together, these findings suggest that non-HLA SNPs allow to determine the group of individuals more prone to develop RA rheumatoid arthritis and further implement more precise preventive approach.
Collapse
Affiliation(s)
- Grzegorz Dudek
- Electrical Engineering Faculty, Czestochowa University of Technology, Czestochowa, Poland
- Faculty of Mathematics and Computer Science, University of Lodz, Lodz, Poland
- Centre for Data Analysis, Modelling and Computational Sciences, University of Lodz, Lodz, Poland
| | - Sebastian Sakowski
- Faculty of Mathematics and Computer Science, University of Lodz, Lodz, Poland
- Centre for Data Analysis, Modelling and Computational Sciences, University of Lodz, Lodz, Poland
| | - Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Dragan
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Marta Poplawska
- Biobank, Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
11
|
Nava-Quiroz KJ, López-Flores LA, Pérez-Rubio G, Rojas-Serrano J, Falfán-Valencia R. Peptidyl Arginine Deiminases in Chronic Diseases: A Focus on Rheumatoid Arthritis and Interstitial Lung Disease. Cells 2023; 12:2829. [PMID: 38132149 PMCID: PMC10741699 DOI: 10.3390/cells12242829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Luis A. López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
12
|
Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet 2023; 402:2019-2033. [PMID: 38240831 DOI: 10.1016/s0140-6736(23)01525-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 01/23/2024]
Abstract
Rheumatoid arthritis is a chronic, systemic, autoimmune inflammatory disease that mainly affects the joints and periarticular soft tissues. In this Seminar, we provide an overview of the main aspects of rheumatoid arthritis. Epidemiology and advances in the understanding of rheumatoid arthritis pathogenesis will be reviewed. We will discuss the clinical manifestations of rheumatoid arthritis, classification criteria, and the value of imaging in the diagnosis of the disease. The advent of new medications and the accumulated scientific evidence demand continuous updating regarding the diagnosis and management, including therapy, of rheumatoid arthritis. An increasing number of patients are now able to reach disease remission. This major improvement in the outcome of patients with rheumatoid arthritis has been determined by a combination of different factors (eg, early diagnosis, window of opportunity, treat-to-target strategy, advent of targeted disease-modifying antirheumatic drugs, and combination therapy). We will discuss the updated recommendations of the two most influential societies for rheumatology worldwide (ie, the American College of Rheumatology and European Alliance of Associations for Rheumatology) for the management of rheumatoid arthritis. Furthermore, controversies (ie, the role of glucocorticoids in the management of rheumatoid arthritis and safety profile of Janus kinase inhibitors) and outstanding research questions, including precision medicine approach, prevention, and cure of rheumatoid arthritis will be highlighted.
Collapse
Affiliation(s)
- Andrea Di Matteo
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Carlo Urbani Hospital, Jesi, Ancona, Italy; NIHR Biomedical Research Centre, Leeds Teaching Hospitals Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Joan M Bathon
- Division of Rheumatology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Paul Emery
- NIHR Biomedical Research Centre, Leeds Teaching Hospitals Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
13
|
Nava-Quiroz KJ, Rojas-Serrano J, Pérez-Rubio G, Buendia-Roldan I, Mejía M, Fernández-López JC, Rodríguez-Henríquez P, Ayala-Alcantar N, Ramos-Martínez E, López-Flores LA, Del Ángel-Pablo AD, Falfán-Valencia R. Molecular Factors in PAD2 ( PADI2) and PAD4 ( PADI4) Are Associated with Interstitial Lung Disease Susceptibility in Rheumatoid Arthritis Patients. Cells 2023; 12:2235. [PMID: 37759458 PMCID: PMC10527441 DOI: 10.3390/cells12182235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Around 50% of rheumatoid arthritis (RA) patients show some extra-articular manifestation, with the lung a usually affected organ; in addition, the presence of anti-citrullinated protein antibodies (ACPA) is a common feature, which is caused by protein citrullination modifications, catalyzed by the peptidyl arginine deiminases (PAD) enzymes. We aimed to identify single nucleotide variants (SNV) in PADI2 and PADI4 genes (PAD2 and PAD4 proteins, respectively) associated with susceptibility to interstitial lung disease (ILD) in RA patients and the PAD2 and PAD4 levels. Material and methods: 867 subjects were included: 118 RA-ILD patients, 133 RA patients, and 616 clinically healthy subjects (CHS). Allelic discrimination was performed in eight SNVs using qPCR, four in PADI2 and four in PADI4. The ELISA technique determined PAD2 and PAD4 levels in serum and bronchoalveolar lavage (BAL) samples, and the population structure was evaluated using 14 informative ancestry markers. Results: The rs1005753-GG (OR = 4.9) in PADI2 and rs11203366-AA (OR = 3.08), rs11203367-GG (OR = 2.4) in PADI4 are associated with genetic susceptibility to RA-ILD as well as the ACTC haplotype (OR = 2.64). In addition, the PAD4 protein is increased in RA-ILD individuals harboring the minor allele homozygous genotype in PADI4 SNVs. Moreover, rs1748033 in PADI4, rs2057094, and rs2076615 in PADI2 are associated with RA susceptibility. In conclusion, in RA patients, single nucleotide variants in PADI4 and PADI2 are associated with ILD susceptibility. The rs1748033 in PADI4 and two different SNVs in PADI2 are associated with RA development but not ILD. PAD4 serum levels are increased in RA-ILD patients.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04100, Mexico
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Mayra Mejía
- Diffuse Interstitial Lung Disease Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Juan Carlos Fernández-López
- Consorcio de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Tlalpan, Mexico City 14610, Mexico
| | - Pedro Rodríguez-Henríquez
- Department of Rheumatology, Hospital General Dr. Manuel Gea González, Tlalpan, Mexico City 14080, Mexico
| | - Noé Ayala-Alcantar
- Banco de Sangre, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Espiridión Ramos-Martínez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico
| | - Luis Alberto López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Alma D. Del Ángel-Pablo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
14
|
Takemoto Y, Tanimine N, Yoshinaka H, Tanaka Y, Takafuta T, Sugiyama A, Tanaka J, Ohdan H. Multi-phasic gene profiling using candidate gene approach predict the capacity of specific antibody production and maintenance following COVID-19 vaccination in Japanese population. Front Immunol 2023; 14:1217206. [PMID: 37564647 PMCID: PMC10411726 DOI: 10.3389/fimmu.2023.1217206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Vaccination against severe acute respiratory syndrome coronavirus type 2 is highly effective in preventing infection and reducing the severity of coronavirus disease (COVID-19). However, acquired humoral immunity wanes within six months. Focusing on the different tempo of acquisition and attenuation of specific antibody titers in individuals, we investigated the impact of genetic polymorphisms on antibody production after COVID-19 vaccination. Methods In total 236 healthcare workers from a Japanese municipal hospital, who received two doses of the vaccine were recruited. We employed a candidate gene approach to identify the target genetic polymorphisms affecting antibody production after vaccination. DNA samples from the study populations were genotyped for 33 polymorphisms in 15 distinct candidate genes encoding proteins involved in antigen-presenting cell activation, T cell activation, T-B interaction, and B cell survival. We measured total anti-SARS-Cov2 spike IgG antibody titers and analyzed the association with genetic polymorphisms at several time points after vaccination using an unbiased statistical method, and stepwise logistic regression following multivariate regression. Results Significant associations were observed between seven SNPs in NLRP3, OAS1, IL12B, CTLA4, and IL4, and antibody titers at 3 weeks after the first vaccination as an initial response. Six SNPs in NLRP3, TNF, OAS1, IL12B, and CTLA4 were associated with high responders with serum antibody titer > 4000 BAU/ml as boosting effect at 3 weeks after the second vaccination. Analysis of long-term maintenance showed the significance of the three SNPs in IL12B, IL7R, and MIF for the maintenance of antibody titers and that in BAFF for attenuation of neutralizing antibodies. Finally, we proposed a predictive model composed of gene profiles to identify the individuals with rapid antibody attenuation by receiver operating characteristic (ROC) analysis (area under the curve (AUC)= 0.76, sensitivity = 82.5%, specificity=67.8%). Conclusions The candidate gene approach successfully showed shifting responsible gene profiles and initial and boosting effect mainly related to the priming phase into antibody maintenance including B cell survival, which traces the phase of immune reactions. These gene profiles provide valuable information for further investigation of humoral immunity against COVID-19 and for building a strategy for personalized vaccine schedules.
Collapse
Affiliation(s)
- Yuki Takemoto
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisaaki Yoshinaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiro Takafuta
- Department of Internal Medicine, Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
16
|
Bagheri-Hosseinabadi Z, Mirzaei MR, Esmaeili O, Asadi F, Ahmadinia H, Shamsoddini B, Abbasifard M. Implications of Peptidyl Arginine Deiminase 4 gene transcription and polymorphisms in susceptibility to rheumatoid arthritis in an Iranian population. BMC Med Genomics 2023; 16:104. [PMID: 37193992 DOI: 10.1186/s12920-023-01532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PADI4) has been implicated in Rheumatoid arthritis (RA) pathogenesis. Here we aimed to evaluate the association of PADI4 gene rs11203367 and rs1748033 single nucleotide polymorphisms (SNPs) with RA proneness. METHODS The mRNA expression of PADI4 was determined in the whole blood samples. The genotyping of PADI4 polymorphisms was conducted using allelic discrimination TaqMan genotyping Real-time PCR. RESULTS The alleles and genotypes of rs11203367 polymorphism were not associated with susceptibility to RA risk. The T allele (OR = 1.58, 95%CI: 1.21-2.04, P = 0.0005), TT genotype (OR = 2.79, 95%CI: 1.53-5.06, P = 0.0007), TC genotype (OR = 1.52, 95%CI: 1.04-2.23, P = 0.0291), dominant (OR = 1.72, 95%CI: 1.19-2.47, P = 0.0034) and recessive (OR = 2.19, 95%CI: 1.25-3.82, P = 0.0057) models of rs1748033 SNP were associated with higher risk of RA. There was a significant upregulation of PADI4 mRNA in the RA patients compared to controls. mRNA expression of PADI4 had significantly positive correlation with anti-CCP level (r = 0.37, P = 0.041), RF level (r = 0.39, P = 0.037), and CRP level (r = 0.39, P = 0.024). CONCLUSION PADI4 gene rs1748033 SNP was associated with increased RA risk. This polymorphism might affect the RA pathogenesis regardless of impressing the levels of PADI-4 in serum.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ozrasadat Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Occupational Environmental Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Banafshe Shamsoddini
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
17
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
18
|
Álvarez-Velasco R, Dols-Icardo O, El Bounasri S, López-Vilaró L, Trujillo JC, Reyes-Leiva D, Suárez-Calvet X, Cortés-Vicente E, Illa I, Gallardo E. Reduced Number of Thymoma CTLA4-Positive Cells Is Associated With a Higher Probability of Developing Myasthenia Gravis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/2/e200085. [PMID: 36697230 PMCID: PMC9879278 DOI: 10.1212/nxi.0000000000200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Myasthenia gravis (MG) is an autoimmune disease associated with comorbid thymoma in 10%-15% of cases. Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) expressed by T cells downregulates T-cell-mediated immune response. Polymorphisms in the CTLA4 gene have been associated with the development of MG. In this context, we aimed to determine whether CTLA4 expression in the thymoma differs between patients with and without MG and whether CTLA4 gene polymorphisms are associated with these differences. METHODS This is a retrospective study of all patients, with and without MG, surgically treated at our institution for thymoma between January 2010 and December 2020. Ten samples were obtained from normal thymuses as controls. The number of CTLA4-positive cells in paraffin-embedded thymoma samples was determined by immunohistochemistry. The presence of follicular-center and regulatory T-cell lymphocytes was determined by immunohistochemistry (B-cell lymphoma [BCL]-6 expression) and double immunofluorescence-based staining of CD4-FOXP3, respectively. We evaluated the association between thymic expression of CTLA4 and the development of MG. We also determined the association between CTLA4 expression and various clinical and prognostic characteristics of MG. We sequenced the CTLA4 gene and evaluated possible associations between CTLA4 polymorphisms and thymic CTLA4 expression. Finally, we assessed the potential association between these polymorphisms and the risk of MG. RESULTS Forty-one patients with thymoma were included. Of them, 23 had comorbid MG (56.1%). On average, patients with MG had fewer CTLA4-positive cells in the thymoma than non-MG patients: 69.3 cells/mm2 (95% CIs: 39.6-99.1) vs 674.4 (276.0-1,024.0) cells/mm2; p = 0.001 and vs controls (200.74 [57.9-343.6] cells/mm2; p = 0.02). No between-group differences (MG vs non-MG) were observed in the number of cells positive for BCL6 or CD4-FOXP3. CTLA4 expression was not associated with differences in MG outcome or treatment refractoriness. Two polymorphisms were detected in the CTLA4 gene, rs231770 (n = 30 patients) and rs231775 (n = 17). MG was present in a similar proportion of patients for all genotypes. However, a nonsignificant trend toward a lower CTLA4-positive cell count was observed among carriers of the rs231775 polymorphism vs noncarriers: 77.9 cells/mm2 (95% CI: -51.5 to 207.5) vs 343.3 cells/mm2 (95% CI: 126.2-560.4). DISCUSSION Reduced CTLA4 expression in thymoma may predispose to a higher risk of developing MG.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Velasco
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Oriol Dols-Icardo
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Shaima El Bounasri
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Laura López-Vilaró
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Juan Carlos Trujillo
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - David Reyes-Leiva
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Xavier Suárez-Calvet
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Elena Cortés-Vicente
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Isabel Illa
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid
| | - Eduard Gallardo
- From the Neuromuscular Diseases Unit (R.Á.-V., D.R.-L., E.C.-V., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona; Department of Medicine (R.Á.-V., D.R.-L.), Universitat Autónoma de Barcelona; Memory Unit (O.D.-I., S.E.B.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (O.D.-I., S.E.B.), Madrid; Departments of Pathology (L.L.-V.) and Thoracic Surgery (J.C.T.), Hospital de la Santa Creu i Sant Pau, Barcelona; Neuromuscular Diseases Group (X.S.-C., E.G.), Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (E.G.), Instituto de Salud Carlos III, Madrid.
| |
Collapse
|
19
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
20
|
Frazzei G, Musters A, de Vries N, Tas SW, van Vollenhoven RF. Prevention of rheumatoid arthritis: A systematic literature review of preventive strategies in at-risk individuals. Autoimmun Rev 2023; 22:103217. [PMID: 36280095 DOI: 10.1016/j.autrev.2022.103217] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical peripheral polyarthritis in the hands and/or feet, leading to long-term disability if not treated effectively. RA is preceded by a preclinical phase, in which genetically predisposed individuals accumulate environmental risk factors, and during which autoimmunity develops, followed by the emergence of non-specific signs and symptoms before arthritis becomes manifest. Early treatment in at-risk individuals - i.e. before the disease is fully established - has the theoretical potential to delay or prevent disease onset, with a positive impact on both patients' life and society. OBJECTIVES We aimed to understand the feasibility of preventive treatment in at-risk individuals, taking into account recently performed studies and ongoing clinical trials, as well as patient perspectives. METHODS We performed a systematic literature review (SLR) on Medline and Embase, searching articles published between 2010 and 2021 with the following key-words: "Rheumatoid arthritis", "arthralgia", "pre-treatment" or "prevent". RESULTS Our SLR identified a total of 1821 articles. Articles were independently screened by two researchers. A total of 14 articles were included after screening, and an additional 8 reports were manually included. We identified ten relevant clinical trials performed in at-risk individuals, or in individuals with undifferentiated inflammatory arthritis. Although no treatment was shown to prevent RA onset, early treatment with rituximab and abatacept delayed onset of full-blown RA, and both conventional and biological disease-modifying anti-rheumatic drugs (DMARDs) decreased disease-related physical limitations and increased DAS28-defined remission, at least temporarily. CONCLUSIONS This SLR demonstrates that early treatment of at-risk individuals may be effective in delaying RA onset, thereby decreasing disease-related limitations in individuals in the pre-clinical phase of RA. Whether this may ultimately lead to prevention of RA remains to be determined.
Collapse
Affiliation(s)
- Giulia Frazzei
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Anne Musters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Niek de Vries
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands.
| | - Ronald F van Vollenhoven
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands; Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
21
|
Irfan M, Iqbal T, Hashmi S, Ghani U, Bhatti A. Insilico prediction and functional analysis of nonsynonymous SNPs in human CTLA4 gene. Sci Rep 2022; 12:20441. [PMID: 36443461 PMCID: PMC9705290 DOI: 10.1038/s41598-022-24699-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The CTLA4 receptor is an immune checkpoint involved in the downregulation of T cells. Polymorphisms in this gene have been found to be associated with different diseases like rheumatoid arthritis, autosomal dominant immune dysregulation syndrome, juvenile idiopathic arthritis and autoimmune Addison's disease. Therefore, the identification of polymorphisms that have an effect on the structure and function of CTLA4 gene is important. Here we identified the most damaging missense or non-synonymous SNPs (nsSNPs) that might be crucial for the structure and function of CTLA4 using different bioinformatics tools. These in silico tools included SIFT, PROVEAN, PhD-SNP, PolyPhen-2 followed by MutPred2, I-Mutant 2.0 and ConSurf. The protein structures were predicted using Phyre2 and I-TASSER, while the gene-gene interactions were predicted by GeneMANIA and STRING. Our study identified three damaging missense SNPs rs1553657429, rs1559591863 and rs778534474 in coding region of CTLA4 gene. Among these SNPs the rs1553657429 showed a loss of potential phosphorylation site and was found to be highly conserved. The prediction of gene-gene interaction showed the interaction of CTlA4 with other genes and its importance in different pathways. This investigation of damaging nsSNPs can be considered in future while studying CTLA4 related diseases and can be of great importance in precision medicine.
Collapse
Affiliation(s)
- Muhammad Irfan
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Talha Iqbal
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Sakina Hashmi
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Uzma Ghani
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Attya Bhatti
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| |
Collapse
|
22
|
Matuz-Flores MG, Rosas-Rodríguez JA, Tortoledo-Ortiz O, Muñoz-Barrios S, Martínez-Bonilla GE, Hernández-Bello J, Baños-Hernández CJ, Pacheco-Tena C, Sánchez-Zuno GA, Panduro-Espinoza B, Muñoz-Valle JF. PADI4 Haplotypes Contribute to mRNA Expression, the Enzymatic Activity of Peptidyl Arginine Deaminase and Rheumatoid Arthritis Risk in Patients from Western Mexico. Curr Issues Mol Biol 2022; 44:4268-4281. [PMID: 36135205 PMCID: PMC9498032 DOI: 10.3390/cimb44090293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Citrullination is catalyzed by the peptidyl arginine deiminase 4 (PAD4) enzyme, encoded by the PADI4 gene. Increased PAD4 activity promotes the onset and progression of rheumatoid arthritis (RA). This study aimed to evaluate the association of PADI4 haplotypes with RA risk, mRNA expression, and the PAD4 activity in patients with RA from Mexico. Methodology: 100 RA patients and 100 control subjects (CS) were included. Genotyping was performed by PCR-RFLP method, PADI4 mRNA expression was quantified by real-time PCR, the contribution of PADI4 alleles (PADI4_89 G>A, PADI4_90 T>C, and PADI4_92 G>C) to mRNA expression by the ASTQ method, and PAD4 activity by HPLC. Also, the anti-CCP and anti-PADI4 antibodies were quantified by ELISA. Results: The three PADI4 polymorphisms were associated with RA susceptibility (OR = 1.72, p = 0.005; OR = 1.62; p = 0.014; OR = 1.69; p = 0.009; respectively). The 89G, 90T, and 92G alleles have a higher relative contribution to PADI4 mRNA expression from RA patients than 89A, 90C, and 92C alleles in RA patients. Moreover, the GTG/GTG haplotype was associated with RA susceptibility (OR = 2.86; p = 0.024). The GTG haplotype was associated with higher PADI4 mRNA expression (p = 0.04) and higher PAD4 enzymatic activity (p = 0.007) in RA patients. Conclusions: The evaluated polymorphisms contribute to PADI4 mRNA expression and the enzymatic activity of PAD4 in leukocytes. Therefore, the GTG haplotype is a genetic risk factor for RA in western Mexico, and is associated with increased PADI4 mRNA expression and higher PAD4 activity in these patients.
Collapse
Affiliation(s)
- Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa 85880, Sonora, Mexico
| | - Orlando Tortoledo-Ortiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Coordinación de Nutrición, Lab. de Cromatografía, Hermosillo 83304, Sonora, Mexico
| | - Salvador Muñoz-Barrios
- Unidad Académica de Ciencias Naturales, Universidad Autónoma de Guerrero, Chilpancingo 39086, Guerrero, Mexico
| | | | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Cesar Pacheco-Tena
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua C.P. 31109, Chih., Mexico
| | - Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Beatriz Panduro-Espinoza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: or
| |
Collapse
|
23
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
24
|
Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE, van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front Immunol 2022; 13:899372. [PMID: 35844538 PMCID: PMC9281565 DOI: 10.3389/fimmu.2022.899372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
The preclinical phase of autoimmune disorders is characterized by an initial asymptomatic phase of varying length followed by nonspecific signs and symptoms. A variety of autoimmune and inflammatory manifestations can be present and tend to increase in the last months to years before a clinical diagnosis can be made. The phenotype of an autoimmune disease depends on the involved organs, the underlying genetic susceptibility and pathophysiological processes. There are different as well as shared genetic or environmental risk factors and pathophysiological mechanisms between separate diseases. To shed more light on this, in this narrative review we compare the preclinical disease course of four important autoimmune diseases with distinct phenotypes: rheumatoid arthritis (RA), Systemic Lupus Erythematosus (SLE), multiple sclerosis (MS) and type 1 diabetes (T1D). In general, we observed some notable similarities such as a North-South gradient of decreasing prevalence, a female preponderance (except for T1D), major genetic risk factors at the HLA level, partly overlapping cytokine profiles and lifestyle risk factors such as obesity, smoking and stress. The latter risk factors are known to produce a state of chronic systemic low grade inflammation. A central characteristic of all four diseases is an on average lengthy prodromal phase with no or minor symptoms which can last many years, suggesting a gradually evolving interaction between the genetic profile and the environment. Part of the abnormalities may be present in unaffected family members, and autoimmune diseases can also cluster in families. In conclusion, a promising strategy for prevention of autoimmune diseases might be to address adverse life style factors by public health measures at the population level.
Collapse
Affiliation(s)
- Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Giulia Frazzei,
| | - Ronald F. van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology Center, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sarah E. Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Dirkjan van Schaardenburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, Netherlands
| |
Collapse
|
25
|
Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol 2022; 107:108647. [DOI: 10.1016/j.intimp.2022.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023]
|
26
|
Mukhtar M, Sheikh N, Batool A, Khawar MB, Fatima N, Mehmood R. Novel functional polymorphism on PADI-4 gene and its association with arthritis onset. Saudi J Biol Sci 2022; 29:1227-1233. [PMID: 35197789 PMCID: PMC8847927 DOI: 10.1016/j.sjbs.2021.09.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background Citrullinated proteins formed by peptidyl arginine deiminases (PADIs) deimination of arginine residues in proteins are of particular interest in arthritis pathogenesis. Polymorphisms on the PADI-4 gene lead to the malfunctioning of PADIs leading to the onset of arthritis. Objective The present study was conducted to determine the polymorphisms on the PADI-4 gene and their association with rheumatoid arthritis (RA) as well as Osteoarthritis (OA). Methodology To achieve the above-mentioned objective a case-control study was conducted. Blood samples were collected from RA, OA, and control subjects. DNA was extracted from each blood sample by modified organic method and was quantified as well as qualified by DNA gel electrophoresis and Nanodrop. Patients were tested for rs874881, rs11203366, rs11203367, rs2240336, rs2240337, rs2240339, rs1748033 and rs2240340 polymorphic sites by amplifying targeted regions through PCR with site-specific primers. Genotyping was performed by Restriction Fragment Length Polymorphism and direct sequencing method. Mutations were identified by analyzing sequences on BioEdit software. Allelic, genetic, and multiple site analysis were performed by SHEsis and PLINK software. Change in the amino acid sequence was identified by MEGA 6.0 software. Results Polymorphisms were identified on all targeted polymorphic sites except rs2240337 in both RA and OA individuals. In addition, two novel mutations were also identified in exon 4 identified i-e SCV000804840: c.218T > C and SCV000807675: c.241G > T. All the SNPs except rs11203366 were found to be significantly associated with RA at an allelic level whereas all SNP’s have been significant risk factors in the onset of OA. At genotypic level rs874881, rs11203366, rs2240339, SCV000804840 and SCV000807675 were significantly associated to RA development whereas rs874881, rs11203366, rs11203367, rs2240339, SCV000804840 and SCV000807675 were genetic risk factors in OA onset. Haplotype analysis indicated that GACCACGCC and GACCACGCT were highly significant in disease development. Polymorphisms identified altered the functioning of PADIs by altering their amino acid sequence. Conclusion In conclusion, it was found that PADI-4 gene polymorphism was not only involved in the onset of RA but was also found to be a significant risk factor in OA onset.
Collapse
Affiliation(s)
- Maryam Mukhtar
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan.,Rhumatology Domain, Center of Molecular Medicine, Karolinska Institute, Department of Medicine, Stockholm, Sweden
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Andleeb Batool
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan.,Department of Zoology, Faculty of Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Naz Fatima
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rabia Mehmood
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
27
|
Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, Kosanke M, Schmidt RE, Witte T, Sogkas G. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis 2022; 81:124-131. [PMID: 34583923 PMCID: PMC8762021 DOI: 10.1136/annrheumdis-2021-220955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is the most common primary vasculitis, preferentially affecting the aorta and its large-calibre branches. An imbalance between proinflammatory CD4+ T helper cell subsets and regulatory T cells (Tregs) is thought to be involved in the pathogenesis of GCA and Treg dysfunction has been associated with active disease. Our work aims to explore the aetiology of Treg dysfunction and the way it is affected by remission-inducing immunomodulatory regimens. METHODS A total of 41 GCA patients were classified into active disease (n=14) and disease in remission (n=27). GCA patients' and healthy blood donors' (HD) Tregs were sorted and subjected to transcriptome and phenotypic analysis. RESULTS Transcriptome analysis revealed 27 genes, which were differentially regulated between GCA-derived and HD-derived Tregs. Among those, we identified transcription factors, glycolytic enzymes and IL-2 signalling mediators. We confirmed the downregulation of forkhead box P3 (FOXP3) and interferon regulatory factor 4 (IRF4) at protein level and identified the ineffective induction of glycoprotein A repetitions predominant (GARP) and CD25 as well as the reduced T cell receptor (TCR)-induced calcium influx as correlates of Treg dysfunction in GCA. Inhibition of glycolysis in HD-derived Tregs recapitulated most identified dysfunctions of GCA Tregs, suggesting the central pathogenic role of the downregulation of the glycolytic enzymes. Separate analysis of the subgroup of tocilizumab-treated patients identified the recovery of the TCR-induced calcium influx and the Treg suppressive function to associate with disease remission. CONCLUSIONS Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.
Collapse
Affiliation(s)
- Ignatius Ryan Adriawan
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Faranaz Atschekzei
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | | | | | - Stefanie Hirsch
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Reinhold Ernst Schmidt
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8:689698. [PMID: 34901047 PMCID: PMC8661097 DOI: 10.3389/fmed.2021.689698] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease. It is associated with significant burden at the patient and societal level. Extensive efforts have been devoted to identifying a potential cause for the development of RA. Epidemiological studies have thoroughly investigated the association of several factors with the risk and course of RA. Although a precise etiology remains elusive, the current understanding is that RA is a multifactorial disease, wherein complex interactions between host and environmental factors determine the overall risk of disease susceptibility, persistence and severity. Risk factors related to the host that have been associated with RA development may be divided into genetic; epigenetic; hormonal, reproductive and neuroendocrine; and comorbid host factors. In turn, environmental risk factors include smoking and other airborne exposures; microbiota and infectious agents; diet; and socioeconomic factors. In the present narrative review, aimed at clinicians and researchers in the field of RA, we provide a state-of-the-art overview of the current knowledge on this topic, focusing on recent progresses that have improved our comprehension of disease risk and development.
Collapse
Affiliation(s)
- Vasco C Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Massarenti L, Enevold C, Damgaard D, Ødum N, Garred P, Frisch M, Shelef MA, Jacobsen S, Nielsen CH. PADI4 Polymorphisms Confer Risk of Anti-CCP-Positive Rheumatoid Arthritis in Synergy With HLA-DRB1*04 and Smoking. Front Immunol 2021; 12:707690. [PMID: 34733271 PMCID: PMC8558474 DOI: 10.3389/fimmu.2021.707690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023] Open
Abstract
Peptidylarginine deiminases (PADs) catalyze citrullination, a post-translational modification playing a pathogenic role in anti-citrullinated protein antibody (ACPA)-positive rheumatoid arthritis (RA). The interplay between single nucleotide polymorphisms (SNPs) in the PADI genes and known risk factors for ACPA-positive RA, including smoking, HLA-DR4 and -1, and the PTPN22 R620W polymorphism, was investigated. We typed four PADI2 SNPs, four PADI4 SNPs, and the PTPN22 R620W SNP in 445 Danish RA patients and 533 age-matched healthy controls, as well as in 200 North American RA patients and 100 age- and sex-matched controls. The HLA-DRB1 locus was typed in the Danish cohort. Logistic regression analyses, adjusted for age, sex, smoking status, and PTPN22 R620W, revealed increased risk of anti-CCP-positive RA in carriers of rs11203367(T) (OR: 1.22, p=0.03) and reduced risk in carriers of rs2240335(A) in PADI4 (OR: 0.82, p=0.04). rs74058715(T) in PADI4 conferred reduced risk of anti-CCP-negative RA (OR: 0.38, p=0.003). In HLA-DRB1*04-positive individuals, specifically, the risk of anti-CCP-positive RA was increased by carriage of PADI4 rs1748033(T) (OR: 1.54, p=0.007) and decreased by carriage of PADI4 rs74058715(T) (OR: 0.44, p=0.01), and we observed an interaction between these SNPs and HLA-DRB1*04 (p=0.004 and p=0.008, respectively) Thus, PADI4 polymorphisms associate with ACPA-positive RA, particularly in HLA-DRB1*04-positive individuals, and with ACPA-negative RA independently of HLA-DRB1*04.
Collapse
Affiliation(s)
- Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Frisch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Section 4242, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Zhou C, Gao S, Yuan X, Shu Z, Li S, Sun X, Xiao J, Liu H. Association between CTLA-4 gene polymorphism and risk of rheumatoid arthritis: a meta-analysis. Aging (Albany NY) 2021; 13:19397-19414. [PMID: 34339393 PMCID: PMC8386564 DOI: 10.18632/aging.203349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/19/2021] [Indexed: 01/11/2023]
Abstract
Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) gene polymorphisms may be involved in the risk of Rheumatoid arthritis (RA). However, evidence for the association remains controversial. Therefore, we performed a meta-analysis to confirm the relationship between CTLA-4 gene polymorphisms and RA. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of association. Stratified analysis was conducted by ethnicity. In total, 66 case-control studies including 21681 cases and 23457 controls were obtained. For rs3087243 polymorphism, significant association was detected in Asians (A vs. G: OR=0.77, 95%CI=0.65-0.90, P=0.001; AA vs. GG: OR=0.67, 95%CI=0.48-0.94, P=0.02) and Caucasians (A vs. G: OR=0.89, 95%CI=0.86-0.93, P<0.00001; AA vs. GG: OR=0.81, 95%CI=0.75-0.88, P<0.00001). For rs231775 polymorphism, significant association was observed in the overall (G vs. A: OR =1.16, 95%CI=1.08-1.25, P<0.0001; GG vs. AA: OR=1.29, 95%CI=1.12-1.50, P=0.0006), and in Asians (G vs. A: OR=1.27, 95%CI=1.10-1.47, P=0.001; GG vs. AA: OR=1.58, 95%CI=1.24-2.01, P=0.0002), but not in Caucasians. However, there was no association between rs5742909 polymorphism and RA. This meta-analysis confirmed that rs3087243 and rs231775 polymorphism were associated with the risk of RA in both overall population and ethnic-specific analysis, but there was no association between rs5742909 polymorphism and RA risk.
Collapse
Affiliation(s)
- Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shutao Gao
- Department of Spine Surgery, The First Affiliate Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Xi Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Song Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hui Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| |
Collapse
|
31
|
Al-Awadhi AM, Haider MZ, Sukumaran J, Hasan EAH, Bartella YA. The Protein Tyrosine Phosphatase Non-receptor Type N22 (PTPN22) Gene Functional Polymorphism (1858T) is not Associated with Rheumatoid Arthritis in Kuwaiti Patients. Open Rheumatol J 2021. [DOI: 10.2174/1874312902115010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Rheumatoid Arthritis (RA) is a chronic disorder characterized by an inflammation of synovial tissue in joints resulting in pain, deformities and affects the quality of life. The gene for protein tyrosine phosphatase non-receptor type 22 (PTPN22) encodes a lymphoid specific phosphatase (LYP), which serves as a negative regulator of T lymphocyte activation and is associated with a number of autoimmune/chronic diseases in various ethnic groups.
Objective:
This study was undertaken to investigate an association between PTPN22 gene functional polymorphism (C1858T; rs2476601) and rheumatoid arthritis (RA) in Kuwaiti Arabs. The frequency of this candidate locus was compared between Kuwaiti RA patients and the controls and with that reported from other populations.
Methods:
The study was carried out in 191 Kuwaiti RA patients and 214 healthy controls. The diagnosis of RA was carried out according to the guidelines of the American College of Rheumatology (ACR). The genotypes of PTPN22 gene (C1858T) polymorphism were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and confirmed by DNA sequence analysis in RA patients and controls.
Results:
The TT genotype of PTPN22 gene functional polymorphism C1858T was found in 2/191 (1%) in RA patients compared to 2/214 (1%) in the controls (P = 1.0). In contrast, heterozygous CT genotype was detected in 3/191 (1.57%) RA patients compared to 32/214 (14.9%) in the controls. The CC genotype was detected in 186/191 (97.38%), RA patients while it was detected in 180/214 (84.1%) of the controls. The two RA patients who carried the homozygous variant (TT) genotype were both positive for rheumatoid factor (RF) and did not have any extra-articular manifestations. Amongst the Kuwaiti RA patients, 27% had a family history of RA. No correlation was found between the activity/severity of the disease and PTPN22 gene polymorphism genotypes.
Conclusion:
This study did not find an association between the PTPN22 gene functional polymorphism (C1858T) and clinical manifestation and activity/severity of RA in Kuwaiti Arabs. This is in sharp contrast to previous reports from Caucasian and some other populations in which a positive association of PTPN22 gene (C1858T) polymorphism with genetic susceptibility to RA has been reported.
Collapse
|
32
|
Aravilli RK, Vikram SL, Kohila V. The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis. Curr Pharm Biotechnol 2021; 22:1014-1029. [PMID: 33001009 DOI: 10.2174/1389201021666201001142416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
33
|
Genetic approaches for the diagnosis and treatment of rheumatoid arthritis through personalized medicine. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
35
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
36
|
Al Khabouri S, Benson RA, Prendergast CT, Gray JI, Otto TD, Brewer JM, Garside P. TCRβ Sequencing Reveals Spatial and Temporal Evolution of Clonal CD4 T Cell Responses in a Breach of Tolerance Model of Inflammatory Arthritis. Front Immunol 2021; 12:669856. [PMID: 33986757 PMCID: PMC8110912 DOI: 10.3389/fimmu.2021.669856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Effective tolerogenic intervention in Rheumatoid Arthritis (RA) will rely upon understanding the evolution of articular antigen specific CD4 T cell responses. TCR clonality of endogenous CD4 T cell infiltrates in early inflammatory arthritis was assessed to monitor evolution of the TCR repertoire in the inflamed joint and associated lymph node (LN). Mouse models of antigen-induced breach of self-tolerance and chronic polyarthritis were used to recapitulate early and late phases of RA. The infiltrating endogenous, antigen experienced CD4 T cells in inflamed joints and LNs were analysed using flow cytometry and TCRβ sequencing. TCR repertoires from inflamed late phase LNs displayed increased clonality and diversity compared to early phase LNs, while inflamed joints remained similar with time. Repertoires from late phase LNs accumulated clones with a diverse range of TRBV genes, while inflamed joints at both phases contained clones expressing similar TRBV genes. Repertoires from LNs and joints at the late phase displayed reduced CDR3β sequence overlap compared to the early disease phase, however the most abundant clones in LNs accumulate in the joint at the later phase. The results indicate CD4 T cell repertoire clonality and diversity broadens with progression of inflammatory arthritis and is first reflected in LNs before mirroring in the joint. These observations imply that antigen specific tolerogenic therapies could be more effective if targeted at earlier phases of disease when CD4 T cell clonality is least diverse.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Mehra P, Wells AD. Variant to Gene Mapping to Discover New Targets for Immune Tolerance. Front Immunol 2021; 12:633219. [PMID: 33936046 PMCID: PMC8082446 DOI: 10.3389/fimmu.2021.633219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
The breakdown of immunological tolerance leads to autoimmune disease, and the mechanisms that maintain self-tolerance, especially in humans, are not fully understood. Genome-wide association studies (GWAS) have identified hundreds of human genetic loci statistically linked to autoimmune disease risk, and epigenetic modifications of DNA and chromatin at these loci have been associated with autoimmune disease risk. Because the vast majority of these signals are located far from genes, identifying causal variants, and their functional consequences on the correct effector genes, has been challenging. These limitations have hampered the translation of GWAS findings into novel drug targets and clinical interventions, but recent advances in understanding the spatial organization of the genome in the nucleus have offered mechanistic insights into gene regulation and answers to questions left open by GWAS. Here we discuss the potential for 'variant-to-gene mapping' approaches that integrate GWAS with 3D functional genomic data to identify human genes involved in the maintenance of tolerance.
Collapse
Affiliation(s)
- Parul Mehra
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
Liu W, Yang Z, Chen Y, Yang H, Wan X, Zhou X, Liu R, Zhang Y. The Association Between CTLA-4, CD80/86, and CD28 Gene Polymorphisms and Rheumatoid Arthritis: An Original Study and Meta-Analysis. Front Med (Lausanne) 2021; 8:598076. [PMID: 33604347 PMCID: PMC7884472 DOI: 10.3389/fmed.2021.598076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is related to several pivotal susceptibility genes, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and costimulatory molecule (CD80/CD86) genes. Although the connection between polymorphisms of CTLA-4 and CD86 genes in different populations of RA have been studied extensively, the results are controversial. Objective: To clarify the correlation in the Chinese Han population between CTLA-4, CD80/86, and CD28 gene polymorphisms, and RA susceptibility. Methods: A case-control study (574 RA patients and 804 controls) was conducted to determine the correlation between CTLA-4 rs231775 and rs16840252 gene polymorphisms, CD86 rs17281995 gene polymorphisms, and the risk of RA for the Chinese Han population. Furthermore, an additional meta-analysis, including three single nucleotide polymorphisms (SNPs) (CTLA-4 rs231775, CTLA-4 rs3087243, and CTLA-4 rs5742909) from 32 citations, including 43 studies, 24,703 cases and 23,825 controls was performed to elucidate the relationship between known SNPs in the CTLA-4 genes and RA for more robust conclusions. Results: The results showed that CTLA-4 rs231775 gene polymorphism decreased the RA risk (GA vs. AA, OR = 0.77, P = 0.025), whereas CTLA-4 rs16840252 and CD86 rs17281995 gene polymorphisms were not related to RA susceptibility. Stratification analyses by RF, ACPA, CRP, ESR, DAS28, and functional class identified significant associations for CTLA-4 rs231775 and rs16840252 gene polymorphisms in the RF-positive and RF-negative groups. A meta-analysis of the literature on CTLA-4 gene polymorphisms and RA risk revealed that the risk of RA was decreased by CTLA-4 rs231775 gene polymorphisms. Conclusions: The CTLA-4 rs231775 gene polymorphism decreased the risk of RA, whereas CTLA-4 rs16840252 and CD86 rs17281995 gene polymorphisms were not related to RA risk. A meta-analysis indicated that CTLA-4 rs231775 and rs3087243 gene polymorphisms decreased the risk of RA. To support these analytical results, additional clinical cases should be investigated in further studies.
Collapse
Affiliation(s)
- Weixi Liu
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhicheng Yang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Chen
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haoyu Yang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoxian Wan
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xindie Zhou
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ruiping Liu
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yunkun Zhang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
39
|
Wu CY, Yang HY, Luo SF, Lai JH. From Rheumatoid Factor to Anti-Citrullinated Protein Antibodies and Anti-Carbamylated Protein Antibodies for Diagnosis and Prognosis Prediction in Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22020686. [PMID: 33445768 PMCID: PMC7828258 DOI: 10.3390/ijms22020686] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mainly involving synovial inflammation and articular bone destruction. RA is a heterogeneous disease with diverse clinical presentations, prognoses and therapeutic responses. Following the first discovery of rheumatoid factors (RFs) 80 years ago, the identification of both anti-citrullinated protein antibodies (ACPAs) and anti-carbamylated protein antibodies (anti-CarP Abs) has greatly facilitated approaches toward RA, especially in the fields of early diagnosis and prognosis prediction of the disease. Although these antibodies share many common features and can function synergistically to promote disease progression, they differ mechanistically and have unique clinical relevance. Specifically, these three RA associating auto-antibodies (autoAbs) all precede the development of RA by years. However, while the current evidence suggests a synergic effect of RF and ACPA in predicting the development of RA and an erosive phenotype, controversies exist regarding the additive value of anti-CarP Abs. In the present review, we critically summarize the characteristics of these autoantibodies and focus on their distinct clinical applications in the early identification, clinical manifestations and prognosis prediction of RA. With the advancement of treatment options in the era of biologics, we also discuss the relevance of these autoantibodies in association with RA patient response to therapy.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
40
|
Latin American Genes: The Great Forgotten in Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040196. [PMID: 33114702 PMCID: PMC7711650 DOI: 10.3390/jpm10040196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022] Open
Abstract
The successful implementation of personalized medicine will rely on the integration of information obtained at the level of populations with the specific biological, genetic, and clinical characteristics of an individual. However, because genome-wide association studies tend to focus on populations of European descent, there is a wide gap to bridge between Caucasian and non-Caucasian populations before personalized medicine can be fully implemented, and rheumatoid arthritis (RA) is not an exception. In this review, we discuss advances in our understanding of genetic determinants of RA risk among global populations, with a focus on the Latin American population. Geographically restricted genetic diversity may have important implications for health and disease that will remain unknown until genetic association studies have been extended to include Latin American and other currently under-represented ancestries. The next few years will witness many breakthroughs in personalized medicine, including applications for common diseases and risk stratification instruments for targeted prevention/intervention strategies. Not all of these applications may be extrapolated from the Caucasian experience to Latin American or other under-represented populations.
Collapse
|
41
|
Reed E, Hedström AK, Hansson M, Mathsson-Alm L, Brynedal B, Saevarsdottir S, Cornillet M, Jakobsson PJ, Holmdahl R, Skriner K, Serre G, Alfredsson L, Rönnelid J, Lundberg K. Presence of autoantibodies in "seronegative" rheumatoid arthritis associates with classical risk factors and high disease activity. Arthritis Res Ther 2020; 22:170. [PMID: 32678001 PMCID: PMC7364538 DOI: 10.1186/s13075-020-02191-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/22/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is classified as seropositive or seronegative, depending on the presence/absence of rheumatoid factor (RF), primarily IgM RF, and/or anti-citrullinated protein antibodies (ACPA), commonly detected using anti-cyclic citrullinated peptide (CCP) assays. Known risk factors associate with the more severe seropositive form of RA; less is known about seronegative RA. Here, we examine risk factors and clinical phenotypes in relation to presence of autoantibodies in the RA subset that is traditionally defined as seronegative. METHODS Anti-CCP2 IgG, 19 ACPA fine-specificities, IgM/IgG/IgA RF, anti-carbamylated-protein (CarP) antibodies, and 17 other autoantibodies, were analysed in 2755 RA patients and 370 controls. Antibody prevalence, levels, and co-occurrence were examined, and associations with risk factors and disease activity during 5 years were investigated for different antibody-defined RA subsets. RESULTS Autoantibodies were detected in a substantial proportion of the traditionally defined seronegative RA subset, with ACPA fine-specificities found in 30%, IgA/IgG RF in 9.4%, and anti-CarP antibodies in 16%, with a 9.6% co-occurrence of at least two types of RA-associated autoantibodies. HLA-DRB1 shared epitope (SE) associated with the presence of ACPA in anti-CCP2-negative RA; in anti-CCP2-positive RA, the SE association was defined by six ACPA fine-specificities with high co-occurrence. Smoking associated with RF, but not with ACPA, in anti-CCP2-negative RA. Presence of ACPA and RF, but not anti-CarP antibodies, in conventionally defined "seronegative" RA, associated with worse clinical outcome. CONCLUSIONS "Seronegative" RA is not truly a seronegative disease subset. Additional screening for ACPA fine-specificities and IgA/IgG RF defines a group of patients that resembles seropositive patients with respect to risk factors and clinical picture and may contribute to earlier diagnosis for a subset of anti-CCP2-/IgM RF- patients with a high need for active treatment.
Collapse
Affiliation(s)
- Evan Reed
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Anna Karin Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Martin Cornillet
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Université de Toulouse-INSERM UMR 1056, Toulouse, France
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl Skriner
- Department of Rheumatology and Clinical Immunology, Charité University, Berlin, Germany
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Université de Toulouse-INSERM UMR 1056, Toulouse, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden.
| |
Collapse
|
42
|
Bu D, Yang Q, Meng Z, Zhang S, Li Q. Truncated tests for combining evidence of summary statistics. Genet Epidemiol 2020; 44:687-701. [DOI: 10.1002/gepi.22330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Deliang Bu
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
| | - Qinglong Yang
- School of Statistics and Mathematics Zhongnan University of Economics and Law Wuhan China
| | - Zhen Meng
- LSC, NCMIS, Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
| | - Sanguo Zhang
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
| | - Qizhai Li
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- LSC, NCMIS, Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
| |
Collapse
|
43
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
44
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Klareskog L, Rönnelid J, Saevarsdottir S, Padyukov L, Alfredsson L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J Intern Med 2020; 287:514-533. [PMID: 32176395 DOI: 10.1111/joim.13058] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The current review uses rheumatoid arthritis (RA) as a prominent example for how studies on the interplay between environmental and genetic factors in defined subsets of a disease can be used to formulate aetiological hypotheses that subsequently can be tested for causality using molecular and functional studies. Major discussed findings are that exposures to airways from many different noxious agents including cigarette smoke, silica dust and more interact with major susceptibility genes, mainly HLA-DR genetic variants in triggering antigen-specific immune reactions specific for RA. We also discuss how several other environmental and lifestyle factors, including microbial, neural and metabolic factors, can influence risk for RA in ways that are different in different subsets of RA.The description of these processes in RA provides the best example so far in any immune-mediated disease of how triggering of immunity at one anatomical site in the context of known environmental and genetic factors subsequently can lead to symptoms that precede the classical inflammatory disease symptoms and later contribute also to the classical RA joint inflammation. The findings referred to in the review have led to a change of paradigms for very early therapy and prevention of RA and to efforts towards what we have named 'personalized prevention'. We believe that the progress described here for RA will be of relevance for research and practice also in other immune-mediated diseases.
Collapse
Affiliation(s)
- L Klareskog
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - L Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Tuncel J, Holmberg J, Haag S, Hopkins MH, Wester-Rosenlöf L, Carlsen S, Olofsson P, Holmdahl R. Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res Ther 2020; 22:95. [PMID: 32345366 PMCID: PMC7187533 DOI: 10.1186/s13075-020-2104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND CD4+ T cells play a central role during the early stages of rheumatoid arthritis (RA), but to which extent they are required for the perpetuation of the disease is still not fully understood. The aim of the current study was to obtain conclusive evidence that T cells drive chronic relapsing arthritis. METHODS We used the rat pristane-induced arthritis model, which accurately portrays the chronic relapsing-remitting disease course of RA, to examine the contribution of T cells to chronic arthritis. RESULTS Rats subjected to whole-body irradiation and injected with CD4+ T cells from lymph nodes of pristane-injected donors developed chronic arthritis that lasted for more than 4 months, whereas T cells from the spleen only induced acute disease. Thymectomy in combination with irradiation enhanced the severity of arthritis, suggesting that sustained lymphopenia promotes T cell-driven chronic inflammation in this model. The ability of T cells to induce chronic arthritis correlated with their expression of Th17-associated transcripts, and while depletion of T cells in rats with chronic PIA led to transient, albeit significant, reduction in disease, neutralization of IL-17 resulted in almost complete and sustained remission. CONCLUSION These findings show that, once activated, self-reactive T cells can sustain inflammatory responses for extended periods of time and suggest that such responses are promoted in the presence of IL-17.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Holmberg
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Sabrina Haag
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Lena Wester-Rosenlöf
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Stefan Carlsen
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Peter Olofsson
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden.
| |
Collapse
|
47
|
Raslan HM, Attia HR, Hamed Ibrahim M, Mahmoud Hassan E, Salama II, Ismail S, Abdelmotaleb E, El Menyawi MM, Amr KS. Association of anti-cyclic citrullinated peptide antibodies and rheumatoid factor isotypes with HLA-DRB1 shared epitope alleles in Egyptian rheumatoid arthritis patients. Int J Rheum Dis 2020; 23:647-653. [PMID: 32167241 DOI: 10.1111/1756-185x.13819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The most common genetic risk factor for rheumatoid arthritis (RA) is human leucocyte antigen DRB1 (HLA-DRB1) shared epitope (SE). AIM To investigate the relationship between anti-cyclic citrullinated peptide (anti-CCP), rheumatoid factor (RF), immunoglobulin (Ig)G, IgM and IgA and HLA-DRB1 SE among Egyptian patients with RA. METHODS Serum levels of anti-CCP antibodies and RFIgG, RFIgM, RFIgA were assayed using enzyme-linked immunosorbent assay for 157 Egyptian RA patients and 150 healthy controls attending the outpatient clinics of National Research Center and Kasr El Aini Hospital. HLA-DRB1 genotyping was performed by the DynalAllSetTM polymerase chain reaction (PCR) single specific primer low-resolution typing kits. Amplified PCR product was checked using 3% agarose gel. RESULTS HLA-DRB1-SE was found among 129 (82.2%) RA patients and 67 (44.7%) controls (odds ratio [OR] 5.7, CI 3.4-9.6, P < .0001). The risk of RA development was higher with the presence of SE two alleles (OR 11.6, P < .0001), while the OR for 1 copy SE allele was 4.4 (P < .0001). HLA-DRB1-SE was significantly associated with positive as well as negative anti-CCP and RF isotypes. The stronger association was with anti-CCP positivity with OR 11 (5.1-23.6), P < .0001. Furthermore, the risk of development of positive anti-CCP and RF isotypes was higher with the presence of 2 copies of SE alleles than with 1 copy. CONCLUSION The prevalence of HLA-DRB1-SE is high in Egyptian RA patients. The role of SE in RA patients is most probably related to the development of anti-CCP positive RA rather than the development of anti-CCP positivity.
Collapse
Affiliation(s)
- Hala M Raslan
- Internal Medicine Department, National Research Center, Cairo, Egypt
| | - Hanaa R Attia
- Clinical and Chemical Pathology Department, National Research Center, Cairo, Egypt
| | - Mona Hamed Ibrahim
- Clinical and Chemical Pathology Department, National Research Center, Cairo, Egypt
| | - Eman Mahmoud Hassan
- Clinical and Chemical Pathology Department, National Research Center, Cairo, Egypt
| | - Iman I Salama
- Community Medicine Research Department, National Research Center, Cairo, Egypt
| | - Sherif Ismail
- Internal Medicine Department, National Research Center, Cairo, Egypt
| | - Eman Abdelmotaleb
- Medical Molecular Genetic Department, National Research Center, Cairo, Egypt
| | | | - Khalda S Amr
- Medical Molecular Genetic Department, National Research Center, Cairo, Egypt
| |
Collapse
|
48
|
Jia J, Li J, Yao X, Zhang Y, Yang X, Wang P, Xia Q, Hakonarson H, Li J. Genetic architecture study of rheumatoid arthritis and juvenile idiopathic arthritis. PeerJ 2020; 8:e8234. [PMID: 31988799 PMCID: PMC6969553 DOI: 10.7717/peerj.8234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis and juvenile idiopathic arthritis are two types of autoimmune diseases with inflammation at the joints, occurring to adults and children respectively. There are phenotypic overlaps between these two types of diseases, despite the age difference in patient groups. METHODS To systematically compare the genetic architecture of them, we conducted analyses at gene and pathway levels and constructed protein-protein-interaction network based on summary statistics of genome-wide association studies of these two diseases. We examined their difference and similarity at each level. RESULTS We observed extensive overlap in significant SNPs and genes at the human leukocyte antigen region. In addition, several SNPs in other regions of the human genome were also significantly associated with both diseases. We found significantly associated genes enriched in 32 pathways shared by both diseases. Excluding genes in the human leukocyte antigen region, significant enrichment is present for pathways like interleukin-27 pathway and NO2-dependent interleukin-12 pathway in natural killer cells. DISCUSSION The identification of commonly associated genes and pathways may help in finding population at risk for both diseases, as well as shed light on repositioning and designing drugs for both diseases.
Collapse
Affiliation(s)
- Jun Jia
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Tianjin, China
| | - Junyi Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xueming Yao
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - YuHang Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohao Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jin Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Amariuta T, Luo Y, Knevel R, Okada Y, Raychaudhuri S. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol Rev 2019; 294:188-204. [PMID: 31782165 DOI: 10.1111/imr.12827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) risk has a large genetic component (~60%) that is still not fully understood. This has hampered the design of effective treatments that could promise lifelong remission. RA is a polygenic disease with 106 known genome-wide significant associated loci and thousands of small effect causal variants. Our current understanding of RA risk has suggested cell-type-specific contexts for causal variants, implicating CD4 + effector memory T cells, as well as monocytes, B cells and stromal fibroblasts. While these cellular states and categories are still mechanistically broad, future studies may identify causal cell subpopulations. These efforts are propelled by advances in single cell profiling. Identification of causal cell subpopulations may accelerate therapeutic intervention to achieve lifelong remission.
Collapse
Affiliation(s)
- Tiffany Amariuta
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Graduate School of Arts and Sciences, Harvard University, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Rachel Knevel
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yukinori Okada
- Division of Medicine, Osaka University, Osaka, Japan.,Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soumya Raychaudhuri
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Safonova TN, Zaitseva GV, Loginov VI, Burdenniy AM, Lukina SS. [Association of polymorphisms of the TRIM21 gene with the severity of dry keratoconjunctivitis in rheumatoid arthritis and Sjogren's disease]. Vestn Oftalmol 2019; 135:192-198. [PMID: 31691659 DOI: 10.17116/oftalma2019135052192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ophthalmologic manifestation of Sjogren's disease (SD) and rheumatoid arthritis (RA) is dry keratoconjunctivitis (dry eye disease; DED). PURPOSE To study the relationship of polymorphic markers rs7947461 (C/T), rs915956 (C/T), rs4144331 (C/A) of the TRIM21 gene with the severity of DED in patients with RA and SD. MATERIAL AND METHODS The study included 70 patients with RA (n=27) and SD (n=43). The control group consisted of volunteers without a history of RA or SD (n=35). Alleles of the polymorphic marker C660T rs7947461 of the TRIM21 gene were identified using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method; alleles of the polymorphic marker rs915956 (C/T) and rs4144331 (C/A) of the TRIM21 gene were identified by analyzing DNA melting curves. RESULTS An association was found between the predisposing genotype (TT) of rs7947461 polymorphic marker and the risk of developing severe DED. The AA genotype of rs4144331 polymorphic marker was found only in severe DED (c2=7.74; OR=17.46, CI95%=1.96-318.38, p=0.02). CONCLUSION An association was established between rs7947461 (rs660) and rs4144331 and the risk of developing severe DED.
Collapse
Affiliation(s)
- T N Safonova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - G V Zaitseva
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - V I Loginov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya St., Moscow, Russian Federation, 125315
| | - A M Burdenniy
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya St., Moscow, Russian Federation, 125315
| | - S S Lukina
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya St., Moscow, Russian Federation, 125315; I.M. Sechenov First Moscow State Medical University, Department of Ophthalmology, 8-2 Trubetskaya St., Moscow, Russian Federation, 119991
| |
Collapse
|