1
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
2
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
4
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
5
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
6
|
Santander-Lucio H, Totomoch-Serra A, Muñoz MDL, García-Hernández N, Pérez-Ramírez G, Valladares-Salgado A, Pérez-Muñoz AA. Variants in the Control Region of Mitochondrial Genome Associated with type 2 Diabetes in a Cohort of Mexican Mestizos. Arch Med Res 2023; 54:113-123. [PMID: 36792418 DOI: 10.1016/j.arcmed.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND According to the International Diabetes Federation, Mexico is seventh place in the prevalence of type 2 diabetes (T2D) worldwide. Mitochondrial DNA variant association studies in multifactorial diseases like T2D are scarce in Mexican populations. AIM OF THE STUDY The objective of this study was to analyze the association between 18 variants in the mtDNA control region and T2D and related metabolic traits in a Mexican mestizo population from Mexico City. METHODS This study included 1001 participants divided into 477 cases with T2D and 524 healthy controls aged between 42 and 62 years and 18 mtDNA variants with frequencies >15%. RESULTS Association analyses matched by age and sex showed differences in the distribution between cases and controls for variants m.315_316insC (p = 1.18 × 10-6), m.489T>C (p = 0.009), m.16362T>C (p = 0.001), and m.16519T>C (p = 0.004). The associations between T2D and variants m.315_316ins (OR = 6.13, CI = 3.42-10.97, p = 1.97 × 10-6), m.489T>C (OR = 1.45, CI = 1.00-2.11, p = 0.006), m.16362T>C (OR = 2.17, CI = 1.57-3.00, p = 0.001), and m.16519T>C (OR = 1.69, CI = 1.23-2.33, p = 0.006) were significant after performing logistic regression models adjusted for age, sex, and diastolic blood pressure. Metabolic traits in the control group through linear regressions, adjusted for age, sex and BMI, and corrected for multiple comparisons showed nominal association between glucose and variants m.263A>G (p <0.050), m.16183A>C (p <0.010), m.16189T>C (p <0.020), and m.16223C>T (p <0.024); triglycerides, and cholesterol and variant m.309_310insC (p <0.010 and p <0.050 respectively); urea, and creatinine, and variant m.315_316insC (p <0.007, and p <0.004 respectively); diastolic blood pressure and variants m.235A>G (p <0.016), m.263A>G (p <0.013), m.315_316insC (p <0.043), and m.16111C>T (p <0.022). CONCLUSION These results demonstrate a strong association between variant m.315_316insC and T2D and a nominal association with T2D traits.
Collapse
Affiliation(s)
- Heriberto Santander-Lucio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando Totomoch-Serra
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Departamento de Electrofisiología, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - María de Lourdes Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Dr. Silvestre Frenk Freud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gerardo Pérez-Ramírez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ashael Alfredo Pérez-Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Universidad Anáhuac México Norte, Ciudad de México, México
| |
Collapse
|
7
|
Huang Q, Liu Y, Lei W, Liang J, Wang Y, Zheng M, Huang X, Liu Y, Huang K, Huang M. Detecting mitochondrial mutations associated with aminoglycoside ototoxicity by noninvasive prenatal testing. J Clin Lab Anal 2022; 37:e24827. [PMID: 36579624 PMCID: PMC9833975 DOI: 10.1002/jcla.24827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Numerous diseases and disorders are associated with mitochondrial DNA (mtDNA) mutations, among which m.1555A > G and m.1494C > T mutations in the 12 S ribosomal RNA gene contribute to aminoglycoside-induced and nonsyndromic hearing loss worldwide. METHODS A total of 76,842 qualified non-invasive prenatal (NIPT) samples were subjected to mtDNA mutation and haplogroup analysis. RESULTS We detected 181 m.1555A > G and m.1494C > T mutations, 151 of which were subsequently sequenced for full-length mitochondrial genome verification. The positive predictive values for the m.1555A > G and m.1494C > T mutations were 90.78% and 90.00%, respectively, a performance comparable to that attained with newborn hearing screening. Furthermore, mitochondrial haplogroup analysis revealed that the 12 S rRNA 1555A > G mutation was enriched in sub-haplotype D5[p = 0, OR = 4.6706(2.81-7.78)]. CONCLUSIONS Our findings indicate that the non-invasive prenatal testing of cell-free DNA obtained from maternal plasma can successfully detect m.1555A > G and m.1494C > T mutations.
Collapse
Affiliation(s)
- Quanfei Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yanhui Liu
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Wei Lei
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Jiajie Liang
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Yang Wang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Minhua Zheng
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Xiaoyan Huang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Yuanru Liu
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Kaisheng Huang
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Ludwig-Słomczyńska AH, Rehm M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity (Silver Spring) 2022; 30:1156-1169. [PMID: 35491673 DOI: 10.1002/oby.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
Two genomes regulate the energy metabolism of eukaryotic cells: the nuclear genome, which codes for most cellular proteins, and the mitochondrial genome, which, together with the nuclear genome, coregulates cellular bioenergetics. Therefore, mitochondrial genome variations can affect, directly or indirectly, all energy-dependent cellular processes and shape the metabolic state of the organism. This review provides a current and up-to-date overview on how codependent these two genomes are, how they appear to have coevolved, and how variations within the mitochondrial genome might be associated with the manifestation of metabolic diseases. This review summarizes and structures results obtained from epidemiological studies that identified links between mitochondrial haplogroups and individual risks for developing obesity and diabetes. This is complemented by findings on the compatibility of mitochondrial and nuclear genomes and cellular bioenergetic fitness, which have been acquired from well-controlled studies in conplastic animal models. These elucidate, more mechanistically, how single-nucleotide variants can influence cellular metabolism and physiology. Overall, it seems that certain mitochondrial genome variations negatively affect mitochondrial-nuclear compatibility and are statistically linked with the onset of metabolic diseases, whereas, for others, greater uncertainty exists, and additional research into this exciting field is required.
Collapse
Affiliation(s)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Dorji J, Vander Jagt CJ, Chamberlain AJ, Cocks BG, MacLeod IM, Daetwyler HD. Recovery of mitogenomes from whole genome sequences to infer maternal diversity in 1883 modern taurine and indicine cattle. Sci Rep 2022; 12:5582. [PMID: 35379858 PMCID: PMC8980051 DOI: 10.1038/s41598-022-09427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal diversity based on a sub-region of mitochondrial genome or variants were commonly used to understand past demographic events in livestock. Additionally, there is growing evidence of direct association of mitochondrial genetic variants with a range of phenotypes. Therefore, this study used complete bovine mitogenomes from a large sequence database to explore the full spectrum of maternal diversity. Mitogenome diversity was evaluated among 1883 animals representing 156 globally important cattle breeds. Overall, the mitogenomes were diverse: presenting 11 major haplogroups, expanding to 1309 unique haplotypes, with nucleotide diversity 0.011 and haplotype diversity 0.999. A small proportion of African taurine (3.5%) and indicine (1.3%) haplogroups were found among the European taurine breeds and composites. The haplogrouping was largely consistent with the population structure derived from alternate clustering methods (e.g. PCA and hierarchical clustering). Further, we present evidence confirming a new indicine subgroup (I1a, 64 animals) mainly consisting of breeds originating from China and characterised by two private mutations within the I1 haplogroup. The total genetic variation was attributed mainly to within-breed variance (96.9%). The accuracy of the imputation of missing genotypes was high (99.8%) except for the relatively rare heteroplasmic genotypes, suggesting the potential for trait association studies within a breed.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
10
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Lai RE, Holman ME, Chen Q, Rivers J, Lesnefsky EJ, Gorgey AS. Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS One 2022; 17:e0265141. [PMID: 35275956 PMCID: PMC8916668 DOI: 10.1371/journal.pone.0265141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Muscle biopsies are the gold standard to assess mitochondrial respiration; however, biopsies are not always a feasible approach in persons with spinal cord injury (SCI). Peripheral blood mononuclear cells (PBMCs) and near-infrared spectroscopy (NIRS) may alternatively be predictive of mitochondrial respiration. The purpose of the study was to evaluate whether mitochondrial respiration of PBMCs and NIRS are predictive of respiration of permeabilized muscle fibers after SCI. Methods Twenty-two individuals with chronic complete and incomplete motor SCI between 18–65 years old were recruited to participate in the current trial. Using high-resolution respirometry, mitochondrial respiratory capacity was measured for PBMCs and muscle fibers of the vastus lateralis oxidizing complex I, II, and IV substrates. NIRS was used to assess mitochondrial capacity of the vastus lateralis with serial cuff occlusions and electrical stimulation. Results Positive relationships were observed between PBMC and permeabilized muscle fibers for mitochondrial complex IV (r = 0.86, P < 0.0001). Bland-Altman displayed agreement for complex IV (MD = 0.18, LOA = -0.86 to 1.21), between PBMCs and permeabilized muscles fibers. No significant relationships were observed between NIRS mitochondrial capacity and respiration in permeabilized muscle fibers. Conclusions This is the first study to explore and support the agreement of less invasive clinical techniques for assessing mitochondrial respiratory capacity in individuals with SCI. The findings will assist in the application of PBMCs as a viable alternative for assessing mitochondrial health in persons with SCI in future clinical studies.
Collapse
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kumagai H, Natsume T, Kim SJ, Tobina T, Miyamoto-Mikami E, Shiose K, Ichinoseki-Sekine N, Kakigi R, Tsuzuki T, Miller B, Yen K, Murakami H, Miyachi M, Zempo H, Dobashi S, Machida S, Kobayashi H, Naito H, Cohen P, Fuku N. The MOTS-c K14Q polymorphism in the mtDNA is associated with muscle fiber composition and muscular performance. Biochim Biophys Acta Gen Subj 2022; 1866:130048. [PMID: 34728329 PMCID: PMC8741734 DOI: 10.1016/j.bbagen.2021.130048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; The Leonard Davis School of Gerontology, University of Southern California, California, USA
| | | | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, California, USA
| | - Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki, Japan
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Keisuke Shiose
- Faculty of Education, University of Miyazaki, Miyazaki, Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Ryo Kakigi
- Faculty of Management and Information Sciences, Josai International University, Chiba, Japan
| | | | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, California, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, California, USA
| | - Haruka Murakami
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | | | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroyuki Kobayashi
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, Ibaraki, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, California, USA
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
| |
Collapse
|
13
|
Miura S, Sasaki A, Kasai S, Sugawara T, Maeda Y, Goto S, Kasai T, Shimizume N, Jung S, Iwane T, Itoh K, Matsubara A. Association of mitochondrial DNA haplogroup and hearing impairment with aging in Japanese general population of the Iwaki Health Promotion Project. J Hum Genet 2022; 67:369-375. [PMID: 35034960 PMCID: PMC9130095 DOI: 10.1038/s10038-022-01011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 11/09/2022]
Abstract
Age-related hearing loss (ARHL) is a complex multifactorial disorder. Studies in animals, including mitochondria-mutator mice, and in human suggest that oxidative stress and mitochondrial disturbance play an important role in the pathoetiology of ARHL. Mitochondrial DNA (mtDNA) haplogroups are populations with genetically similar traits, and they have been reported to affect the mitochondrial function of oxidative phosphorylation. To gain further insights into the relationships between mitochondrial haplotypes and the susceptibility to cochlear aging, in this study, we aimed to elucidate how the differences in mtDNA haplogroups may affect ARHL development in Japanese general population. We focused on early onset ARHL, as the same mtDNA haplogroup can show either a negative or positive effect on systemic co-morbidities of ARHL that appear later in life. A total of 1167 participants of the Iwaki Health Promotion Project were surveyed in 2014, and 12 major haplotype groups (D4a, D4b, D5, G1, G2, M7a, M7b, A, B4, B5, N9, and F) were selected for the analysis. A total of 698 subjects aged 30 to 65 years were included in the statistical analysis, and the hearing loss group consisted of 112 males (40.3%) and 111 females (26.4%). Multiple logistic regression analysis showed that the male subjects belonging to haplogroup A had a significantly increased risk of hearing loss, whereas the female subjects belonging to haplogroup N9 had a significantly decreased risk of hearing loss. These results suggested that the mtDNA haplogroup may be an indicator for future risk of morbidity associated with ARHL.
Collapse
Affiliation(s)
- Shiori Miura
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Sasaki
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shuya Kasai
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takayuki Sugawara
- Research Institute of Bio-System Informatics, Tohoku Chemical Co., Ltd, Morioka, Japan.,Center of Innovation Research Initiatives Organization, Hirosaki University, Hirosaki, Japan
| | - Yasunori Maeda
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinichi Goto
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kasai
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nami Shimizume
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Songee Jung
- Department of Digital Nutrition, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Takuro Iwane
- Hirosaki University COI Research Initiative Organization, Hirosaki University, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
14
|
Shen F, Weng S, Tsai M, Su Y, Li S, Chang S, Chen J, Chang Y, Liou C, Lin T, Chuang J, Lin C, Wang P. Mitochondrial haplogroups have a better correlation to insulin requirement than nuclear genetic variants for type 2 diabetes mellitus in Taiwanese individuals. J Diabetes Investig 2022; 13:201-208. [PMID: 34255930 PMCID: PMC8756312 DOI: 10.1111/jdi.13629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Identifying diabetes-susceptible genetic variants will help to provide personalized therapy for the management of type 2 diabetes. Previous studies have reported a genetic risk score (GRS), computed by the sum of nuclear DNA (nDNA) risk alleles, that may predict the future requirement for insulin therapy. Although mitochondrial dysfunction has a close association with insulin resistance (IR), there are few studies investigating whether genetic variants of mitochondrial DNA (mtDNA) will affect the clinical characteristics of type 2 diabetes. MATERIALS AND METHODS Mitochondrial haplogroups were determined using mtDNA whole genome next generation sequencing and 13 single nucleotide polymorphisms (SNPs) in nDNA susceptibility loci of 13 genes in 604 Taiwanese subjects with type 2 diabetes. A GRS of nDNA was computed by summation of the number of risk alleles. The correlation between the mtDNA haplogroup and the clinical characteristics of type 2 diabetes was assessed by logistic regression analysis. The results were compared with the GRS subgroups for the risk of insulin requirement. RESULTS Mitochondrial haplogroups modulate the clinical characteristics of type 2 diabetes, in which patients harboring haplogroup D4, compared with those harboring non-D4 haplotypes, were less prone to require insulin treatment, after adjusting for age, gender, and diabetes duration. However, there was no association between insulin requirement and GRS calculated from nuclear genetic variants. CONCLUSIONS Mitochondrial haplogroups, but not nuclear genetic variants, have a better association with the insulin requirement. The results highlight the role of mitochondria in the management of common metabolic diseases.
Collapse
Affiliation(s)
- Feng‐Chih Shen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shao‐Wen Weng
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Meng‐Han Tsai
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yu‐Jih Su
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Division of Rheumatology, Allergy, and ImmunologyDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Sung‐Chou Li
- Genomics & Proteomics Core LaboratoryDepartment of Medical ResearchKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shun‐Jen Chang
- Department of Kinesiology, Health and Leisure StudiesNational University of KaohsiungTaiwan
| | - Jung‐Fu Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yen‐Hsiang Chang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chia‐Wei Liou
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Tsu‐Kung Lin
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Jiin‐Haur Chuang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of SurgeryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ching‐Yi Lin
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Pei‐Wen Wang
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| |
Collapse
|
15
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
Saha SK, Saba AA, Hasib M, Rimon RA, Hasan I, Alam MS, Mahmud I, Nabi AN. Evaluation of D-loop hypervariable region I variations, haplogroups and copy number of mitochondrial DNA in Bangladeshi population with type 2 diabetes. Heliyon 2021; 7:e07573. [PMID: 34377852 PMCID: PMC8327661 DOI: 10.1016/j.heliyon.2021.e07573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 10/24/2022] Open
Abstract
The profound impact of mitochondrion in cellular metabolism has been well documented. Since type 2 diabetes (T2D) is a metabolic disorder, mitochondrial dysfunction is intricately linked with the disease pathogenesis. Mitochondrial DNA (mtDNA) variants are involved with functional dysfunction of mitochondrion and play a pivotal role in the susceptibility to T2D. In this study, we opted to find the association of mtDNA variants within the D-loop hypervariable region I (HVI), haplogroups and mtDNA copy number with T2D in Bangladeshi population. A total of 300 unrelated Bangladeshi individuals (150 healthy and 150 patients with T2D) were recruited in the present study, their HVI regions were amplified and sequenced using Sanger chemistry. Haplogrep2 and Phylotree17 tools were employed to determine the haplogroups. MtDNA copy number was measured using primers of mitochondrial tRNALeu (UUR) gene and nuclear β2-microglobulin gene. Variants G16048A (OR:0.12, p = 0.04) and G16129A (OR: 0.42, p = 0.007) were found to confer protective role against T2D according to logistic regression analysis. However along with G16129A, two new variants C16294T and T16325C demonstrated protective role against T2D when age and gender were adjusted. Haplogroups A and H showed significant association with the risk of T2D after adjustments out of total 19 major haplogroups identified. The mtDNA copy numbers were stratified into 4 groups according to the quartiles (groups with lower, medium, upper and higher mtDNA copy numbers were respectively designated as LCN, MCN, UCN and HCN). Patients with T2D had significantly lower mtDNA copy number compared to their healthy counterparts in HCN group. Moreover, six mtDNA variants were significantly associated with mtDNA copy number in the participants. Thus, our study confers that certain haplogroups and novel variants of mtDNA are significantly associated with T2D while decreased mtDNA copy number (though not significant) has been observed in patients with T2D. However, largescale studies are warranted to establish association of novel variants and haplogroup with type 2 diabetes.
Collapse
Affiliation(s)
- Sajoy Kanti Saha
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Hasib
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Razoan Al Rimon
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Imrul Hasan
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Sohrab Alam
- Department of Immunology, Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbagh, Dhaka, Bangladesh
| | - Ishtiaq Mahmud
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A.H.M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
17
|
Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021; 34:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Translational Imaging and Precision Medicine, University of California - San Diego, La Jolla, California, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Sun J, Brown TT, Tong W, Samuels D, Tien P, Aissani B, Aouizerat B, Villacres M, Kuniholm MH, Gustafson D, Michel K, Cohen M, Schneider M, Adimora AA, Ali MK, Bolivar H, Hulgan T. African Mitochondrial DNA Haplogroup L2 Is Associated With Slower Decline of β-cell Function and Lower Incidence of Diabetes Mellitus in Non-Hispanic, Black Women Living With Human Immunodeficiency Virus. Clin Infect Dis 2021; 71:e218-e225. [PMID: 31927570 DOI: 10.1093/cid/ciaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Susceptibility to metabolic diseases may be influenced by mitochondrial genetic variability among people living with human immunodeficiency virus (HIV; PLWH), but remains unexplored in populations with African ancestry. We investigated the association between mitochondrial DNA (mtDNA) haplogroups and the homeostatic model assessments of β-cell function (HOMA-B) and insulin resistance (HOMA-IR), as well as incident diabetes mellitus (DM), among Black women living with or at risk for HIV. METHODS Women without DM who had fasting glucose (FG) and insulin (FI) data for ≥2 visits were included. Haplogroups were inferred from genotyping data using HaploGrep. HOMA-B and HOMA-IR were calculated using FG and FI data. Incident DM was defined by a combination of FG ≥ 126 mg/dL, the use of DM medication, a DM diagnosis, or hemoglobin A1c ≥ 6.5%. We compared HOMA-B, HOMA-IR, and incident DM by haplogroups and assessed the associations between HOMA-B and HOMA-IR and DM by haplogroup. RESULTS Of 1288 women (933 living with HIV and 355 living without HIV), PLWH had higher initial HOMA-B and HOMA-IR than people living without HIV. PLWH with haplogroup L2 had a slower decline in HOMA-B per year (Pinteraction = .02) and a lower risk of incident DM (hazard ratio [HR], 0.51; 95% confidence interval [CI], .32-.82) than PLWH with other haplogroups after adjustments for age, body mass index, combination antiretroviral therapy use, CD4 cell counts, and HIV RNA. The impact of HOMA-IR on incident DM was less significant in those with haplogroup L2, compared to non-L2 (HR, 1.28 [95% CI, .70-2.38] vs 4.13 [95% CI, 3.28-5.22], respectively; Pinteraction < .01), among PLWH. CONCLUSIONS Mitochondrial genetic variation is associated with β-cell functions and incident DM in non-Hispanic, Black women with HIV and alters the relationship between insulin resistance and DM.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Todd T Brown
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Weiqun Tong
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Phyllis Tien
- Department of Medicine, Division of Infectious Disease, University of California-San Francisco, San Francisco, CA, USA.,Department of Veterans Affairs Medical Center, San Francisco, San Francisco, CA, USA
| | - Brahim Aissani
- Department of Epidemiology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Bradley Aouizerat
- Rory Meyers College of Nursing, New York University, New York, New York, USA
| | - Maria Villacres
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Katherine Michel
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Mardge Cohen
- Hektoen Institute for Medical Research, Chicago, Illinois, USA
| | - Michael Schneider
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Adaora A Adimora
- School of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mohammed K Ali
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Hector Bolivar
- Miller School of Medicine, Infectious Diseases Division, University of Miami, Miami, Florida, USA
| | - Todd Hulgan
- Tennessee Valley Healthcare System-Veterans Affairs Hospital, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Pozzi A, Dowling DK. Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health. Bioessays 2021; 43:e2000265. [PMID: 33763872 DOI: 10.1002/bies.202000265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial-transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, emerging studies have described the existence of small RNAs encoded by the mitochondria and proposed their involvement in RNA interference. We present a roadmap to testing this hypothesis.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Su YJ, Wang PW, Weng SW. The Role of Mitochondria in Immune-Cell-Mediated Tissue Regeneration and Ageing. Int J Mol Sci 2021; 22:2668. [PMID: 33800867 PMCID: PMC7961648 DOI: 10.3390/ijms22052668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
During tissue injury events, the innate immune system responds immediately to alarms sent from the injured cells, and the adaptive immune system subsequently joins in the inflammatory reaction. The control mechanism of each immune reaction relies on the orchestration of different types of T cells and the activators, antigen-presenting cells, co-stimulatory molecules, and cytokines. Mitochondria are an intracellular signaling organelle and energy plant, which supply the energy requirement of the immune system and maintain the system activation with the production of reactive oxygen species (ROS). Extracellular mitochondria can elicit regenerative effects or serve as an activator of the immune cells to eliminate the damaged cells. Recent clarification of the cytosolic escape of mitochondrial DNA triggering innate immunity underscores the pivotal role of mitochondria in inflammation-related diseases. Human mesenchymal stem cells could transfer mitochondria through nanotubular structures to defective mitochondrial DNA cells. In recent years, mitochondrial therapy has shown promise in treating heart ischemic events, Parkinson's disease, and fulminating hepatitis. Taken together, these results emphasize the emerging role of mitochondria in immune-cell-mediated tissue regeneration and ageing.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| |
Collapse
|
21
|
Zempo H, Kim SJ, Fuku N, Nishida Y, Higaki Y, Wan J, Yen K, Miller B, Vicinanza R, Miyamoto-Mikami E, Kumagai H, Naito H, Xiao J, Mehta HH, Lee C, Hara M, Patel YM, Setiawan VW, Moore TM, Hevener AL, Sutoh Y, Shimizu A, Kojima K, Kinoshita K, Arai Y, Hirose N, Maeda S, Tanaka K, Cohen P. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging (Albany NY) 2021; 13:1692-1717. [PMID: 33468709 PMCID: PMC7880332 DOI: 10.18632/aging.202529] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes (T2D) is an emerging public health problem in Asia. Although ethnic specific mtDNA polymorphisms have been shown to contribute to T2D risk, the functional effects of the mtDNA polymorphisms and the therapeutic potential of mitochondrial-derived peptides at the mtDNA polymorphisms are underexplored. Here, we showed an Asian-specific mitochondrial DNA variation m.1382A>C (rs111033358) leads to a K14Q amino acid replacement in MOTS-c, an insulin sensitizing mitochondrial-derived peptide. Meta-analysis of three cohorts (n = 27,527, J-MICC, MEC, and TMM) show that males but not females with the C-allele exhibit a higher prevalence of T2D. In J-MICC, only males with the C-allele in the lowest tertile of physical activity increased their prevalence of T2D, demonstrating a kinesio-genomic interaction. High-fat fed, male mice injected with MOTS-c showed reduced weight and improved glucose tolerance, but not K14Q-MOTS-c treated mice. Like the human data, female mice were unaffected. Mechanistically, K14Q-MOTS-c leads to diminished insulin-sensitization in vitro. Thus, the m.1382A>C polymorphism is associated with susceptibility to T2D in men, possibly interacting with exercise, and contributing to the risk of T2D in sedentary males by reducing the activity of MOTS-c.
Collapse
Affiliation(s)
- Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Roberto Vicinanza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Silverstein AR, Flores MK, Miller B, Kim SJ, Yen K, Mehta HH, Cohen P. Mito-Omics and immune function: Applying novel mitochondrial omic techniques to the context of the aging immune system. TRANSLATIONAL MEDICINE OF AGING 2020; 4:132-140. [PMID: 32844137 PMCID: PMC7441040 DOI: 10.1016/j.tma.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Recent advancements in genomic, transcriptomic, proteomic, and metabolomic techniques have prompted fresh inquiry in the field of aging. Here, we outline the application of these techniques in the context of the mitochondrial genome and suggest their potential for use in exploring the biological mechanisms of the aging immune system.
Collapse
Affiliation(s)
- Ana R Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Melanie K Flores
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Koo BS, Song Y, Lee S, Sung YK, Shin KJ, Cho NH, Jun JB. Analysis of Asian Mitochondrial DNA Haplogroups Associated With the Progression of Knee Osteoarthritis in Koreans. JOURNAL OF RHEUMATIC DISEASES 2020. [DOI: 10.4078/jrd.2020.27.3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bon San Koo
- Department of Internal Medicine, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Yoonah Song
- Departments of Radiology Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seunghun Lee
- Departments of Radiology Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Yoon-Kyoung Sung
- Departments of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Nam H. Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Bum Jun
- Departments of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| |
Collapse
|
25
|
Vianello C, Cocetta V, Caicci F, Boldrin F, Montopoli M, Martinuzzi A, Carelli V, Giacomello M. Interaction Between Mitochondrial DNA Variants and Mitochondria/Endoplasmic Reticulum Contact Sites: A Perspective Review. DNA Cell Biol 2020; 39:1431-1443. [PMID: 32598172 DOI: 10.1089/dna.2020.5614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria contain their own genome, mitochondrial DNA (mtDNA), essential to support their fundamental intracellular role in ATP production and other key metabolic and homeostatic pathways. Mitochondria are highly dynamic organelles that communicate with all the other cellular compartments, through sites of high physical proximity. Among all, their crosstalk with the endoplasmic reticulum (ER) appears particularly important as its derangement is tightly implicated with several human disorders. Population-specific mtDNA variants clustered in defining the haplogroups have been shown to exacerbate or mitigate these pathological conditions. The exact mechanisms of the mtDNA background-modifying effect are not completely clear and a possible explanation is the outcome of mitochondrial efficiency on retrograde signaling to the nucleus. However, the possibility that different haplogroups shape the proximity and crosstalk between mitochondria and the ER has never been proposed neither investigated. In this study, we pose and discuss this question and provide preliminary data to answer it. Besides, we also address the possibility that single, disease-causing mtDNA point mutations may act also by reshaping organelle communication. Overall, this perspective review provides a theoretical platform for future studies on the interaction between mtDNA variants and organelle contact sites.
Collapse
Affiliation(s)
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,VIMM-Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS "E. Medea" Scientific Institute, Conegliano Research Center, Treviso, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Nishida Y, Hara M, Fuku N, Taguchi N, Horita M, Shimanoe C, Higaki Y, Tanaka K. The interaction between mitochondrial haplogroups (M7a/D) and physical activity on adiponectin in a Japanese population. Mitochondrion 2020; 53:234-242. [PMID: 32565400 DOI: 10.1016/j.mito.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
Mitochondrial haplogroups F, A, and M7a are associated with increased risks of lifestyle diseases, while haplogroups N9 and D are associated with decreased risks of lifestyle diseases or with longevity. The current study determined the existence of interactions between 5 selected haplogroups and physical activity (PA) on total and high-molecular-weight (HMW) adiponectin in 3,994 men and 6,014 women. The interactions between haplogroups (M7a/D) and PA on adiponectin were significant in men (total and HMW: P-interaction = 0.041 and 0.011). The positive association of PA with adiponectin in men carrying haplogroup M7a is attenuated in comparison to men carrying haplogroup D.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan.
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Hiraka-Gakuendai 1-1, Inzai-Shi, Chiba 270-1695, Japan
| | - Naoto Taguchi
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Mikako Horita
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Chisato Shimanoe
- Clinical Research Center, Saga University Hospital, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Yasuki Higaki
- Laboratory of Exercise Physiology, Faculty of Sports and Health Science, Fukuoka University, Nanakuma 8-19-1, Jonan-Ku, Fukuoka 814-0180, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| |
Collapse
|
27
|
Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Commun Biol 2020; 3:104. [PMID: 32139841 PMCID: PMC7058612 DOI: 10.1038/s42003-020-0812-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
The genetic landscape of mitochondrial DNA (mtDNA) has been elusive. By analyzing mtDNA using the whole genome sequence (WGS) of Japanese individuals (n = 1928), we identified 2023 mtDNA variants and high-resolution haplogroups. Frequency spectra of the haplogroups were population-specific and were heterogeneous among geographic regions within Japan. Application of machine learning methods could finely classify the subjects corresponding to the high-digit mtDNA sub-haplogroups. mtDNA had distinct genetic structures from that of nuclear DNA (nDNA), characterized by no distance-dependent linkage disequilibrium decay, sparse tagging of common variants, and the existence of common haplotypes spanning the entire mtDNA. We did not detect any evidence of mtDNA–nDNA (or mtDNA copy number–nDNA) genotype associations. Together with WGS-based mtDNA variant imputation, we conducted a phenome-wide association study of 147,437 Japanese individuals with 99 clinical phenotypes. We observed pleiotropy of mtDNA genetic risk on the five late-onset human complex traits including creatine kinase (P = 1.7 × 10−12). Kenichi Yamamoto et al. report a genetic analysis of mitochondrial DNA (mtDNA) and a phenome-wide association study in Japanese individuals from the BioBank Japan Project. They describe the genetic landscape of the mitochondria and identify pleiotropic mtDNA variants associated with 5 late-onset complex traits.
Collapse
|
28
|
Sun D, Wei Y, Zheng HX, Jin L, Wang J. Contribution of Mitochondrial DNA Variation to Chronic Disease in East Asian Populations. Front Mol Biosci 2019; 6:128. [PMID: 31803756 PMCID: PMC6873657 DOI: 10.3389/fmolb.2019.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main producers of energy in eukaryotic cells. Mitochondrial dysfunction is associated with specific mitochondrial DNA (mtDNA) variations (haplogroups), and these variations can contribute to human disease. East Asian populations show enrichment of many mitochondrial haplogroups, including A, B, D, G, M7, M8, M9, N9, R9, and exhibit half of the known haplogroups of worldwide. In this review, we summarize the current research in the field of mtDNA variation and associated disease in East Asian populations and discuss the physiological and pathological relevance of mitochondrial biology. mtDNA haplogroups are associated with various metabolic disorders ascribed to altered oxidative phosphorylation. The same mitochondrial haplogroup can show either a negative or positive association with different diseases. Mitochondrial dynamics, mitophagy, and mitochondrial oxidative stress, ultimately influence susceptibility to various diseases. In addition, mitochondrial retrograde signaling pathways may have profound effects on nuclear-mitochondrial interactions, affecting cellular morphology, and function. Other complex networks including proteostasis, mitochondrial unfolded protein response and reactive oxygen species signaling may also play pivotal roles in metabolic performance.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Mitochondrial DNA Haplogroup N9a Negatively Correlates with Incidence of Hepatocellular Carcinoma in Northern China. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:332-340. [PMID: 31629170 PMCID: PMC6807372 DOI: 10.1016/j.omtn.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023]
Abstract
Mitochondrial DNA (mtDNA) haplogroups are associated with various types of cancer; however, the molecular mechanisms by which mtDNA haplogroups affect primary hepatocellular carcinoma (HCC) are not known. In this study, we carried out a case-control study on 388 HCC patients and 511 geographically matched asymptomatic control subjects in northern China. We found that mtDNA haplogroup N9a and its diagnostic SNP, m.16257C > A, negatively correlated with the incidence of HCC in northern China (odds ratio [OR] 0.290, 95% confidence interval [CI] 0.123–0.685, p = 0.005), particularly in patients with infection of hepatitis B/C virus (HBV/HCV) (for haplogroup N9a: OR 0.213, 95% CI 0.077–0.590, p = 0.003; for m.16257C > A: OR 0.262, 95% CI 0.107–0.643, p = 0.003). However, mtDNA haplogroup N9a is not associated with clinical characteristics of HCC including serum alpha-fetoprotein (AFP) level and tumor size. In addition, cytoplasmic hybrid (cybrid) cells with N9a haplogroup (N9a10a and N9a1) had transcriptome profiles distinct from those with non-N9a (B5, D4, and D5) haplogroups. Gene set enrichment analysis (GSEA) showed that metabolic activity varied significantly between N9a and non-N9a haplogroups. Moreover, cells with haplogroup N9a negatively correlated with cell division and multiple liver cancer pathways compared with non-N9a cells. Although it is still unclear how N9a affects the aforementioned GSEA pathways, our data suggest that mtDNA haplogroup N9a is negatively correlated with the incidence and progression of HCC in northern China.
Collapse
|
30
|
Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu GD, Murdock DG, Wallace DC. Host mitochondria influence gut microbiome diversity: A role for ROS. Sci Signal 2019; 12:12/588/eaaw3159. [PMID: 31266851 DOI: 10.1126/scisignal.aaw3159] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community. In cross-fostering studies, we found that although the initial microbiota community of newborn mice was that obtained from the nursing mother, the microbiota community progressed toward that characteristic of the microbiome of unfostered pups of the same genotype within 2 months. Analysis of the mitochondrial DNA variants associated with altered gut microbiota suggested that microbiome species diversity correlated with host reactive oxygen species (ROS) production. To determine whether the abundance of ROS could alter the gut microbiota, mice were aged, treated with N-acetylcysteine, or engineered to express the ROS scavenger catalase specifically within the mitochondria. All three conditions altered the microbiota from that initially established. Thus, these data suggest that the mitochondrial genotype modulates both ROS production and the species diversity of the gut microbiome, implying that the connection between the gut microbiome and common disease phenotypes might be due to underlying changes in mitochondrial function.
Collapse
Affiliation(s)
- Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah G Murdock
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Zhao D, Ding Y, Lin H, Chen X, Shen W, Gao M, Wei Q, Zhou S, Liu X, He N. Mitochondrial Haplogroups N9 and G Are Associated with Metabolic Syndrome Among Human Immunodeficiency Virus-Infected Patients in China. AIDS Res Hum Retroviruses 2019; 35:536-543. [PMID: 30950284 DOI: 10.1089/aid.2018.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence shows that mitochondrial DNA (mtDNA) variations have an important effect on metabolic disorders, but such studies have not been conducted in HIV-infected patients in Asia. We investigated the distribution of mtDNA haplogroups and their correlation with metabolic disorders in HIV-infected patients. A cross-sectional survey was performed among 296 HIV patients older than the age of 40 years in a rural prefecture, Eastern China. The entire mtDNA sequence was amplified by polymerase chain reaction using four overlapping pairs of primers that have been standardly used. In this sample, mtDNA haplogroups B, D, M7, and F were the most dominant haplogroups. The overall prevalence of metabolic syndrome (MetS) was 36.1%, and was highest (77.8%) among those with haplogroup G and lowest (21.4%) among those with haplogroup M8. In multivariable analysis, haplogroups G and N9 were significantly associated with the presence of MetS [adjusted odds ratio (aOR) = 13.5, 95% confidence interval (CI): 1.9-94.7; aOR = 8.1, 95% CI: 1.8-36.1; respectively]. Moreover, patients with haplogroup G had increased odds of elevated glycated hemoglobin (HbA1c) (aOR = 10.1, 95% CI: 1.4-71.1), patients with haplogroup N9 had increased odds of elevated triglycerides (aOR = 13.5, 95% CI: 2.4-76.8). No significant association between mtDNA haplogroups and other MetS components was observed. Our data demonstrate the association between mtDNA haplogroups and MetS in HIV-infected patients. The Asian-specific mtDNA haplogroups G and N9 may confer higher risk for the development of MetS in HIV-infected patients, which requires further longitudinal investigation.
Collapse
Affiliation(s)
- Dan Zhao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| | - Yingying Ding
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Haijiang Lin
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Meiyang Gao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Qian Wei
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sujuan Zhou
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xing Liu
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Na He
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
33
|
Mitochondrial complex I deficiency and cardiovascular diseases: current evidence and future directions. J Mol Med (Berl) 2019; 97:579-591. [PMID: 30863992 DOI: 10.1007/s00109-019-01771-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Compelling evidence demonstrates the emerging role of mitochondrial complex I deficiency in the onset and development of cardiovascular diseases (CVDs). In particular, defects in single subunits of mitochondrial complex I have been associated with cardiac hypertrophy, ischemia/reperfusion injury, as well as diabetic complications and stroke in pre-clinical studies. Moreover, data obtained in humans revealed that genes coding for complex I proteins were associated with different CVDs. In this review, we discuss recent experimental studies that underline the contributory role of mitochondrial complex I deficiency in the etiopathogenesis of several CVDs, with a particular focus on those involving loss of function models of mitochondrial complex I. We also discuss human studies and potential therapeutic strategies able to rescue mitochondrial function in CVDs.
Collapse
|
34
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316:E268-E285. [PMID: 30601700 PMCID: PMC6397358 DOI: 10.1152/ajpendo.00314.2018] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic insulin resistance. This pathological shift in both circulating fuel levels and energy substrate utilization by central and peripheral tissues contributes to mitochondrial dysfunction across organ systems. The mitochondrion lies at the intersection of critical cellular pathways such as energy substrate metabolism, reactive oxygen species (ROS) generation, and apoptosis. It is the disequilibrium of these processes in T2DM that results in downstream deficits in vital functions, including hepatocyte metabolism, cardiac output, skeletal muscle contraction, β-cell insulin production, and neuronal health. Although mitochondria are known to be susceptible to a variety of genetic and environmental insults, the accumulation of mitochondrial DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain the prevalence of mitochondrial-related diseases such as T2DM. Recent work has uncovered novel mitochondrial biology implicated in disease progressions such as mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded mitochondrial transcriptome. The goal of this review is to highlight mitochondrial dysfunction observed throughout major organ systems in the context of T2DM and to present new ideas for future research directions based on novel experimental and technological innovations in mitochondrial biology. Finally, the field of mitochondria-targeted therapeutics is discussed, with an emphasis on novel therapeutic strategies to restore mitochondrial homeostasis in the setting of T2DM.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- West Virginia University School of Pharmacy , Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
35
|
Saha SK, Akther J, Huda N, Yasmin T, Alam MS, Hosen MI, Hasan AM, Nabi AN. Genetic association study of C5178A and G10398A mitochondrial DNA variants with type 2 diabetes in Bangladeshi population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
36
|
Abstract
The maternally inherited mitochondrial DNA (mtDNA) is located inside every mitochondrion, in variable number of copies, and it contains 37 crucial genes for cellular bioenergetics. This chapter will discuss the unique features of this circular genome including heteroplasmy, haplogroups, among others, along with the corresponding clinical relevance for each. The discussion also covers the nuclear-encoded mitochondrial genes (N > 1000) and the epistatic interactions between mtDNA and the nuclear genome. Examples of mitochondrial diseases related to specific mtDNA mutation sites of relevance for humans are provided. This chapter aims to provide an overview of mitochondrial genetics as an emerging hot topic for the future of medicine.
Collapse
Affiliation(s)
- Vanessa F Gonçalves
- Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
37
|
Loukovitis E, Sfakianakis K, Syrmakesi P, Tsotridou E, Orfanidou M, Bakaloudi DR, Stoila M, Kozei A, Koronis S, Zachariadis Z, Tranos P, Kozeis N, Balidis M, Gatzioufas Z, Fiska A, Anogeianakis G. Genetic Aspects of Keratoconus: A Literature Review Exploring Potential Genetic Contributions and Possible Genetic Relationships with Comorbidities. Ophthalmol Ther 2018; 7:263-292. [PMID: 30191404 PMCID: PMC6258591 DOI: 10.1007/s40123-018-0144-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous, multifactorial degenerative disorder that is accompanied by corneal ectasia which usually progresses asymmetrically. With an incidence of approximately 1 per 2000 and 2 cases per 100,000 population presenting annually, KC follows an autosomal recessive or dominant pattern of inheritance and is, apparently, associated with genes that interact with environmental, genetic, and/or other factors. This is an important consideration in refractive surgery in the case of familial KC, given the association of KC with other genetic disorders and the imbalance between dizygotic twins. The present review attempts to identify the genetic loci contributing to the different KC clinical presentations and relate them to the common genetically determined comorbidities associated with KC. METHODS The PubMed, MEDLINE, Google Scholar, and GeneCards databases were screened for KC-related articles published in English between January 2006 and November 2017. Keyword combinations of "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," and "cornea" were used. In total, 217 articles were retrieved and analyzed, with greater weight placed on the more recent literature. Further bibliographic research based on the 217 articles revealed another 124 relevant articles that were included in this review. Using the reviewed literature, an attempt was made to correlate genes and genetic risk factors with KC characteristics and genetically related comorbidities associated with KC based on genome-wide association studies, family-based linkage analysis, and candidate-gene approaches. RESULTS An association matrix between known KC-related genes and KC symptoms and/or clinical signs together with an association matrix between identified KC genes and genetically related KC comorbidities/syndromes were constructed. CONCLUSION Twenty-four genes were identified as potential contributors to KC and 49 KC-related comorbidities/syndromes were found. More than 85% of the known KC-related genes are involved in glaucoma, Down syndrome, connective tissue disorders, endothelial dystrophy, posterior polymorphous corneal dystrophy, and cataract.
Collapse
Affiliation(s)
| | - Konstantinos Sfakianakis
- Division of Surgical Anatomy, Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | - Panagiota Syrmakesi
- AHEPA University Hospital, Thessaloníki, Greece
- Ophthalmica Eye Institute, Thessaloníki, Greece
| | - Eleni Tsotridou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Myrsini Orfanidou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Dimitra Rafailia Bakaloudi
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Maria Stoila
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Athina Kozei
- Ophthalmica Eye Institute, Thessaloníki, Greece
- School of Pharmacology, University of Nicosia, Makedonitissis, Nicosia, Cyprus
| | | | | | | | | | | | - Zisis Gatzioufas
- Department of Ophthalmology, Cornea, Cataract and Refractive Surgery, University Hospital Basel, Basel, Switzerland
| | - Aliki Fiska
- Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | | |
Collapse
|
38
|
Hwang IW, Kwon BN, Kim HJ, Han SH, Lee NR, Lim MH, Kwon HJ, Jin HJ. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion 2018; 47:174-178. [PMID: 30423452 DOI: 10.1016/j.mito.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a multifactorial disorder with multiple environmental and biological etiologies, including genetic factors. Until now, several genetic variants have been reported to be significantly associated with ADHD. Recently, the relationship between mitochondrial DNA (mtDNA) haplogroups and psychiatric disorders such as schizophrenia has also been reported. However, currently there are no reports pertaining to the genetic association between mtDNA haplogroups and ADHD. Therefore, we performed an mtDNA haplogroup analysis of a total of 472 Korean children (150 Children with ADHD and 322 controls). The 20 East Asian specific mtDNA haplogroups were determined using the SNaPshot assay. We also sequenced the displacement loop (D-loop) region, position 15,971-613. Our results showed that haplogroup B4 was significantly associated with ADHD (OR, 1.90; 95% CI, 1.055-3.429; p = 0.031). A marginally significant association was found in subjects with ADHD and haplogroup B5 (OR, 0.26; 95% CI, 0.059-1.139; p = 0.041). When stratified based on gender, an association was also observed between haplogroup B5 and boys diagnosed with ADHD (OR, 0.17; 95% CI, 0.022-1.340; p = 0.048). Compared with boys, girls with ADHD carried an excess of the haplogroup D4b (OR, 4.83; 95% CI, 1.352-17.272; p = 0.014). Stratified analysis of subtypes also showed significant results (combined: haplogroup B4, p = 0.007; inattentive: haplogroup F, p = 0.022). Our results showed a possible role of mtDNA haplogroups in the genetic etiology of ADHD and ADHD symptoms in Korean children.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Bit Na Kwon
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Hyung Jun Kim
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Seung Hun Han
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Noo Ri Lee
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea.
| |
Collapse
|
39
|
Abstract
Inherited mitochondrial DNA (mtDNA) diseases were discovered 30 years ago, and their characterization has provided a new perspective on the etiology of the common metabolic and degenerative diseases, cancer, and aging. The maternally inherited mtDNA contains 37 critical bioenergetic genes that are present in hundreds of copies per cell, but the 'mitochondrial genome' encompasses an additional 1,000-2,000 nuclear DNA (nDNA) mitochondrial genes. The interaction between these two mitochondrial genetic systems provides explanations for phenomena such as the non-Mendelian transmission of the common 'complex' diseases, age-related disease risk and progression, variable penetrance and expressivity, and gene-environment interactions. Thus, mtDNA genetics contributes to the quantitative and environmental components of human genetics that cannot be explained by Mendelian genetics. Because mtDNA is maternally inherited and cytoplasmic, it has fostered the first germline gene therapy, nuclear transplantation. However, effective interventions are still lacking for existing patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Chalkia D, Chang YC, Derbeneva O, Lvova M, Wang P, Mishmar D, Liu X, Singh LN, Chuang LM, Wallace DC. Mitochondrial DNA associations with East Asian metabolic syndrome. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:878-892. [PMID: 29997041 PMCID: PMC6530988 DOI: 10.1016/j.bbabio.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/31/2023]
Abstract
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N = 498, mean age 52 and N = 1002, mean age 44) and one from a non-urban environment (N = 501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.
Collapse
Affiliation(s)
- Dimitra Chalkia
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Medical College, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University Medical College, Taipei, Taiwan; Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Olga Derbeneva
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Maria Lvova
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ping Wang
- Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697, United States of America
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Xiaogang Liu
- Douglas C. Wallace Institute for Mitochondrial and Epigenomic Information Sciences, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Medical College, Taipei, Taiwan
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Douglas C. Wallace Institute for Mitochondrial and Epigenomic Information Sciences, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
41
|
Diaz-Morales N, Lopez-Domenech S, Iannantuoni F, Lopez-Gallardo E, Sola E, Morillas C, Rocha M, Ruiz-Pesini E, Victor VM. Mitochondrial DNA Haplogroup JT is Related to Impaired Glycaemic Control and Renal Function in Type 2 Diabetic Patients. J Clin Med 2018; 7:jcm7080220. [PMID: 30115863 PMCID: PMC6111716 DOI: 10.3390/jcm7080220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
The association between mitochondrial DNA (mtDNA) haplogroup and risk of type 2 diabetes (T2D) is undetermined and controversial. This study aims to evaluate the impact of the main mtDNA haplogroups on glycaemic control and renal function in a Spanish population of 303 T2D patients and 153 healthy controls. Anthropometrical and metabolic parameters were assessed and mtDNA haplogroup was determined in each individual. Distribution of the different haplogroups was similar in diabetic and healthy populations and, as expected, T2D patients showed poorer glycaemic control and renal function than controls. T2D patients belonging to the JT haplogroup (polymorphism m.4216T>C) displayed statistically significant higher levels of fasting glucose and HbA1c than those of the other haplogroups, suggesting a poorer glycaemic control. Furthermore, diabetic patients with the JT haplogroup showed a worse kidney function than those with other haplogroups, evident by higher levels of serum creatinine, lower estimated glomerular filtration rate (eGFR), and slightly higher (although not statistically significant) urinary albumin-to-creatinine ratio. Our results suggest that JT haplogroup (in particular, change at position 4216 of the mtDNA) is associated with poorer glycaemic control in T2D, which can trigger the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Sandra Lopez-Domenech
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Ester Lopez-Gallardo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
| | - Eva Sola
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| | - Eduardo Ruiz-Pesini
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
- Fundación ARAID, 50018 Zaragoza, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
42
|
Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia. Sci Rep 2018; 8:11651. [PMID: 30076323 PMCID: PMC6076260 DOI: 10.1038/s41598-018-29989-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Vietnam is an important crossroads within Mainland Southeast Asia (MSEA) and a gateway to Island Southeast Asia, and as such exhibits high levels of ethnolinguistic diversity. However, comparatively few studies have been undertaken of the genetic diversity of Vietnamese populations. In order to gain comprehensive insights into MSEA mtDNA phylogeography, we sequenced 609 complete mtDNA genomes from individuals belonging to five language families (Austroasiatic, Tai-Kadai, Hmong-Mien, Sino-Tibetan and Austronesian) and analyzed them in comparison with sequences from other MSEA countries and Taiwan. Within Vietnam, we identified 399 haplotypes belonging to 135 haplogroups; among the five language families, the sequences from Austronesian groups differ the most from the other groups. Phylogenetic analysis revealed 111 novel Vietnamese mtDNA lineages. Bayesian estimates of coalescence times and associated 95% HPD for these show a peak of mtDNA diversification around 2.5–3 kya, which coincides with the Dong Son culture, and thus may be associated with the agriculturally-driven expansion of this culture. Networks of major MSEA haplogroups emphasize the overall distinctiveness of sequences from Taiwan, in keeping with previous studies that suggested at most a minor impact of the Austronesian expansion from Taiwan on MSEA. We also see evidence for population expansions across MSEA geographic regions and language families.
Collapse
|
43
|
Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, Shen L, Chen X, Shen F, Lyu J. mtDNA Haplogroup N9a Increases the Risk of Type 2 Diabetes by Altering Mitochondrial Function and Intracellular Mitochondrial Signals. Diabetes 2018; 67:1441-1453. [PMID: 29735607 DOI: 10.2337/db17-0974] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/26/2018] [Indexed: 11/13/2022]
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with the incidence of type 2 diabetes (T2D); however, their underlying role in T2D remains poorly elucidated. Here, we report that mtDNA haplogroup N9a was associated with an increased risk of T2D occurrence in Southern China (odds ratio 1.999 [95% CI 1.229-3.251], P = 0.005). By using transmitochondrial technology, we demonstrated that the activity of respiratory chain complexes was lower in the case of mtDNA haplogroup N9a (N9a1 and N9a10a) than in three non-N9a haplogroups (D4j, G3a2, and Y1) and that this could lead to alterations in mitochondrial function and mitochondrial redox status. Transcriptome analysis revealed that OXPHOS function and metabolic regulation differed markedly between N9a and non-N9a cybrids. Furthermore, in N9a cybrids, insulin-stimulated glucose uptake might be inhibited at least partially through enhanced stimulation of ERK1/2 phosphorylation and subsequent TLR4 activation, which was found to be mediated by the elevated redox status in N9a cybrids. Although it remains unclear whether other signaling pathways (e.g., Wnt pathway) contribute to the T2D susceptibility of haplogroup N9a, our data indicate that in the case of mtDNA haplogroup N9a, T2D is affected, at least partially through ERK1/2 overstimulation and subsequent TLR4 activation.
Collapse
Affiliation(s)
- Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nianqi Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiongya Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqian Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingzi Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feixia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Aoki K, Tanaka H, Kawahara T. Multiplexed Microsphere Suspension-Array Assay for Urine Mitochondrial DNA Typing by C-Stretch Length in Hypervariable Regions. J Clin Med Res 2018; 10:552-561. [PMID: 29904439 PMCID: PMC5997413 DOI: 10.14740/jocmr3302w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/10/2018] [Indexed: 11/11/2022] Open
Abstract
Background The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. Methods A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). Results The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. Conclusions The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.
Collapse
Affiliation(s)
- Kimiko Aoki
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan.,Nihon Pharmaceutical University, 10281, Komuro, Inamachi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroyuki Tanaka
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan
| | - Takashi Kawahara
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan
| |
Collapse
|
45
|
Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P, Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol 2018; 236:R145-R159. [PMID: 29431147 DOI: 10.1530/joe-17-0367] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts of insulin in response to glucose. This results in hyperglycemia and metabolic dysregulation. Evidence has recently been mounting that mitochondrial dysfunction plays an important role in these processes. Monogenic dysfunction of mitochondria is a rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted. We argue that alterations in mitochondria may be a culprit in the pathogenetic processes culminating in type 2 diabetes.
Collapse
Affiliation(s)
- Malin Fex
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Lisa M Nicholas
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Anya Medina
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Vladimir V Sharoyko
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - David G Nicholls
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
- Department of ChemistryCenter for Analysis and Synthesis, Lund University, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
46
|
Kwak SH, Park KS. Pathophysiology of Type 2 Diabetes in Koreans. Endocrinol Metab (Seoul) 2018; 33:9-16. [PMID: 29589384 PMCID: PMC5874201 DOI: 10.3803/enm.2018.33.1.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
Abstract
The pathophysiology of type 2 diabetes is characterized by variable degrees of insulin resistance and impaired insulin secretion. Both genetic and environmental factors serve as etiologic factors. Recent genetic studies have identified at least 83 variants associated with diabetes. A significant number of these loci are thought to be involved in insulin secretion, either through β-cell development or β-cell dysfunction. Environmental factors have changed rapidly during the past half century, and the increased prevalence of obesity and diabetes can be attributed to these changes. Environmental factors may affect epigenetic changes and alter susceptibility to diabetes. A recent epidemiologic study revealed that Korean patients with type 2 diabetes already had impaired insulin secretion and insulin resistance 10 years before the onset of diabetes. Those who developed diabetes showed impaired β-cell compensation with an abrupt decrease in insulin secretion during the last 2 years before diabetes developed. The retrograde trajectory of the disposition index differed according to the baseline subgroups of insulin secretion and insulin sensitivity. We hope that obtaining a more detailed understanding of the perturbations in the major pathophysiologic process of diabetes on the individual level will eventually lead to the implementation of precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
47
|
Li X, Zhou TC, Wu CH, Tao LL, Bi R, Chen LJ, Deng DY, Liu C, Otecko NO, Tang Y, Lai X, Zhang L, Wei J. Correlations between mitochondrial DNA haplogroup D5 and chronic hepatitis B virus infection in Yunnan, China. Sci Rep 2018; 8:869. [PMID: 29343698 PMCID: PMC5772044 DOI: 10.1038/s41598-018-19184-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial abnormality is frequently reported in individuals with hepatitis B virus (HBV) infection, but the associated hosts’ mitochondrial genetic factors remain obscure. We hypothesized that mitochondria may affect host susceptibility to HBV infection. In this study, we aimed to detect the association between chronic HBV infection and mitochondrial DNA in Chinese from Yunnan, Southwest China. A total of 272 individuals with chronic HBV infection (CHB), 310 who had never been infected by HBV (healthy controls, HC) and 278 with a trace of HBV infection (spontaneously recovered, SR) were analysed for mtDNA sequence variations and classified into respective haplogroups. Haplogroup frequencies were compared between HBV infected patients, HCs and SRs. Haplogroup D5 presented a higher frequency in CHBs than in HCs (P = 0.017, OR = 2.87, 95% confidence interval [CI] = (1.21–6.81)) and SRs (P = 0.049, OR = 2.90, 95% CI = 1.01–8.35). The network of haplogroup D5 revealed a distinct distribution pattern between CHBs and non-CHBs. A trend of higher viral load among CHBs with haplogroup D5 was observed. Our results indicate the risk potential of mtDNA haplogroup D5 in chronic HBV infection in Yunnan, China.
Collapse
Affiliation(s)
- Xiao Li
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Tai-Cheng Zhou
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Chang-Hui Wu
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Li-Lin Tao
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Li-Jun Chen
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - De-Yao Deng
- Clinical Laboratory of the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Chang Liu
- Clinical Laboratory of the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yang Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650000, China
| | - Xin Lai
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Liang Zhang
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China.
| | - Jia Wei
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China.
| |
Collapse
|
48
|
Hu C, He X, Li X, Sun L, Zheng C, Liang Q, Lv Z, Huang Z, Qi K, Yuan H, Zhu X, Yang Y, Zhou Q, Yang Z. Comparative Study for the Association of Mitochondrial Haplogroup F+ and Metabolic Syndrome between Longevity and Control Population in Guangxi Zhuang Autonomous Region, China. J Nutr Health Aging 2018; 22:302-307. [PMID: 29380859 DOI: 10.1007/s12603-017-0915-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Our previous study suggested that mitochondrial haplogroup F (mtDNA F) was a longevity-associated biomarker, but the effect of mitochondrial haplogroup F on longevity individuals with metabolic syndrome (MetS) was not clear. Thus we explored the association between mtDNA F and MetS among longevity and control population in Guangxi Zhuang Autonomous Region, China. METHOD A total of 793 individuals consisting of 307 long-lived participants and 486 local healthy controls were involved in this study. Genotypes of mtDNA F were amplified by polymerase chain reaction and Sanger sequenced. MetS was defined according to the revised National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATPIII ) criteria. RESULTS The prevalence of MetS in longevity group (28.0%) was higher than that (18.5%) in control group (P=0.002). Through the case-control stratify analysis, the prevalence of MetS in mtDNA F+ longevity individuals (29.8%) was 4.6 fold higher than that (5.3%) in local control group (P<0.001). However, after further longevity-only analysis, no association between MetS and mtDNA F+ in longevity group was observed (P=0.167). Following same analysis of two variables in control group, we found that the prevalence of MetS in mtDNA F- (95.8%) was higher than that in mtDNA F+ (5.3%); conversely, the prevalence of non-metabolic syndrome (NMetS) in mtDNA F+ (94.7%) was markedly higher than that in mtDNA F- (4.2%) (P<0.001). CONCLUSION We demonstrated that mtDNA F+ , as a molecuar biomarker, might not only confer beneficial effect to resistance against MetS but also function as a positive factor for long-life span among the population in Guangxi Zhuang Autonomous Region, China.
Collapse
Affiliation(s)
- C Hu
- Ze Yang, Ph.D. The MOH key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology. No.1 DaHua Road, Dong Dan, Beijing 100730, P.R.China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gosling AL, Boocock J, Dalbeth N, Harré Hindmarsh J, Stamp LK, Stahl EA, Choi HK, Matisoo-Smith EA, Merriman TR. Mitochondrial genetic variation and gout in Māori and Pacific people living in Aotearoa New Zealand. Ann Rheum Dis 2017; 77:571-578. [PMID: 29247128 DOI: 10.1136/annrheumdis-2017-212416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mitochondria have an important role in the induction of the NLRP3 inflammasome response central in gout. The objective was to test whether mitochondrial genetic variation and copy number in New Zealand Māori and Pacific (Polynesian) people in Aotearoa New Zealand associate with susceptibility to gout. METHODS 437 whole mitochondrial genomes from Māori and Pacific people (predominantly men) from Aotearoa New Zealand (327 people with gout, 110 without gout) were sequenced. Mitochondrial DNA copy number variation was determined by assessing relative read depth using data produced from whole genome sequencing (32 cases, 43 controls) and targeted resequencing of urate loci (151 cases, 222 controls). Quantitative PCR was undertaken for replication of copy number findings in an extended sample set of 1159 Māori and Pacific men and women (612 cases, 547 controls). RESULTS There was relatively little mitochondrial genetic diversity, with around 96% of those sequenced in this study belonging to the B4a1a and derived sublineages. A B haplogroup heteroplasmy in hypervariable region I was found to associate with a higher risk of gout among the mitochondrial sequenced sample set (position 16181: OR=1.57, P=0.001). Increased copies of mitochondrial DNA were found to protect against gout risk with the effect being consistent when using hyperuricaemic controls across each of the three independent sample sets (OR=0.89, P=0.007; OR=0.90, P=0.002; OR=0.76, P=0.03). Paradoxically, an increase of mitochondrial DNA also associated with an increase in gout flare frequency in people with gout in the two larger sample sets used for the copy number analysis (β=0.003, P=7.1×10-7; β=0.08, P=1.2×10-4). CONCLUSION Association of reduced copy number with gout in hyperuricaemia was replicated over three Polynesian sample sets. Our data are consistent with emerging research showing that mitochondria are important for the colocalisation of the NLRP3 and ASC inflammasome subunits, a process essential for the generation of interleukin-1β in gout.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Eli A Stahl
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Hyon K Choi
- Section of Rheumatology and Clinical Epidemiology Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Jiang W, Li R, Zhang Y, Wang P, Wu T, Lin J, Yu J, Gu M. Mitochondrial DNA Mutations Associated with Type 2 Diabetes Mellitus in Chinese Uyghur Population. Sci Rep 2017; 7:16989. [PMID: 29208909 PMCID: PMC5717000 DOI: 10.1038/s41598-017-17086-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
A hospital-based case-control study was conducted to investigate potential association between mitochondrial DNA and Type 2 diabetes mellitus (T2DM) in Chinese Uyghur population. We sequenced mitochondrial DNA from 210 Uyghur individuals including 88 T2DM patients and 122 controls. Using haplogroup classification and association test, we found that haplogroup H (odds ratio [OR] = 1.40; 95% confidence interval [CI]: 1.20–1.64; P = 0.0005138) and D4 (odds ratio = 1.47; 95% CI: 1.22–1.77; P = 0.001064) were associated with an increased risk of T2DM in Chinese Uyghur population. Two markers of haplogroup D4 and H, MT-ATP8 m.8414 T > G (p.Leu17Phe) and m.2706 G > A encoding 16S rRNA in mitochondria, were predicted to affect the structure of MT-ATP8 and 16S RNA, respectively, and may be involved in the pathogenesis of T2DM. Our study provides a new clue for mitochondrial DNA in the etiology of T2DM in Chinese Uyghur population.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, 830000, P.R. China
| | - Ronghui Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yongbiao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Panpan Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Tingting Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jinming Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China.,Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, P.R. China
| | - Mingliang Gu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P.R. China. .,Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, P.R. China.
| |
Collapse
|