1
|
Mohanty P, Singh PK, Lenka B, Adhya TK, Verma SK, Ayreen Z, Patro S, Sarkar B, Mohapatra RK, Mishra S. Biofabricated nanomaterials in sustainable agriculture: insights, challenges and prospects. Biofabrication 2024; 16:042003. [PMID: 38981495 DOI: 10.1088/1758-5090/ad60f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. This can be done by adopting sustainable agriculture through horizontal (expanding the arable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customized formulated nanomaterials have numerous advantages. With their specialized physico-chemical properties, some nanoparticulated materials improve the plant's natural development and stress tolerance and some others are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (such as ecotoxicity reduction ability) and biomedicines (such as the ability to control and target the release of useful nanoscale drugs). Ag, Fe, Zn, TiO2, ZnO, SiO2and MgO nanoparticles (NPs), often employed in advanced agriculture, are covered here. Some NPs used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are also covered. Thus, nanotechnology has revolutionized agrotechnology, which holds promise to transform agricultural (ecosystems as a whole to ensure food security in the future. Considering the available literature, this article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. This article provides an overview of the nanomaterials used in the distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems that depend on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.
Collapse
Affiliation(s)
- Pratikhya Mohanty
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Puneet Kumar Singh
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Basundhara Lenka
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Tapan K Adhya
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Zobia Ayreen
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Shilpita Patro
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, ICAR-IIAB, Garhkhantanga, Ranchi, Jharkhand 834 003, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758 002, Odisha, India
| | - Snehasish Mishra
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| |
Collapse
|
2
|
Caland JP, Baptista J, Peiter GC, de Aguiar KMFR, Coelho-Júnior H, Sinnecker JP, Felix JF, Schneider R. Nanostructured Glass-Ceramic Materials from Glass Waste with Antimicrobial Activity. Molecules 2024; 29:3212. [PMID: 38999164 PMCID: PMC11243445 DOI: 10.3390/molecules29133212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Modern consumption patterns have led to a surge in waste glass accumulating in municipal landfills, contributing to environmental pollution, especially in countries that do not have well-established recycling standards. While glass itself is 100% recyclable, the logistics and handling involved present significant challenges. Flint and amber-colored glass, often found in high quantities in municipal waste, can serve as valuable sources of raw materials. We propose an affordable route that requires just a thermal treatment of glass waste to obtain glass-based antimicrobial materials. The thermal treatment induces crystallized nanoregions, which are the primary factor responsible for the bactericidal effect of waste glass. As a result, coarse particles of flint waste glass that undergo thermal treatment at 720 °C show superior antimicrobial activity than amber waste glass. Glass-ceramic materials from flint waste glass, obtained by thermal treatment at 720 °C during 2 h, show antimicrobial activity against Escherichia coli after just 30 min of contact time. Laser-induced breakdown spectroscopy (LIBS) was employed to monitor the elemental composition of the glass waste. The obtained glass-ceramic material was structurally characterized by transmission electron microscopy, enabling the confirmation of the presence of nanocrystals embedded within the glass matrix.
Collapse
Affiliation(s)
- Juliani P Caland
- Núcleo de Física Aplicada, Instituto de Física, Brasília, Universidade de Brasília-UnB, Brasilia 70910-900, DF, Brazil
| | - João Baptista
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | - Gabrielle Caroline Peiter
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | - Kelen M F Rossi de Aguiar
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | | | - João P Sinnecker
- Brazilian Center for Physics Research, Rio de Janeiro 22290-180, RJ, Brazil
| | - Jorlandio F Felix
- Núcleo de Física Aplicada, Instituto de Física, Brasília, Universidade de Brasília-UnB, Brasilia 70910-900, DF, Brazil
| | - Ricardo Schneider
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| |
Collapse
|
3
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
4
|
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. Int J Mol Sci 2023; 24:14897. [PMID: 37834344 PMCID: PMC10573543 DOI: 10.3390/ijms241914897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The misuse of antibiotics and antimycotics accelerates the emergence of antimicrobial resistance, prompting the need for novel strategies to combat this global issue. Metallic nanoparticles have emerged as effective tools for combating various resistant microbes. Numerous studies have highlighted their potential in addressing antibiotic-resistant fungi and bacterial strains. Understanding the mechanisms of action of these nanoparticles, including iron-oxide, gold, zinc oxide, and silver is a central focus of research within the life science community. Various hypotheses have been proposed regarding how nanoparticles exert their effects. Some suggest direct targeting of microbial cell membranes, while others emphasize the release of ions from nanoparticles. The most compelling proposed antimicrobial mechanism of nanoparticles involves oxidative damage caused by nanoparticles-generated reactive oxygen species. This review aims to consolidate knowledge, discuss the properties and mechanisms of action of metallic nanoparticles, and underscore their potential as alternatives to enhance the efficacy of existing medications against infections caused by antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alishba Salman
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Zaryab Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Sadia Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Demirel B, Erol Taygun M. Antibacterial Borosilicate Glass and Glass Ceramic Materials Doped with ZnO for Usage in the Pharmaceutical Industry. ACS OMEGA 2023; 8:18735-18742. [PMID: 37273588 PMCID: PMC10233686 DOI: 10.1021/acsomega.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The aim of this study is producing and characterizing borosilicate glass and glass ceramic materials with enhanced antibacterial properties by using the conventional melting method. First of all, borosilicate glass doped with ZnO was obtained and after that the crystallization temperature was detected by using differential thermal analysis for the production of borosilicate glass ceramic doped with ZnO. The antibacterial and leaching tests showed that the glass and glass ceramic doped with 5% ZnO were suitable samples according to test results. Physical, thermal, and mechanical properties of the glass and glass ceramic doped with 5% ZnO were also determined. Overall results indicated that the obtained antibacterial borosilicate glass could be a remarkable product for the pharmaceutical industry, especially for usage in drug packaging.
Collapse
Affiliation(s)
- Barış Demirel
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sisecam
Science Technology and Design Center, Gebze, Kocaeli 41400, Turkey
| | - Melek Erol Taygun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
6
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
7
|
Das I, Gogoi B, Sharma B, Borah D. Role of metal-nanoparticles in farming practices: an insight. 3 Biotech 2022; 12:294. [PMID: 36276472 PMCID: PMC9519825 DOI: 10.1007/s13205-022-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022] Open
Abstract
Nanotechnology introduces revolutionary approaches for agriculture in the form of nano-based pesticides, fertilizers, sensors, weed-controlling agents, enhanced seed germination materials, etc. Even though metal-nanoparticles (NPs) have shown their potential to improve crop yield, the mode of action at the cellular level and fate in the human body and the environment are not well understood yet. Several metal-nanoparticles have been studied extensively by researchers for their active role in enhancing the rate of seed germination and crop quality augmentation which may happen due to several mechanisms such as increased porosity in nano-primed seeds inducing up-regulation of the expression of aquaporin and Reactive Oxygen Species (ROS) genes involved in water uptake, improving the root dehydrogenase activity to enhance the water absorption capability, etc. However, researchers have also demonstrated and reported the possible toxicity of NPs in the environment due to their agricultural practices. But the fate of NPs and their environmental impact are still unclear and largely vary based on several factors such as the size of NPs, coating material, mode of discharge and locations, etc. This review thoroughly focuses on the mode of action of various NPs in seed germination and accumulation, translocation through cells, and potential environmental and health risks.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bidisha Sharma
- Department of Botany, Cotton University, Guwahati, 781001 India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| |
Collapse
|
8
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
dos Santos Gomes D, de Sousa Victor R, de Sousa BV, de Araújo Neves G, de Lima Santana LN, Menezes RR. Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. MATERIALS 2022; 15:ma15113909. [PMID: 35683207 PMCID: PMC9182284 DOI: 10.3390/ma15113909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Ceramic nanofibers have been shown to be a new horizon of research in the biomedical area, due to their differentiated morphology, nanoroughness, nanotopography, wettability, bioactivity, and chemical functionalization properties. Therefore, considering the impact caused by the use of these nanofibers, and the fact that there are still limited data available in the literature addressing the ceramic nanofiber application in regenerative medicine, this review article aims to gather the state-of-the-art research concerning these materials, for potential use as a biomaterial for wound healing and bone regeneration, and to analyze their characteristics when considering their application.
Collapse
Affiliation(s)
- Déborah dos Santos Gomes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Lisiane Navarro de Lima Santana
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| |
Collapse
|
10
|
Choudhary A, Singh S, Ravichandiran V. Toxicity, preparation methods and applications of Silver Nanoparticles: an update. Toxicol Mech Methods 2022; 32:650-661. [DOI: 10.1080/15376516.2022.2064257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anuj Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - V. Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
11
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 2021; 19:1299-1323. [PMID: 33755503 DOI: 10.1080/14787210.2021.1908125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Despite extensive advances in the production and synthesis of antibiotics, infectious diseases are one of the main problems of the 21st century due to multidrug-resistant (MDR) distributing in organisms. Therefore, researchers in nanotechnology have focused on new strategies to formulate and synthesis the different types of nanoparticles (NPs) with antimicrobial properties.Areas covered:The present review focuses on nanoparticles which are divided into two groups, organic (micelles, liposomes, polymer-based and lipid-based NPs) and inorganic (metals and metal oxides). NPs can penetrate the cell wall then destroy permeability of cell membrane, the structure and function of cell macromolecules by producing of reactive oxygen species (ROS) and eventually kill the bacteria. Moreover, their characteristics and mechanism in various bacteria especially MDR bacteria and finally their biocompatibility and the factors affecting their activity have been discussed.Expert opinion:Nanotechnology has led to higher drug absorption, targeted drug delivery and fewer side effects. NPs can overcome MDR through affecting several targets in the bacteria cell and synergistically increase the effectiveness of current antibiotics. Moreover, organic NPs with regard to their biodegradability and biocompatibility characteristics can be suitable agents for medical applications. However, they are less stable in environment in comparison to inorganic NPs.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
13
|
Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S. Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1270-1287. [PMID: 32869290 DOI: 10.1002/jsfa.10767] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 05/02/2023]
Abstract
Nanotechnology is an emerging science with a wide array of applications involving the synthesis and manipulation of materials with dimensions in the range of 1-100 nm. Nanotechnological applications include diverse fields such as pharmaceuticals, medicine, the environment, food processing and agriculture. Regarding the latter, applications are mainly focused on plant growth and crop protection against plagues and diseases. In recent years, the biogenic reduction of elements such as Ag, Au, Cu, Cd, Al, Se, Zn, Ce, Ti and Fe with plant extracts has become one of the most accepted techniques for obtaining nanoparticles (NPs), as it is considered an ecological and cost-effective process without the use of chemical contaminants. The objective of this work was to review NPs synthesized by green chemistry using vegetable extracts, as well as their use as antimicrobial agents against phytopathogenic fungi and bacteria. Given the need for alternatives to control and integrate management of phytopathogens, this review is relevant to agriculture, although this technology is barely exploited in this field. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- José A Hernández-Díaz
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Jorge Jo Garza-García
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | | | - Janet M León-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Julio C López-Velázquez
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Soledad García-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| |
Collapse
|
14
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
15
|
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 2020; 15:819-839. [PMID: 33817269 PMCID: PMC7747521 DOI: 10.1515/biol-2020-0094] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology is a rapidly growing field due to its unique functionality and a wide range of applications. Nanomedicine explores the possibilities of applying the knowledge and tools of nanotechnology for the prevention, treatment, diagnosis and control of disease. In this regard, silver nanoparticles with diameters ranging from 1 to 100 nm are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production. The current paper reviews various types of physical, chemical and biological methods used in the production of silver nanoparticles. It also describes approaches employing silver nanoparticles as antimicrobial and antibiofilm agents, as antitumour agents, in dentistry and dental implants, as promoters of bone healing, in cardiovascular implants and as promoters of wound healing. The paper also explores the mechanism of action, synthesis methods and morphological characterisation of silver nanoparticles to examine their role in medical treatments and disease management.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
16
|
Production of Soda Lime Glass Having Antibacterial Property for Industrial Applications. MATERIALS 2020; 13:ma13214827. [PMID: 33126734 PMCID: PMC7663106 DOI: 10.3390/ma13214827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
This study was aimed to produce and characterize the first commercial glass materials with enhanced antibacterial property using conventional melting method. For this purpose, typical container glass composition that contains some specific metal ions, such as silver, strontium, and copper, was used to obtain antibacterial glass samples using classical melting method. After the melting process, antibacterial tests and migration tests were applied to the glasses, and it was found that the glass doped with 2% Ag2O was the best composition. X-rays diffractometer (XRD), thermal expansion coefficient, density, refractive index, hardness, and elastic module results showed that the glass doped with 2% Ag2O was a suitable material as a container glass. High Temperature Melting Observation System studies were performed on the produced antibacterial glass composition, and it was found that the antibacterial glass can be produced in soda lime glass furnaces without changing any furnace design and production parameters. As a result of the characterization studies, it was concluded that the produced container glass doped with silver can be a good candidate for food and pharmaceutical products where bacterial growth is absolutely undesirable.
Collapse
|
17
|
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137778. [PMID: 32179352 DOI: 10.1016/j.scitotenv.2020.137778] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Imran Ashraf
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
18
|
El Bialy BE, Hamouda RA, Abd Eldaim MA, El Ballal SS, Heikal HS, Khalifa HK, Hozzein WN. Comparative Toxicological Effects of Biologically and Chemically Synthesized Copper Oxide Nanoparticles on Mice. Int J Nanomedicine 2020; 15:3827-3842. [PMID: 32581533 PMCID: PMC7269235 DOI: 10.2147/ijn.s241922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Copper oxide nanoparticles (CuO-NPs) are widely used as feed additives for livestock and poultry and implicated in many biomedical applications; however, overload of copper NPs induces various toxicological changes and dysfunction of animal’s organs. Thus, this study was designed to evaluate the comparative toxicological effects of biologically and chemically synthesized CuO-NPs on mice. Methods Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to characterize the sizes, shapes and functional groups of CuO-NPs. Forty-five mice were randomly allocated into three groups. Control group received distilled water. The second group was administered a single dose of biologically synthesized CuO-NPs (500 mg/kg bw) orally. The third group was administered a single dose of chemically synthesized CuO-NPs (500 mg/kg bw) orally. Results TEM revealed that biologically synthesized NPs were spherical in shape, whereas chemically synthesized NPs were spherical or elongated in shape. XRD showed that the size of biologically synthesized NPs ranged from 4.14 to 12.82 nm and that of chemically synthesized NPs ranged from 4.06 to 26.82 nm. FT-IR spectroscopy indicated that the peaks appeared between 779 cm−1 and 425 cm−1 in biologically synthesized NPs and between 858 cm−1 and 524 cm−1 in chemically synthesized NPs were for Cu-O nanostructure. Four mice died due to administration of biologically synthesized CuO-NPs. Both biologically and chemically synthesized CuO-NPs induced leukocytosis, elevated serum activities of alanine aminotransferase and aspartate aminotransferase and serum levels of urea and creatinine and increased P53 mRNA and caspase-3 protein expressions in hepatic tissues. Moreover, CuO-NPs induced degenerative and necrotized changes in hepatic, renal and splenic tissues. Biochemical, apoptotic and pathological changes were more serious in mice administered with biologically synthesized CuO-NPs. Conclusion This study indicated that a high dose of biologically and chemically synthesized CuO-NPs induced adverse effects on hepatic, renal and splenic tissues. At the same dose level, the biologically synthesized CuO-NPs evoked more potent toxic effects than the chemically synthesized CuO-NPs.
Collapse
Affiliation(s)
- Badr E El Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, Jeddah, Saudi Arabia.,Department of Microbial Biotechnology, Genetic Engineering & Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mabrouk A Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom 32511, Egypt
| | - Salah S El Ballal
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hanim S Heikal
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hanem K Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110036. [PMID: 31546358 DOI: 10.1016/j.msec.2019.110036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Rapid vascularization and long-term antibacterial property are desirable characteristics of the next-generation implants in orbital reconstruction. In this study, the new diopside-based orbital implants were developed by direct ink writing of diopside (CaMgSi2O6; DIO) and low-melt bioactive glass (BG)-assisted sintering approaches. The mechanical tests showed that the addition 5% or 10% BG could readily enhance the compressive strength of the DIO porous bioceramics after sintering at 1150 °C. The Tris buffer immersion test in vitro indicated that the porous bioceramics exhibited appreciable mechanical stability and very limited mass loss (<3.5%) after 8 weeks. The DIO/10BG porous bioceramic sintered at 1150 °C or 1250 °C could promote appreciable angiogenesis response at the early stage (2-6 weeks) of implantation in the rabbit panniculus carnosus muscle models in vivo. It is interesting that the steam autoclaved bioceramics exhibited outstanding contact-active inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, but as-sintered bioceramics showed no antibacterial effect. It is reasonable to consider that our strategy paves the way toward a simple and effective approach to fabricate the multifunctional tailormade implants for orbital implantation, thus accelerating the clinical translation of biomaterials research.
Collapse
|
20
|
Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-17061-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R. Mesoporous Silica-Based Materials with Bactericidal Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900669. [PMID: 31033214 DOI: 10.1002/smll.201900669] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.
Collapse
Affiliation(s)
- Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Elena Piacenza
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Raymond J Turner
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| |
Collapse
|
22
|
Patel DK, Seo YR, Lim KT. Stimuli-Responsive Graphene Nanohybrids for Biomedical Applications. Stem Cells Int 2019; 2019:9831853. [PMID: 31065286 PMCID: PMC6466862 DOI: 10.1155/2019/9831853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.
Collapse
Affiliation(s)
- Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Ri Seo
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
23
|
Porta E, Cogliati S, Francisco M, Roldán MV, Mamana N, Grau R, Pellegri N. Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-01071-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
|
25
|
Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr Polym 2018; 193:19-27. [DOI: 10.1016/j.carbpol.2018.03.088] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 01/05/2023]
|
26
|
Ghosh S. Copper and palladium nanostructures: a bacteriogenic approach. Appl Microbiol Biotechnol 2018; 102:7693-7701. [PMID: 29998411 DOI: 10.1007/s00253-018-9180-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 01/25/2023]
Abstract
Copper nanoparticles (CuNPs) and palladium nanoparticles (PdNPs) have attracted wide attention owing to their multifaceted utility in catalysis, sensors, and biomedical applications. Their therapeutic spectrum includes anticancer, antiviral, antibacterial, antifungal, antidiabetic, antioxidant potential which rationalizes the exploration of diverse physical, chemical, and biological routes for fabrication. In this article, we focused on bacterium-assisted design of nanostructured copper and palladium for applications in therapy against multidrug-resistant pathogens, dehalogenation of diatrizoate, Heck coupling of iodobenzene, polymer electric membrane fuel cell, metal recovery, and electronic waste management. Further, hypothesis behind microbial synthesis of PdNPs in E. coli containing [NiFe] hydrogenase Hyd-1 is discussed. Similarly, detailed mechanism of synthesis and stabilization in Cyanobacteria is also documented. Both CuNPs and PdNPs act as potent chemotherapeutic agents that can further be enhanced by conjugation with drugs and/or fluorophores and ligands for simultaneous diagnosis and targeted drug delivery to the cancer site or infection. These bacteriogenic nanoparticles can be used in sensors and pollution control.
Collapse
Affiliation(s)
- Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.
| |
Collapse
|
27
|
Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens. Adv Healthc Mater 2018; 7:e1701400. [PMID: 29717819 PMCID: PMC7161883 DOI: 10.1002/adhm.201701400] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Indexed: 12/26/2022]
Abstract
The rapid growth of harmful pathogens and their multidrug-resistance poses a severe challenge for health professionals and for the development of new healthcare products. Various strategies are exploited for the development of effective antimicrobial agents, and nanoparticles are a particularly promising class of materials in this respect. This review summarizes recent advances in antimicrobial metallic, polymeric, and lipid-based nanoparticles such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers. The latter materials in particular are engineered for antimicrobial agent delivery and act by encapsulation, receptor-based binding, and disruption of microbial adherence to cellular substrates. Potential strategies for the design of multifunctional antimicrobial nanocarriers, combining material chemistry and biological interface science, are also discussed.
Collapse
Affiliation(s)
| | - Enyi Ye
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
| | - David James Young
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastMaroochydore DCQueensland4558Australia
| | - Zibiao Li
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
| | - Xian Jun Loh
- Singapore Eye Research Institute11 Third Hospital AvenueSingapore168751Singapore
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117576Singapore
| |
Collapse
|
28
|
|
29
|
Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
|
31
|
Ingle AP, Rai M. Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnol 2017; 11:546-551. [PMID: 28745287 PMCID: PMC8676366 DOI: 10.1049/iet-nbt.2016.0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2023] Open
Abstract
Flower-shaped copper nanoparticles were synthesised by a green and ecofriendly chemical reduction approach using copper sulphate and cytyltrimethal ammonium bromide. The UV-vis spectrophotometer analysis showed maximum absorption at about 552 nm, which is specifically reported for copper nanoparticles. The crystal lattice structure of copper nanoflowers was confirmed by X-ray diffraction analysis. Further, the transmission electron microscopic studies revealed the flower shape copper nanoparticles in the size range of 100-500 nm. The stability of thus synthesised copper nanoflowers was assessed by zeta potential analysis, which was found to be 35 mV indicating the most stable nature of nanoflowers. The antifungal activity of these copper nanoflowers was evaluated by Kirby-Bauer disk diffusion method against selected common plant pathogenic fungi. It was found that the chemosynthesised copper nanoflowers demonstrated significant inhibitory activity against the plant pathogenic Aspergillus niger, Fusarium moniliforme, F. culmorum, F. oxysporum and F. tricinctum. The maximum antifungal activity was shown against A. niger followed by F. moniliforme, F. oxysporum and F. tricinctum, whereas the minimum activity was reported against F. culmorum. Similarly, the effect of the copper nanoflowers was also evaluated in combination with commercial antifungal agent (ketoconazole), which demonstrated the enhanced activity of antifungal agent.
Collapse
Affiliation(s)
- Avinash P Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India.
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
32
|
Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E836. [PMID: 28773196 PMCID: PMC5551879 DOI: 10.3390/ma10070836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO₂, WO₃, Bi₂WO₆, biomaterials: SiO₂ or P₂O₅-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials' applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal.
Collapse
Affiliation(s)
- Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
- Institute of Environmental Science and Technology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
33
|
Abstract
Food packaging is an integral component of the global food supply chain, protecting food from dirt, chemical contaminants and microorganisms, and helping to maintain food quality during transport and storage. Much of this packaging relies on modern polymeric materials, which have been developed to help control the exposure of products to light, oxygen and moisture. These have the benefits of being lightweight, cost-effective, reusable, recyclable and resistant to chemical and physical damage. Although traditional polymeric materials can fulfill many of these requirements, efforts continue to maintain or improve packaging performance while reducing the use of raw materials, waste and costs. The use of nanotechnology to produce nanocomposite materials has great promise to improve the characteristics of food packaging, but many of the products are still in their infancy. Only a relatively small number of nanoenabled products have entered the market and many, but not all, occupy niche markets. This chapter briefly describes the areas where nanomaterials have been used in research and commercial products to improve mechanical and barrier properties and to create active and intelligent packaging materials. It also addresses the regulation of nanomaterials in food contact applications and migration when evaluating the safety of these materials.
Collapse
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| |
Collapse
|
34
|
Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Song S, Fan C, Jia L, Qiu S, Sun Y, Song H, Hao R. Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15328-15341. [PMID: 28422486 DOI: 10.1021/acsami.7b03987] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×g for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as E. coli and S. aureus (∼100% of E. coli and ∼95.3% of S. aureus reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health.
Collapse
Affiliation(s)
- Rongtao Zhao
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Yang Li
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Mingxuan Sun
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Wen Kong
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Leili Jia
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Yansong Sun
- Department of Science and Technology, AMMS , Beijing 100850, P. R. China
| | - Hongbin Song
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| | - Rongzhang Hao
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China
| |
Collapse
|
35
|
Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:568-581. [DOI: 10.1016/j.msec.2016.12.125] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
36
|
McGee CF, Storey S, Clipson N, Doyle E. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:449-458. [PMID: 28197855 DOI: 10.1007/s10646-017-1776-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 05/14/2023]
Abstract
Soil microorganisms are key contributors to nutrient cycling and are essential for the maintenance of healthy soils and sustainable agriculture. Although the antimicrobial effects of a broad range of nanoparticulate substances have been characterised in vitro, little is known about the impact of these compounds on microbial communities in environments such as soil. In this study, the effect of three widely used nanoparticulates (silver, silicon dioxide and aluminium oxide) on bacterial and fungal communities in an agricultural pastureland soil was examined in a microcosm-based experiment using a combination of enzyme analysis, molecular fingerprinting and amplicon sequencing. A relatively low concentration of silver nanoparticles (AgNPs) significantly reduced total soil dehydrogenase and urease activity, while Al2O3 and SiO2 nanoparticles had no effect. Amplicon sequencing revealed substantial shifts in bacterial community composition in soils amended with AgNPs, with significant decreases in the relative abundance of Acidobacteria and Verrucomicrobia and an increase in Proteobacteria. In particular, the relative abundance of the Proteobacterial genus Dyella significantly increased in AgNP amended soil. The effects of Al2O3 and SiO2 NPs on bacterial community composition were less pronounced. AgNPs significantly reduced bacterial and archaeal amoA gene abundance in soil, with the archaea more susceptible than bacteria. AgNPs also significantly impacted soil fungal community structure, while Al2O3 and SiO2 NPs had no effect. Several fungal ribotypes increased in soil amended with AgNPs, compared to control soil. This study highlights the need to consider the effects of individual nanoparticles on soil microbial communities when assessing their environmental impact.
Collapse
Affiliation(s)
- C F McGee
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - S Storey
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - N Clipson
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - E Doyle
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
37
|
Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Álvarez SP, Tapia MAM, Pérez KIA, Guerrero AM. Agriculture Applications of Entomopathogenic Fungi Using Nanotechnology. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Khan MR, Rizvi TF. Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection. NANOSCIENCE AND PLANT–SOIL SYSTEMS 2017. [DOI: 10.1007/978-3-319-46835-8_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Eremenko AM, Petrik IS, Smirnova NP, Rudenko AV, Marikvas YS. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:28. [PMID: 26781286 PMCID: PMC4717125 DOI: 10.1186/s11671-016-1240-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 05/27/2023]
Abstract
Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes. Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.
Collapse
Affiliation(s)
- A M Eremenko
- Chuiko Institute of Surface Chemistry of National Academy of Science of Ukraine, 17 General Naumov str., Kyiv, 03164, Ukraine.
| | - I S Petrik
- Chuiko Institute of Surface Chemistry of National Academy of Science of Ukraine, 17 General Naumov str., Kyiv, 03164, Ukraine
| | - N P Smirnova
- Chuiko Institute of Surface Chemistry of National Academy of Science of Ukraine, 17 General Naumov str., Kyiv, 03164, Ukraine
| | - A V Rudenko
- Institute of Urology of Academy of Medical Science of Ukraine, Yu Kotsyubynskogo, 9-A, Kyiv, 04053, Ukraine
| | - Y S Marikvas
- Institute of Urology of Academy of Medical Science of Ukraine, Yu Kotsyubynskogo, 9-A, Kyiv, 04053, Ukraine
| |
Collapse
|
41
|
Ramasamy M, Lee J. Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1851242. [PMID: 27872845 PMCID: PMC5107826 DOI: 10.1155/2016/1851242] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022]
Abstract
Bacterial colonization in the form of biofilms on surfaces causes persistent infections and is an issue of considerable concern to healthcare providers. There is an urgent need for novel antimicrobial or antibiofilm surfaces and biomedical devices that provide protection against biofilm formation and planktonic pathogens, including antibiotic resistant strains. In this context, recent developments in the material science and engineering fields and steady progress in the nanotechnology field have created opportunities to design new biomaterials and surfaces with anti-infective, antifouling, bactericidal, and antibiofilm properties. Here we review a number of the recently developed nanotechnology-based biomaterials and explain underlying strategies used to make antibiofilm surfaces.
Collapse
Affiliation(s)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
42
|
Lee IC, Ko JW, Park SH, Shin NR, Shin IS, Moon C, Kim JH, Kim HC, Kim JC. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol 2016; 13:56. [PMID: 27788687 PMCID: PMC5084351 DOI: 10.1186/s12989-016-0169-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background Copper nanoparticles (Cu NPs) have great potential in electronics and biomedical fields because of their efficient thermodynamic and anti-microbial properties. However, their potential toxic effects and kinetic data following repeated exposure are still unclear. Methods We evaluated the physicochemical properties of Cu NPs (25 nm) and copper microparticles (Cu MPs, 14–25 μm). Comparative in vivo toxicity of Cu NPs and Cu MPs was evaluated by conducting a 28-day repeated oral dose study at equivalent dose levels of 0, 100, 200, and 400 mg/kg/day (vehicle, 1 % hydroxypropyl methylcellulose). We determined Cu levels in the blood, tissues, urine, and feces by using inductively coupled plasma mass spectrometry. Results The solubility of Cu NPs and Cu MPs was 84.5 and 17.2 %, respectively, in an acidic milieu; however, they scarcely dissolved in vehicle or intestinal milieus. The specific surface area of Cu NPs and Cu MPs was determined to be 14.7 and 0.16 m2/g, respectively. Cu NPs exhibited a dose-dependent increase of Cu content in the blood and tested organs, with particularly high levels of Cu in the liver, kidney, and spleen. Only for liver and kidney increased Cu levels were found in Cu MPs-treated rats. Cu NPs caused a dose-related increase in Cu levels in urine, whereas Cu MPs did not affect the urine Cu levels. Extremely high levels of Cu were detected in the feces of Cu MPs-treated rats, whereas much lower levels were detected in the feces of Cu NPs-treated rats. A comparative in vivo toxicity study showed that Cu NPs caused damages to red blood cells, thymus, spleen, liver, and kidney at ≥200 mg/kg/days, but Cu MPs did not cause any adverse effects even at the highest dose. Conclusions Overall, the in vivo repeated dose toxicity study of Cu NPs and Cu MPs demonstrated that large surface area and high solubility in physiological milieus could directly influence the toxicological responses and biodistribution of Cu particles when administered orally. Under these experimental conditions, the no-observed-adverse-effect levels of Cu NPs and Cu MPs were determined to be 100 and ≥400 mg/kg/day, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- In-Chul Lee
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.,Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na-Rae Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hein Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, Gyeongnam, 52834, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, ChungBuk, 28116, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
43
|
Calvano CD, Picca RA, Bonerba E, Tantillo G, Cioffi N, Palmisano F. MALDI-TOF mass spectrometry analysis of proteins and lipids in Escherichia coli exposed to copper ions and nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:828-840. [PMID: 27476478 DOI: 10.1002/jms.3823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Escherichia coli (E. coli) is one of the most important foodborne pathogens to the food industry responsible for diseases as bloody diarrhea, hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For controlling and eliminating E. coli, metal nano-antimicrobials (NAMs) are frequently used as bioactive systems for applications in food treatments. Most NAMs provide controlled release of metal ions, eventually slowing down or completely inhibiting the growth of undesired microorganisms. Nonetheless, their antimicrobial action is not totally unraveled and is strongly dependent on metal properties and environmental conditions. In this work, we propose the use of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry as a powerful tool for direct, time efficient, plausible identification of the cell membrane damage in bacterial strains exposed to copper-based antimicrobial agents, such as soluble salts (chosen as simplified AM material) and copper nanoparticles. E. coli ATCC 25922 strain was selected as 'training bacterium' to set up some critical experimental parameters (i.e. cell concentration, selection of the MALDI matrix, optimal solvent composition, sample preparation method) for the MS analyses. The resulting procedure was then used to attain both protein and lipid fingerprints from E. coli after exposure to different loadings of Cu salts and NPs. Interestingly, bacteria exposed to copper showed over-expression of copper binding proteins and degradation of lipids when treated with soluble salt. These findings were completed with other investigations, such as microbiological experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - R A Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - E Bonerba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Strada provinciale per Casamassima Km 3, 70100, Valenzano (BA), Italy
| | - G Tantillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Strada provinciale per Casamassima Km 3, 70100, Valenzano (BA), Italy
| | - N Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - F Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| |
Collapse
|
44
|
Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, Kim SH, Heo JD, Kim JC. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 2016; 11:2883-900. [PMID: 27366066 PMCID: PMC4913985 DOI: 10.2147/ijn.s106346] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs), their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions) after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5), vehicle (pH 6.5), and intestinal (pH 7.8) conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg) of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5%) only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen) of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and histopathology. Liver, kidney, and spleen were the major organs affected by Cu NPs. Collectively, the toxicity and kinetics of Cu NPs are most likely influenced by the release of Cu dissociated from Cu NPs under physiological conditions.
Collapse
Affiliation(s)
- In-Chul Lee
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Oh Lim
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Jeong-Doo Heo
- Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
45
|
Ma B, Huang Y, Zhu C, Chen C, Chen X, Fan M, Sun D. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:656-61. [PMID: 26952469 DOI: 10.1016/j.msec.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/01/2016] [Accepted: 02/03/2016] [Indexed: 01/03/2023]
Abstract
The antibacterial composite based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of SiO2 coated Cu nanoparticles (Cu@SiO2/BC) and its properties were characterized. Its chemical structures and morphologies were evaluated by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the SiO2 coated Cu particles were well homogeneously precipitated on the surface of BC. The Cu@SiO2/BC was more resistant to oxidation than the Cu nanoparticles impregnated into BC (Cu/BC) and then Cu@SiO2/BC could prolong the antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Bo Ma
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China; Department of Life Sciences of Lianyungang Teacher's College, Sheng Hu Lu 28, Lianyungang 222006, China
| | - Yang Huang
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China
| | - Chunlin Zhu
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China
| | - Xiao Chen
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China
| | - Mengmeng Fan
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, China.
| |
Collapse
|
46
|
Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. GREEN CHEMISTRY LETTERS AND REVIEWS 2016; 9:33-38. [DOI: 10.1080/17518253.2016.1141238] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2016] [Indexed: 07/19/2023]
Affiliation(s)
- Pawan Kaur
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hissar, Haryana, India
| | - Rajesh Thakur
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hissar, Haryana, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hissar, Haryana, India
| |
Collapse
|
47
|
Nanofertilisers, Nanopesticides and Nanosensors in Agriculture. NANOSCIENCE IN FOOD AND AGRICULTURE 1 2016. [DOI: 10.1007/978-3-319-39303-2_9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Cattalini JP, Hoppe A, Pishbin F, Roether J, Boccaccini AR, Lucangioli S, Mouriño V. Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. J R Soc Interface 2015; 12:0509. [PMID: 26269233 PMCID: PMC4614462 DOI: 10.1098/rsif.2015.0509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023] Open
Abstract
This work aimed to develop novel composite biomaterials for bone tissue engineering (BTE) made of bioactive glass nanoparticles (Nbg) and alginate cross-linked with Cu(2+) or Ca(2+) (AlgNbgCu, AlgNbgCa, respectively). Two-dimensional scaffolds were prepared and the nanocomposite biomaterials were characterized in terms of morphology, mechanical strength, bioactivity, biodegradability, swelling capacity, release profile of the cross-linking cations and angiogenic properties. It was found that both Cu(2+) and Ca(2+) are released in a controlled and sustained manner with no burst release observed. Finally, in vitro results indicated that the bioactive ions released from both nanocomposite biomaterials were able to stimulate the differentiation of rat bone marrow-derived mesenchymal stem cells towards the osteogenic lineage. In addition, the typical endothelial cell property of forming tubes in Matrigel was observed for human umbilical vein endothelial cells when in contact with the novel biomaterials, particularly AlgNbgCu, which indicates their angiogenic properties. Hence, novel nanocomposite biomaterials made of Nbg and alginate cross-linked with Cu(2+) or Ca(2+) were developed with potential applications for preparation of multifunctional scaffolds for BTE.
Collapse
Affiliation(s)
- J P Cattalini
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina
| | - A Hoppe
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - F Pishbin
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - J Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - S Lucangioli
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina National Research Council (CONICET), Buenos Aires, Argentina
| | - V Mouriño
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
49
|
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:246012. [PMID: 25861355 PMCID: PMC4378595 DOI: 10.1155/2015/246012] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.
Collapse
Affiliation(s)
- Nurit Beyth
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Avi Domb
- Department of Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, 91120 Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad 500 037, India
| | - Ronen Hazan
- Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
- IYAR, The Israeli Institute for Advanced Research, Tel Aviv, Israel
| |
Collapse
|
50
|
Sendova M, Jiménez JA, Smith R, Rudawski N. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach. Phys Chem Chem Phys 2014; 17:1241-6. [PMID: 25430499 DOI: 10.1039/c4cp04662e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of copper nanoparticle (NP) precipitation in melt-quenched barium-phosphate glass has been studied by in situ isothermal optical micro-spectroscopy. A spectroscopically based approximation technique is proposed to obtain information about the activation energies of nucleation and growth in a narrow temperature range (530-570 °C). Pre-plasmonic and plasmonic NP precipitation stages are identified separated in time. The process as a whole is discussed employing classical nucleation/growth theory and the Kolmogorov-Johnson-Mehl-Avrami phase change model. Activation energies of 3.9(7) eV and 2.6(5) eV have been estimated for the pre-plasmonic and plasmonic spectroscopically assessed stages, respectively. High resolution transmission electron microscopy, differential scanning calorimetry, and Raman spectroscopy were used as complementary techniques for studying the nanoparticulate phase and glass host structure. An empirical linear dependence of the diffusion activation energy on the glass transition temperature with broad applicability is suggested.
Collapse
Affiliation(s)
- Mariana Sendova
- Optical Spectroscopy & Nano-Materials Lab, New College of Florida, Sarasota, FL 34243, USA.
| | | | | | | |
Collapse
|