1
|
Yao M, Cao Y, He J, Dong R, Liu G, Chen Y, Wang J, Zhou J. Single-cell transcriptomic analysis reveals heterogeneous features of myeloid-derived suppressor cells in newborns. Front Immunol 2024; 15:1367230. [PMID: 38919617 PMCID: PMC11196393 DOI: 10.3389/fimmu.2024.1367230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The transitory emergence of myeloid-derived suppressor cells (MDSCs) in infants is important for the homeostasis of the immune system in early life. The composition and functional heterogeneity of MDSCs in newborns remain elusive, hampering the understanding of the importance of MDSCs in neonates. In this study, we unraveled the maturation trajectory of polymorphonuclear (PMN)-MDSCs from the peripheral blood of human newborns by performing single-cell RNA sequencing. Results indicated that neonatal PMN-MDSCs differentiated from self-renewal progenitors, antimicrobial PMN-MDSCs, and immunosuppressive PMN-MDSCs to late PMN-MDSCs with reduced antimicrobial capacity. We also established a simple framework to distinguish these distinct stages by CD177 and CXCR2. Importantly, preterm newborns displayed a reduced abundance of classical PMN-MDSCs but increased late PMN-MDSCs, consistent with their higher susceptibility to infections and inflammation. Furthermore, newborn PMN-MDSCs were distinct from those from cancer patients, which displayed minimum expression of genes about antimicrobial capacity. This study indicates that the heterogeneity of PMN-MDSCs is associated with the maturity of human newborns.
Collapse
Affiliation(s)
- Meng Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingjiao Cao
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingying Chen
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Brownlie D, Rødahl I, Varnaite R, Asgeirsson H, Glans H, Falck-Jones S, Vangeti S, Buggert M, Ljunggren HG, Michaëlsson J, Gredmark-Russ S, Smed-Sörensen A, Marquardt N. Comparison of Lung-Homing Receptor Expression and Activation Profiles on NK Cell and T Cell Subsets in COVID-19 and Influenza. Front Immunol 2022; 13:834862. [PMID: 35371005 PMCID: PMC8966396 DOI: 10.3389/fimmu.2022.834862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory viral infections with SARS-CoV-2 and influenza viruses commonly induce a strong infiltration of immune cells into the human lung, with potential detrimental effects on the integrity of the lung tissue. Despite comprising the largest fractions of circulating lymphocytes in the lung, rather little is known about how peripheral blood natural killer (NK) cell and T cell subsets are equipped for lung-homing in COVID-19 and influenza. Here, we provide a detailed comparative analysis of NK cells and T cells in patients infected with SARS-CoV-2 or influenza virus, focusing on the protein and gene expression of chemokine receptors known to be involved in recruitment to the lung. For this, we used 28-colour flow cytometry as well as re-analysis of a publicly available single-cell RNA-seq dataset from bronchoalveolar lavage (BAL) fluid. Frequencies of NK cells and T cells expressing CXCR3, CXCR6, and CCR5 were altered in peripheral blood of COVID-19 and influenza patients, in line with increased transcript expression of CXCR3, CXCR6, and CCR5 and their respective ligands in BAL fluid. NK cells and T cells expressing lung-homing receptors displayed stronger phenotypic signs of activation compared to cells lacking lung-homing receptors, and activation was overall stronger in influenza compared to COVID-19. Together, our results indicate a role for CXCR3+, CXCR6+, and/or CCR5+ NK cells and T cells that potentially migrate to the lungs in moderate COVID-19 and influenza patients, identifying common targets for future therapeutic interventions in respiratory viral infections.
Collapse
Affiliation(s)
- Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hilmir Asgeirsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol 2021; 22:1416-1427. [PMID: 34663977 DOI: 10.1038/s41590-021-01035-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2021] [Indexed: 01/20/2023]
Abstract
Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.
Collapse
|
4
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Ma Y, Huang Y, Zhao S, Yao Y, Zhang Y, Qu J, Wu N, Su J. Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Hum Mol Genet 2021; 30:1247-1258. [PMID: 33949668 PMCID: PMC8136003 DOI: 10.1093/hmg/ddab125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
6
|
Modelling within-host macrophage dynamics in influenza virus infection. J Theor Biol 2020; 508:110492. [PMID: 32966828 DOI: 10.1016/j.jtbi.2020.110492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Human respiratory disease associated with influenza virus infection is of significant public health concern. Macrophages, as part of the front line of host innate cellular defence, have been shown to play an important role in controlling viral replication. However, fatal outcomes of infection, as evidenced in patients infected with highly pathogenic viral strains, are often associated with prompt activation and excessive accumulation of macrophages. Activated macrophages can produce a large amount of pro-inflammatory cytokines, which leads to severe symptoms and at times death. However, the mechanism for rapid activation and excessive accumulation of macrophages during infection remains unclear. It has been suggested that the phenomena may arise from complex interactions between macrophages and influenza virus. In this work, we develop a novel mathematical model to study the relationship between the level of macrophage activation and the level of viral load in influenza infection. Our model combines a dynamic model of viral infection, a dynamic model of macrophages and the essential interactions between the virus and macrophages. Our model predicts that the level of macrophage activation can be negatively correlated with the level of viral load when viral infectivity is sufficiently high. We further identify that temporary depletion of resting macrophages in response to viral infection is a major driver in our model for the negative relationship between the level of macrophage activation and viral load, providing new insight into the mechanisms that regulate macrophage activation. Our model serves as a framework to study the complex dynamics of virus-macrophage interactions and provides a mechanistic explanation for existing experimental observations, contributing to an enhanced understanding of the role of macrophages in influenza viral infection.
Collapse
|
7
|
Yim HCH, Leon TYY, Li JCB. MXD1 regulates the H9N2 and H1N1 influenza A virus-induced chemokine expression and their replications in human macrophage. J Leukoc Biol 2020; 108:1631-1640. [PMID: 32794336 DOI: 10.1002/jlb.4ma0620-703rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Human infection with influenza A/Hong Kong/156/97 (H5N1) avian influenza virus is associated with a high mortality rate of 60%. This virus is originated from influenza A/Quail/Hong Kong/G1/97 (H9N2/G1) avian influenza virus. Since the 1990s, four lineages of H9N2 viruses have been circulating in poultry and cause occasional infection in humans in different countries. Due to its zoonotic and genetic reassortment potential, H9N2/G1 and H5N1 viruses are believed to be the next pandemic candidates. Previous reports, including ours, showed that the virulence of avian virus strains correlates with their ability to dysregulate cytokine expression, including TNF-α, CXCL10, and related chemokines in the virus-infected cells. However, the transcriptional factors required for this cytokine dysregulation remains undefined. In light of our previous report showing the unconventional role of MYC, an onco-transcriptional factor, for regulating the antibacterial responses, we hypothesize that the influenza virus-induced cytokine productions may be governed by MYC/MAX/MXD1 network members. Here, we demonstrated that the influenza A/Hong Kong/54/98 (H1N1)- or H9N2/G1 virus-induced CXCL10 expressions can be significantly attenuated by knocking down the MXD1 expression in primary human blood macrophages. Indeed, only the MXD1 expression was up-regulated by both H1N1 and H9N2/G1 viruses, but not other MYC/MAX/MXD1 members. The MXD1 expression and the CXCL10 hyperinduction were dependent on MEK1/2 activation. By using EMSAs, we revealed that MXD1 directly binds to the CXCL10 promoter-derived oligonucleotides upon infection of both viruses. Furthermore, silencing of MXD1 decreased the replication of H9N2 but not H1N1 viruses. Our results provide a new insight into the role of MXD1 for the pathogenicity of avian influenza viruses.
Collapse
Affiliation(s)
- Howard C H Yim
- Microbiome Research Centre, St George and Sutherland Clinical School, The University of New South Wales, Sydney, Australia
| | - Thomas Y Y Leon
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, P.R. China
| | - James C B Li
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, P.R. China
| |
Collapse
|
8
|
Chen S, Xie Y, Su X, Xue J, Wang X, Du Y, Qin T, Peng D, Liu X. Substitutions in the PB2 methionine 283 residue affect H5 subtype avian influenza virus virulence. Transbound Emerg Dis 2020; 67:2554-2563. [PMID: 32351035 DOI: 10.1111/tbed.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
The influenza A virus (IAV) PB2 subunit modulates viral polymerase activity, replication kinetics and pathogenicity. Here we identified novel PB2 substitutions at position 283 of H5 subtype IAV and evaluated their biological characteristics and virulence. The substitution PB2-M283L enhanced the growth capacity and polymerase activity in human and mammalian cells in comparison to the rWT virus. The substitution PB2-M283L displayed high virulence, resulting in a greater virus load in different tissues, more severe histopathological lesions and proinflammatory cytokines burst in mice. The substitution PB2-M283I had an opposite phenotype. Our data extend the important role of PB2 substitutions in the adaptation of H5 subtype IAVs to mammalian hosts.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Yizhang Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Xiang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Jing Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Xiao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, PR China
| |
Collapse
|
9
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|
10
|
In vivo imaging of the pathophysiological changes and neutrophil dynamics in influenza virus-infected mouse lungs. Proc Natl Acad Sci U S A 2018; 115:E6622-E6629. [PMID: 29941581 DOI: 10.1073/pnas.1806265115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological changes that occur in lungs infected with influenza viruses are poorly understood. Here we established an in vivo imaging system that combines two-photon excitation microscopy and fluorescent influenza viruses of different pathogenicity. This approach allowed us to monitor and correlate several parameters and physiological changes including the spread of infection, pulmonary permeability, pulmonary perfusion speed, number of recruited neutrophils in infected lungs, and neutrophil motion in the lungs of live mice. Several physiological changes were larger and occurred earlier in mice infected with a highly pathogenic H5N1 influenza virus compared with those infected with a mouse-adapted human strain. These findings demonstrate the potential of our in vivo imaging system to provide novel information about the pathophysiological consequences of virus infections.
Collapse
|
11
|
Taye B, Chen H, Myaing MZ, Tan BH, Maurer-Stroh S, Sugrue RJ. Systems-based approach to examine the cytokine responses in primary mouse lung macrophages infected with low pathogenic avian Influenza virus circulating in South East Asia. BMC Genomics 2017; 18:420. [PMID: 28558796 PMCID: PMC5450074 DOI: 10.1186/s12864-017-3803-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Background Influenza A virus (IAV) is a major public health concern, being responsible for the death of approximately half a million people each year. Zoonotic transmissions of the virus from swine and avian origin have occurred in the past, and can potentially lead to the emgergence of new IAV stains in future pandemics. Pulmonary macrophages have been implicated in disease severity in the lower airway, and understanding the host response of macrophages infected with avian influenza viruses should provide new therapeutic strategies. Results We used a systems-based approach to investigate the transcriptome response of primary murine lung macrophages (PMФ) infected with the mouse-adapted H1N1/WSN virus and low pathogenic avian influenza (LPAI) viruses H5N2 and H5N3. The results showed that the LPAI viruses H5N2 and H5N3 can infect PMФ with similar efficiency to the H1N1/WSN virus. While all viruses induced antiviral responses, the H5N3 virus infection resulted in higher expression levels of cytokines and chemokines associated with inflammatory responses. Conclusions The LPAI H5N2 and H5N3 viruses are able to infect murine lung macrophages. However, the H5N3 virus was associated with increased expression of pro-inflammatory mediators. Although the H5N3 virus it is capable of inducing high levels of cytokines that are associated with inflammation, this property is distinct from its inability to efficiently replicate in a mammalian host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3803-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biruhalem Taye
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, P.O.BOX 1176, Ethiopia
| | - Hui Chen
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Current address Genome Institute of Singapore, A*STAR, 60 Biopolis Street, #02-01, Genome, Singapore, 138672, Republic of Singapore
| | - Myint Zu Myaing
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, Defence Science Organisation National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.,LKC School of Medicine, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Republic of Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,National Public Health Laboratory, Ministry of Health, Singapore, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
12
|
Thomas M, Mani RS, Philip M, Adhikary R, Joshi S, Revadi SS, Buggi S, Desai A, Vasanthapuram R. Proinflammatory chemokines are major mediators of exuberant immune response associated with Influenza A (H1N1) pdm09 virus infection. J Med Virol 2017; 89:1373-1381. [DOI: 10.1002/jmv.24781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Maria Thomas
- Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bangalore India
| | - Reeta Subramaniam Mani
- Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bangalore India
| | - Mariamma Philip
- Department of Biostatistics; National Institute of Mental Health and Neurosciences; Bangalore India
| | | | - Sangeeta Joshi
- Department of Microbiology; Manipal Hospital; Bangalore India
| | - Srigiri S. Revadi
- Influenza Division; Rajiv Gandhi Institute for Chest Diseases; Bangalore India
| | - Shashidhar Buggi
- Influenza Division; Rajiv Gandhi Institute for Chest Diseases; Bangalore India
| | - Anita Desai
- Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bangalore India
| | - Ravi Vasanthapuram
- Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bangalore India
| |
Collapse
|
13
|
Gui B, Chen Q, Hu C, Zhu C, He G. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice. Virol J 2017; 14:10. [PMID: 28114957 PMCID: PMC5259864 DOI: 10.1186/s12985-017-0683-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
Background H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. Methods Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. Results Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-β in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-β was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. Conclusions These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study will provide some novel insights into the use of calcitriol to modulate the inflammatory response elicited by influenza virus infection in humans.
Collapse
Affiliation(s)
- Boxiang Gui
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Qin Chen
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Chuanxia Hu
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Caihui Zhu
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
14
|
Meng D, Huo C, Wang M, Xiao J, Liu B, Wei T, Dong H, Zhang G, Hu Y, Sun L. Influenza A Viruses Replicate Productively in Mouse Mastocytoma Cells (P815) and Trigger Pro-inflammatory Cytokine and Chemokine Production through TLR3 Signaling Pathway. Front Microbiol 2017; 7:2130. [PMID: 28127293 PMCID: PMC5226950 DOI: 10.3389/fmicb.2016.02130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
The influenza A viruses (IAVs) cause acute respiratory infection in both humans and animals. As a member of the initial lines of host defense system, the role of mast cells during IAV infection has been poorly understood. Here, we characterized for the first time that both avian-like (α-2, 3-linked) and human-like (α-2, 6- linked) sialic acid (SA) receptors were expressed by the mouse mastocytoma cell line (P815). The P815 cells did support the productive replication of H1N1 (A/WSN/33), H5N1 (A/chicken/ Henan/1/04) and H7N2 (A/chicken/Hebei/2/02) in vitro while the in vivo infection of H5N1 in mast cells was confirmed by the specific staining of nasal mucosa and lung tissue from mice. All the three viruses triggered the infected P815 cells to produce pro-inflammatory cytokines and chemokines including IL-6, IFN-γ, TNF-α, CCL-2, CCL-5, and IP-10, but not the antiviral type I interferon. It was further confirmed that TLR3 pathway was involved in P815 cell response to IAV-infection. Our findings highlight the remarkable tropism and infectivity of IAV to P815 cells, indicating that mast cells may be unneglectable player in the development of IAV infection.
Collapse
Affiliation(s)
- Di Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Caiyun Huo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityBeijing, China; Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., LtdBeijing, China
| | - Jin Xiao
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityBeijing, China; Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., LtdBeijing, China
| | - Bo Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Tangting Wei
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
15
|
Na W, Lyoo KS, Yoon SW, Yeom M, Kang B, Moon H, Kim HK, Jeong DG, Kim JK, Song D. Attenuation of the virulence of a recombinant influenza virus expressing the naturally truncated NS gene from an H3N8 equine influenza virus in mice. Vet Res 2016; 47:115. [PMID: 27846859 PMCID: PMC5111206 DOI: 10.1186/s13567-016-0400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids. Recently, we isolated an H3N8 EIV (A/equine/Kyonggi/SA1/2011) from a domestic horse in South Korea that exhibited symptoms of respiratory disease, and found that the EIV strain contained a naturally mutated NS gene segment encoding a truncated NS1 protein. In order to determine whether there was an association between the NS gene truncation and viral virulence, a reverse genetics system was applied to generate various NS gene recombinant viruses using the backbone of the H1N1 A/Puerto Rico/8/1934 (PR/8) virus. In a mouse model, the recombinant PR/8 virus containing the mutated NS gene of the Korean H3N8 EIV strain showed a dramatically reduced virulence: it induced no weight loss, no clinical signs and no histopathological lesions. However, the mice infected with the recombinant viruses with NS genes of PR/8 and H3N8 A/equine/2/Miami/1963 showed severe clinical signs including significant weight loss and 100% mortality. In addition, the levels of the pro-inflammatory cytokines; IL-6, CCL5, and IFN-γ, in the lungs of mice infected with the recombinant viruses expressing a full-length NS1 were significantly higher than those of mice infected with the virus with the NS gene from the Korean H3N8 EIV strain. In this study, our results suggest that the C-terminal moiety of NS1 contains a number of virulence determinants and might be a suitable target for the development of a vaccine candidate against equine influenza.
Collapse
Affiliation(s)
- Woonsung Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hye Kwon Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Dae Gwin Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jeong-Ki Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
16
|
Han D, Wei T, Zhang S, Wang M, Tian H, Cheng J, Xiao J, Hu Y, Chen M. The therapeutic effects of sodium cromoglycate against influenza A virus H5N1 in mice. Influenza Other Respir Viruses 2016; 10:57-66. [PMID: 26176755 PMCID: PMC4687497 DOI: 10.1111/irv.12334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives To identify the protective role of sodium cromoglycate in mice during influenza virus infection. Design H5N1 virus‐infected mice were treated with the mast cell stabilizer sodium cromoglycate (SCG) to investigate its therapeutic effect. Sample The nose, trachea and lungs from mice were collected. Main outcome measures Virus replication and host responses were determined by plaque assay, quantitative PCR, immunohistochemistry, and histology. Results SCG‐treated mice survived better than did PBS‐treated mice after H5N1 virus infection. Mild pathological changes with fewer inflammatory cell infiltration and fewer virus antigens were observed in the nose, trachea, and lungs of SCG‐treated mice on days 3 and 5 post‐infection. However, no significant changes in viral load in the lungs were detected between SCG‐ and PBS‐treated mice. Furthermore, significantly decreased expression of interleukin‐6, tumor necrosis factor‐a, Toll‐like receptor 3, and TIR‐domain‐containing adapter‐inducing interferon‐b was detected in the lungs of SCG‐treated mice, and no higher expression of interferon‐c was detected. Conclusion These results suggest that SCG has therapeutic roles in H5N1 virus‐infected mice by alleviating the inflammatory response rather than inhibition of viral replication in the lungs.
Collapse
Affiliation(s)
- Deping Han
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tangting Wei
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyi Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Haiyan Tian
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinlong Cheng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Yanxin Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingyong Chen
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Liu J, Li N, Meng D, Hao M, Wei L, Chai T. The mRNA and Proteins Expression Levels Analysis of TC-1 Cells Immune Response to H9N2 Avian Influenza Virus. Front Microbiol 2016; 7:1039. [PMID: 27446066 PMCID: PMC4927568 DOI: 10.3389/fmicb.2016.01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/20/2016] [Indexed: 01/19/2023] Open
Abstract
Since 1994, the H9N2 avian influenza virus (AIV) has spread widely in mainland China, causing great economic losses to the poultry industry there. Subsequently, it was found that the H9N2 AIV had the ability to infect mammals, which gave rise to great panic. In order to investigate the immune response of a host infected with H9N2 AIV, TC-1 cells were set as a model in this research. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods were used to study the expression changes of pattern recognition receptors (PRRs), inflammatory cytokines, and chemokines in AIV-infected TC-1 cells. Our research found that TC-1 cells had similar susceptibility to both CK/SD/w3 (A/Chicken/Shandong/W3/2012) and CK/SD/w4 (A/Chicken/Shandong/W4/2012) H9N2 isolates, while the CK/SD/w3 isolate had a stronger capability of replication in the TC-1 cells. At the same time, the expression of PRRs (melanoma differentiation-associated gene 5, MDA-5), cytokines [interleukin (IL)-1β and IL-6], and chemokines [regulated on activation, normal T cell expressed and secreted (RANTES) and interferon-γ-induced protein-10 kDa (IP-10)] were significantly up-regulated. These results indicated that MDA-5, IL-1β, IL-6, RANTES, and IP-10 might play important roles in the host immune response to H9N2 AIV infection. This study provided useful information for further understanding the interaction between H9N2 virus infection and host immunity, and had certain guiding significance for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jiyuan Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Dan Meng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Mengchan Hao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| |
Collapse
|
18
|
Soboslay PT, Orlikowsky T, Huang X, Gille C, Spring B, Kocherscheidt L, Agossou A, Banla M, Bonin M, Köhler C. Cellular gene expression induced by parasite antigens and allergens in neonates from parasite-infected mothers. Mol Immunol 2016; 73:98-111. [PMID: 27062712 DOI: 10.1016/j.molimm.2016.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/19/2022]
Abstract
Prenatal exposure to parasite antigens or allergens will influence the profile and strength of postnatal immune responses, such contact may tolerize and increase susceptibility to future infections or sensitize to environmental allergens. Exposure in utero to parasite antigens will distinctly alter cellular gene expression in newborns. Gene microarrays were applied to study gene expression in umbilical cord blood cell (UCBC) from parasite-exposed (Para-POS) and non-exposed (Para-NEG) neonates. UCBC were activated with antigens of helminth (Onchocerca volvulus), amoeba (Entamoeba histolytica) or allergens of mite (Dermatophagoides farinae). When UCBC from Para-POS and Para-NEG newborns were exposed to helminth antigens or allergens consistent differences occurred in the expression of genes encoding for MHC class I and II alleles, signal transducers of activation and transcription (STATs), cytokines, chemokines, immunoglobulin heavy and light chains, and molecules associated with immune regulation (SOCS, TLR, TGF), inflammation (TNF, CCR) and apoptosis (CASP). Expression of genes associated with innate immune responses were enhanced in Para-NEG, while in Para-POS, the expression of MHC class II and STAT genes was reduced. Within functional gene networks for cellular growth, proliferation and immune responses, Para-NEG neonates presented with significantly higher expression values than Para-POS. In Para-NEG newborns, the gene cluster and pathway analyses suggested that gene expression profiles may predispose for the development of immunological, hematological and dermatological disorders upon postnatal helminth parasite infection or allergen exposure. Thus, prenatal parasite contact will sensitize without generating aberrant inflammatory immune responses, and increased pro-inflammatory but decreased regulatory gene expression profiles will be present in those neonates lacking prenatal parasite antigen encounter.
Collapse
Affiliation(s)
- Peter T Soboslay
- Institute for Tropical Medicine, University of Tübingen (UKT), Wilhelmstr. 27, 72074 Tübingen, Germany.
| | - Thorsten Orlikowsky
- Department of Neonatology, University Children's Hospital, UKT, Calwerstr. 7, 72076 Tübingen, Germany
| | - Xiangsheng Huang
- Institute for Tropical Medicine, University of Tübingen (UKT), Wilhelmstr. 27, 72074 Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, University Children's Hospital, UKT, Calwerstr. 7, 72076 Tübingen, Germany
| | - Bärbel Spring
- Department of Neonatology, University Children's Hospital, UKT, Calwerstr. 7, 72076 Tübingen, Germany
| | - Lars Kocherscheidt
- Institute for Tropical Medicine, University of Tübingen (UKT), Wilhelmstr. 27, 72074 Tübingen, Germany
| | - Abram Agossou
- Faculté Mixte de Médicine et de Pharmacie, Université de Lomé, B.P. 1515 Lomé, Togo
| | - Meba Banla
- Faculté Mixte de Médicine et de Pharmacie, Université de Lomé, B.P. 1515 Lomé, Togo
| | - Michael Bonin
- Department of Medical Genetics, University of Tübingen (UKT), Calwerstr. 7, 72076 Tübingen, Germany
| | - Carsten Köhler
- Institute for Tropical Medicine, University of Tübingen (UKT), Wilhelmstr. 27, 72074 Tübingen, Germany
| |
Collapse
|
19
|
Farzin H, Toroghi R, Haghparast A. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549). Immunol Invest 2016; 45:116-29. [DOI: 10.3109/08820139.2015.1099663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Li J, Zhou B, Li C, Chen Q, Wang Y, Li Z, Chen T, Yang C, Jiang Z, Zhong N, Yang Z, Chen R. Lariciresinol-4-O-β-D-glucopyranoside from the root of Isatis indigotica inhibits influenza A virus-induced pro-inflammatory response. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:379-86. [PMID: 26320688 DOI: 10.1016/j.jep.2015.08.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isatis indigotica is a traditional Chinese medicine. Its dried roots named "ban lan gen" in Chinese, are used for clinical treatment of virus infection, tumor, inflammation with a long history. However, its anti-influenza active ingredient and the underlying mechanism remain unclear. In this study, the anti-influenza and anti-inflammatory effects of a lignan glycoside: lariciresinol-4-O-β-D-glucopyranoside isolated from the root of I. indigotica on human alveolar epithelial cell line A549 infected with influenza A virus were investigated. MATERIALS AND METHODS Chemical and spectroscopic methods were employed to identify the structure of the lignan glycoside. Cytotoxicity of the lignan glycoside was analyzed using methylthiazolyltetrazolium (MTT) assay. The inhibitory activity against influenza virus of the lignan was determined by CPE inhibition assay. HEK-293 cells stably co-transfected with NF-κB responsive firefly luciferase and constitutively expressing GFP were employed for monitoring the effect of the lignan on NF-κB signal pathway activation. Nuclear export of viral ribonucleoprotein (RNP) complexes was monitored by indirect immunofluorescence. Quantitative real-time PCR was used to quantify the expression profiling of cytokines and chemokines after infection with influenza virus. RESULTS We showed that the lignan glycoside treatment was effective against the influenza A virus-induced cytopathic effect (CPE) in MDCK cells. Further study demonstrated the lignan glycoside attenuated virus-induced NF-κB activation, but did not affect export of viral ribonucleoprotein (RNP) complexes from the nucleus in late stages of infection. We revealed that the lignan glycoside suppressed influenza A virus (H1N1)-induced expression of the pro-inflammatory molecules IL-6, TNF-α, IL-8, MCP-1, IP-10 and IFN-α. Moreover, the cytokines and chemokines profiles induced by H9N2 virus resembled those of influenza virus H1N1, but the lignan glycoside reduced the expression of IP-10 and TNF-α. CONCLUSIONS Our results suggest that the lignan glycoside is a bioactive component of I. indigotica which may contribute an adjunct to pharmacotherapy for influenza virus infection.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Beixian Zhou
- Macau University of Science and Technology, Taipa, Macau S.A.R
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - QiaoYan Chen
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zhengtu Li
- Guangzhou Medical University, Guangzhou 510182, China
| | - Tingting Chen
- Guangzhou Medical University, Guangzhou 510182, China
| | | | - Zhihong Jiang
- Macau University of Science and Technology, Taipa, Macau S.A.R
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China; Macau University of Science and Technology, Taipa, Macau S.A.R
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China; Macau University of Science and Technology, Taipa, Macau S.A.R..
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
21
|
Campbell GM, Nicol MQ, Dransfield I, Shaw DJ, Nash AA, Dutia BM. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype. J Gen Virol 2015; 96:2951-2960. [PMID: 26297234 DOI: 10.1099/jgv.0.000240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.
Collapse
Affiliation(s)
- Gillian M Campbell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Anthony A Nash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
22
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
23
|
Li H. Influenza. RADIOLOGY OF INFECTIOUS DISEASES: VOLUME 1 2015. [PMCID: PMC7122340 DOI: 10.1007/978-94-017-9882-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Influenza, briefly known as flu, is an acute respiratory infectious disease caused by influenza virus. It spreads via droplets, with strong infectivity. Its incident rate ranks first in legal infectious diseases, with occurrences of outbreaks or pandemics. Its clinical symptoms are characterized by acute onset of high fever, fatigue, systemic muscular soreness and pain, as well as mild respiratory tract symptoms. Influenza more commonly occurs in autumns and winters. Although it has a short disease course and is self-limited, it may be complicated by pneumonia and other serious complications in populations including the elderly, infants and young children, patients with cardiac or pulmonary diseases, patients with other chronic diseases, and patients with compromised immunity. In some serious cases, death may even occur.
Collapse
Affiliation(s)
- Hongjun Li
- Capital Medical University, Beijing You An Hospital, Beijing, China
| |
Collapse
|
24
|
Abstract
ABSTRACT: The importance of macrophages in the control of infections has long been documented, but macrophages have also been shown to contribute to severe influenza A virus infections. Macrophage function ranges from highly proinflammatory to wound healing and regulatory and a picture of diverse subsets with considerable plasticity in function and phenotype is emerging. Within the lung three subsets of macrophage populations have been identified: resident alveolar macrophages, interstitial macrophages and exudate-derived macrophages. Here we review model systems and techniques for defining macrophage function in vivo and discuss macrophage infection in vitro. The use of detailed phenotypic approaches and techniques to dissect the role of individual macrophage subsets in vivo promises rapid advances in this area of research.
Collapse
Affiliation(s)
- Marlynne Q Nicol
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, UK
| |
Collapse
|
25
|
Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci 2014; 97:412-21. [PMID: 25000875 DOI: 10.1016/j.rvsc.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system.
Collapse
Affiliation(s)
- M Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - K Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - I Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - C Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Z Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
26
|
An ENU-induced splicing mutation reveals a role for Unc93b1 in early immune cell activation following influenza A H1N1 infection. Genes Immun 2014; 15:320-32. [PMID: 24848930 PMCID: PMC4978536 DOI: 10.1038/gene.2014.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Genetic and immunological analysis of host-pathogen interactions can reveal fundamental mechanisms of susceptibility and resistance to infection. Modeling human infectious diseases among inbred mouse strains is a proven approach but is limited by naturally occurring genetic diversity. Using ENU mutagenesis, we created a recessive loss-of-function point mutation in Unc93b1 (unc-93 homolog B1 (C. elegans)), a chaperone for endosomal TLR3, TLR7, and TLR9, that we termed Letr for ‘loss of endosomal TLR response’. We used Unc93b1Letr/Letr mice to study the role of Unc93b1 in the immune response to influenza A/PR/8/34 (H1N1), an important global respiratory pathogen. During the early phase of infection, Unc93b1Letr/Letr mice had fewer activated exudate macrophages and decreased expression of CXCL10, IFN-γ, and type I IFN. Mutation of Unc93b1 also led to reduced expression of the CD69 activation marker and a concomitant increase in the CD62L naïve marker on CD4+ and CD8+ T cells in infected lungs. Finally, loss of endosomal TLR signaling resulted in delayed viral clearance that coincided with increased tissue pathology during infection. Taken together, these findings establish a role for Unc93b1 and endosomal TLRs in the activation of both myeloid and lymphoid cells during the innate immune response to influenza.
Collapse
|
27
|
Han Y, Ling MT, Mao H, Zheng J, Liu M, Lam KT, Liu Y, Tu W, Lau YL. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice. PLoS One 2014; 9:e86166. [PMID: 24465940 PMCID: PMC3897646 DOI: 10.1371/journal.pone.0086166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/06/2013] [Indexed: 01/24/2023] Open
Abstract
Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.
Collapse
Affiliation(s)
- Yan Han
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Man To Ling
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ming Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Kwok Tai Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- * E-mail: (Y. Lau); (WT)
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- * E-mail: (Y. Lau); (WT)
| |
Collapse
|
28
|
Zhao X, Dai J, Xiao X, Wu L, Zeng J, Sheng J, Su J, Chen X, Wang G, Li K. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One 2014; 9:e104506. [PMID: 25105760 PMCID: PMC4126709 DOI: 10.1371/journal.pone.0104506] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/11/2014] [Indexed: 02/05/2023] Open
Abstract
Macrophages polarized to M1 (pro-inflammation) or M2 (anti-inflammation) phenotypes in response to environmental signals. In this study, we examined the polarization of alveolar macrophage (AM), following induction by different influenza virus strains (ST169 (H1N1), ST602 (H3N2) and HKG9 (H9N2)). Macrophages from other tissues or cell line exert alternative responding pattern, and AM is necessary for investigating the respiratory system. AM polarized toward the M1 phenotype after 4 hours of infection by all three virus strains, and AM to presented M2b phenotype after 8 hours induction, and immunosuppressive phenotype after 24 hours of induction. Protein expression assay showed similar results as the gene expression analysis for phenotype verification. The ELISA assay showed that TNF-α secretion was up-regulated after 4 and 8 hours of infection by influenza viruses, and it returned to basal levels after 24 hours of infection. IL-10 expression was elevated after 8 and 24 hours of infection. Immunofluorescence showed that iNOS expression was up-regulated but not Arg1 expression. Influenza virus notably increased phospho-Akt but not phospho-Erk1/2 or phospho-p38, and the AM polarization pattern have been changed by LY294002 (PI3K inhibitor). In conclusion, our results demonstrate the dynamic polarization of AM induced by influenza viruses, and suggested that PI3K/Akt signaling pathway modulates AM polarization to M1/M2b.
Collapse
Affiliation(s)
- Xiangfeng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jianping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Xuejun Xiao
- Department of Nursing, Guilin Medical University, Guilin, Guangxi, China
| | - Liqi Wu
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jun Zeng
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jinghua Su
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
- * E-mail: (KsL); (GfW)
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
- * E-mail: (KsL); (GfW)
| |
Collapse
|
29
|
Michael P, Brabant D, Bleiblo F, Ramana CV, Rutherford M, Khurana S, Tai T, Kumar A, Kumar A. Influenza A induced cellular signal transduction pathways. J Thorac Dis 2013; 5 Suppl 2:S132-41. [PMID: 23977434 PMCID: PMC3747532 DOI: 10.3978/j.issn.2072-1439.2013.07.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022]
Abstract
Influenza A is a negative sense single stranded RNA virus that belongs to the Orthomyxoviridae Family. This enveloped virus contains 8 segments of viral RNA which encodes 11 viral proteins. Influenza A infects humans and is the causative agent of the flu. Annually it infects approximately 5% to 15% of the population world wide and results in an estimated 250,000 to 500,000 deaths a year. The nature of influenza A replication results in a high mutation rate which results in the need for seasonal vaccinations. In addition the zoonotic nature of the influenza virus allows for recombination of viral segments from different strains creating new variants that have not been encountered before. This type of mutation is the method by which pandemic strains of the flu arises. Infection with influenza results in a respiratory illness that for most individuals is self limiting. However in susceptible populations which include individuals with pre-existing pulmonary or cardiac conditions, the very young and the elderly fatal complications may arise. The most serious of these is the development of viral pneumonia which may be accompanied by secondary bacterial infections. Progression of pneumonia leads to the development of acute respiratory distress syndrome (ARDS), acute lung injury (ALI) and potentially respiratory failure. This progression is a combined effect of the host immune system response to influenza infection and the viral infection itself. This review will focus on molecular aspects of viral replication in alveolar cells and their response to infection. The response of select innate immune cells and their contribution to viral clearance and lung epithelial damage will also be discussed. Molecular aspects of antiviral response in the cells in particular the protein kinase RNA dependent response, and the oligoadenylate synthetase RNAse L system in relation to influenza infection.
Collapse
Affiliation(s)
- Paul Michael
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
| | - Danielle Brabant
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
| | - Farag Bleiblo
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
- Department of Biology, University of Benghazi, Benghazi, Libya
| | | | - Michael Rutherford
- Department of Pathology, Health Sciences North, Sudbury, P3E 5J1, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, P3E 2C6, ON, Canada
| | - Sandhya Khurana
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, P3E 2C6, ON, Canada
| | - T.C. Tai
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, P3E 2C6, ON, Canada
| | - Anand Kumar
- Section of Critical Care Medicine, University of Manitoba, Winnipeg, R3A 1R9, MB, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, P3E 2C6, ON, Canada
| |
Collapse
|
30
|
Chan RWY, Chan MCW, Nicholls JM, Malik Peiris JS. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses. Virus Res 2013; 178:133-45. [PMID: 23684848 DOI: 10.1016/j.virusres.2013.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/24/2013] [Accepted: 03/05/2013] [Indexed: 12/27/2022]
Abstract
The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions.
Collapse
Affiliation(s)
- Renee W Y Chan
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region; Centre of Influenza Research, The University of Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | |
Collapse
|
31
|
Abstract
Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans.
Collapse
Affiliation(s)
- Irene Ramos
- Authors to whom correspondence should be addressed; (A.F.S.); (I.R.); Tel. +1-212-241-5182 (A.F.S.); +1-212 241-0994 (I.R.); Fax: +1-212-534-1684 (A.F.S.); +1-212-534-1684 (I.R.)
| | - Ana Fernandez-Sesma
- Authors to whom correspondence should be addressed; (A.F.S.); (I.R.); Tel. +1-212-241-5182 (A.F.S.); +1-212 241-0994 (I.R.); Fax: +1-212-534-1684 (A.F.S.); +1-212-534-1684 (I.R.)
| |
Collapse
|
32
|
Epidemiological and virological characteristics of pandemic influenza A (H1N1) school outbreaks in China in 2009. PLoS One 2012; 7:e45898. [PMID: 23029300 PMCID: PMC3459944 DOI: 10.1371/journal.pone.0045898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background During the 2009 pandemic influenza H1N1 (2009) virus (pH1N1) outbreak, school students were at an increased risk of infection by the pH1N1 virus. However, the estimation of the attack rate showed significant variability. Methods Two school outbreaks were investigated in this study. A questionnaire was designed to collect information by interview. Throat samples were collected from all the subjects in this study 6 times and sero samples 3 times to confirm the infection and to determine viral shedding. Data analysis was performed using the software STATA 9.0. Findings The attack rate of the pH1N1 outbreak was 58.3% for the primary school, and 52.9% for the middle school. The asymptomatic infection rates of the two schools were 35.8% and 37.6% respectively. Peak virus shedding occurred on the day of ARI symptoms onset, followed by a steady decrease over subsequent days (p = 0.026). No difference was found either in viral shedding or HI titer between the symptomatic and the asymptomatic infectious groups. Conclusions School children were found to be at a high risk of infection by the novel virus. This may be because of a heightened risk of transmission owing to increased mixing at boarding school, or a lack of immunity owing to socio-economic status. We conclude that asymptomatically infectious cases may play an important role in transmission of the pH1N1 virus.
Collapse
|
33
|
Gong X, Zhou J, Zhu W, Liu N, Li J, Li L, Jin Y, Duan Z. Excessive proinflammatory cytokine and chemokine responses of human monocyte-derived macrophages to enterovirus 71 infection. BMC Infect Dis 2012; 12:224. [PMID: 22994237 PMCID: PMC3519709 DOI: 10.1186/1471-2334-12-224] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The levels of proinflammatory cytokine or chemokine in blood and cerebrospinal fluid are thought to be one of predictors for clinical severity of enterovirus 71 (EV71) infection, yet the cellular sources or signalling mechanism remain undefined. Here, we focused on the response of human primary monocyte-derived macrophages (MDMs) to EV71 virus and its possible mechanisms. METHODS Human primary MDMs were infected by EV71 virus in vitro. Infectivity and viral replication were assayed, and cytokine responses were determined by Cytometric Bead Array(CBA) analysis. The relative changes of Toll-like receptors, retinoic acid-inducible gene I (RIG-I) and melamoma differentiation associated gene 5 (MDA5) mRNA expression were detected by real-time RT-PCR. RESULTS Effective infection and viral replication were detected in EV71-infected MDMs. The titters of progeny virus released from EV71-infected MDMs gradually increased from 6-h to 48-h point of infection (POI.). Proinflammatory cytokines: IL-1, IL-6, TNF-α but not IFN-α and γ were induced in MDMs by EV71. EV71 infection significantly increased the release of IL-8, IP-10 and RANTES at 12-h or 24-h POI. Upregulation of TLR2, TLR7 and TLR8 mRNA expression rather than TLR3, TLR4, TLR6, TLR9, TLR10, RIG-I, MDA5 were found at different time points in EV71-infected MDMs. CONCLUSIONS Our findings suggested that macrophages are not only the important target cells but also the effectors during EV71 infection, and they may play an important role in the pathogenesis of EV71 infection. And the proinflammatory cytokine and chemokine responses in EV71-infected MDMs may be mediated by the activation of differential pattern of TLRs.
Collapse
Affiliation(s)
- Xun Gong
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Na Liu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Jinsong Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Lili Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Yu Jin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Nanjingn Children’s Hospital, Medical School of Nanjing University, Nanjing, 210093, PR China
| | - Zhaojun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| |
Collapse
|
34
|
Wang J, Nikrad MP, Travanty EA, Zhou B, Phang T, Gao B, Alford T, Ito Y, Nahreini P, Hartshorn K, Wentworth D, Dinarello CA, Mason RJ. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012; 7:e29879. [PMID: 22396727 PMCID: PMC3292548 DOI: 10.1371/journal.pone.0029879] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/06/2011] [Indexed: 12/11/2022] Open
Abstract
Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Steinhoff MC, Omer SB, Roy E, El Arifeen S, Raqib R, Dodd C, Breiman RF, Zaman K. Neonatal outcomes after influenza immunization during pregnancy: a randomized controlled trial. CMAJ 2012; 184:645-53. [PMID: 22353593 DOI: 10.1503/cmaj.110754] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There are limited data about the effect of maternal influenza infection on fetuses and newborns. We performed a secondary analysis of data from the Mother's Gift project, a randomized study designed to test the effectiveness of inactivated influenza and pneumococcal vaccines during pregnancy. METHODS In the Mother's Gift project, 340 pregnant women in Bangladesh received either inactivated influenza vaccine or 23-valent pneumococcal polysaccharide vaccine (control). This study was performed from August 2004 through December 2005. We performed a secondary analysis of outcomes following maternal influenza immunization during two periods: when influenza virus was not circulating (September 2004 through January 2005) and when influenza virus was circulating (February through October 2005). We assessed gestational age, mean birth weight and the proportion of infants who were small for gestational age. RESULTS During the period with no circulating influenza virus, there were no differences in the incidence of respiratory illness with fever per 100 person-months among mothers and infants in the two groups (influenza vaccine: 3.9; control: 4.0; p > 0.9). The proportion of infants who were small for gestational age and the mean birth weight were similar between groups (small for gestational age: influenza vaccine 29.1%, control 34.3%; mean birth weight: influenza vaccine 3083 g, control 3053 g). During the period with circulating influenza virus, there was a substantial reduction in the incidence per 100 person-months of respiratory illness with fever among the mothers and infants who had received the influenza vaccine (influenza vaccine: 3.7; control: 7.2; p = 0.0003). During this period, the proportion of infants who were small for gestational age was lower in the influenza vaccine group than in the control group (25.9% v. 44.8%; p = 0.03). The mean birth weight was higher among infants whose mothers received the influenza vaccine than among those who received the control vaccine during this period (3178 g v. 2978 g; p = 0.02). INTERPRETATION During the period with circulating influenza virus, maternal immunization during pregnancy was associated with a lower proportion of infants who were small for gestational age and an increase in mean birth weight. These data need confirmation but suggest that prevention of influenza infection in pregnancy can influence intrauterine growth. TRIAL REGISTRATION ClinicalTrials.gov: NCT 00142389.
Collapse
Affiliation(s)
- Mark C Steinhoff
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ling MT, Tu W, Han Y, Mao H, Chong WP, Guan J, Liu M, Lam KT, Law HKW, Peiris JSM, Takahashi K, Lau YL. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection. J Infect Dis 2011; 205:44-53. [PMID: 22080095 PMCID: PMC3242741 DOI: 10.1093/infdis/jir691] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. METHODS In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. RESULTS Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. CONCLUSIONS Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.
Collapse
Affiliation(s)
- Man To Ling
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Immunogenetic factors associated with severe respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses. Clin Dev Immunol 2011; 2012:797180. [PMID: 22110538 PMCID: PMC3216312 DOI: 10.1155/2012/797180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
Abstract
Following the 2009 H1N1 pandemic and ongoing sporadic avian-to-human transmission of H5N1 viruses, an emphasis has been placed on better understanding the determinants and pathogenesis of severe influenza infections. Much of the current literature has focused on viral genetics and its impact on host immunity as well as novel risk factors for severe infection (particularly within the H1N1 pandemic). An understanding of the host genetic determinants of susceptibility and severe respiratory illness, however, is currently lacking. By better defining the role of genetic variability in influenza infection and identifying key polymorphisms that impair the host immune response or correlate with protection, we will be able to better identify at-risk populations and new targets for therapeutic interventions and vaccines. This paper will summarize known immunogenetic factors associated with susceptibility or severity of both pH1N1 and H5N1 infections and will also identify genetic pathways and polymorphisms of high relevance for future study.
Collapse
|
38
|
Sirinonthanawech N, Uiprasertkul M, Suptawiwat O, Auewarakul P. Viral load of the highly pathogenic avian influenza H5N1 virus in infected human tissues. J Med Virol 2011; 83:1418-23. [PMID: 21678447 DOI: 10.1002/jmv.22146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The highly pathogenic avian influenza A (H5N1) virus is a virulent virus that causes an acute febrile respiratory disease with high mortality in humans. To gain a better insight of H5N1 viral distributions in infected human tissues, the levels of viral RNA were determined in the autopsy tissues from two patients who were infected with H5N1 virus by using real-time reverse transcription-polymerase chain reaction. In one patient who died on day 6 of the illness, the viral load in the lung was extremely high, whereas the levels of viral RNA in the other organs were more than 6 log lower. In the other patient who died on day 17 of the illness, the viral load was similar in the lung and other organs, and was comparable to the viral load in the extra-pulmonary tissues of the first patient. These results suggested that while the H5N1 virus can cause disseminated infection in humans, the lung is still the major site of viral replication, and viral replication in the lung in the later stages may decrease as a result of the depletion of the available target cells. In addition, the mRNA levels of the tumor necrosis factor-α (TNF-α) were found to be associated with the viral titers.
Collapse
|
39
|
Zúñiga J, Torres M, Romo J, Torres D, Jiménez L, Ramírez G, Cruz A, Espinosa E, Herrera T, Buendía I, Ramírez-Venegas A, González Y, Bobadilla K, Hernández F, García J, Quiñones-Falconi F, Sada E, Manjarrez ME, Cabello C, Kawa S, Zlotnik A, Pardo A, Selman M. Inflammatory profiles in severe pneumonia associated with the pandemic influenza A/H1N1 virus isolated in Mexico City. Autoimmunity 2011; 44:562-70. [DOI: 10.3109/08916934.2011.592885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Li Y, Zhou H, Wen Z, Wu S, Huang C, Jia G, Chen H, Jin M. Transcription analysis on response of swine lung to H1N1 swine influenza virus. BMC Genomics 2011; 12:398. [PMID: 21819625 PMCID: PMC3169531 DOI: 10.1186/1471-2164-12-398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. RESULTS At the early stage of H1N1 swine virus infection, pigs were suffering mild respiratory symptoms and pathological changes. A total of 268 porcine genes showing differential expression (DE) after inoculation were identified to compare with the controls on day 3 post infection (PID) (Fold change ≥ 2, p < 0.05). The DE genes were involved in many vital functional classes, mainly including signal transduction, immune response, inflammatory response, cell adhesion and cell-cell signalling. Noticeably, the genes associated with immune and inflammatory response showed highly overexpressed. Through the pathway analysis, the significant pathways mainly concerned with Cell adhesion molecules, Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and MAPK signaling pathway, suggesting that the host took different strategies to activate these pathways so as to prevent virus infections at the early stage. However, on PID 7, the predominant function classes of DE genes included signal transduction, metabolism, transcription, development and transport. Furthermore, the most significant pathways switched to PPAR signaling pathway and complement and coagulation cascades, showing that the host might start to repair excessive tissue damage by anti-inflammatory functions. These results on PID 7 demonstrated beneficial turnover for host to prevent excessive inflammatory damage and recover the normal state by activating these clusters of genes. CONCLUSIONS This study shows how the target organ responds to H1N1 swine influenza virus infection in pigs. The observed gene expression profile could help to screen the potential host agents for reducing the prevalence of swine influenza virus and further understand the molecular pathogenesis associated with H1N1 infection in pigs.
Collapse
Affiliation(s)
- Yongtao Li
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
γδ T cells are essential constituents of antimicrobial and antitumor defenses. We have recently reported that phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vγ9Vδ2 T cells participated in anti-influenza virus immunity by efficiently killing both human and avian influenza virus-infected monocyte-derived macrophages (MDMs) in vitro. However, little is known about the noncytolytic responses and trafficking program of γδ T cells to influenza virus. In this study, we found that Vγ9Vδ2 T cells expressed both type 1 cytokines and chemokine receptors during influenza virus infection, and IPP-expanded cells had a higher capacity to produce gamma interferon (IFN-γ). Besides their potent cytolytic activity against pandemic H1N1 virus-infected cells, IPP-activated γδ T cells also had noncytolytic inhibitory effects on seasonal and pandemic H1N1 viruses via IFN-γ but had no such effects on avian H5N1 or H9N2 virus. Avian H5N1 and H9N2 viruses induced significantly higher CCL3, CCL4, and CCL5 production in Vγ9Vδ2 T cells than human seasonal H1N1 virus. CCR5 mediated the migration of Vγ9Vδ2 T cells toward influenza virus-infected cells. Our findings suggest a novel therapeutic strategy of using phosphoantigens to boost the antiviral activities of human Vγ9Vδ2 T cells against influenza virus infection.
Collapse
|
42
|
Effects of receptor binding specificity of avian influenza virus on the human innate immune response. J Virol 2011; 85:4421-31. [PMID: 21345953 DOI: 10.1128/jvi.02356-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.
Collapse
|
43
|
Belser JA, Zeng H, Katz JM, Tumpey TM. Infection with highly pathogenic H7 influenza viruses results in an attenuated proinflammatory cytokine and chemokine response early after infection. J Infect Dis 2011; 203:40-8. [PMID: 21148495 DOI: 10.1093/infdis/jiq018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian influenza A viruses of the H7 subtype have resulted in more than 100 cases of human infection since 2002. Highly pathogenic avian influenza (HPAI) H7 viruses have the capacity to cause severe respiratory disease and even death; however, the induction of the human innate immune response to H7 virus infection has not been well characterized. To better understand H7 virus pathogenesis in the human respiratory tract, we employed a polarized human bronchial epithelial cell model and primary human monocyte-derived macrophages. Here, we show that infection with HPAI H7 viruses resulted in a delayed and weakened production of cytokines, including the type I interferon response, compared with infections of other influenza A subtypes, including H7 viruses of low pathogenicity. These studies revealed that H7 viruses vary greatly in their ability to activate host innate responses and may contribute to the virulence of these viruses observed in humans.
Collapse
Affiliation(s)
- Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30033, USA
| | | | | | | |
Collapse
|
44
|
Gao R, Dong L, Dong J, Wen L, Zhang Y, Yu H, Feng Z, Chen M, Tan Y, Mo Z, Liu H, Fan Y, Li K, Li CKF, Li D, Yang W, Shu Y. A systematic molecular pathology study of a laboratory confirmed H5N1 human case. PLoS One 2010; 5:e13315. [PMID: 20976271 PMCID: PMC2953511 DOI: 10.1371/journal.pone.0013315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/17/2010] [Indexed: 01/07/2023] Open
Abstract
Autopsy studies have shown that human highly pathogenic avian influenza virus (H5N1) can infect multiple human organs other than just the lungs, and that possible causes of organ damage are either viral replication and/or dysregulation of cytokines and chemokines. Uncertainty still exists, partly because of the limited number of cases analysed. In this study, a full autopsy including 5 organ systems was conducted on a confirmed H5N1 human fatal case (male, 42 years old) within 18 hours of death. In addition to the respiratory system (lungs, bronchus and trachea), virus was isolated from cerebral cortex, cerebral medullary substance, cerebellum, brain stem, hippocampus ileum, colon, rectum, ureter, aortopulmonary vessel and lymph-node. Real time RT-PCR evidence showed that matrix and hemagglutinin genes were positive in liver and spleen in addition to positive tissues with virus isolation. Immunohistochemistry and in-situ hybridization stains showed accordant evidence of viral infection with real time RT-PCR except bronchus. Quantitative RT-PCR suggested that a high viral load was associated with increased host responses, though the viral load was significantly different in various organs. Cells of the immunologic system could also be a target for virus infection. Overall, the pathogenesis of HPAI H5N1 virus was associated both with virus replication and with immunopathologic lesions. In addition, immune cells cannot be excluded from playing a role in dissemination of the virus in vivo.
Collapse
Affiliation(s)
- Rongbao Gao
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Libo Dong
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jie Dong
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Leying Wen
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ye Zhang
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hongjie Yu
- Office for Disease Control and Emergency Response, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Zijian Feng
- Office for Disease Control and Emergency Response, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Minmei Chen
- Department of Infectious Diseases, Center for Disease Control and Prevention of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yi Tan
- Department of Infectious Diseases, Center for Disease Control and Prevention of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhaojun Mo
- Department of Infectious Diseases, Center for Disease Control and Prevention of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiyan Liu
- Department of Infectious Diseases, Nanning City Center for Disease Control and Prevention, Nanning, China
| | - Yunyan Fan
- Department of Infectious Diseases, Nanning City Center for Disease Control and Prevention, Nanning, China
| | - Kunxiong Li
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chris Ka-Fai Li
- MRC Human Immunology Unit, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Dexin Li
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Weizhong Yang
- Office for Disease Control and Emergency Response, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yuelong Shu
- Department of Influenza, Chinese National Influenza Center, State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Tu W, Mao H, Zheng J, Liu Y, Chiu SS, Qin G, Chan PL, Lam KT, Guan J, Zhang L, Guan Y, Yuen KY, Peiris JSM, Lau YL. Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J Virol 2010; 84:6527-35. [PMID: 20410263 PMCID: PMC2903266 DOI: 10.1128/jvi.00519-10] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/14/2010] [Indexed: 12/21/2022] Open
Abstract
While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). Using influenza A virus matrix protein 1 (M1(58-66)) epitope-specific CTLs isolated from healthy HLA-A2(+) individuals, we further found that M1(58-66) epitope-specific CTLs efficiently killed both M1(58-66) peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M1(58-66)-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M1(58-66) epitope-specific CTLs in 20% (4/20) of HLA-A2(+) individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.
Collapse
Affiliation(s)
- Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Huawei Mao
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jian Zheng
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Susan S. Chiu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Gang Qin
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ping-Lung Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kwok-Tai Lam
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jing Guan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lijuan Zhang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yi Guan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - J. S. Malik Peiris
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yu-Lung Lau
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
46
|
Tolnay AE, Baskin CR, Tumpey TM, Sabourin PJ, Sabourin CL, Long JP, Pyles JA, Albrecht RA, García-Sastre A, Katze MG, Bielefeldt-Ohmann H. Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Arch Virol 2010; 155:905-14. [PMID: 20372944 PMCID: PMC2892232 DOI: 10.1007/s00705-010-0662-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/16/2010] [Indexed: 01/27/2023]
Abstract
The mechanisms responsible for virulence of influenza viruses in humans remain poorly understood. A prevailing hypothesis is that the highly pathogenic virus isolates cause a severe cytokinemia precipitating acute respiratory distress syndrome and multiple organ dysfunction syndrome. Cynomolgus macaques (Macaca fascicularis) infected with a human highly pathogenic avian influenza (HPAI) H5N1 virus isolate (A/Vietnam/1203/2004) or reassortants of human influenza virus A/Texas/36/91 (H1N1) containing genes from the 1918 pandemic influenza A (H1N1) virus developed severe pneumonia within 24 h postinfection. However, virus spread beyond the lungs was only detected in the H5N1 group, and signs of extrapulmonary tissue reactions, including microglia activation and sustained up-regulation of inflammatory markers, most notably hypoxia inducible factor-1alpha (HIF-1alpha), were largely limited to this group. Extrapulmonary pathology may thus contribute to the morbidities induced by H5N1 viruses.
Collapse
Affiliation(s)
- A.-E. Tolnay
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
- Present Address: Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - C. R. Baskin
- Washington National Primate Research Center, University of Washington, Seattle, WA USA
- Department of Comparative Medicine, University of Washington, Seattle, WA USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ USA
- Science Foundation Arizona, Phoenix, AZ 85004 USA
| | - T. M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - P. J. Sabourin
- Battelle Biomedical Research Center, West Jefferson, OH USA
| | - C. L. Sabourin
- Battelle Biomedical Research Center, West Jefferson, OH USA
| | - J. P. Long
- Battelle Biomedical Research Center, West Jefferson, OH USA
| | - J. A. Pyles
- Battelle Biomedical Research Center, West Jefferson, OH USA
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108 USA
| | - R. A. Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY USA
| | - A. García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY USA
| | - M. G. Katze
- Washington National Primate Research Center, University of Washington, Seattle, WA USA
- Department of Microbiology, University of Washington, Seattle, WA USA
| | - H. Bielefeldt-Ohmann
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
- School of Veterinary Science, University of Queensland, Gatton Campus, Qld, Australia
| |
Collapse
|
47
|
Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction. Cell Mol Immunol 2010; 7:263-70. [PMID: 20473322 PMCID: PMC4003230 DOI: 10.1038/cmi.2010.25] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Historically, influenza pandemics have arisen from avian influenza viruses. Avian influenza viruses H5N1 and H9N2 are potential pandemic candidates. Infection of humans with the highly pathogenic avian influenza H5N1 virus is associated with a mortality in excess of 60%, which has been attributed to dysregulation of the cytokine system. Human macrophages and epithelial cells infected with some genotypes of H5N1 and H9N2 viruses express markedly elevated cytokine and chemokine levels when compared with seasonal influenza A subtype H1N1 virus. The mechanisms underlying this cytokine and chemokine hyperinduction are not fully elucidated. In the present study, we demonstrate that autophagy, a tightly regulated homeostatic process for self-digestion of unwanted cellular subcomponents, plays a role in cytokine induction. Autophagy is induced to a greater extent by H9N2/G1, in association with cytokine hyperinduction, compared with H1N1 and the novel pandemic swine-origin influenza A/H1N1 viruses. Using 3-methyladenine to inhibit autophagy and small interfering RNA to silence the autophagy gene, Atg5, we further show that autophagic responses play a role in influenza virus-induced CXCL10 and interferon-α expression in primary human blood macrophages. Our results provide new insights into the pathogenic mechanisms of avian influenza viruses.
Collapse
|
48
|
Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol 2010; 199:291-7. [PMID: 20386921 PMCID: PMC7087222 DOI: 10.1007/s00430-010-0155-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Indexed: 12/26/2022]
Abstract
Hypercytokinaemia is thought to contribute to highly pathogenic H5N1 influenza A virus disease. Glycyrrhizin is known to exert immunomodulatory and anti-inflammatory effects and therefore a candidate drug for the control of H5N1-induced pro-inflammatory gene expression. Here, the effects of an approved parenteral glycyrrhizin preparation were investigated on H5N1 virus replication, H5N1-induced pro-inflammatory responses, and H5N1-induced apoptosis in human monocyte-derived macrophages. Glycyrrhizin 100 μg/ml, a therapeutically achievable concentration, impaired H5N1-induced production of CXCL10, interleukin 6, and CCL5 and inhibited H5N1-induced apoptosis but did not interfere with H5N1 replication. Global inhibition of immune responses may result in the loss of control of virus replication by cytotoxic immune cells including natural killer cells and cytotoxic CD8(+) T-lymphocytes. Notably, glycyrrhizin concentrations that inhibited H5N1-induced pro-inflammatory gene expression did not affect cytolytic activity of natural killer cells. Since H5N1-induced hypercytokinaemia is considered to play an important role within H5N1 pathogenesis, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
Collapse
|
49
|
Reemers SS, van Leenen D, Koerkamp MJG, van Haarlem D, van de Haar P, van Eden W, Vervelde L. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Mol Immunol 2010; 47:1675-85. [PMID: 20382427 DOI: 10.1016/j.molimm.2010.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/08/2010] [Accepted: 03/14/2010] [Indexed: 11/25/2022]
Abstract
Newly hatched chickens are more susceptible to infectious diseases than older birds because of an immature immune system. The aim of this study was to determine to what extent host responses to avian influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were inoculated with H9N2 AIV or saline. The trachea and lung were sampled at 0, 8, 16 and 24h post-inoculation (h.p.i.) and gene expression profiles determined using microarray analysis. Firstly, saline controls of both groups were compared to analyse the changes in gene profiles related to development. In 1-wk-old birds, higher expression of genes related to development of the respiratory immune system and innate responses were found, whereas in 4-wk-old birds genes were up regulated that relate to the presence of higher numbers of leukocytes in the respiratory tract. After inoculation with H9N2, gene expression was most affected at 16 h.p.i. in 1-wk-old birds and at 16 and 24h.p.i. in 4-wk-old birds in the trachea and especially in the lung. In 1-wk-old birds less immune related genes including innate related genes were induced which might be due to age-dependent reduced functionality of antigen presenting cells (APC), T cells and NK cells. In contrast cytokine and chemokines gene expression was related to viral load in 1-wk-old birds and less in 4-wk-old birds. Expression of cellular host factors that block virus replication by interacting with viral factors was independent of age or tissue for most host factors. These data show that differences in development are reflected in gene expression and suggest that the strength of host responses at transcriptional level may be a key factor in age-dependent susceptibility to infection, and the cellular host factors involved in virus replication are not.
Collapse
Affiliation(s)
- Sylvia S Reemers
- Department of Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J Virol 2010; 84:4148-57. [PMID: 20164232 DOI: 10.1128/jvi.02340-09] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells keep viral infections under control at the early phase by directly killing infected cells. Influenza is an acute contagious respiratory viral disease transmitted from host-to-host in the first few days of infection. The evasion of host innate immune defenses including NK cells is important for its success as a viral pathogen of humans and animals. NK cells encounter influenza virus within the microenvironment of infected cells. It therefore is important to investigate the direct effects of influenza virus on NK cell activity. Recently we demonstrated that influenza virus directly infects human NK cells and induces cell apoptosis to counter their function (H. Mao, W. Tu, G. Qin, H. K. W. Law, S. F. Sia, P.-L. Chan, Y. Liu, K.-T. Lam, J. Zheng, M. Peiris, and Y.-L. Lau, J. Virol. 83:9215-9222, 2009). Here, we further demonstrated that both the intact influenza virion and free hemagglutinin protein inhibited the cytotoxicity of fresh and interleukin-2 (IL-2)-activated primary human NK cells. Hemagglutinin bound and internalized into NK cells via the sialic acids. This interaction did not decrease NKp46 expression but caused the downregulation of the zeta chain through the lysosomal pathway, which caused the decrease of NK cell cytotoxicity mediated by NKp46 and NKp30. The underlying dysregulation of the signaling pathway involved zeta chain downregulation, leading to decreased Syk and ERK activation and granule exocytosis upon target cell stimulation, finally causing reduced cytotoxicity. These findings suggest that influenza virus developed a novel strategy to evade NK cell innate immune defense that is likely to facilitate viral transmission and also contribute to virus pathogenesis.
Collapse
|