1
|
Sridhar K, Evers J, Lowery M. Nonlinear effects at the electrode-tissue interface of deep brain stimulation electrodes. J Neural Eng 2024; 21:016024. [PMID: 38306713 DOI: 10.1088/1741-2552/ad2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective.The electrode-tissue interface provides the critical path for charge transfer in neurostimulation therapies and exhibits well-established nonlinear properties at high applied currents or voltages. These nonlinear properties may influence the efficacy and safety of applied stimulation but are typically neglected in computational models. In this study, nonlinear behavior of the electrode-tissue interface impedance was incorporated in a computational model of deep brain stimulation (DBS) to simulate the impact on neural activation and safety considerations.Approach.Nonlinear electrode-tissue interface properties were incorporated in a finite element model of DBS electrodesin vitroandin vivo,in the rat subthalamic nucleus, using an iterative approach. The transition point from linear to nonlinear behavior was determined for voltage and current-controlled stimulation. Predicted levels of neural activation during DBS were examined and the region of linear operation of the electrode was compared with the Shannon safety limit.Main results.A clear transition of the electrode-tissue interface impedance to nonlinear behavior was observed for both current and voltage-controlled stimulation. The transition occurred at lower values of activation overpotential for simulatedin vivothanin vitroconditions (91 mV and 165 mV respectively for current-controlled stimulation; 110 mV and 275 mV for voltage-controlled stimulation), corresponding to an applied current of 30μA and 45μA, or voltage of 330 mV at 1 kHz. The onset of nonlinearity occurred at lower values of the overpotential as frequency was increased. Incorporation of nonlinear properties resulted in activation of a higher proportion of neurons under voltage-controlled stimulation. Under current-controlled stimulation, the predicted transition to nonlinear behavior and Faradaic charge transfer at stimulation amplitudes of 30μA, corresponds to a charge density of 2.29μC cm-2and charge of 1.8 nC, well-below the Shannon safety limit.Significance.The results indicate that DBS electrodes may operate within the nonlinear region at clinically relevant stimulation amplitudes. This affects the extent of neural activation under voltage-controlled stimulation and the transition to Faradaic charge transfer for both voltage- and current-controlled stimulation with important implications for targeting of neural populations and the design of safe stimulation protocols.
Collapse
Affiliation(s)
- K Sridhar
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - J Evers
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - M Lowery
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Kish KE, Yuan A, Weiland JD. Patient-specific computational models of retinal prostheses. Sci Rep 2023; 13:22271. [PMID: 38097732 PMCID: PMC10721907 DOI: 10.1038/s41598-023-49580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Retinal prostheses stimulate inner retinal neurons to create visual perception for blind patients. Implanted arrays have many small electrodes. Not all electrodes induce perception at the same stimulus amplitude, requiring clinicians to manually establish a visual perception threshold for each one. Phosphenes created by single-electrode stimuli can also vary in shape, size, and brightness. Computational models provide a tool to predict inter-electrode variability and automate device programming. In this study, we created statistical and patient-specific field-cable models to investigate inter-electrode variability across seven epiretinal prosthesis users. Our statistical analysis revealed that retinal thickness beneath the electrode correlated with perceptual threshold, with a significant fixed effect across participants. Electrode-retina distance and electrode impedance also correlated with perceptual threshold for some participants, but these effects varied by individual. We developed a novel method to construct patient-specific field-cable models from optical coherence tomography images. Predictions with these models significantly correlated with perceptual threshold for 80% of participants. Additionally, we demonstrated that patient-specific field-cable models could predict retinal activity and phosphene size. These computational models could be beneficial for determining optimal stimulation settings in silico, circumventing the trial-and-error testing of a large parameter space in clinic.
Collapse
Affiliation(s)
- Kathleen E Kish
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, 48105, USA
| | - Alex Yuan
- Ophthalmology and Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, 44195, USA
| | - James D Weiland
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA.
- BioInterfaces Institute, University of Michigan, Ann Arbor, 48105, USA.
- Ophthalmology and Visual Science, University of Michigan, Ann Arbor, 48105, USA.
| |
Collapse
|
3
|
Hernandez-Reynoso AG, Sturgill BS, Hoeferlin GF, Druschel LN, Krebs OK, Menendez DM, Thai TTD, Smith TJ, Duncan J, Zhang J, Mittal G, Radhakrishna R, Desai MS, Cogan SF, Pancrazio JJ, Capadona JR. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays. Biomaterials 2023; 303:122351. [PMID: 37931456 PMCID: PMC10842897 DOI: 10.1016/j.biomaterials.2023.122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress. First, we assessed the in vitro cytotoxicity of modified sample substrates. Then, we implanted 36 rats with uncoated, MnTBAP-coated ("Coated"), or (3-Aminopropyl)triethoxysilane (APTES)-coated devices - an intermediate step in the coating process. We assessed electrode performance during the acute (1-5 weeks), sub-chronic (6-11 weeks), and chronic (12-16 weeks) phases after implantation. Three subsets of animals were euthanized at different time points to assess the acute, sub-chronic and chronic immunohistological responses. Results showed that MnTBAP coatings were not cytotoxic in vitro, and their implantation in vivo improved the proportion of electrodes during the sub-chronic and chronic phases; APTES coatings resulted in failure of the neural interface during the chronic phase. In addition, MnTBAP coatings improved the quality of the signal throughout the study and reduced the neuroinflammatory response around the implant as early as two weeks, an effect that remained consistent for months post-implantation. Together, these results suggest that MnTBAP coatings are a potentially useful modification to improve MEA reliability.
Collapse
Affiliation(s)
- Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Brandon S Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - George F Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Olivia K Krebs
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Teresa T D Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Thomas J Smith
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Gaurav Mittal
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Mrudang Spandan Desai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| |
Collapse
|
4
|
Lycke R, Kim R, Zolotavin P, Montes J, Sun Y, Koszeghy A, Altun E, Noble B, Yin R, He F, Totah N, Xie C, Luan L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. Cell Rep 2023; 42:112554. [PMID: 37235473 PMCID: PMC10592461 DOI: 10.1016/j.celrep.2023.112554] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 μA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Robin Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Jon Montes
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Yingchu Sun
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Aron Koszeghy
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland
| | - Esra Altun
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Material Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Brian Noble
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Applied Physics Program, Rice University, Houston, TX 77005, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Nelson Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Letner JG, Patel PR, Hsieh JC, Smith Flores IM, della Valle E, Walker LA, Weiland JD, Chestek CA, Cai D. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. J Neural Eng 2023; 20:026019. [PMID: 36848679 PMCID: PMC10022369 DOI: 10.1088/1741-2552/acbf78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Objective.Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Approach.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8µm diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50µm radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.Main results.Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6µm,X-± S) in layer V motor cortex.Significance.Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.
Collapse
Affiliation(s)
- Joseph G Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jung-Chien Hsieh
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Israel M Smith Flores
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elena della Valle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Logan A Walker
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI 48109, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
6
|
Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats. Acta Biomater 2023; 158:292-307. [PMID: 36632879 DOI: 10.1016/j.actbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
The multicellular inflammatory encapsulation of implanted intracortical multielectrode arrays (MEA) is associated with severe deterioration of their field potentials' (FP) recording performance, which thus limits the use of brain implants in basic research and clinical applications. Therefore, extensive efforts have been made to identify the conditions in which the inflammatory foreign body response (FBR) is alleviated, or to develop methods to mitigate the formation of the inflammatory barrier. Here, for the first time, we show that (1) in young rats (74±8 gr, 4 weeks old at the onset of the experiments), cortical tissue recovery following MEA implantation proceeds with ameliorated inflammatory scar as compared to adult rats (242 ± 18 gr, 9 weeks old at the experimental onset); (2) in contrast to adult rats in which the Colony Stimulating factor 1 Receptor (CSF1R) antagonist chow eliminated ∼95% of the cortical microglia but not microglia adhering to the implant surfaces, in young rats the microglia adhering to the implant were eliminated along with the parenchymal microglia population. The removal of microglia adhering to the implant surfaces was correlated with improved recording performance by in-house fabricated Perforated Polyimide MEA Platforms (PPMP). These results support the hypothesis that microglia adhering to the surface of the electrodes, rather than the multicellular inflammatory scar, is the major underlying mechanism that deteriorates implant recording performance, and that young rats provide an advantageous model to study months-long, multisite electrophysiology in freely behaving rats. STATEMENT OF SIGNIFICANCE: Multisite electrophysiological recordings and stimulation devices play central roles in basic brain research and medical applications. The insertion of multielectrode-array platforms into the brain's parenchyma unavoidably injures the tissue, and initiates a multicellular inflammatory cascade culminating in the formation of an encapsulating scar tissue (the foreign body response-FBR). The dominant view, which directs most current research efforts to mitigate the FBR, holds that the FBR is the major hurdle to effective electrophysiological use of neuroprobes. By contrast, this report demonstrates that microglia adhering to the surface of a neuroimplants, rather than the multicellular FBR, underlie the performance deterioration of neuroimplants. These findings pave the way to the development of novel and focused strategies to overcome the functional deterioration of neuroimplants.
Collapse
Affiliation(s)
- Aviv Sharon
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M Jankowski
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel; Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Micha E Spira
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Patel PR, Welle EJ, Letner JG, Shen H, Bullard AJ, Caldwell CM, Vega-Medina A, Richie JM, Thayer HE, Patil PG, Cai D, Chestek CA. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J Neural Eng 2023; 20:10.1088/1741-2552/acab86. [PMID: 36595323 PMCID: PMC9954796 DOI: 10.1088/1741-2552/acab86] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Collapse
Affiliation(s)
- Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elissa J. Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hao Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Autumn J. Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ciara M. Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hope E. Thayer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, United States of America
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
8
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Williams NP, Kushwah N, Dhawan V, Zheng XS, Cui XT. Effects of central nervous system electrical stimulation on non-neuronal cells. Front Neurosci 2022; 16:967491. [PMID: 36188481 PMCID: PMC9521315 DOI: 10.3389/fnins.2022.967491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past few decades, much progress has been made in the clinical use of electrical stimulation of the central nervous system (CNS) to treat an ever-growing number of conditions from Parkinson's disease (PD) to epilepsy as well as for sensory restoration and many other applications. However, little is known about the effects of microstimulation at the cellular level. Most of the existing research focuses on the effects of electrical stimulation on neurons. Other cells of the CNS such as microglia, astrocytes, oligodendrocytes, and vascular endothelial cells have been understudied in terms of their response to stimulation. The varied and critical functions of these cell types are now beginning to be better understood, and their vital roles in brain function in both health and disease are becoming better appreciated. To shed light on the importance of the way electrical stimulation as distinct from device implantation impacts non-neuronal cell types, this review will first summarize common stimulation modalities from the perspective of device design and stimulation parameters and how these different parameters have an impact on the physiological response. Following this, what is known about the responses of different cell types to different stimulation modalities will be summarized, drawing on findings from both clinical studies as well as clinically relevant animal models and in vitro systems.
Collapse
Affiliation(s)
- Nathaniel P. Williams
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Atherton E, Hu Y, Brown S, Papiez E, Ling V, Colvin V, Borton D. A 3D in vitro model of the device-tissue interface: Functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J Neural Eng 2022; 19. [PMID: 35447619 DOI: 10.1088/1741-2552/ac6908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The recording instability of neural implants due to neuroinflammation at the device-tissue interface is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local "innate" immune responses are not well-understood. We aimed to understand and mitigate the isolated the innate neuroinflammatory response to devices. APPROACH Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of both dye and AAV-mediated functional, structural, and lipid peroxidation fluorescence was employed to characterize the neuroinflammatory response. MAIN RESULTS Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of "perpetual" antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. SIGNIFICANCE Our 3D in vitro model of the device-tissue interface exhibited symptoms of OS-mediated innate neuroinflammation, indicating a significant local immune response to devices. The dysregulation of functional connectivity of microcircuits surround implants suggests the presence of an observer effect, in which the process of recording neural activity may fundamentally change the neural signal. Finally, the demonstration of antioxidant ceria nanoparticle treatment exhibited substantial promise as a neuroprotective and anti-inflammatory treatment strategy.
Collapse
Affiliation(s)
- Elaina Atherton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Yue Hu
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Sophie Brown
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Emily Papiez
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vivian Ling
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vicki Colvin
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - David Borton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| |
Collapse
|
11
|
Spira ME, Erez H, Sharon A. Assessing the Feasibility of Developing in vivo Neuroprobes for Parallel Intracellular Recording and Stimulation: A Perspective. Front Neurosci 2022; 15:807797. [PMID: 35145375 PMCID: PMC8821521 DOI: 10.3389/fnins.2021.807797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
Developing novel neuroprobes that enable parallel multisite, long-term intracellular recording and stimulation of neurons in freely behaving animals is a neuroscientist's dream. When fulfilled, it is expected to significantly enhance brain research at fundamental mechanistic levels including that of subthreshold signaling and computations. Here we assess the feasibility of merging the advantages of in vitro vertical nanopillar technologies that support intracellular recordings with contemporary concepts of in vivo extracellular field potential recordings to generate the dream neuroprobes that read the entire electrophysiological signaling repertoire.
Collapse
Affiliation(s)
- Micha E. Spira
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Sharon
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Otte E, Vlachos A, Asplund M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res 2022; 387:461-477. [PMID: 35029757 PMCID: PMC8975777 DOI: 10.1007/s00441-021-03567-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their ‘seamless’ long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood–brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?
Collapse
|
13
|
Sharon A, Shmoel N, Erez H, Jankowski MM, Friedmann Y, Spira ME. Ultrastructural Analysis of Neuroimplant-Parenchyma Interfaces Uncover Remarkable Neuroregeneration Along-With Barriers That Limit the Implant Electrophysiological Functions. Front Neurosci 2021; 15:764448. [PMID: 34880722 PMCID: PMC8645653 DOI: 10.3389/fnins.2021.764448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Despite increasing use of in vivo multielectrode array (MEA) implants for basic research and medical applications, the critical structural interfaces formed between the implants and the brain parenchyma, remain elusive. Prevailing view assumes that formation of multicellular inflammatory encapsulating-scar around the implants [the foreign body response (FBR)] degrades the implant electrophysiological functions. Using gold mushroom shaped microelectrodes (gMμEs) based perforated polyimide MEA platforms (PPMPs) that in contrast to standard probes can be thin sectioned along with the interfacing parenchyma; we examined here for the first time the interfaces formed between brains parenchyma and implanted 3D vertical microelectrode platforms at the ultrastructural level. Our study demonstrates remarkable regenerative processes including neuritogenesis, axon myelination, synapse formation and capillaries regrowth in contact and around the implant. In parallel, we document that individual microglia adhere tightly and engulf the gMμEs. Modeling of the formed microglia-electrode junctions suggest that this configuration suffice to account for the low and deteriorating recording qualities of in vivo MEA implants. These observations help define the anticipated hurdles to adapting the advantageous 3D in vitro vertical-electrode technologies to in vivo settings, and suggest that improving the recording qualities and durability of planar or 3D in vivo electrode implants will require developing approaches to eliminate the insulating microglia junctions.
Collapse
Affiliation(s)
- Aviv Sharon
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M. Jankowski
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Friedmann
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Science the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Micha E. Spira
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. MICROMACHINES 2021; 12:mi12080972. [PMID: 34442594 PMCID: PMC8400387 DOI: 10.3390/mi12080972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
While microelectrode arrays (MEAs) offer the promise of elucidating functional neural circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demonstrating chronically reliable technology remains. Numerous studies report “chronic” data but the actual time spans and performance measures corresponding to the experimental work vary. In this study, we reviewed the experimental durations that constitute chronic studies across a range of MEA types and animal species to gain an understanding of the widespread variability in reported study duration. For rodents, which are the most commonly used animal model in chronic studies, we examined active electrode yield (AEY) for different array types as a means to contextualize the study duration variance, as well as investigate and interpret the performance of custom devices in comparison to conventional MEAs. We observed wide-spread variance within species for the chronic implantation period and an AEY that decayed linearly in rodent models that implanted commercially-available devices. These observations provide a benchmark for comparing the performance of new technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully derive performance under chronic conditions, the duration of abiotic failure modes, biological processes induced by indwelling probes, and intended application of the device are key determinants.
Collapse
|
15
|
Ahmed U, Chang YC, Lopez MF, Wong J, Datta-Chaudhuri T, Rieth L, Al-Abed Y, Zanos S. Implant- and anesthesia-related factors affecting cardiopulmonary threshold intensities for vagus nerve stimulation. J Neural Eng 2021; 18. [PMID: 34036940 DOI: 10.1088/1741-2552/ac048a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is typically delivered at increasing stimulus intensity until a neurological or physiological response is observed ('threshold') for dose calibration, preclinically and therapeutically. Factors affecting VNS thresholds have not been studied systematically. In a rodent model of VNS we measured neural and physiological responses to increasing VNS intensity, determined neurological and physiological thresholds and examined the effect of implant- and anesthesia-related factors on thresholds.Approach.In acute and chronic vagus implants (45 and 20 rats, respectively) VNS was delivered under isoflurane, ketamine-xylazine, or awake conditions. Evoked compound action potentials (CAPs) were recorded and activation of different fiber types was extracted. Elicited physiological responses were registered, including changes in heart rate (HR), breathing rate (BR), and blood pressure (BP). CAP and physiological thresholds were determined.Main results. The threshold for evoking discernable CAPs (>10µV) (CAP threshold) is significantly lower than what elicits 5%-10% drop in heart rate (heart rate threshold, HRT) (25µA ± 1.8 vs. 80µA ± 5.1, respectively; mean ± SEM). Changes in BP and small changes in BR (bradypnea) occur at lowest intensities (70µA ± 8.3), followed by HR changes (80µA ± 5.1) and finally significant changes in BR (apnea) (310μA ± 32.5). HRT and electrode impedance are correlated in chronic (Pearson correlationr= 0.47;p< 0.001) but not in acute implants (r= -0.34;pNS); HRT and impedance both increase with implant age (r= 0.44;p< 0.001 andr= 0.64;p< 0.001, respectively). HRT is lowest when animals are awake (200µA ± 35.5), followed by ketamine-xylazine (640µA ± 151.5), and isoflurane (1000µA ± 139.5). The sequence of physiological responses with increasing VNS intensity is the same in anesthetized and awake animals. Pulsing frequency affects physiological responses but not CAPs.Significance. Implant age, electrode impedance, and type of anesthesia affect VNS thresholds and should be accounted for when calibrating stimulation dose.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Jason Wong
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| |
Collapse
|
16
|
Brinda AK, Doyle AM, Blumenfeld M, Krieg J, Alisch JSR, Spencer C, Lecy E, Wilmerding LK, DeNicola A, Johnson LA, Vitek JL, Johnson MD. Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus. J Neural Eng 2021; 18:10.1088/1741-2552/abfc1c. [PMID: 33906174 PMCID: PMC8504120 DOI: 10.1088/1741-2552/abfc1c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/27/2021] [Indexed: 11/12/2022]
Abstract
Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.
Collapse
Affiliation(s)
- AnneMarie K Brinda
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Alex M Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Madeline Blumenfeld
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Joseph S R Alisch
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Chelsea Spencer
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Emily Lecy
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Lucius K Wilmerding
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Adele DeNicola
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
| |
Collapse
|
17
|
Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Inflammatory Foreign Body Response Induced by Neuro-Implants in Rat Cortices Depleted of Resident Microglia by a CSF1R Inhibitor and Its Implications. Front Neurosci 2021; 15:646914. [PMID: 33841088 PMCID: PMC8032961 DOI: 10.3389/fnins.2021.646914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammatory encapsulation of implanted cortical-neuro-probes [the foreign body response (FBR)] severely limits their use in basic brain research and in clinical applications. A better understanding of the inflammatory FBR is needed to effectively mitigate these critical limitations. Combining the use of the brain permeant colony stimulating factor 1 receptor inhibitor PLX5622 and a perforated polyimide-based multielectrode array platform (PPMP) that can be sectioned along with the surrounding tissue, we examined the contribution of microglia to the formation of inflammatory FBR. To that end, we imaged the inflammatory processes induced by PPMP implantations after eliminating 89-94% of the cortical microglia by PLX5622 treatment. The observations showed that: (I) inflammatory encapsulation of implanted PPMPs proceeds by astrocytes in microglia-free cortices. The activated astrocytes adhered to the PPMP's surfaces. This suggests that the roles of microglia in the FBR might be redundant. (II) PPMP implantation into control or continuously PLX5622-treated rats triggered a localized surge of microglia mitosis. The daughter cells that formed a "cloud" of short-lived (T 1 / 2 ≤ 14 days) microglia around and in contact with the implant surfaces were PLX5622 insensitive. (III) Neuron degeneration by PPMP implantation and the ensuing recovery in time, space, and density progressed in a similar manner in the cortices following 89-94% depletion of microglia. This implies that microglia do not serve a protective role with respect to the neurons. (IV) Although the overall cell composition and dimensions of the encapsulating scar in PLX5622-treated rats differed from the controls, the recorded field potential (FP) qualities and yield were undistinguishable. This is accounted for by assuming that the FP amplitudes in the control and PLX5622-treated rats were related to the seal resistance formed at the interface between the adhering microglia and/or astrocytes and the PPMP platform rather than across the scar tissue. These observations suggest that the prevention of both astrocytes and microglia adhesion to the electrodes is required to improve FP recording quality and yield.
Collapse
Affiliation(s)
- Aviv Sharon
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M. Jankowski
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Micha E. Spira
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Dunlap CF, Colachis SC, Meyers EC, Bockbrader MA, Friedenberg DA. Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review. Front Neurorobot 2020; 14:558987. [PMID: 33162885 PMCID: PMC7581895 DOI: 10.3389/fnbot.2020.558987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
Collapse
Affiliation(s)
- Collin F. Dunlap
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Samuel C. Colachis
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Eric C. Meyers
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Marcia A. Bockbrader
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States
| | - David A. Friedenberg
- Advanced Analytics and Health Research, Battelle Memorial Institute, Columbus, OH, United States
| |
Collapse
|
19
|
Huang SH, Shmoel N, Jankowski MM, Erez H, Sharon A, Abu-Salah W, Nelken I, Weiss A, Spira ME. Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality. Front Neurosci 2020; 14:926. [PMID: 32982683 PMCID: PMC7489236 DOI: 10.3389/fnins.2020.00926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The deterioration of field potential (FP) recording quality and yield by in vivo multielectrode arrays (MEA) within days to weeks of implantation severely limits progress in basic and applied brain research. The prevailing hypothesis is that implantation of MEA platforms initiate and perpetuate inflammatory processes which culminate in the formation of scar tissue (the foreign body response, FBR) around the implant. The FBR leads to progressive degradation of the recording qualities by displacing neurons away from the electrode surfaces, increasing the resistance between neurons (current source) and the sensing pads and by reducing the neurons’ excitable membrane properties and functional synaptic connectivity through the release of pro-inflammatory cytokines. Meticulous attempts to causally relate the cellular composition, cell density, and electrical properties of the FBR have failed to unequivocally correlate the deterioration of recording quality with the histological severity of the FBR. Based on confocal and electron microscope analysis of thin sections of polyimide based MEA implants along with the surrounding brain tissue at different points in time after implantation, we propose that abrupt FP amplitude attenuation occurs at the implant/brain-parenchyma junction as a result of high seal resistance insulation formed by adhering microglia to the implant surfaces. In contrast to the prevailing hypothesis, that FP decrease occurs across the encapsulating scar of the implanted MEA, this mechanism potentially explains why no correlations have been found between the dimensions and density of the FBR and the recording quality. Recognizing that the seal resistance formed by adhering-microglia to the implant constitutes a downstream element undermining extracellular FP recordings, suggests that approaches to mitigate the formation of the insulating glial could lead to improved recording quality and yield.
Collapse
Affiliation(s)
- Shun-Ho Huang
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M Jankowski
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Sharon
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wesal Abu-Salah
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aryeh Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Micha E Spira
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Mahajan S, Hermann JK, Bedell HW, Sharkins JA, Chen L, Chen K, Meade SM, Smith CS, Rayyan J, Feng H, Kim Y, Schiefer MA, Taylor DM, Capadona JR, Ereifej ES. Toward Standardization of Electrophysiology and Computational Tissue Strain in Rodent Intracortical Microelectrode Models. Front Bioeng Biotechnol 2020; 8:416. [PMID: 32457888 PMCID: PMC7225268 DOI: 10.3389/fbioe.2020.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Progress has been made in the field of neural interfacing using both mouse and rat models, yet standardization of these models' interchangeability has yet to be established. The mouse model allows for transgenic, optogenetic, and advanced imaging modalities which can be used to examine the biological impact and failure mechanisms associated with the neural implant itself. The ability to directly compare electrophysiological data between mouse and rat models is crucial for the development and assessment of neural interfaces. The most obvious difference in the two rodent models is size, which raises concern for the role of device-induced tissue strain. Strain exerted on brain tissue by implanted microelectrode arrays is hypothesized to affect long-term recording performance. Therefore, understanding any potential differences in tissue strain caused by differences in the implant to tissue size ratio is crucial for validating the interchangeability of rat and mouse models. Hence, this study is aimed at investigating the electrophysiological variances and predictive device-induced tissue strain. Rat and mouse electrophysiological recordings were collected from implanted animals for eight weeks. A finite element model was utilized to assess the tissue strain from implanted intracortical microelectrodes, taking into account the differences in the depth within the cortex, implantation depth, and electrode geometry between the two models. The rat model demonstrated a larger percentage of channels recording single unit activity and number of units recorded per channel at acute but not chronic time points, relative to the mouse model Additionally, the finite element models also revealed no predictive differences in tissue strain between the two rodent models. Collectively our results show that these two models are comparable after taking into consideration some recommendations to maintain uniform conditions for future studies where direct comparisons of electrophysiological and tissue strain data between the two animal models will be required.
Collapse
Affiliation(s)
- Shreya Mahajan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - John K. Hermann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Hillary W. Bedell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jonah A. Sharkins
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Cara S. Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Matthew A. Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Dawn M. Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Neuroscience, The Cleveland Clinic, Cleveland, OH, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Evon S. Ereifej
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Welle EJ, Patel PR, Woods JE, Petrossians A, della Valle E, Vega-Medina A, Richie JM, Cai D, Weiland JD, Chestek CA. Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield. J Neural Eng 2020; 17:026037. [PMID: 32209743 PMCID: PMC10771280 DOI: 10.1088/1741-2552/ab8343] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Carbon fiber electrodes may enable better long-term brain implants, minimizing the tissue response commonly seen with silicon-based electrodes. The small diameter fiber may enable high-channel count brain-machine interfaces capable of reproducing dexterous movements. Past carbon fiber electrodes exhibited both high fidelity single unit recordings and a healthy neuronal population immediately adjacent to the recording site. However, the recording yield of our carbon fiber arrays chronically implanted in the brain typically hovered around 30%, for previously unknown reasons. In this paper we investigated fabrication process modifications aimed at increasing recording yield and longevity. APPROACH We tested a new cutting method using a 532nm laser against traditional scissor methods for the creation of the electrode recording site. We verified the efficacy of improved recording sites with impedance measurements and in vivo array recording yield. Additionally, we tested potentially longer-lasting coating alternatives to PEDOT:pTS, including PtIr and oxygen plasma etching. New coatings were evaluated with accelerated soak testing and acute recording. MAIN RESULTS We found that the laser created a consistent, sustainable 257 ± 13.8 µm2 electrode with low 1 kHz impedance (19 ± 4 kΩ with PEDOT:pTS) and low fiber-to-fiber variability. The PEDOT:pTS coated laser cut fibers were found to have high recording yield in acute (97% > 100 µV pp , N = 34 fibers) and chronic (84% > 100 µV pp , day 7; 71% > 100 µV pp , day 63, N = 45 fibers) settings. The laser cut recording sites were good platforms for the PtIr coating and oxygen plasma etching, slowing the increase in 1 kHz impedance compared to PEDOT:pTS in an accelerated soak test. SIGNIFICANCE We have found that laser cut carbon fibers have a high recording yield that can be maintained for over two months in vivo and that alternative coatings perform better than PEDOT:pTS in accelerated aging tests. This work provides evidence to support carbon fiber arrays as a viable approach to high-density, clinically-feasible brain-machine interfaces.
Collapse
Affiliation(s)
- Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Joshua E Woods
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | | | - Elena della Valle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Alexis Vega-Medina
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America
- Biophysics, University of Michigan, Ann Arbor, MI, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Platinum Group Coatings, Pasadena, CA, United States of America
- Robotics Graduate Program, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America
- Robotics Graduate Program, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
22
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
23
|
Solarana K, Ye M, Gao YR, Rafi H, Hammer DX. Longitudinal multimodal assessment of neurodegeneration and vascular remodeling correlated with signal degradation in chronic cortical silicon microelectrodes. NEUROPHOTONICS 2020; 7:015004. [PMID: 32042853 PMCID: PMC6991888 DOI: 10.1117/1.nph.7.1.015004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/14/2020] [Indexed: 05/19/2023]
Abstract
Significance: Cortically implanted microelectrode arrays provide a direct interface with neuronal populations and are used to restore movement capabilities and provide sensory feedback to patients with paralysis or amputation. Penetrating electrodes experience high rates of signal degradation within the first year that limit effectiveness and lead to eventual device failure. Aim: To assess vascular and neuronal changes over time in mice with implanted electrodes and examine the contribution of the brain tissue response to electrode performance. Approach: We used a multimodal approach combining in vivo electrophysiology and subcellular-level optical imaging. Results: At acute timescales, we observed structural damage from the mechanical trauma of electrode insertion, evidenced by severed dendrites in the electrode path and local hypofluorescence. Superficial vessel growth and remodeling occurred within the first few weeks in both electrode-implanted and window-only animals, but the deeper capillary growth evident in window-only animals was suppressed in electrode-implanted animals. After longer implantation periods, there was evidence of degeneration of transected dendrites superficial to the electrode path and localized neuronal cell body loss, along with deep vascular velocity changes near the electrode. Total spike rate (SR) across all animals reached a peak between 3 and 9 months postimplantation, then decreased. The local field potential signal remained relatively constant for up to 6 months, particularly in the high-gamma band, indicating long-term electrode viability and neuronal functioning at further distances from the electrode, but it showed a reduction in some animals at later time points. Most importantly, we found that progressive high-gamma and SR reductions both correlate positively with localized cell loss and decreasing capillary density within 100 μ m of the electrode. Conclusions: This multifaceted approach provided a more comprehensive picture of the ongoing biological response at the brain-electrode interface than can be achieved with postmortem histology alone and established a real-time relationship between electrophysiology and tissue damage.
Collapse
Affiliation(s)
- Krystyna Solarana
- Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Meijun Ye
- Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Yu-Rong Gao
- Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Harmain Rafi
- Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Daniel X. Hammer
- Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
- Address all correspondence to Daniel X. Hammer, E-mail:
| |
Collapse
|
24
|
Cassar IR, Yu C, Sambangi J, Lee CD, Whalen JJ, Petrossians A, Grill WM. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Biomaterials 2019; 205:120-132. [PMID: 30925400 DOI: 10.1016/j.biomaterials.2019.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/08/2023]
Abstract
Reliable single unit neuron recordings from chronically implanted microelectrode arrays (MEAs) are essential tools in the field of neural engineering. However, following implantation, MEAs undergo a foreign body response that functionally isolates them from the brain and reduces the useful longevity of the array. We tested a novel electrodeposited platinum-iridium coating (EPIC) on penetrating recording MEAs to determine if it improved recording performance. We chronically implanted the arrays in rats and used electrophysiological and histological measurements to compare quantitatively the single unit recording performance of coated vs. uncoated electrodes over a 12-week period. The coated electrodes had substantially lower impedance at 1 kHz and reduced noise, increased signal-to-noise ratio, and increased number of discernible units per electrode as compared to uncoated electrodes. Post-mortem immunohistochemistry showed no significant differences in the immune response between coated and uncoated electrodes. Overall, the EPIC arrays provided superior recording performance than uncoated arrays, likely due to lower electrode impedance and reduced noise.
Collapse
Affiliation(s)
- Isaac R Cassar
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA; Department of Biological Science, Michigan Technological University, MI, USA
| | - Jaydeep Sambangi
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA
| | | | | | | | - Warren M Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA; Department of Neurobiology, School of Medicine, NC, USA; Department of Neurosurgery, School of Medicine, NC, USA; Department of Electrical and Computer Engineering, School of Engineering, Duke University, NC, USA.
| |
Collapse
|
25
|
Woods V, Trumpis M, Bent B, Palopoli-Trojani K, Chiang CH, Wang C, Yu C, Insanally MN, Froemke RC, Viventi J. Long-term recording reliability of liquid crystal polymer µECoG arrays. J Neural Eng 2018; 15:066024. [PMID: 30246690 PMCID: PMC6342453 DOI: 10.1088/1741-2552/aae39d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The clinical use of microsignals recorded over broad cortical regions is largely limited by the chronic reliability of the implanted interfaces. APPROACH We evaluated the chronic reliability of novel 61-channel micro-electrocorticographic (µECoG) arrays in rats chronically implanted for over one year and using accelerated aging. Devices were encapsulated with polyimide (PI) or liquid crystal polymer (LCP), and fabricated using commercial manufacturing processes. In vitro failure modes and predicted lifetimes were determined from accelerated soak testing. Successful designs were implanted epidurally over the rodent auditory cortex. Trends in baseline signal level, evoked responses and decoding performance were reported for over one year of implantation. MAIN RESULTS Devices fabricated with LCP consistently had longer in vitro lifetimes than PI encapsulation. Our accelerated aging results predicted device integrity beyond 3.4 years. Five implanted arrays showed stable performance over the entire implantation period (247-435 d). Our regression analysis showed that impedance predicted signal quality and information content only in the first 31 d of recordings and had little predictive value in the chronic phase (>31 d). In the chronic phase, site impedances slightly decreased yet decoding performance became statistically uncorrelated with impedance. We also employed an improved statistical model of spatial variation to measure sensitivity to locally varying fields, which is typically concealed in standard signal power calculations. SIGNIFICANCE These findings show that µECoG arrays can reliably perform in chronic applications in vivo for over one year, which facilitates the development of a high-density, clinically viable interface.
Collapse
Affiliation(s)
- Virginia Woods
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Straka MM, Shafer B, Vasudevan S, Welle C, Rieth L. Characterizing Longitudinal Changes in the Impedance Spectra of In-Vivo Peripheral Nerve Electrodes. MICROMACHINES 2018; 9:mi9110587. [PMID: 30424513 PMCID: PMC6266965 DOI: 10.3390/mi9110587] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Characterizing the aging processes of electrodes in vivo is essential in order to elucidate the changes of the electrode–tissue interface and the device. However, commonly used impedance measurements at 1 kHz are insufficient for determining electrode viability, with measurements being prone to false positives. We implanted cohorts of five iridium oxide (IrOx) and six platinum (Pt) Utah arrays into the sciatic nerve of rats, and collected the electrochemical impedance spectroscopy (EIS) up to 12 weeks or until array failure. We developed a method to classify the shapes of the magnitude and phase spectra, and correlated the classifications to circuit models and electrochemical processes at the interface likely responsible. We found categories of EIS characteristic of iridium oxide tip metallization, platinum tip metallization, tip metal degradation, encapsulation degradation, and wire breakage in the lead. We also fitted the impedance spectra as features to a fine-Gaussian support vector machine (SVM) algorithm for both IrOx and Pt tipped arrays, with a prediction accuracy for categories of 95% and 99%, respectively. Together, this suggests that these simple and computationally efficient algorithms are sufficient to explain the majority of variance across a wide range of EIS data describing Utah arrays. These categories were assessed over time, providing insights into the degradation and failure mechanisms for both the electrode–tissue interface and wire bundle. Methods developed in this study will allow for a better understanding of how EIS can characterize the physical changes to electrodes in vivo.
Collapse
Affiliation(s)
- Malgorzata M Straka
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
| | - Benjamin Shafer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD 20993, USA.
| | - Srikanth Vasudevan
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD 20993, USA.
| | - Cristin Welle
- Departments of Neurosurgery and Bioengineering, University of Colorado, Aurora, CO 80045, USA.
| | - Loren Rieth
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
- Departments of Electrical Engineering and Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Winter BM, Daniels SR, Salatino JW, Purcell EK. Genetic Modulation at the Neural Microelectrode Interface: Methods and Applications. MICROMACHINES 2018; 9:E476. [PMID: 30424409 PMCID: PMC6215262 DOI: 10.3390/mi9100476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/01/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022]
Abstract
The use of implanted microelectrode arrays (MEAs), in the brain, has enabled a greater understanding of neural function, and new treatments for neurodegenerative diseases and psychiatric disorders. Glial encapsulation of the device and the loss of neurons at the device-tissue interface are widely believed to reduce recording quality and limit the functional device-lifetime. The integration of microfluidic channels within MEAs enables the perturbation of the cellular pathways, through defined vector delivery. This provides new approaches to shed light on the underlying mechanisms of the reactive response and its contribution to device performance. In chronic settings, however, tissue ingrowth and biofouling can obstruct or damage the channel, preventing vector delivery. In this study, we describe methods of delivering vectors through chronically implanted, single-shank, "Michigan"-style microfluidic devices, 1⁻3 weeks, post-implantation. We explored and validated three different approaches for modifying gene expression at the device-tissue interface: viral-mediated overexpression, siRNA-enabled knockdown, and cre-dependent conditional expression. We observed a successful delivery of the vectors along the length of the MEA, where the observed expression varied, depending on the depth of the injury. The methods described are intended to enable vector delivery through microfluidic devices for a variety of potential applications; likewise, future design considerations are suggested for further improvements on the approach.
Collapse
Affiliation(s)
- Bailey M Winter
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Samuel R Daniels
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph W Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Pas J, Rutz AL, Quilichini PP, Slézia A, Ghestem A, Kaszas A, Donahue MJ, Curto VF, O’Connor RP, Bernard C, Williamson A, Malliaras GG. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. J Neural Eng 2018; 15:065001. [DOI: 10.1088/1741-2552/aadc1d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes. MICROMACHINES 2018; 9:mi9090430. [PMID: 30424363 PMCID: PMC6187588 DOI: 10.3390/mi9090430] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
The brain-electrode interface is arguably one of the most important areas of study in neuroscience today. A stronger foundation in this topic will allow us to probe the architecture of the brain in unprecedented functional detail and augment our ability to intervene in disease states. Over many years, significant progress has been made in this field, but some obstacles have remained elusive—notably preventing glial encapsulation and electrode degradation. In this review, we discuss the tissue response to electrode implantation on acute and chronic timescales, the electrical changes that occur in electrode systems over time, and strategies that are being investigated in order to minimize the tissue response to implantation and maximize functional electrode longevity. We also highlight the current and future clinical applications and relevance of electrode technology.
Collapse
|
30
|
Zhang M, Schwemmer MA, Ting JE, Majstorovic CE, Friedenberg DA, Bockbrader MA, Jerry Mysiw W, Rezai AR, Annetta NV, Bouton CE, Bresler HS, Sharma G. Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications. Bioelectron Med 2018; 4:11. [PMID: 32232087 PMCID: PMC7098253 DOI: 10.1186/s42234-018-0011-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Background Understanding the long-term behavior of intracortically-recorded signals is essential for improving the performance of Brain Computer Interfaces. However, few studies have systematically investigated chronic neural recordings from an implanted microelectrode array in the human brain. Methods In this study, we show the applicability of wavelet decomposition method to extract and demonstrate the utility of long-term stable features in neural signals obtained from a microelectrode array implanted in the motor cortex of a human with tetraplegia. Wavelet decomposition was applied to the raw voltage data to generate mean wavelet power (MWP) features, which were further divided into three sub-frequency bands, low-frequency MWP (lf-MWP, 0–234 Hz), mid-frequency MWP (mf-MWP, 234 Hz–3.75 kHz) and high-frequency MWP (hf-MWP, >3.75 kHz). We analyzed these features using data collected from two experiments that were repeated over the course of about 3 years and compared their signal stability and decoding performance with the more standard threshold crossings, local field potentials (LFP), multi-unit activity (MUA) features obtained from the raw voltage recordings. Results All neural features could stably track neural information for over 3 years post-implantation and were less prone to signal degradation compared to threshold crossings. Furthermore, when used as an input to support vector machine based decoding algorithms, the mf-MWP and MUA demonstrated significantly better performance, respectively, in classifying imagined motor tasks than using the lf-MWP, hf-MWP, LFP, or threshold crossings. Conclusions Our results suggest that using MWP features in the appropriate frequency bands can provide an effective neural feature for brain computer interface intended for chronic applications. Trial registration This study was approved by the U.S. Food and Drug Administration (Investigational Device Exemption) and the Ohio State University Medical Center Institutional Review Board (Columbus, Ohio). The study conformed to institutional requirements for the conduct of human subjects and was filed on ClinicalTrials.gov (Identifier NCT01997125). Electronic supplementary material The online version of this article (10.1186/s42234-018-0011-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Zhang
- 1Battelle Memorial Institute, 505 King Ave, Columbus, OH 43021 USA
| | | | - Jordyn E Ting
- 1Battelle Memorial Institute, 505 King Ave, Columbus, OH 43021 USA
| | | | | | - Marcia A Bockbrader
- 2Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH 43210 USA
| | - W Jerry Mysiw
- 2Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH 43210 USA
| | - Ali R Rezai
- 3West Virginia University School of Medicine, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | | | - Chad E Bouton
- 4Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | | | - Gaurav Sharma
- 1Battelle Memorial Institute, 505 King Ave, Columbus, OH 43021 USA
| |
Collapse
|
31
|
Hill M, Rios E, Sudhakar SK, Roossien DH, Caldwell C, Cai D, Ahmed OJ, Lempka SF, Chestek CA. Quantitative simulation of extracellular single unit recording from the surface of cortex. J Neural Eng 2018; 15:056007. [PMID: 29923502 DOI: 10.1088/1741-2552/aacdb8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neural recording is important for a wide variety of clinical applications. Until recently, recording from the surface of the brain, even when using micro-electrocorticography (μECoG) arrays, was not thought to enable recording from individual neurons. Recent results suggest that when the surface electrode contact size is sufficiently small, it may be possible to record single neurons from the brain's surface. In this study, we use computational techniques to investigate the ability of surface electrodes to record the activity of single neurons. APPROACH The computational model included the rat head, μECoG electrode, two existing multi-compartmental neuron models, and a novel multi-compartmental neuron model derived from patch clamp experiments in layer 1 of the cortex. MAIN RESULTS Using these models, we reproduced single neuron recordings from μECoG arrays, and elucidated their possible source. The model resembles the experimental data when spikes originate from layer 1 neurons that are less than 60 μm from the cortical surface. We further used the model to explore the design space for surface electrodes. Although this model does not include biological or thermal noise, the results indicate the electrode contact area should be 100 μm2 or smaller to maintain a detectable waveform amplitude. Furthermore, the model shows the width of lateral insulation could be reduced, which may reduce scar formation, while retaining 95% of signal amplitude. SIGNIFICANCE Overall, the model suggests single-unit surface recording is limited to neurons in layer 1 and further improvement in electrode design is needed.
Collapse
Affiliation(s)
- Mackenna Hill
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United State of America. Department of Biomedical Engineering, Duke University, Durham, NC, United State of America
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Michelson NJ, Vazquez AL, Eles JR, Salatino JW, Purcell EK, Williams JJ, Cui XT, Kozai TDY. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng 2018; 15:033001. [PMID: 29182149 PMCID: PMC5967409 DOI: 10.1088/1741-2552/aa9dae] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. APPROACH In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. MAIN RESULTS Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. SIGNIFICANCE To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.
Collapse
Affiliation(s)
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh
- Department of Radiology, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- Center for Neuroscience, University of Pittsburgh
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | | | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University
| | | | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- Center for Neuroscience, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
- NeuroTech Center, University of Pittsburgh Brain Institute
| |
Collapse
|
33
|
Cody PA, Eles JR, Lagenaur CF, Kozai TDY, Cui XT. Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials 2018; 161:117-128. [PMID: 29421549 PMCID: PMC5817007 DOI: 10.1016/j.biomaterials.2018.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude.
Collapse
Affiliation(s)
- Patrick A Cody
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carl F Lagenaur
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
A biopotential optrode array: operation principles and simulations. Sci Rep 2018; 8:2690. [PMID: 29426924 PMCID: PMC5807498 DOI: 10.1038/s41598-018-20182-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023] Open
Abstract
We propose an optical electrode ’optrode’ sensor array for biopotential measurements. The transduction mechanism is based on deformed helix ferroelectric liquid crystals which realign, altering the optrode’s light reflectance properties, relative to applied potential fields of biological cells and tissue. A computational model of extracellular potential recording by the optrode including the electro-optical transduction mechanism is presented, using a combination of time-domain and frequency-domain finite element analysis. Simulations indicate that the device has appropriate temporal response to faithfully transduce neuronal spikes, and spatial resolution to capture impulse propagation along a single neuron. These simulations contribute to the development of multi-channel optrode arrays for spatio-temporal mapping of electric events in excitable biological tissue.
Collapse
|
35
|
Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017; 1:862-877. [PMID: 30505625 PMCID: PMC6261524 DOI: 10.1038/s41551-017-0154-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
The use of implants that can electrically stimulate or record electrophysiological or neurochemical activity in nervous tissue is rapidly expanding. Despite remarkable results in clinical studies and increasing market approvals, the mechanisms underlying the therapeutic effects of neuroprosthetic and neuromodulation devices, as well as their side effects and reasons for their failure, remain poorly understood. A major assumption has been that the signal-generating neurons are the only important target cells of neural-interface technologies. However, recent evidence indicates that the supporting glial cells remodel the structure and function of neuronal networks and are an effector of stimulation-based therapy. Here, we reframe the traditional view of glia as a passive barrier, and discuss their role as an active determinant of the outcomes of device implantation. We also discuss the implications that this has on the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Joseph W. Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kip A. Ludwig
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Neurotech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Erin K. Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118:1329-1343. [PMID: 28615329 DOI: 10.1152/jn.00070.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.
Collapse
Affiliation(s)
- Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois; and.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, Illinois
| |
Collapse
|
37
|
Vasudevan S, Patel K, Welle C. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. J Neural Eng 2016; 14:016008. [PMID: 27934777 DOI: 10.1088/1741-2552/14/1/016008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. APPROACH Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. MAIN RESULTS Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons near the implanted electrode shanks, along with dense cellular accumulations near the implant site. Scanning electron microscopy (SEM) showed alterations of the electrode insulation and deformation of electrode shanks. SIGNIFICANCE We describe a comprehensive testing platform with applicability to electrodes that record from the peripheral nerves. This study assesses the long term safety and performance of electrodes in the peripheral nerves using a rodent model. Under this animal test platform, FMA electrodes record single unit action potentials but have limited chronic reliability due to structural weaknesses. Future work will apply these methods to other commercially-available and novel peripheral electrode technologies.
Collapse
Affiliation(s)
- Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratory, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | |
Collapse
|
38
|
Patel PR, Zhang H, Robbins MT, Nofar JB, Marshall SP, Kobylarek MJ, Kozai TDY, Kotov NA, Chestek CA. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng 2016; 13:066002. [PMID: 27705958 PMCID: PMC5118062 DOI: 10.1088/1741-2560/13/6/066002] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. APPROACH Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. MAIN RESULTS Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. SIGNIFICANCE This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neural Probes for Chronic Applications. MICROMACHINES 2016; 7:mi7100179. [PMID: 30404352 PMCID: PMC6190051 DOI: 10.3390/mi7100179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
Abstract
Developed over approximately half a century, neural probe technology is now a mature technology in terms of its fabrication technology and serves as a practical alternative to the traditional microwires for extracellular recording. Through extensive exploration of fabrication methods, structural shapes, materials, and stimulation functionalities, neural probes are now denser, more functional and reliable. Thus, applications of neural probes are not limited to extracellular recording, brain-machine interface, and deep brain stimulation, but also include a wide range of new applications such as brain mapping, restoration of neuronal functions, and investigation of brain disorders. However, the biggest limitation of the current neural probe technology is chronic reliability; neural probes that record with high fidelity in acute settings often fail to function reliably in chronic settings. While chronic viability is imperative for both clinical uses and animal experiments, achieving one is a major technological challenge due to the chronic foreign body response to the implant. Thus, this review aims to outline the factors that potentially affect chronic recording in chronological order of implantation, summarize the methods proposed to minimize each factor, and provide a performance comparison of the neural probes developed for chronic applications.
Collapse
|
40
|
Takmakov P, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng 2015; 12:026003. [PMID: 25627426 DOI: 10.1088/1741-2560/12/2/026003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. APPROACH Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. MAIN RESULTS RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. SIGNIFICANCE ROS, which are known to be present in vivo, can create structural damage and change electrical properties of MEAs. Broad-spectrum electrical impedance spectroscopy demonstrates increased sensitivity to electrode damage compared with single-frequency measurements. RAA can be a useful tool to simulate worst-case in vivo damage resulting from chronic electrode implantation, simplifying the device development lifecycle.
Collapse
Affiliation(s)
- Pavel Takmakov
- Division of Biology, Chemistry and Material Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|