1
|
Pan VS, Gilbert KJ, Wetzel WC. Mean plant toxicity modulates the effects of plant defense variability. Ecology 2025; 106:e70012. [PMID: 39902654 PMCID: PMC11792111 DOI: 10.1002/ecy.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025]
Abstract
Plant trait variation is thought to suppress herbivore performance, but experiments typically manipulate only a single mean level of the trait. We manipulated the mean and variation of the concentration of a plant toxin in a model plant-herbivore system across three field and greenhouse experiments. Plants with leaves painted with a higher mean toxin concentration exhibited increased fitness and resistance to herbivores; however, at high mean concentrations, variation reduced the defensive effect, while at lower mean concentrations, variation enhanced it. This reversal aligns with models that include herbivore food selectivity, but our simulations revealed that the benefits of food selectivity for herbivores were minimal. Instead, nonlinear averaging and physiological tracking effects likely drove patterns in plant fitness and resistance to herbivores. We suggest that high defense variation in plants may be a widespread defensive phenotype, but for well-defended plants, variation may inadvertently promote herbivore niche expansion.
Collapse
Affiliation(s)
- Vincent S. Pan
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
| | - Kadeem J. Gilbert
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - William C. Wetzel
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Land Resources and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
2
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
3
|
deHaan JL, Maretzki J, Skandalis A, Tattersall GJ, Richards MH. Costs and benefits of maternal nest choice: Trade-offs between brood survival and thermal stress in bees. Ecology 2025; 106:e4525. [PMID: 39844775 PMCID: PMC11755220 DOI: 10.1002/ecy.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 01/24/2025]
Abstract
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests. Small carpenter bees (Ceratina calcarata) strongly prefer to nest in sun but also prefer nesting substrates more frequently found in shade, suggesting that nest site selection is based on a trade-off between costs and benefits of warmer versus cooler nest sites. We investigated the consequences of sun and shade nesting for mothers and their offspring using a field experiment in which mothers and newly founded nests were placed in sunny or shady habitats. Maternal costs and benefits in each treatment were quantified by comparing maternal foraging effort, nest size, number of brood provisioned, and number and size of live offspring. These demographic measures allowed us to estimate fitness for mothers nesting in sun versus shade. For juvenile bees from sun and shade nests, we quantified two thermal traits, high-temperature tolerance (CTmax) and metabolic rate. Mothers in sun nests had significantly higher nesting success, with 59% of all nests producing brood, while mothers in shade nests experienced only 32% success. Successful sun nests actually contained fewer live brood (5.2 ± 3.0, mean ± SD) than shade nests (6.9 ± 3.3), but their higher success rates meant that maternal fitness was higher in sun than in shade. However, sun nesting entailed clear costs to brood, which were significantly smaller, less likely to survive to adulthood, and had significantly elevated CTmax, suggesting that thermal stress during development necessitated them to shunt resources from growth to thermoprotection. The maternal preferences for sun nesting optimize maternal fitness despite the evident costs to juveniles developing in sun-exposed nests.
Collapse
Affiliation(s)
- Jessie L. deHaan
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Jesse Maretzki
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Adonis Skandalis
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Glenn J. Tattersall
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Miriam H. Richards
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
4
|
Martínez-De León G, Thakur MP. Ecological debts induced by heat extremes. Trends Ecol Evol 2024; 39:1024-1034. [PMID: 39079760 DOI: 10.1016/j.tree.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery). Biological mechanisms mitigating responses at a given stage incur associated costs that only become apparent at other response stages; these are known as 'ecological debts'. We outline several scenarios for how ecological responses associate with debts to better understand biodiversity changes caused by heat extremes.
Collapse
Affiliation(s)
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Sayed AEDH, Said REM, El-Aal MA, Saad E, Kamel WA, Hamed M. Black sand nanoparticles and heat stress impacts the neurological and oxidative stress indices and splenic-renal histology of Clarias gariepinus. Sci Rep 2024; 14:21993. [PMID: 39313514 PMCID: PMC11420222 DOI: 10.1038/s41598-024-71707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Egypt, while many studies have focused on the radiometry and mineralogy of black sands, research on their effects on nearby aquatic organisms is rare. This study aimed to assess the combined effects of heat stress (HS) and black sand nanoparticles (BS-NPs) on renal function, antioxidant responses (TAC, SOD, CAT), neuro-stress indicators (AchE, cortisol), and to conduct histopathological investigations in the kidney and spleen tissues of African catfish Clarias gariepinus over a 15-day period to exposure to control, HS (32 °C), BS (6.4 g/kg diet) and HS + BS groups. The outcomes revealed that thermal stress alone showed no significant difference from the control. However, creatinine and uric acid levels were significantly higher in the BS-NPs and HS + BS-NPs groups (p < 0.001). Antioxidant markers (TAC, SOD, and CAT) were substantially reduced across all treated groups (0.05 ≥ p < 0.0001). AchE levels were significantly elevated in BS-NPs and HS + BS-NPs (p < 0.001), while cortisol levels were higher in these groups but not significantly different in HS. Degeneration and necrosis in the white and red pulps, scattered lymphocytes, and increased collagen fiber surrounding blood vessels and the lining of the ellipsoid structure were all evident in the spleen, along with the enlargement of the melanomacrophage centers with big granular, irregular, and brown pigments (hemosiderin). Our study, therefore, provides new insights into how heat stress, an abiotic environmental factor, influences the toxicity of black sand nanoparticles in catfish.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Eman Saad
- Department of Geology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walied A Kamel
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
6
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609454. [PMID: 39229052 PMCID: PMC11370604 DOI: 10.1101/2024.08.23.609454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, facilitating expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in acute heat tolerance, which phenotypically trades off with tolerance to prolonged heat exposure. A simple evolutionary model based on our data shows that the estimated maximum rate of evolutionary adaptation in mosquito heat tolerance typically exceeds that of projected climate warming under idealized conditions. Our findings indicate that natural mosquito populations may have the potential to track projected warming via genetic adaptation. Prior climate-based projections may thus underestimate the range of mosquito and mosquito-borne disease distributions under future climate conditions.
Collapse
Affiliation(s)
- Lisa I Couper
- Stanford University, Department of Biology
- University of California, Berkeley, Division of Environmental Health Sciences
| | | | | | | | - Moi Exposito-Alonso
- University of California, Berkeley, Department of Integrative Biology
- Howard Hughes Medical Institute
| | - Rachel B Brem
- University of California, Berkeley, Department of Plant & Microbial Biology
| | | | | |
Collapse
|
7
|
Guibourd de Luzinais V, Gascuel D, Reygondeau G, Cheung WWL. Large potential impacts of marine heatwaves on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17437. [PMID: 39054881 DOI: 10.1111/gcb.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, The University of Miami, Florida, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Powell JA, Burgess SC. How modularity and heterotrophy complicate the understanding of the causes of thermal performance curves: the case of feeding rate in a filter-feeding animal. J Exp Biol 2024; 227:jeb247776. [PMID: 38920135 PMCID: PMC11418027 DOI: 10.1242/jeb.247776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.
Collapse
Affiliation(s)
- Jackson A. Powell
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| | - Scott C. Burgess
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| |
Collapse
|
9
|
Evans MEK, Dey SMN, Heilman KA, Tipton JR, DeRose RJ, Klesse S, Schultz EL, Shaw JD. Tree rings reveal the transient risk of extinction hidden inside climate envelope forecasts. Proc Natl Acad Sci U S A 2024; 121:e2315700121. [PMID: 38830099 PMCID: PMC11181036 DOI: 10.1073/pnas.2315700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/03/2024] [Indexed: 06/05/2024] Open
Abstract
Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.
Collapse
Affiliation(s)
| | - Sharmila M. N. Dey
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Kelly A. Heilman
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ85721
| | - John R. Tipton
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM87545
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, BirmensdorfCH-8903, Switzerland
| | - Emily L. Schultz
- Department of Biology, Colorado Mountain College, Breckenridge, CO80424
| | - John D. Shaw
- Riverdale Forestry Sciences Lab, Rocky Mountain Research Station, US Forest Service, Riverdale, UT84405
| |
Collapse
|
10
|
Toxopeus J, Dowle EJ, Andaloori L, Ragland GJ. Variation in Thermal Sensitivity of Diapause Development among Individuals and over Time Predicts Life History Timing in a Univoltine Insect. Am Nat 2024; 203:E200-E217. [PMID: 38781522 DOI: 10.1086/729515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals but has largely been applied to developmental processes that occur during spring and summer, such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot fly Rhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted toward lower temperatures compared with typical models of morphogenic, nondiapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.
Collapse
|
11
|
Fan J, Shang F, Pan H, Yuan C, Liu T, Yi L, Wang J, Dou W. Body color plasticity of Diaphorina citri reflects a response to environmental stress. INSECT SCIENCE 2024; 31:937-952. [PMID: 37715371 DOI: 10.1111/1744-7917.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023]
Abstract
Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
Collapse
Affiliation(s)
- Jiayao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huimin Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chenyang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tianyuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Lubin FR, Réalis-Doyelle E, Espinat L, Guillard J, Raffard A. Heat shocks during egg incubation led to developmental, morphological, and behavioral differences in Arctic charr (Salvelinus alpinus). JOURNAL OF FISH BIOLOGY 2024; 104:1202-1212. [PMID: 38263640 DOI: 10.1111/jfb.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Temperature variation is affecting fish biodiversity worldwide, causing changes in geographic distribution, phenotypic structure, and even species extinction. Incubation is a critical stage for stenothermic species, which are vulnerable to large temperature fluctuations, and its effects on the phenotype at later developmental stages are understudied, despite the fact that the phenotype being essential for organism ecology and evolution. In this study, we tested the effects of heat shocks during the embryonic period on the phenotype of Arctic charr (Salvelinus alpinus). We repeatedly quantified multiple phenotypic traits, including morphology, development, and behavior, over a period of 4 months, from hatching to juvenile stage in individuals that had experienced heat shocks (+ 5°C on 24 h, seven times) during their embryonic stage and those that had not. We found that heat shocks led to smaller body size at hatching and a lower sociability. Interestingly, these effects weakened throughout the development of individuals and even reversed in the case of body size. We also found an accelerated growth rate and a higher body condition in the presence of heat shocks. Our study provides evidence that heat shocks experienced during incubation can have long-lasting effects on an individual's phenotype. This highlights the importance of the incubation phase for the development of ectothermic organisms and suggests that temperature fluctuations may have significant ecological and evolutionary implications for Arctic charr. Given the predicted increase in extreme events and the unpredictability of temperature fluctuations, it is critical to further investigate their effects on development by examining fluctuations that vary in frequency and intensity.
Collapse
Affiliation(s)
- François-Raphaël Lubin
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
- Pole ECLA (OFB, INRAE, USMB), Thonon-les-Bains, France
| | | | - Laurent Espinat
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Jean Guillard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Allan Raffard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
13
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
14
|
Van Baelen M, Bec A, Sperfeld E, Frizot N, Koussoroplis AM. Food quality shapes gradual phenotypic plasticity in ectotherms facing temperature variability. Ecology 2024; 105:e4263. [PMID: 38385889 DOI: 10.1002/ecy.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
Organisms exhibit reversible physiological adjustments as a response to rapidly changing environments. Yet such plasticity of the phenotype is gradual and may lag behind environmental fluctuations, thereby affecting long-term average performance of the organisms. By supplying energy and essential compounds for optimal tissue building, food determines the range of possible phenotypic changes and potentially the rate at which they occur. Here, we assess how differences in the dietary supply of essential lipids modulate the phenotypic plasticity of an ectotherm facing thermal fluctuations. We use three phytoplankton strains to create a gradient of polyunsaturated fatty acid and sterol supply for Daphnia magna under constant and fluctuating temperatures. We used three different fluctuation periodicities to unravel the temporal dynamics of gradual plasticity and its long-term consequences for D. magna performance measured as juvenile somatic growth rate. In agreement with gradual plasticity theory, we show that in D. magna, fluctuation periodicity determines the differential between observed growth rates and those expected from constant conditions. Most importantly, we show that diet modulates both the size and the direction of the growth rate differential. Overall, we demonstrate that the nutritional context is essential for predicting ectotherm consumers' performance in fluctuating thermal environments.
Collapse
Affiliation(s)
- Marine Van Baelen
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Environnement, Clermont-Ferrand, France
| | - Alexandre Bec
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Environnement, Clermont-Ferrand, France
| | - Erik Sperfeld
- University of Greifswald, Zoological Institute and Museum, Greifswald, Germany
| | - Nathan Frizot
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Environnement, Clermont-Ferrand, France
| | | |
Collapse
|
15
|
Gunderson AR. Disentangling physiological and physical explanations for body size-dependent thermal tolerance. J Exp Biol 2024; 227:jeb245645. [PMID: 38426549 DOI: 10.1242/jeb.245645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The effects of climate change are often body size dependent. One contributing factor could be size-dependent thermal tolerance (SDTT), the propensity for heat and cold tolerance to vary with body size among species and among individuals within species. SDTT is hypothesized to be caused by size differences in the temperature dependence of underlying physiological processes that operate at the cellular and organ/system level (physiological SDTT). However, temperature-dependent physiology need not change with body size for SDTT to be observed. SDTT can also arise because of physical differences that affect the relative body temperature dynamics of large and small organisms (physical SDTT). In this Commentary, I outline how physical SDTT occurs, its mechanistic differences from physiological SDTT, and how physical and physiological SDTT make different predictions about organismal responses to thermal variation. I then describe how physical SDTT can influence the outcome of thermal tolerance experiments, present an experimental framework for disentangling physical and physiological SDTT, and provide examples of tests for physiological SDTT that control for physical effects using data from Anolis lizards. Finally, I discuss how physical SDTT can affect organisms in natural environments and influence their vulnerability to anthropogenic warming. Differentiating between physiological and physical SDTT is important because it has implications for how we design and interpret thermal tolerance experiments and our fundamental understanding of thermal ecology and thermal adaptation.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| |
Collapse
|
16
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
17
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
18
|
Grigg AG, Lowi-Merri TM, Hutchings JA, Massey MD. Thermal variability induces sex-specific morphometric changes in zebrafish (Danio rerio). JOURNAL OF FISH BIOLOGY 2023; 103:839-850. [PMID: 37679944 DOI: 10.1111/jfb.15551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
In nature, organisms are exposed to variable environmental conditions that impact their performance and fitness. Despite the ubiquity of environmental variability, substantial knowledge gaps in our understanding of organismal responses to nonconstant thermal regimes remain. In the present study, using zebrafish (Danio rerio) as a model organism, we applied geometric morphometric methods to examine how challenging but ecologically realistic diel thermal fluctuations experienced during different life stages influence adult body shape, size, and condition. Zebrafish were exposed to either thermal fluctuations (22-32°C) or a static optimal temperature (27°C) sharing the same thermal mean during an early period spanning embryonic and larval ontogeny (days 0-30), a later period spanning juvenile and adult ontogeny (days 31-210), or a combination of both. We found that body shape, size, and condition were affected by thermal variability, but these plasticity-mediated changes were dependent on the timing of ontogenetic exposure. Notably, after experiencing fluctuating temperatures during early ontogeny, females displayed a deeper abdomen while males displayed an elongated caudal peduncle region. Moreover, males displayed beneficial acclimation of body condition under lifelong fluctuating temperature exposure, whereas females did not. The present study, using ecologically realistic thermal regimes, provides insight into the timing of environmental experiences that generate phenotypic variation in zebrafish.
Collapse
Affiliation(s)
- A G Grigg
- Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - J A Hutchings
- Dalhousie University, Halifax, Nova Scotia, Canada
- Flødevigen Marine Research Station, Institute of Marine Research, Bergen, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - M D Massey
- Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Llorente L, Aquilino M, Herrero Ó, de la Peña E, Planelló R. Characterization and expression of heat shock and immune genes in natural populations of Prodiamesa olivacea (Diptera) exposed to thermal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115359. [PMID: 37595349 DOI: 10.1016/j.ecoenv.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
This paper characterizes the heat stress response (HSR) and explores the impact of temperatures on the immune response of larvae from two chironomid species, Prodiamesa olivacea and Chironomus riparius. Genes involved in crucial metabolic pathways were de novo identified in P. olivacea: Hsp27, Hsp60, Hsp70, Hsc70, Cdc37, and HSF for the heat stress response (HSR) and TOLL, PGRP, C-type lectin, and JAK/hopscotch for the immune system response (ISR). Quantitative real-time PCR was used to evaluate the expression levels of the selected genes in short-term treatments (up to 120') at high temperatures (35 °C and 39 °C). Exposing P. olivacea to elevated temperatures resulted in HSR induction with increased expression of specific heat shock genes, suggesting the potential of HSPs as early indicators of acute thermal stress. Surprisingly, we found that heat shock represses multiple immune genes, revealing the antagonist relation between the heat shock response and the innate immune response in P. olivacea. Our results also showed species-dependent gene responses, with more significant effects in P. olivacea, for most of the biomarkers studied, demonstrating a higher sensitivity in this species to environmental stress conditions than that of C. riparius. This work shows a multi-species approach that enables a deeper understanding of the effects of heat stress at the molecular level in aquatic dipterans.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Eduardo de la Peña
- Institute for Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), Spanish National Research Council (CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750 Malaga, Spain; Department of Plants and Crops, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain.
| |
Collapse
|
20
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
21
|
Alruiz JM, Peralta-Maraver I, Bozinovic F, Santos M, Rezende EL. Temperature adaptation and its impact on the shape of performance curves in Drosophila populations. Proc Biol Sci 2023; 290:20230507. [PMID: 37161321 PMCID: PMC10170199 DOI: 10.1098/rspb.2023.0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Understanding how species adapt to different temperatures is crucial to predict their response to global warming, and thermal performance curves (TPCs) have been employed recurrently to study this topic. Nevertheless, fundamental questions regarding how thermodynamic constraints and evolution interact to shape TPCs in lineages inhabiting different environments remain unanswered. Here, we study Drosophila simulans along a latitudinal gradient spanning 3000 km to test opposing hypotheses based on thermodynamic constrains (hotter-is-better) versus biochemical adaptation (jack-of-all-temperatures) as primary determinants of TPCs variation across populations. We compare thermal responses in metabolic rate and the egg-to-adult survival as descriptors of organismal performance and fitness, respectively, and show that different descriptors of TPCs vary in tandem with mean environmental temperatures, providing strong support to hotter-is-better. Thermodynamic constraints also resulted in a strong negative association between maximum performance and thermal breadth. Lastly, we show that descriptors of TPCs for metabolism and egg-to-adult survival are highly correlated, providing evidence of co-adaptation, and that curves for egg-to-adult survival are systematically narrower and displaced toward lower temperatures. Taken together, our results support the pervasive role of thermodynamics constraining thermal responses in Drosophila populations along a latitudinal gradient, that are only partly compensated by evolutionary adaptation.
Collapse
Affiliation(s)
- José M. Alruiz
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Ignacio Peralta-Maraver
- Departamento de Ecología e Instituto del Agua, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biología Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
22
|
Desforges JE, Birnie-Gauvin K, Jutfelt F, Gilmour KM, Eliason EJ, Dressler TL, McKenzie DJ, Bates AE, Lawrence MJ, Fangue N, Cooke SJ. The ecological relevance of critical thermal maxima methodology for fishes. JOURNAL OF FISH BIOLOGY 2023; 102:1000-1016. [PMID: 36880500 DOI: 10.1111/jfb.15368] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.
Collapse
Affiliation(s)
- Jessica E Desforges
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Erika J Eliason
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Terra L Dressler
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nann Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, California, USA
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Arif S, Massey MDB. Reducing bias in experimental ecology through directed acyclic graphs. Ecol Evol 2023; 13:e9947. [PMID: 37006894 PMCID: PMC10050842 DOI: 10.1002/ece3.9947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Ecologists often rely on randomized control trials (RCTs) to quantify causal relationships in nature. Many of our foundational insights of ecological phenomena can be traced back to well-designed experiments, and RCTs continue to provide valuable insights today. Although RCTs are often regarded as the "gold standard" for causal inference, it is important to recognize that they too rely on a set of causal assumptions that must be justified and met by the researcher to draw valid causal conclusions. We use key ecological examples to show how biases such as confounding, overcontrol, and collider bias can occur in experimental setups. In tandem, we highlight how such biases can be removed through the application of the structural causal model (SCM) framework. The SCM framework visualizes the causal structure of a system or process under study using directed acyclic graphs (DAGs) and subsequently applies a set of graphical rules to remove bias from both observational and experimental data. We show how DAGs can be applied across ecological experimental studies to ensure proper study design and statistical analysis, leading to more accurate causal estimates drawn from experimental data. Although causal conclusions drawn from RCTs are often taken at face value, ecologists are increasingly becoming aware that experimental approaches must be carefully designed and analyzed to avoid potential biases. By applying DAGs as a visual and conceptual tool, experimental ecologists can increasingly meet the causal assumptions required for valid causal inference.
Collapse
Affiliation(s)
- Suchinta Arif
- Department of BiologyDalhousie University1355 Oxford StreetHalifaxNova ScotiaB3H 4R2Canada
| | - Melanie Duc Bo Massey
- Department of BiologyDalhousie University1355 Oxford StreetHalifaxNova ScotiaB3H 4R2Canada
| |
Collapse
|
24
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
25
|
Greenspan SE, Roznik EA, Edwards L, Duffy R, Berger L, Bower DS, Pike DA, Schwarzkopf L, Alford RA. Constant-temperature predictions underestimate growth of a fungal amphibian pathogen under individual host thermal profiles. J Therm Biol 2023; 111:103394. [PMID: 36585075 DOI: 10.1016/j.jtherbio.2022.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Ectotherm body temperatures fluctuate with environmental variability and host behavior, which may influence host-pathogen interactions. Fungal pathogens are a major threat to ectotherms and may be highly responsive to the fluctuating thermal profiles of individual hosts, especially cool-loving fungi exposed to high host temperatures. However, most studies estimate pathogen thermal performance based on averages of host or surrogate environmental temperatures, potentially missing effects of short-term host temperature shifts such as daily or hourly heat spikes. We recorded individual thermal profiles of Australian rainforest frogs using temperature-sensitive radio-transmitters. We then reproduced a subset of individual thermal profiles in growth chambers containing cultures of the near-global amphibian pathogen Batrachochytrium dendrobatidis (Bd) to investigate how realistic host temperature profiles affect Bd growth. We focused on thermal profiles that exceed the thermal optimum of Bd because the effects of realistic heat spikes on Bd growth are unresolved. Our laboratory incubation experiment revealed that Bd growth varied in response to relatively small differences in heat spike characteristics of individual frog thermal profiles, such as a single degree or a few hours, highlighting the importance of individual host behaviors in predicting population-level disease dynamics. The fungus also grew better than predicted under the most extreme and unpredictable frog temperature profile, recovering from two days of extreme (nearly 32 °C) heat spikes without negative effects on overall growth, suggesting we are underestimating the growth potential of the pathogen in nature. Combined with the previous finding that Bd reduces host heat tolerance, our study suggests that this pathogen may carry a competitive edge over hosts in the face of anthropogenic climate change.
Collapse
Affiliation(s)
- Sasha E Greenspan
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | | | - Lexie Edwards
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Richard Duffy
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Deborah S Bower
- Zoology Discipline, University of New England, Armidale, New South Wales, 2350, Australia
| | - David A Pike
- Department of Biology, Rhodes College, Memphis, TN, 38112, USA
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
26
|
Extreme escalation of heat failure rates in ectotherms with global warming. Nature 2022; 611:93-98. [DOI: 10.1038/s41586-022-05334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
|
27
|
Temperature effects on mormon cricket Anabrus simplex embryo development, hatching and nymphal growth: Thermal performance curves change with ontogeny. J Therm Biol 2022; 110:103356. [DOI: 10.1016/j.jtherbio.2022.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
|
28
|
Rindi L, He J, Benedetti‐Cecchi L. Spatial correlation reverses the compound effect of multiple stressors on rocky shore biofilm. Ecol Evol 2022; 12:e9418. [PMID: 36311394 PMCID: PMC9608791 DOI: 10.1002/ece3.9418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding how multifactorial fluctuating environments affect species and communities remains one of the major challenges in ecology. The spatial configuration of the environment is known to generate complex patterns of correlation among multiple stressors. However, to what extent the spatial correlation between simultaneously fluctuating variables affects ecological assemblages in real-world conditions remains poorly understood. Here, we use field experiments and simulations to assess the influence of spatial correlation of two relevant climate variables - warming and sediment deposition following heavy precipitation - on the biomass and photosynthetic activity of rocky intertidal biofilm. First, we used a response-surface design experiment to establish the relation between biofilm, warming, and sediment deposition in the field. Second, we used the response surface to generate predictions of biofilm performance under different scenarios of warming and sediment correlation. Finally, we tested the predicted outcomes by manipulating the degree of correlation between the two climate variables in a second field experiment. Simulations stemming from the experimentally derived response surface showed how the degree and direction (positive or negative) of spatial correlation between warming and sediment deposition ultimately determined the nonlinear response of biofilm biomass (but not photosynthetic activity) to fluctuating levels of the two climate variables. Experimental results corroborated these predictions, probing the buffering effect of negative spatial correlation against extreme levels of warming and sediment deposition. Together, these results indicate that consideration of nonlinear response functions and local-scale patterns of correlation between climate drivers can improve our understanding and ability to predict ecological responses to multiple processes in heterogeneous environments.
Collapse
Affiliation(s)
- Luca Rindi
- Department of BiologyUniversity of Pisa, CoNISMaPisaItaly
| | - Jianyu He
- Department of BiologyUniversity of Pisa, CoNISMaPisaItaly
| | | |
Collapse
|
29
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
30
|
Oomen RA, Knutsen H, Olsen EM, Jentoft S, Stenseth NC, Hutchings JA. Warming Accelerates the Onset of the Molecular Stress Response and Increases Mortality of Larval Atlantic Cod. Integr Comp Biol 2022; 62:1784-1801. [PMID: 36130874 PMCID: PMC9801969 DOI: 10.1093/icb/icac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/05/2023] Open
Abstract
Temperature profoundly affects ectotherm physiology. Although differential thermal responses influence fitness, thus driving population dynamics and species distributions, our understanding of the molecular architecture underlying these responses is limited, especially during the critical larval stage. Here, using RNA-sequencing of laboratory-reared Atlantic cod (Gadus morhua) larvae of wild origin, we find changes in gene expression in thousands of transcripts consistent with a severe cellular stress response at both ambient and projected (+2°C and +4°C) temperatures. In addition, specific responses to stress, heat, and hypoxia were commonly identified in gene ontology enrichment analyses and 33 of the 44 genes comprising the minimum stress proteome of all organisms were upregulated. Earlier onset of the stress response was evident at higher temperatures; concomitant increased growth and mortality suggests a reduction in fitness. Temporal differences in gene expression levels do not correspond to differences in growing degree days, suggesting negative physiological consequences of warming beyond accelerated development. Because gene expression is costly, we infer that the upregulation of thousands of transcripts in response to warming in larval cod might act as an energetic drain. We hypothesize that the energetically costly stress response, coupled with increased growth rate at warmer temperatures, leads to faster depletion of energy reserves and increased risk of mortality in larval cod. As sea surface temperatures continue to rise over the next century, reduced fitness of Atlantic cod larvae might lead to population declines in this ecologically and socioeconomically important species. Further, our findings expand our understanding of transcriptomic responses to temperature by ectothermic vertebrate larvae beyond the critical first-feeding stage, a time when organisms begin balancing the energetic demands of growth, foraging, development, and maintenance. Linking the molecular basis of a thermal response to key fitness-related traits is fundamentally important to predicting how global warming will affect ectotherms.
Collapse
Affiliation(s)
| | - Halvor Knutsen
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Esben M Olsen
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway,Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| | - Jeffrey A Hutchings
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway,Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
| |
Collapse
|
31
|
Youngblood JP, Cease AJ, Talal S, Copa F, Medina HE, Rojas JE, Trumper EV, Angilletta MJ, Harrison JF. Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arianne J. Cease
- School of Life Sciences Arizona State University Tempe AZ USA
- School of Sustainability Arizona State University Tempe AZ USA
| | - Stav Talal
- School of Life Sciences Arizona State University Tempe AZ USA
| | - Fernando Copa
- Universidad Autónoma Gabriel René Moreno Santa Cruz Bolivia
| | | | - Julio E. Rojas
- Departamento de Campañas Fitosanitarios Dirección de Protección Vegetal, SENAVE Paraguay
| | | | | | - Jon F. Harrison
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
32
|
Abstract
At present, there is no simple, first principles-based, and general model for quantitatively describing the full range of observed biological temperature responses. Here we derive a general theory for temperature dependence in biology based on Eyring-Evans-Polanyi's theory for chemical reaction rates. Assuming only that the conformational entropy of molecules changes with temperature, we derive a theory for the temperature dependence of enzyme reaction rates which takes the form of an exponential function modified by a power law and that describes the characteristic asymmetric curved temperature response. Based on a few additional principles, our model can be used to predict the temperature response above the enzyme level, thus spanning quantum to classical scales. Our theory provides an analytical description for the shape of temperature response curves and demonstrates its generality by showing the convergence of all temperature dependence responses onto universal relationships-a universal data collapse-under appropriate normalization and by identifying a general optimal temperature, around 25 ∘C, characterizing all temperature response curves. The model provides a good fit to empirical data for a wide variety of biological rates, times, and steady-state quantities, from molecular to ecological scales and across multiple taxonomic groups (from viruses to mammals). This theory provides a simple framework to understand and predict the impact of temperature on biological quantities based on the first principles of thermodynamics, bridging quantum to classical scales.
Collapse
|
33
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
34
|
Anderson PSL, Kawano SM. Different traits at different rates: The effects of dynamic strain rate on structural traits in biology. Integr Comp Biol 2022; 62:icac066. [PMID: 35640914 DOI: 10.1093/icb/icac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenotypic diversity is influenced by physical laws that govern how an organism's morphology relates to functional performance. To study comparative organismal biology, we need to quantify this diversity using biological traits (definable aspects of the morphology, behavior, and/or life history of an organism). Traits are often assumed to be immutable properties that need only be measured a single time in each adult. However, organisms often experience changes in their biotic and abiotic environments that can alter trait function. In particular, structural traits represent the physical capabilities of an organism and may be heavily influenced by the rate at which they are exposed to physical demands ('loads'). For instance, materials tend to become more brittle when loaded at faster rates which could negatively affect structures trying to resist those loads (e.g., brittle materials are more likely to fracture). In the following perspective piece, we address the dynamic properties of structural traits and present case studies that demonstrate how dynamic strain rates affect the function of these traits in diverse groups of organisms. First, we review how strain rate affects deformation and fracture in biomaterials and demonstrate how these effects alter puncture mechanics in systems such as snake strikes. Second, we discuss how different rates of bone loading affect the locomotor biomechanics of vertebrates and their ecology. Through these examinations of diverse taxa and ecological functions, we aim to highlight how rate-dependent properties of structural traits can generate dynamic form-function relationships in response to changing environmental conditions. Findings from these studies serve as a foundation to develop more nuanced ecomechanical models that can predict how complex traits emerge and, thereby, advance progress on outlining the Rules of Life.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology, and Behavior; University of Illinois Urbana-Champaign, Champaign, IL 61820, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
35
|
Huey RB, Buckley LB. Designing a Seasonal Acclimation Study Presents Challenges and Opportunities. Integr Org Biol 2022; 4:obac016. [PMID: 35692903 PMCID: PMC9175191 DOI: 10.1093/iob/obac016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms living in seasonal environments often adjust physiological capacities and sensitivities in response to (or in anticipation of) environment shifts. Such physiological and morphological adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation”) can be detected either by measuring physiological capacities and sensitivities of organisms retrieved directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and measuring organisms maintained in the laboratory under conditions that attempt to mimic or track natural ones. But mimicking natural conditions in the laboratory is challenging—doing so requires prior natural-history knowledge of ecologically relevant body temperature cycles, photoperiods, food rations, social environments, among other variables. We argue that traditional laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, photoperiod, food, “lockdown”). Consequently, whether the resulting acclimation shifts correctly approximate those in nature is uncertain, and sometimes is dubious. We argue that background natural history information provides opportunities to design acclimation protocols that are not only more ecologically relevant, but also serve as templates for testing the validity of traditional protocols. Finally, we suggest several best practices to help enhance ecological realism.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Hui TY, Crickenberger S, Lau JWT, Williams GA. Why are "suboptimal" temperatures preferred in a tropical intertidal ectotherm? J Anim Ecol 2022; 91:1400-1415. [PMID: 35302242 DOI: 10.1111/1365-2656.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
In thermally extreme environments it is challenging for organisms to maximize performance due to risks associated with stochastic variation in temperature and, subsequently, over evolutionary time minimizing the exposure to risk can serve as one of the mechanisms that result in organisms preferring suboptimal temperatures. We tested this hypothesis in a slow-moving intertidal snail on tropical rocky shores, where temperature variability increases with time from 30 min to 20 h when recorded at 30 min intervals (due to short-term environmental autocorrelation where temperatures closer in time are more similar as compared to temperatures over a long period of time). Failure to accommodate temporal variation in thermal stress by selecting cool habitats can result in mortality. Thermal performance curves for different traits (heart rate and locomotion) were measured and compared to the snail's thermal preferences in both the field and laboratory. Predicted performances of the snails were simulated based on thermal performance curves for different traits over multiple time scales and simulated carryover effects. A strong mismatch was found between physiological and behavioural thermal maxima of the snails (physiological thermal maximum being higher by ~ 7 °C), but the snails avoided these maxima and sought temperatures 7 - 14 °C cooler. Such a risk-averse strategy can be explained by their predicted performances where the snails should make decisions about preferred temperatures based on time periods ≥ 5 h to avoid underestimating the temporal variation in body temperature. In extreme and stochastic environments, where the temporal variation in environmental conditions can lead to substantial divergence between instantaneous and time-averaged thermal performances, "cooler is better" and "suboptimal" body temperatures are preferred as they provide sufficient buffer to reduce mortality risk from heat stress.
Collapse
Affiliation(s)
- T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - S Crickenberger
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - J W T Lau
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - G A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
37
|
Denny MW, Dowd WW. Physiological Consequences of Oceanic Environmental Variation: Life from a Pelagic Organism's Perspective. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:25-48. [PMID: 34314598 DOI: 10.1146/annurev-marine-040221-115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.
Collapse
Affiliation(s)
- Mark W Denny
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
38
|
Gajewski Z, Stevenson LA, Pike DA, Roznik EA, Alford RA, Johnson LR. Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecol Evol 2021; 11:17920-17931. [PMID: 35003647 PMCID: PMC8717292 DOI: 10.1002/ece3.8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022] Open
Abstract
Environmental temperature is a crucial abiotic factor that influences the success of ectothermic organisms, including hosts and pathogens in disease systems. One example is the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), which has led to widespread amphibian population declines. Understanding its thermal ecology is essential to effectively predict outbreaks. Studies that examine the impact of temperature on hosts and pathogens often do so in controlled constant temperatures. Although varying temperature experiments are becoming increasingly common, it is unrealistic to test every temperature scenario. Thus, reliable methods that use constant temperature data to predict performance in varying temperatures are needed. In this study, we tested whether we could accurately predict Bd growth in three varying temperature regimes, using a Bayesian hierarchical model fit with constant temperature Bd growth data. We fit the Bayesian hierarchical model five times, each time changing the thermal performance curve (TPC) used to constrain the logistic growth rate to determine how TPCs influence the predictions. We then validated the model predictions using Bd growth data collected from the three tested varying temperature regimes. Although all TPCs overpredicted Bd growth in the varying temperature regimes, some functional forms performed better than others. Varying temperature impacts on disease systems are still not well understood and improving our understanding and methodologies to predict these effects could provide insights into disease systems and help conservation efforts.
Collapse
Affiliation(s)
- Zachary Gajewski
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| | - Lisa A. Stevenson
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - David A. Pike
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Elizabeth A. Roznik
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- North Carolina ZooAsheboroNorth CarolinaUSA
| | - Ross A. Alford
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Leah R. Johnson
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
39
|
Buckley LB, Kingsolver JG. Evolution of Thermal Sensitivity in Changing and Variable Climates. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011521-102856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, Washington 98195‐1800, USA
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
40
|
Wu J. The risk of forfeiting the ranges of reptiles under nonrandom and stochastic scenarios of moving climate conditions: a case study for 115 species in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51511-51529. [PMID: 33982261 DOI: 10.1007/s11356-021-14247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Revealing the hazard features of forfeiting areal ranges for nonidentical scenarios of shifting climatic conditions is pivotal for the conformation of reptiles to climatic warming. Taking 115 reptiles in China as an example, the indefiniteness and danger of shrinking geographical range for the reptiles under stochastic and nonrandom scenarios of moving climatic situations were inspected via exploiting the scenarios of shifting climatic status associated with the representative concentration pathways, Monte Carlo simulation, and the classifications scheme based on the fuzzy set. For non-stochastic states of altering climatic elements, the richness of 115 reptiles improved in certain sites of northeastern, and western China and dropped in several areas of northern, eastern, central China, and southeastern China: roughly 59-74 reptiles forfeiting less than 20% of their present ranges, roughly 25-34 reptiles narrowing less than 20-40% of their present areal ranges, and roughly 105-111 reptiles inhabited more than 80% of their overall areal ranges. For the random status of shifting climatic elements, the count of reptiles that forfeited the various extent of the present or entire areal ranges descended with raising the eventuality; with a possibility of over 0.6, the count of reptiles that minified less than 20%, 20-40%, 40-60%, 60-80% and over 80% of the present ranges was roughly 28-49, 5-10, 1-3, 0-1 and 13-18, separately; the count of reptiles that inhabited below 20%, 20-40%, 40-60%, 60-80% and more than 80% of the entire real ranges was roughly 0-1, 5-6, 1-5, 0-2 and 35-36, separately. About 30% of 115 reptiles would face disappearance danger in response to moving climate conditions in the absence of adaption steps, and the conformation measures were indispensable for the reptiles that shrunk their areas.
Collapse
Affiliation(s)
- Jianguo Wu
- The Institute of Environmental Ecology, Chinese Research Academy of Environmental Sciences, No 8, Da Yang Fang, Beiyuan, Anwai, Chaoyang District, Beijing, 100012, China.
| |
Collapse
|
41
|
Meng S, Tran TT, Delnat V, Stoks R. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117217. [PMID: 33915393 DOI: 10.1016/j.envpol.2021.117217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Despite the increased attention for temporal aspects of stressor interactions and for effects of warming in ecotoxicological studies, we lack knowledge on how different exposure durations to warming may affect pesticide sensitivity. We tested how three types of exposure duration to 4 °C warming (acute, developmental and transgenerational exposure to 24 °C vs 20 °C) shape the effect of the pesticide chlorpyrifos on two ecologically relevant fitness-related traits of mosquito larvae: heat tolerance and antipredator behaviour. Transgenerational (from the parental generation) and developmental (from the egg stage) warming appeared energetically more stressful than acute warming (from the final instar), because (i) only the latter resulted in an adaptive increase of heat tolerance, and (ii) especially developmental and transgenerational warming reduced the diving responsiveness and diving time. Exposure to chlorpyrifos decreased the heat tolerance, diving responsiveness and diving time. The impact of chlorpyrifos was lower at 24 °C than at 20 °C indicating that the expected increase in toxicity at 24 °C was overruled by the observed increase in pesticide degradation. Notably, although our results suggest that transgenerational warming was energetically more stressful, it did reduce the chlorpyrifos-induced negative effects at 24 °C on heat tolerance and the alarm escape response compared to acute warming. Our results provide important evidence that the exposure duration to warming may determine the impact of a pesticide under warming, thereby identifying a novel temporal aspect of stressor interactions in risk assessment.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Tam T Tran
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium; Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
42
|
Fey SB, Kremer CT, Layden TJ, Vasseur DA. Resolving the consequences of gradual phenotypic plasticity for populations in variable environments. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samuel B. Fey
- Department of Biology Reed College Portland Oregon 97202 USA
| | - Colin T. Kremer
- W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California 90096 USA
| | | | - David A. Vasseur
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect Street New Haven Connecticut 06520 USA
| |
Collapse
|
43
|
Clusella-Trullas S, Garcia RA, Terblanche JS, Hoffmann AA. How useful are thermal vulnerability indices? Trends Ecol Evol 2021; 36:1000-1010. [PMID: 34384645 DOI: 10.1016/j.tree.2021.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
To forecast climate change impacts across habitats or taxa, thermal vulnerability indices (e.g., safety margins and warming tolerances) are growing in popularity. Here, we present their history, context, formulation, and current applications. We highlight discrepancies in terminology and usage, and we draw attention to key assumptions underpinning the main indices and to their ecological and evolutionary relevance. In the process, we flag biases influencing these indices that are not always evaluated. These biases affect both components of index formulations, namely: (i) the characterisation of the thermal environment; and (ii) an organism's physiological and behavioural responses to more frequent and severe warming. Presently, many outstanding questions weaken a thermal vulnerability index approach. We describe ways to validate vulnerability index applications and outline issues to be considered in further developing these indices.
Collapse
Affiliation(s)
| | - Raquel A Garcia
- Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Hayford HA, Gilman SE, Carrington E. Tidal cues reduce thermal risk of climate change in a foraging marine snail. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Lawson L, Rollinson N. A simple model for the evolution of temperature-dependent sex determination explains the temperature sensitivity of embryonic mortality in imperiled reptiles. CONSERVATION PHYSIOLOGY 2021; 9:coab020. [PMID: 33996099 PMCID: PMC8111383 DOI: 10.1093/conphys/coab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/06/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
A common reptile conservation strategy involves artificial incubation of embryos and release of hatchlings or juveniles into wild populations. Temperature-dependent sex determination (TSD) occurs in most chelonians, permitting conservation managers to bias sex ratios towards females by incubating embryos at high temperatures, ultimately allowing the introduction of more egg-bearing individuals into populations. Here, we revisit classic sex allocation theory and hypothesize that TSD evolved in some reptile groups (specifically, chelonians and crocodilians) because male fitness is more sensitive to condition (general health, vigor) than female fitness. It follows that males benefit more than females from incubation environments that confer high-quality phenotypes, and hence high-condition individuals. We predict that female-producing temperatures, which comprise relatively high incubation temperatures in chelonians and crocodilians, are relatively stressful for embryos and subsequent life stages. We synthesize data from 28 studies to investigate how constant temperature incubation affects embryonic mortality in chelonians with TSD. We find several lines of evidence suggesting that warm, female-producing temperatures are more stressful than cool, male-producing temperatures. Further, we find some evidence that pivotal temperatures (TPiv, the temperature that produces a 1:1 sex ratio) may exhibit a correlated evolution with embryonic thermal tolerance. If patterns of temperature-sensitive embryonic mortality are also indicative of chronic thermal stress that occurs post-hatching, then conservation programs may benefit from incubating eggs close to species-specific TPivs, thus avoiding high-temperature incubation. Indeed, our models predict that, on average, a sex ratio of >75% females can generally be achieved by incubating eggs only 1°C above TPiv. Of equal importance, we provide insight into the enigmatic evolution of TSD in chelonians, by providing support to the hypothesis that TSD evolution is related to the quality of the phenotype conferred by incubation temperature, with males produced in high-quality incubation environments.
Collapse
Affiliation(s)
- Lauren Lawson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Room 3055, Toronto ON, Canada M5S 3B2
- School of the Environment, University of Toronto, 33 Willcocks St., Suite 1016V, Toronto ON, Canada M5S 3E8
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Room 3055, Toronto ON, Canada M5S 3B2
- School of the Environment, University of Toronto, 33 Willcocks St., Suite 1016V, Toronto ON, Canada M5S 3E8
| |
Collapse
|
46
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
47
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
48
|
Rebolledo AP, Sgrò CM, Monro K. Thermal performance curves reveal shifts in optima, limits and breadth in early life. J Exp Biol 2020; 223:jeb233254. [PMID: 33071221 DOI: 10.1242/jeb.233254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Understanding thermal performance at life stages that limit persistence is necessary to predict responses to climate change, especially for ectotherms whose fitness (survival and reproduction) depends on environmental temperature. Ectotherms often undergo stage-specific changes in size, complexity and duration that are predicted to modify thermal performance. Yet performance is mostly explored for adults, while performance at earlier stages that typically limit persistence remains poorly understood. Here, we experimentally isolate thermal performance curves at fertilization, embryo development and larval development stages in an aquatic ectotherm whose early planktonic stages (gametes, embryos and larvae) govern adult abundances and dynamics. Unlike previous studies based on short-term exposures, responses with unclear links to fitness or proxies in lieu of explicit curve descriptors (thermal optima, limits and breadth), we measured performance as successful completion of each stage after exposure throughout, and at temperatures that explicitly capture curve descriptors at all stages. Formal comparisons of descriptors using a combination of generalized linear mixed modelling and parametric bootstrapping reveal important differences among life stages. Thermal performance differs significantly from fertilization to embryo development (with thermal optimum declining by ∼2°C, thermal limits shifting inwards by ∼8-10°C and thermal breadth narrowing by ∼10°C), while performance declines independently of temperature thereafter. Our comparisons show that thermal performance at one life stage can misrepresent performance at others, and point to gains in complexity during embryogenesis, rather than subsequent gains in size or duration of exposure, as a key driver of thermal sensitivity in early life.
Collapse
Affiliation(s)
- Adriana P Rebolledo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| |
Collapse
|
49
|
Bozinovic F, Cavieres G, Martel SI, Alruiz JM, Molina AN, Roschzttardtz H, Rezende EL. Thermal effects vary predictably across levels of organization: empirical results and theoretical basis. Proc Biol Sci 2020; 287:20202508. [PMID: 33143579 PMCID: PMC7735269 DOI: 10.1098/rspb.2020.2508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Thermal performance curves have provided a common framework to study the impact of temperature in biological systems. However, few generalities have emerged to date. Here, we combine an experimental approach with theoretical analyses to demonstrate that performance curves are expected to vary predictably with the levels of biological organization. We measured rates of enzymatic reactions, organismal performance and population viability in Drosophila acclimated to different thermal conditions and show that performance curves become narrower with thermal optima shifting towards lower temperatures at higher levels or organization. We then explain these results on theoretical grounds, showing that this pattern reflects the cumulative impact of asymmetric thermal effects that piles up with complexity. These results and the proposed framework are important to understand how organisms, populations and ecological communities might respond to changing thermal conditions.
Collapse
Affiliation(s)
- Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Grisel Cavieres
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Sebastián I. Martel
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - José M. Alruiz
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Andrés N. Molina
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
50
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|