1
|
Paengnakorn P, Ngoyteja N, Chuntama M, Wiboonsuntharangkoon C, Sangngam P, Kanthasap K, Wongkhuenkaew R, Kumphune S, Theera-Umpon N, Auephanwiriyakul S, Udomsom S, Baipaywad P. Development of a dual PM 2.5 sampling and direct exposure system incorporated an in vitro air-liquid interface culture method: Application to the northern Thailand haze season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125606. [PMID: 39734046 DOI: 10.1016/j.envpol.2024.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Exposure to ambient air pollution is associated with several noncommunicable diseases, and it adversely affects the respiratory system and other organ systems. Several studies have investigated the underlying mechanisms of biological response to air pollutants using conventional techniques, but there is a lack of research on the effects of air pollution at the cellular level. This study developed a dual system that combines PM2.5 (particulate matter <2.5 μm in aerodynamic diameter) sampling with direct exposure of air-liquid interface-cultured human respiratory cells to assess the impacts of air pollution. The exposure chamber was designed to mimic the physiology of the human respiratory tract and inhalation. The applicability of the system for quantifying cellular exposure was evaluated in human alveolar epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B). The ambient PM2.5 in Chiang Mai, Thailand, during the haze season was used as a model pollutant for the application of real stimuli. The system exhibited cytotoxic effects of PM2.5 exposure on BEAS-2B cells, and it induced proinflammatory cytokine responses. This study identified the initial trends in cellular responses to direct exposure to air pollutants that could be useful for further studies on how PM2.5 affects different organ systems and for developing treatment strategies. It was also suggested that the developed system had potential as an alternative method for directly evaluating the effects of ambient air pollution on cells. Furthermore, chemical analysis is needed for gaining more insights into the relationship between PM2.5 composition and cell responses.
Collapse
Affiliation(s)
- Pathinan Paengnakorn
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipapon Ngoyteja
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Molnapat Chuntama
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chakrit Wiboonsuntharangkoon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pakorn Sangngam
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kritsana Kanthasap
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ritipong Wongkhuenkaew
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Theera-Umpon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sansanee Auephanwiriyakul
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suruk Udomsom
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Xu H, Han W, Yuce MR. A Wearable Device with Triboelectric Nanogenerator Sensing for Respiration and Spirometry Monitoring. ACS Sens 2024. [PMID: 39711009 DOI: 10.1021/acssensors.4c02350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Wearable devices have been developed for the continuous and long-term monitoring of respiration. Although current wearable devices are able to measure the respiration rate, extracting breathing volume has been challenging. In this paper, we propose a wearable respiration monitoring sensor based on triboelectric nanogenerator (TENG) technology. The proposed device successfully measures both respiration rate and volume in real-time. The device is tested with seven participants for respiration and spirometry studies. The results show that the proposed TENG sensor is able to capture the respiration waveform with high accuracy. All breathing patterns mentioned in this study give a mean absolute error (MAE) within 0.2 breaths per minute and a mean percentage absolute (MPAE) error within 2%. The results of the spirometry study show that the TENG sensor can measure the airflow and volume during exhalation. The flow time graph gives an average correlation of 0.88 compared with that of the reference spirometer. The reconstructed volume time plot from the TENG sensor results in an MAE of 2.43% for the ratio of the forced expiratory volume in 1 s to the forced vital capacity (FEV1/FVC). The proposed device provides a low-cost solution for real-time and wearable monitoring for respiration parameter measurement.
Collapse
Affiliation(s)
- Hongqiang Xu
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Weiqiao Han
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Mehmet Rasit Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Juste-Dolz A, Teixeira W, Pallás-Tamarit Y, Carballido-Fernández M, Carrascosa J, Morán-Porcar Á, Redón-Badenas MÁ, Pla-Roses MG, Tirado-Balaguer MD, Remolar-Quintana MJ, Ortiz-Carrera J, Ibañez-Echevarría E, Maquieira A, Giménez-Romero D. Real-world evaluation of a QCM-based biosensor for exhaled air. Anal Bioanal Chem 2024; 416:7369-7383. [PMID: 38922434 PMCID: PMC11584482 DOI: 10.1007/s00216-024-05407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
The biosensor, named "virusmeter" in this study, integrates quartz crystal microbalance technology with an immune-functionalized chip to distinguish between symptomatic patients with respiratory diseases and healthy individuals by analyzing exhaled air samples. Renowned for its compact design, rapidity, and noninvasive nature, this device yields results within a 5-min timeframe. Evaluated under controlled conditions with 54 hospitalized symptomatic COVID-19 patients and 128 control subjects, the biosensor demonstrated good overall sensitivity (98.15%, 95% CI 90.1-100.0) and specificity (96.87%, 95% CI 92.2-99.1). This proof-of-concept presents an innovative approach with significant potential for leveraging piezoelectric sensors to diagnose respiratory diseases.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - William Teixeira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Yeray Pallás-Tamarit
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Mario Carballido-Fernández
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
- Universidad CEU Cardenal Herrera, Calle Grecia, 31, 12006, Castellón de la Plana, Spain
| | - Javier Carrascosa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángela Morán-Porcar
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - María Ángeles Redón-Badenas
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - María Gracia Pla-Roses
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | | | - María José Remolar-Quintana
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - Jon Ortiz-Carrera
- La Fe University and Polytechnic Hospital, Avinguda de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain
| | - Ethel Ibañez-Echevarría
- La Fe University and Polytechnic Hospital, Avinguda de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - David Giménez-Romero
- Departamento de Química-Física, Universitat de València, Calle Doctor Moliner 50, 46100, Burjassot, Spain.
| |
Collapse
|
4
|
Limweshasin N, Castro IA, Korposh S, Morgan SP, Hayes-Gill BR, Faghy MA, Correia R. Respiratory Rate Monitoring via a Fibre Bragg Grating-Embedded Respirator Mask with a Wearable Miniature Interrogator. SENSORS (BASEL, SWITZERLAND) 2024; 24:7476. [PMID: 39686013 DOI: 10.3390/s24237476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
A respiration rate (RR) monitoring system was created by integrating a Fibre Bragg Grating (FBG) optical fibre sensor into a respirator mask. The system exploits the sensitivity of an FBG to temperature to identify an individual's RR by measuring airflow temperature variation near the nostrils and mouth. To monitor the FBG response, a portable, battery-powered, wireless miniature interrogator system was developed to replace a relatively bulky benchtop interrogator used in previous studies. A healthy volunteer study was conducted to evaluate the performance of the developed system (10 healthy volunteers). Volunteers were asked to perform normal breathing whilst simultaneously wearing the system and a reference spirometer for 120 s. Individual breaths are then identified using a peak detection algorithm. The result showed that the number of breaths detected by both devices matched exactly (100%) across all volunteer trials.
Collapse
Affiliation(s)
- Nat Limweshasin
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Itzel Avila Castro
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Serhiy Korposh
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen P Morgan
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Barrie R Hayes-Gill
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mark A Faghy
- Biomedical and Clinical Research Theme, School of Human Sciences, University of Derby, Derby DE22 1GB, UK
| | - Ricardo Correia
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Tames MF, Puliafito SE, Urquiza J, Scagliotti AF, López-Noreña AI. Spatio-temporal analysis of bicyclists' PM 2.5 exposure levels in a medium sized urban agglomeration. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1194. [PMID: 39535574 DOI: 10.1007/s10661-024-13356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Many cities have promoted decarbonized transportation modes to mitigate climate change, reduce air pollution and promote healthy behaviors. However, cyclists may be particularly exposed to higher concentrations of on-road air pollutants than other commuters due to their proximity to traffic, higher breathing rates, and prolonged commutes. In addition, there is scarce information analyzing the geographic exposure levels of cyclists in medium-sized urban agglomerations of Latin American cities. We aimed to assess cyclists' exposure to PM2.5 at the spatio-temporal level using low-cost sensors in the Mendoza Metropolitan Area, Argentina. We calculated PM2.5 inhalation doses (IDs) for different routes with distinctive characteristics, considering different age ranges and gender of cyclists. The dose was represented as temporally and spatially disaggregated exposure maps, one of the first to represent it in Latin America using this method. All link types analyzed exhibited significant differences in PM2.5 concentrations, although the most frequent concentrations were less than 5 µg m-3, with secondary peaks of 6.5 and 9 µg m-3. As expected, ID increases with age and is greater in males than in females. Our findings further reinforce the fact that route choice (busy vs. quiet) and time of day (peak vs. off-peak) appreciably affect the pollutant exposure of cyclists. All these results could be helpful in the selection of alternative cycling routes with lower PM2.5 at different hours of day but also enable us to investigate further implications of exposure to PM2.5 for the health of urban bicycle commuters.
Collapse
Affiliation(s)
- María Florencia Tames
- Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Facultad Regional Mendoza (UTN-FRM), Universidad Tecnológica Nacional, 5501, Mendoza City, Mendoza, Argentina
| | - Salvador Enrique Puliafito
- Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Facultad Regional Mendoza (UTN-FRM), Universidad Tecnológica Nacional, 5501, Mendoza City, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Josefina Urquiza
- Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Facultad Regional Mendoza (UTN-FRM), Universidad Tecnológica Nacional, 5501, Mendoza City, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Ariel Fabricio Scagliotti
- Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Facultad Regional Mendoza (UTN-FRM), Universidad Tecnológica Nacional, 5501, Mendoza City, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Ana Isabel López-Noreña
- Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Facultad Regional Mendoza (UTN-FRM), Universidad Tecnológica Nacional, 5501, Mendoza City, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
6
|
Gui S, Yu B, Luo Y, Chen L, Li KH. Rapid-response, low-detection-limit, positive-negative air pressure sensing: GaN chips integrated with hydrophobic PDMS films. MICROSYSTEMS & NANOENGINEERING 2024; 10:162. [PMID: 39482319 PMCID: PMC11527884 DOI: 10.1038/s41378-024-00766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 11/03/2024]
Abstract
Despite the importance of positive and negative pressure sensing in numerous domains, the availability of a single sensing unit adept at handling this dual task remains highly limited. This study introduces a compact optical device capable of swiftly and precisely detecting positive and negative pressures ranging from -35 kPa to 35 kPa. The GaN chip, which serves as a core component of the device, is monolithically integrated with light-emitting and light-detecting elements. By combining a deformable PDMS film coated with a hydrophobic layer, the chip can respond to changes in optical reflectance induced by pressure fluctuations. The integrated sensing device has low detection limits of 4.3 Pa and -7.8 Pa and fast response times of 0.14 s and 0.22 s for positive and negative pressure variations, respectively. The device also demonstrates adaptability in capturing distinct human breathing patterns. The proposed device, characterized by its compactness, responsiveness, and ease of operation, holds promise for a variety of pressure-sensing applications.
Collapse
Affiliation(s)
- Sizhe Gui
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Binlu Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yumeng Luo
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Chen
- Foshan Electrical and Lighting Company Ltd., Foshan, 528000, China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Jarić S, Wenger M, Bobrinetskiy I, Stapelfeldt A, Pena-Amelunxen G, Šikoparija B, Aglas L. Development of a graphene field effect transistor-based immersible biosensor for immunodetection of the birch pollen allergen Bet v 1 in air samples. Heliyon 2024; 10:e38922. [PMID: 39492909 PMCID: PMC11530824 DOI: 10.1016/j.heliyon.2024.e38922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Pollen traps, the current gold standard to determine pollen load and thereby the allergy season, are not sufficient to determine the allergenic risk. Therefore, the establishment of highly sensitive assays for allergen measurement is of highest interest. Herein, a graphene field-effect transistor (GFET) was constructed on an interdigitated electrodes chip to develop an immersible biosensor, which was used to detect the major birch pollen allergen Bet v 1. Graphene was wet-transferred on interdigitated electrodes that contain a reference electrode used as a liquid gate in the GFET. Using a standard ELISA protocol, two different anti-Bet v 1 antibodies were chosen and immobilized on graphene for the specific capture of the target allergen. The sensitivity of the GFET biosensor was evaluated using a standard Ag/AgCl liquid gate electrode and a reference electrode when the chip was immersed in Bet v 1-containing solutions. The results showed a higher performance and sensitivity for Bet v 1 detection compared to a mediator release method, one of the most sensitive assays for allergen detection. Compared with conventional methods of allergen detection, these immersible biosensors significantly improved the speed and level of detection providing the foundation of a point-of-need platform for in-field application. Furthermore, the proposed technique provides both a new biosensor for allergen detection and a strategy for designing low-cost integrated biosensors.
Collapse
Affiliation(s)
- Stefan Jarić
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Mario Wenger
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Ivan Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| | - André Stapelfeldt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Glorismer Pena-Amelunxen
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Branko Šikoparija
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| |
Collapse
|
8
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Ene MC, Simion I, Valter M. Study concerning the design and functionality of individual emergency shelters. Sci Rep 2024; 14:21148. [PMID: 39256437 PMCID: PMC11387607 DOI: 10.1038/s41598-024-71327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
The divide between the rich and poor in the European housing market is fast rising. Latest research indicates that Europe is dealing with an increasing number of homeless people. Every city in Europe has them-homeless people compelled to live on street corners, frequently hiding themselves with cardboard. Rain, snow, and temperatures below zero pose a threat to their lives on a daily basis. There are many varied kinds of services that have been discovered, but it is difficult to keep track of everyone and guarantee that they have a warm night's sleep in the winter. The current article suggests accommodation as a workaround until they can receive high-intensity support, a way to keep a single person warm and safe during the winter. The focus is on devising a strategy that not only ensures the warmth and safety of individuals during the harsh winter months but also seeks to industrialize the construction of shelters, ensuring affordability below the cost of winter hospitalization for a homeless person. Crucially, the article introduces an additional layer to this initiative by highlighting the dual purpose of these individual shelters. Beyond being a means to provide respite for the homeless during severe weather, these shelters are envisioned as immediate response units in the event of emergencies such as earthquakes in urban areas. The article explores the potential impact of this multi-layered approach on transforming urban landscapes and fostering resilient communities.
Collapse
Affiliation(s)
- Mircea Costin Ene
- Department of Graphic Engineering and Industrial Design, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independenţei, 060042, Bucharest, Romania.
| | - Ionel Simion
- Department of Graphic Engineering and Industrial Design, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independenţei, 060042, Bucharest, Romania
| | - Matei Valter
- Aircraft Engineering with Pilot Studies, University of Salford, 43 Crescent, Salford, M5 4WT, UK
| |
Collapse
|
10
|
Wang P, Jacob P, Wang ZM, Fowles J, O'Shea DF, Wagner J, Kumagai K. Conditions Leading to Ketene Formation in Vaping Devices and Implications for Public Health. Chem Res Toxicol 2024; 37:1415-1427. [PMID: 39078936 PMCID: PMC11423956 DOI: 10.1021/acs.chemrestox.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.
Collapse
Affiliation(s)
- Ping Wang
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Peyton Jacob
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Zhong-Min Wang
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Jefferson Fowles
- Environmental Investigation Branch, California Department of Public Health, Richmond, California 94804, United States
| | - Donal F O'Shea
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Jeff Wagner
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Kazukiyo Kumagai
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| |
Collapse
|
11
|
Cuffaro F, Dahm G, Marson C, Berlemont P, Yegles M, Allar C, Fauchet L, Creta M, Schneider S. Contamination of a drug consumption room with drugs and potential risks for social health care workers. Harm Reduct J 2024; 21:149. [PMID: 39148047 PMCID: PMC11328477 DOI: 10.1186/s12954-024-01074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Studies have shown that contamination of surfaces by illicit drugs frequently occurs in forensic laboratories when manipulating seized samples as well as in pharmacies and hospitals when preparing medicinal drugs. In this project, we extended these studies to a Drug Consumption Room to investigate drug levels and possible exposure of the staff members. METHODS We investigated pre and post cleaning contamination by heroin and cocaine and their degradation products 6-monoacetylmorphine and benzoylecgonine on different surfaces (tables, counters, computers and door handles) and in the ambient air. We also collected urine and hair samples from staff members to check for potential short and long term contaminations. RESULTS Medium to heavy contamination has been detected on most surfaces and door handles; as expected, air contamination was particularly high in the smoking room. Drug levels were < LOD to very low in the urine and the hair samples of staff members tested. CONCLUSION The cleaning efficiency of the surfaces, carried out by staff and drug users after drug consumption, was often not satisfactory. The very low drug levels in hair indicate that acute health risks for staff members are low.
Collapse
Affiliation(s)
- Flore Cuffaro
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Georges Dahm
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Claude Marson
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Patrick Berlemont
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Michel Yegles
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Claudia Allar
- , Abrigado, 8, Route de Thionville, L-2610, Luxembourg
| | | | - Matteo Creta
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| | - Serge Schneider
- Laboratoire national de santé, 1, rue Louis Rech, Dudelange, L-3555, Luxembourg
| |
Collapse
|
12
|
Jyoti, Kwak S, Ham S, Hwang Y, Kang S, Kim J. Analysis of the effect of inert gas on alveolar/venous blood partial pressure by using the operator splitting method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3839. [PMID: 38885939 DOI: 10.1002/cnm.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
This study aims to investigate how inert gas affects the partial pressure of alveolar and venous blood using a fast and accurate operator splitting method (OSM). Unlike previous complex methods, such as the finite element method (FEM), OSM effectively separates governing equations into smaller sub-problems, facilitating a better understanding of inert gas transport and exchange between blood capillaries and surrounding tissue. The governing equations were discretized with a fully implicit finite difference method (FDM), which enables the use of larger time steps. The model employed partial differential equations, considering convection-diffusion in blood and only diffusion in tissue. The study explores the impact of initial arterial pressure, breathing frequency, blood flow velocity, solubility, and diffusivity on the partial pressure of inert gas in blood and tissue. Additionally, the effects of anesthetic inert gas and oxygen on venous blood partial pressure were analyzed. Simulation results demonstrate that the high solubility and diffusivity of anesthetic inert gas lead to its prolonged presence in blood and tissue, resulting in lower partial pressure in venous blood. These findings enhance our understanding of inert gas interaction with alveolar/venous blood, with potential implications for medical diagnostics and therapies.
Collapse
Affiliation(s)
- Jyoti
- The Institute of Basic Science, Korea University, Seoul, Republic of Korea
| | - Soobin Kwak
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Seokjun Ham
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Youngjin Hwang
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Seungyoon Kang
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Junseok Kim
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Ho YLT, Hynes D, Martina Y, Love B, Horwell E, Xu R, Kadioglu A, Vo L, Hong HA, Nguyen LH, Cutting SM. Intranasal administration of DSM 32444 Bacillus subtilis spores: safety and tolerability. J Med Microbiol 2024; 73. [PMID: 38963177 DOI: 10.1099/jmm.0.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Introduction. Administered nasally, spores of the Gram-positive bacterium Bacillus subtilis have been shown to be able to induce innate immunity sufficient to confer protection to influenza and respiratory syncytial virus.Hypothesis. Although members of the aerobiome, intranasal delivery of high numbers of live spores carries potential safety issues.Aim. To address the potential safety risk of using live spores, we assessed the safety of spores that had been completely inactivated using heat sterilization.Methodology. Using autoclaved, and therefore killed, spores of a generally recognized as safe-notified B. subtilis strain (DSM 32444), safety was assessed in vitro (biotype, genome and cell based cytoxicity) and in vivo, using intranasal administration in rodent models and lastly in human volunteers.Results. Using a 15-day, repeat-dose, regimen in a rodent model, no indication of toxicity was observed. In a registered human study (NCT05984004), a formulated preparation of inactivated DSM 32444 spores referred to as SPEROVID was developed, and tolerance in human volunteers was assessed following 7 days of nasal dosing (2-4 times/day).Conclusion. Our study demonstrated that in humans an intranasal dose of up to 3×108 killed spores was safe and well tolerated.
Collapse
Affiliation(s)
- Yen-Linh Thi Ho
- Huro Biotech JSC, Lot A1-8, VL3 Road, Vinh Loc 2 Industrial Park, Long Hiep Commune, Ben Luc District, Long An Province, Vietnam
| | - Daniel Hynes
- Destiny Pharma plc., Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Yuri Martina
- Destiny Pharma plc., Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Bill Love
- Destiny Pharma plc., Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Ed Horwell
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Rong Xu
- Department of Clinical Infection, Microbiology & Immunology, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology & Immunology, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Linh Vo
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Huynh A Hong
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Linh Hanh Nguyen
- Huro Biotech JSC, Lot A1-8, VL3 Road, Vinh Loc 2 Industrial Park, Long Hiep Commune, Ben Luc District, Long An Province, Vietnam
| | - Simon M Cutting
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| |
Collapse
|
14
|
McKay LS, Spandrio AR, Johnson RM, Sobran MA, Marlatt SA, Mote KB, Dedloff MR, Nash ZM, Julio SM, Cotter PA. Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract. PLoS Pathog 2024; 20:e1012084. [PMID: 38976749 PMCID: PMC11257404 DOI: 10.1371/journal.ppat.1012084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Collapse
Affiliation(s)
- Liliana S. McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexa R. Spandrio
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Ashley Sobran
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara A. Marlatt
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katlyn B. Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret R. Dedloff
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven M. Julio
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Ni H, Li H, Hou W, Chen J, Miao S, Wang Y, Li H. From sea to sea: Edible, hydrostable, and degradable straws based on seaweed-derived insoluble cellulose fibers and soluble polysaccharides. Carbohydr Polym 2024; 334:122038. [PMID: 38553205 DOI: 10.1016/j.carbpol.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
The widespread use of disposable plastic straws has caused a long-lasting environmental problem. Potential alternatives for plastic straws are far from satisfactory due to the low utility, poor water stability, and non-ideal natural degradability. In this work, an edible, hydrostable, and degradable straw was developed from the economically significant seaweed. Seaweed-derived insoluble cellulose fibers were used as the building block of the straw, and the soluble polysaccharide extracts were explored as the natural glue through the chelation with Ca2+. Repeated freeze-thawing was introduced to strengthen the molecular interactions, which further improved its mechanical stability and hydrostability. The straw exhibited remarkable natural degradability in open environments, particularly in marine-mimicking conditions. By incorporating pH-sensitive food pigments, the straws could indicate acid-base property of a beverage or even discriminate the freshness of milk. The versatile seaweed-derived straw adhered to the biocycle concept of "from sea to sea" to alleviate the burden of white pollution on oceans.
Collapse
Affiliation(s)
- Haojie Ni
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huatao Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wenna Hou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Song Miao
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Ireland
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
16
|
Fujii Y. An Engineering Alternative to Lockdown During COVID-19 and Other Airborne Infectious Disease Pandemics: Feasibility Study. JMIR BIOMEDICAL ENGINEERING 2024; 9:e54666. [PMID: 38875692 PMCID: PMC11134249 DOI: 10.2196/54666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Now and in the future, airborne diseases such as COVID-19 could become uncontrollable and lead the world into lockdowns. Finding alternatives to lockdowns, which limit individual freedoms and cause enormous economic losses, is critical. OBJECTIVE The purpose of this study was to assess the feasibility of achieving a society or a nation that does not require lockdown during a pandemic due to airborne infectious diseases through the mass production and distribution of high-performance, low-cost, and comfortable powered air purifying respirators (PAPRs). METHODS The feasibility of a social system using PAPR as an alternative to lockdown was examined from the following perspectives: first, what PAPRs can do as an alternative to lockdown; second, how to operate a social system utilizing PAPR; third, directions of improvement of PAPR as an alternative to lockdown; and finally, balancing between efficiency of infection control and personal freedom through the use of Internet of Things (IoT). RESULTS PAPR was shown to be a possible alternative to lockdown through the reduction of airborne and droplet transmissions and through a temporary reduction of infection probability per contact. A social system in which individual constraints imposed by lockdown are replaced by PAPRs was proposed, and an example of its operation is presented in this paper. For example, the government determines the type and intensity of the lockdown and activates it. At that time, the government will also indicate how PAPR can be substituted for the different activity and movement restrictions imposed during a lockdown, for example, a curfew order may be replaced with the permission to go outside if wearing a PAPR. The following 7 points were raised as directions for improvement of PAPR as an alternative method to lockdown: flow optimization, precise differential pressure control, design improvement, maintenance method, variation development such as booth type, information terminal function, and performance evaluation method. In order to achieve the effectiveness and efficiency in controlling the spread of infection and the individual freedom at a high level in a social system that uses PAPRs as an alternative to lockdown, it was considered effective to develop a PAPR wearing rate network management system utilizing IoT. CONCLUSIONS This study shows that using PAPR with infection control ability and with less economic and social damage as an alternative to nationwide lockdown is possible during a pandemic due to airborne infectious diseases. Further, the efficiency of the government's infection control and each citizen's freedom can be balanced by using the PAPR wearing rate network management system utilizing an IoT system.
Collapse
Affiliation(s)
- Yusaku Fujii
- School of Science and Technology, Gunma University, Kiryu, Japan
| |
Collapse
|
17
|
Kumar R, Dalvi V, Pant KK, Malik A. Microalgal biochar assisted simultaneous removal of particulate matter, formaldehyde, and total volatile organic compounds (TVOC's) from indoor air. CHEMOSPHERE 2024; 355:141866. [PMID: 38565375 DOI: 10.1016/j.chemosphere.2024.141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/23/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 μm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.
Collapse
Affiliation(s)
- Rahul Kumar
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Vivek Dalvi
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; Current Affiliation: Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; Present Affiliation: Fulbright-Kalam (Climate) Academic & Professional Excellence Scholar, Department of Chemical and Biological Engineering, Princeton University, NJ, USA.
| |
Collapse
|
18
|
Sinclair P, Zhao L, Beggs CB, Illingworth CJR. The airborne transmission of viruses causes tight transmission bottlenecks. Nat Commun 2024; 15:3540. [PMID: 38670957 PMCID: PMC11053022 DOI: 10.1038/s41467-024-47923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission.
Collapse
Affiliation(s)
- Patrick Sinclair
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clive B Beggs
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
19
|
Smyth PPA, O’Dowd CD. Climate changes affecting global iodine status. Eur Thyroid J 2024; 13:e230200. [PMID: 38471306 PMCID: PMC11046319 DOI: 10.1530/etj-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Global warming is now universally acknowledged as being responsible for dramatic climate changes with rising sea levels, unprecedented temperatures, resulting fires and threatened widespread species loss. While these effects are extremely damaging, threatening the future of life on our planet, one unexpected and paradoxically beneficial consequence could be a significant contribution to global iodine supply. Climate change and associated global warming are not the primary causes of increased iodine supply, which results from the reaction of ozone (O3) arising from both natural and anthropogenic pollution sources with iodide (I-) present in the oceans and in seaweeds (macro- and microalgae) in coastal waters, producing gaseous iodine (I2). The reaction serves as negative feedback, serving a dual purpose, both diminishing ozone pollution in the lower atmosphere and thereby increasing I2. The potential of this I2 to significantly contribute to human iodine intake is examined in the context of I2 released in a seaweed-abundant coastal area. The bioavailability of the generated I2 offers a long-term possibility of increasing global iodine status and thereby promoting thyroidal health. It is hoped that highlighting possible changes in iodine bioavailability might encourage the health community to address this issue.
Collapse
Affiliation(s)
- Peter PA Smyth
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Colin D O’Dowd
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Physics, University of Galway, Ireland
| |
Collapse
|
20
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Phillip J Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jonathan E Phillips
- Amgen, Inc., Inflammation Discovery Research, Thousand Oaks, California, USA
| | | |
Collapse
|
21
|
Signore MA, Rescio G, Francioso L, Casino F, Leone A. Aluminum Nitride Thin Film Piezoelectric Pressure Sensor for Respiratory Rate Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2071. [PMID: 38610281 PMCID: PMC11014281 DOI: 10.3390/s24072071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In this study, we propose a low-cost piezoelectric flexible pressure sensor fabricated on Kapton® (Kapton™ Dupont) substrate by using aluminum nitride (AlN) thin film, designed for the monitoring of the respiration rate for a fast detection of respiratory anomalies. The device was characterized in the range of 15-30 breaths per minute (bpm), to simulate moderate difficult breathing, borderline normal breathing, and normal spontaneous breathing. These three breathing typologies were artificially reproduced by setting the expiratory to inspiratory ratios (E:I) at 1:1, 2:1, 3:1. The prototype was able to accurately recognize the breath states with a low response time (~35 ms), excellent linearity (R2 = 0.997) and low hysteresis. The piezoelectric device was also characterized by placing it in an activated carbon filter mask to evaluate the pressure generated by exhaled air through breathing acts. The results indicate suitability also for the monitoring of very weak breath, exhibiting good linearity, accuracy, and reproducibility, in very low breath pressures, ranging from 0.09 to 0.16 kPa. These preliminary results are very promising for the future development of smart wearable devices able to monitor different patients breathing patterns, also related to breathing diseases, providing a suitable real-time diagnosis in a non-invasive and fast way.
Collapse
Affiliation(s)
| | - Gabriele Rescio
- The National Research Council, Institute for Microelectronics and Microsystems (CNR IMM), Via Monteroni, 73100 Lecce, Italy; (M.A.S.); (L.F.); (F.C.); (A.L.)
| | | | | | | |
Collapse
|
22
|
Alhammad SA. Advocating for Action: Exploring the Potential of Virtual Reality in Breathing Exercise - A Review of The Clinical Applications. Patient Prefer Adherence 2024; 18:695-707. [PMID: 38524197 PMCID: PMC10960537 DOI: 10.2147/ppa.s451609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The emergence of virtual reality (VR) technologies is currently shaping the healthcare system and is now being employed in various healthcare interventions. Pulmonary rehabilitation remains one such area in which VR is currently thriving to ensure overall health and well-being. While the importance of these novel technologies is being primarily researched in pulmonary rehabilitation, especially over passive conventional breathing exercise training, there seems to be a limited number of studies that have comprehensively put together these findings. This study utilizes a scoping review methodology to review VR exercises in clinical settings related to pulmonary rehabilitation. To achieve this objective, three electronic databases (Web of Science, PubMed, and Cochrane Library) were searched using a formulated search string related to the research objective. Following the database search, a total of 236 references were retrieved and managed using the reference manager. The screening of references was conducted according to the PRISMA 2020 screening process, and their quality was assessed using the JBI checklist. Ultimately, a total of eight publications of high quality were selected for inclusion in the scoping review. The results of the synthesis validate the importance of utilizing VR in the context of breathing exercise in rehabilitation. The effectiveness and rapid development of VR breathing exercises are primarily attributed to the engaging and immersive experience they provide. The use of biofeedback and self-regulation techniques into VR exercise systems was also seen to have a notable impact on the effectiveness of the breathing exercise system.
Collapse
Affiliation(s)
- Saad A Alhammad
- Department of Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Srikrishna D. Pentagon Found Daily, Metagenomic Detection of Novel Bioaerosol Threats to Be Cost-Prohibitive: Can Virtualization and AI Make It Cost-Effective? Health Secur 2024; 22:108-129. [PMID: 38625036 DOI: 10.1089/hs.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.
Collapse
|
24
|
Atamer Balkan B, Chang Y, Sparnaaij M, Wouda B, Boschma D, Liu Y, Yuan Y, Daamen W, de Jong MCM, Teberg C, Schachtschneider K, Sikkema RS, van Veen L, Duives D, ten Bosch QA. The multi-dimensional challenges of controlling respiratory virus transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and SARS-CoV-2 transmission model. PLoS Comput Biol 2024; 20:e1011956. [PMID: 38547311 PMCID: PMC11003685 DOI: 10.1371/journal.pcbi.1011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/09/2024] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
SARS-CoV-2 transmission in indoor spaces, where most infection events occur, depends on the types and duration of human interactions, among others. Understanding how these human behaviours interface with virus characteristics to drive pathogen transmission and dictate the outcomes of non-pharmaceutical interventions is important for the informed and safe use of indoor spaces. To better understand these complex interactions, we developed the Pedestrian Dynamics-Virus Spread model (PeDViS), an individual-based model that combines pedestrian behaviour models with virus spread models incorporating direct and indirect transmission routes. We explored the relationships between virus exposure and the duration, distance, respiratory behaviour, and environment in which interactions between infected and uninfected individuals took place and compared this to benchmark 'at risk' interactions (1.5 metres for 15 minutes). When considering aerosol transmission, individuals adhering to distancing measures may be at risk due to the buildup of airborne virus in the environment when infected individuals spend prolonged time indoors. In our restaurant case, guests seated at tables near infected individuals were at limited risk of infection but could, particularly in poorly ventilated places, experience risks that surpass that of benchmark interactions. Combining interventions that target different transmission routes can aid in accumulating impact, for instance by combining ventilation with face masks. The impact of such combined interventions depends on the relative importance of transmission routes, which is hard to disentangle and highly context dependent. This uncertainty should be considered when assessing transmission risks upon different types of human interactions in indoor spaces. We illustrated the multi-dimensionality of indoor SARS-CoV-2 transmission that emerges from the interplay of human behaviour and the spread of respiratory viruses. A modelling strategy that incorporates this in risk assessments can help inform policy makers and citizens on the safe use of indoor spaces with varying inter-human interactions.
Collapse
Affiliation(s)
- Büsra Atamer Balkan
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - You Chang
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Sparnaaij
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Berend Wouda
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Doris Boschma
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Yangfan Liu
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Yufei Yuan
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Winnie Daamen
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Colin Teberg
- Steady State Scientific Computing, Chicago, Illinois, United States of America
| | | | | | - Linda van Veen
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Dorine Duives
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Godin R, Hejazi S, Reuel NF. Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices. ADVANCED SENSOR RESEARCH 2024; 3:2300061. [PMID: 38764891 PMCID: PMC11101210 DOI: 10.1002/adsr.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 05/21/2024]
Abstract
Wearable health sensors for an expanding range of physiological parameters have experienced rapid development in recent years and are poised to disrupt the way healthcare is tracked and administered. The monitoring of environmental contaminants with wearable technologies is an additional layer of personal and public healthcare and is also receiving increased focus. Wearable sensors that detect exposure to airborne viruses could alert wearers of viral exposure and prompt proactive testing and minimization of viral spread, benefitting their own health and decreasing community risk. With the high levels of asymptomatic spread of COVID-19 observed during the pandemic, such devices could dramatically enhance our pandemic response capabilities in the future. To facilitate advancements in this area, this review summarizes recent research on airborne viral detection using wearable sensing devices as well as technologies suitable for wearables. Since the low concentration of viral particles in the air poses significant challenges to detection, methods for airborne viral particle collection and viral sensing are discussed in detail. A special focus is placed on nucleic acid-based viral sensing mechanisms due to their enhanced ability to discriminate between viral subtypes. Important considerations for integrating airborne viral collection and sensing on a single wearable device are also discussed.
Collapse
Affiliation(s)
- Ryan Godin
- Department of Chemical and Biological Engineering, Iowa State University
| | - Sepehr Hejazi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
26
|
Yu YH, Yen TY, Hung SK, Chen SH, Wang KY. A 3D-printed phantom for stereotactic body radiation therapy simulation. Biomed Phys Eng Express 2024; 10:025034. [PMID: 38350115 DOI: 10.1088/2057-1976/ad28cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
In modern radiation therapy for lung cancer, examining the uncertainty between tumor motion and beam delivery is vitally important. To lower the radiation dose delivery to the patient's normal tissue, narrowing the irradiation field margin to hit the tumor accurately is critical. Thus we proposed a phantom that simulates the thorax and lung tumor's motions by employing a 3D printing technique. The lung tumor is controlled by a linear miniature Delta robot arm, with a maximum displacement of 20 mm in each direction. When we simulated the thoracic breathing movements at 12 mm in A-P (Anterior-Posterior), the control errors were within 10%. The average tracking errors of the prosthetic tumor were within 1.1 mm. Therefore, the 3D-printed phantom with a robot arm can provide a reliable simulation for training and dosimetry measurement before lung radiotherapy, especially SBRT.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Electrical Engineering and AIM-HI, National Chung Cheng University, Taiwan
| | - Tsung-Yu Yen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shi-He Chen
- Department of Electrical Engineering and AIM-HI, National Chung Cheng University, Taiwan
| | - Kuei-Ying Wang
- Department of Nursing, Chang-Jung Christian University, Taiwan
| |
Collapse
|
27
|
Song S, van Dijk F, Vasse GF, Liu Q, Gosselink IF, Weltjens E, Remels AHV, de Jager MH, Bos S, Li C, Stoeger T, Rehberg M, Kutschke D, van Eck GWA, Wu X, Willems SH, Boom DHA, Kooter IM, Spierings D, Wardenaar R, Cole M, Nawijn MC, Salvati A, Gosens R, Melgert BN. Inhalable Textile Microplastic Fibers Impair Airway Epithelial Differentiation. Am J Respir Crit Care Med 2024; 209:427-443. [PMID: 37971785 DOI: 10.1164/rccm.202211-2099oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 μm nylon 6,6 (nylon) and 15 × 52 μm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| | - Fransien van Dijk
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| | - Gwenda F Vasse
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| | - Qiongliang Liu
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, German Center for Lung Research (DZL), Munich, Germany
| | - Irene F Gosselink
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ellen Weltjens
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Alex H V Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | | | - Chenxi Li
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, German Center for Lung Research (DZL), Munich, Germany
| | - Markus Rehberg
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, German Center for Lung Research (DZL), Munich, Germany
| | - David Kutschke
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, German Center for Lung Research (DZL), Munich, Germany
| | | | - Xinhui Wu
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| | | | - Devin H A Boom
- The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, the Netherlands; and
| | - Ingeborg M Kooter
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
- The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, the Netherlands; and
| | | | - René Wardenaar
- European Research Institute for the Biology of Ageing, and
| | - Matthew Cole
- Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| | - Barbro N Melgert
- Department of Molecular Pharmacology
- Groningen Research Institute for Asthma and COPD
| |
Collapse
|
28
|
Horn SA, Dasgupta PK. The Air Quality Index (AQI) in historical and analytical perspective a tutorial review. Talanta 2024; 267:125260. [PMID: 37852126 DOI: 10.1016/j.talanta.2023.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
The Air Quality Index (AQI), developed by the United States Environmental Protection Agency (USEPA), has been providing the public with crucial information regarding the status of contamination of the atmosphere for the past 45 years. Prior to introduction of the AQI, only a handful of metropolitan areas reported on air quality, and each region decided on its own metric. The inception of a single AQI helped homogenize the air quality metrics across the nation and indeed served as an important future template for other governmental and regulatory agencies across the world. The formulators had the foresight to recognize that our understanding of air pollution and its effects may change over time, which are likely to change regulatory limits. They used a dynamic framework to define the AQI, such that the broad definition or principle does not need to change with every change in regulatory limits or policy, and the fundamental goal of alerting the public to deleterious air quality is not affected. The establishment of the AQI increased public awareness of the importance of clean air and has helped muster support for air quality and emission regulations. The National Ambient Air Quality Standards (NAAQS) set forth by the USEPA provides acceptable levels of criteria pollutants - namely carbon monoxide, lead, nitrogen dioxide, ozone, particulate matter, and sulfur dioxide. A comparison of the actual levels, as compared to the regulatory limits (since the cessation of leaded gasoline, lead is no longer included in the index), are used as the basis for the AQI. As the regulatory limits change, so does the exact evaluation of the AQI, making it a living index. In this paper, we provide a historical overview of the Air Quality Index, the Federal Reference Methods (FRMs) vs. Federal Equivalent Methods (FEMs) for measuring them, and as an illustrative example, we discuss the air quality for Dallas-Ft. Worth, currently the fourth most populous metropolitan region in the United States, vis-a-vis the reported AQI.
Collapse
Affiliation(s)
- Seth A Horn
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, USA.
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, USA.
| |
Collapse
|
29
|
Sosnowski TR. Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System. Pharmaceutics 2024; 16:97. [PMID: 38258107 PMCID: PMC10818612 DOI: 10.3390/pharmaceutics16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms.
Collapse
Affiliation(s)
- Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
30
|
Sobek E, Elias DA. Bipolar ionization rapidly inactivates real-world, airborne concentrations of infective respiratory viruses. PLoS One 2023; 18:e0293504. [PMID: 37992037 PMCID: PMC10664916 DOI: 10.1371/journal.pone.0293504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/24/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic has highlighted the urgent need for strategies that rapidly inactivate airborne respiratory viruses and break the transmission cycle of indoor spaces. Air ions can reduce viable bacteria, mold, and virus counts, however, most studies use small test enclosures with target microbes and ion sources in close vicinity. To evaluate ion performance in real-world spaces, experiments were conducted in a large, room-size BSL-3 Chamber. Negative and positive ions were delivered simultaneously using a commercially available bipolar air ion device. The device housed Needle Point Bipolar ionization (NPBI) technology. Large chamber studies often use unrealistically high virus concentrations to ensure measurable virus is present at the trial end. However, excessively high viral concentrations bias air cleaning devices towards underperformance. Hence, devices that provide a substantial impact for protecting occupants in real-world spaces with real-world virus concentrations are often dismissed as poor performers. Herein, both real-world and excessive virus concentrations were studied using Influenza A and B, Human Respiratory Syncytial Virus (RSV), and the SARS-CoV-2 Alpha and Delta strains. The average ion concentrations ranged from 4,100 to 24,000 per polarity over 60-minute and 30-minute time trials. The reduction rate was considerably greater for trials that used real-world virus concentrations, reducing infectivity for Influenza A and B, RSV, and SARS-CoV-2 Delta by 88.3-99.98% in 30 minutes, whereas trials using in-excess concentrations showed 49.5-61.2% in 30 minutes. These findings strongly support the addition of NPBI ion technology to building management strategies aimed to protect occupants from contracting and spreading infective respiratory viruses indoors.
Collapse
Affiliation(s)
- Edward Sobek
- Global Plasma Solutions, Charlotte, NC, United States of America
| | - Dwayne A. Elias
- Elias Consulting, LLC, Knoxville, TN, United States of America
| |
Collapse
|
31
|
Guo X, Chan YC, Gautam T, Zhao R. Autoxidation of glycols used in inhalable daily products: implications for the use of artificial fogs and e-cigarettes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1657-1669. [PMID: 37728872 DOI: 10.1039/d3em00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The use of glycols is seen in various industries and occupations. In the past few decades, the health implications of inhalable glycols have gained public attention. Inhalable glycols may cause adverse health effects, especially for workers in occupations receiving frequent exposure and consumers of glycol-based daily products. Our previous work highlighted the rapid accumulation of formaldehyde and glycolaldehyde in fog juice, thus proposing the occurrence of glycol autoxidation. However, the fundamentals of glycol autoxidation remained unclear and unexplored. Our goal is to investigate the autoxidation of common glycols during indoor storage. Carbonyls were quantified using liquid chromatography-mass spectrometry (LC-MS), and peroxides from autoxidation were monitored via iodometry and UV-Vis spectrometry. The impact of certain factors such as the water mixing ratio and antioxidants (vitamin C) was also investigated. Formation of aldehydes in many glycols was weekly monitored, such as e-cigarette juice and triethylene glycol (TEG). Occurrence of autoxidation was confirmed by the increase in the total peroxide concentration. Additionally, we highlighted the dependence of the carbonyl formation rate on the TEG-water mixing ratio, demonstrating the complex role of water in glycol autoxidation. We have also tested the effectiveness of vitamin C and made suggestions for minimizing the formation of toxic carbonyls in consumer products.
Collapse
Affiliation(s)
- Xinyang Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Ya-Chun Chan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Tania Gautam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
32
|
Brigham E, Hashimoto A, Alexis NE. Air Pollution and Diet: Potential Interacting Exposures in Asthma. Curr Allergy Asthma Rep 2023; 23:541-553. [PMID: 37440094 DOI: 10.1007/s11882-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE OF REVIEW To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.
Collapse
Affiliation(s)
- Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, BC, Canada.
- Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Alisa Hashimoto
- Faculty of Science, University of British Columbia, BC, Vancouver, Canada
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology and Infectious Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Saravanan P, Broccolo F, Ali N, Toh A, Mulyana S, Beng GL, Imperi E, Picano A. A new aerodynamic endonasal filtration technology for protection against pollutants and respiratory infectious agents: evaluation of the particle filtration efficacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1219996. [PMID: 37546386 PMCID: PMC10401429 DOI: 10.3389/fmedt.2023.1219996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
An innovative nasal filter was tested, based on aerodynamic air filtration and not on conventional air filtration by means of mesh filters. A custom testing system was designed and three sizes of the filter have been tested vs. monodispersed SiO2 particles sized 5 μm, 1 μm, and 0.5 μm under cycling flow of 6 liters per minute, provided by an artificial lung breather simulating spontaneous breathing. Accelerated testing was implemented, challenging filters with a maximum load of 200 mg per cubic meter. All three filters' sizes showed initial filtration efficiencies above 90% vs. all particles' sizes, decreased to not less than 80% after 30 min of accelerated testing, corresponding to 4.5 days of continuous use at 2 mg challenge, this value being associated with hazardous air conditions in the PSI scale. Results in this study indicate that nasal filters based on aerodynamic air filtration can provide fine and ultrafine filtration, offering protection in day-to-day life from risks associated with pollens, mites, PM, pollutants, and respiratory infectious agents, introducing acceptable respiratory resistance.
Collapse
Affiliation(s)
| | - Francesco Broccolo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Nurshahidah Ali
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Alden Toh
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Sakinah Mulyana
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Goh Lay Beng
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | | | | |
Collapse
|
34
|
Howard NS, Alrefaie A, Mejia NA, Ugbeye T, Schmidt BE. Characterizing Aerosol Generating Procedures With Background Oriented Schlieren. J Biomech Eng 2023; 145:074502. [PMID: 36961437 PMCID: PMC10158973 DOI: 10.1115/1.4062191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
The potential for characterizing aerosol generating procedures (AGPs) using background oriented schlieren (BOS) flow visualization was investigated in two clinical situations. A human-scale BOS system was used on a manikin simulating jet ventilation and extubation. A novel approach to representation of the BOS images using line integral convolution allows direct evaluation of both magnitude and direction of the refractive index gradient field. Plumes issuing from the manikin's mouth were clearly visualized and characterized in both experiments, and it is recommended that BOS be adapted into a clinical tool for risk evaluation in clinical environments.
Collapse
Affiliation(s)
- N. Scott Howard
- School of Medicine, Case Western Reserve University Otolaryngology, Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Abdulaziz Alrefaie
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| | - Nicholas A. Mejia
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| | - Tosan Ugbeye
- S.C.O.P.E. Medical Cleveland, Cleveland, OH 44106
| | - Bryan E. Schmidt
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| |
Collapse
|
35
|
Popov E, Polishchuk A, Kovalev A, Vitkin V. Raman Spectroscopy for Urea Breath Test. BIOSENSORS 2023; 13:609. [PMID: 37366973 PMCID: PMC10296114 DOI: 10.3390/bios13060609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
The urea breath test is a non-invasive diagnostic method for Helicobacter pylori infections, which relies on the change in the proportion of 13CO2 in exhaled air. Nondispersive infrared sensors are commonly used for the urea breath test in laboratory equipment, but Raman spectroscopy demonstrated potential for more accurate measurements. The accuracy of the Helicobacter pylori detection via the urea breath test using 13CO2 as a biomarker is affected by measurement errors, including equipment error and δ13C measurement uncertainty. We present a Raman scattering-based gas analyzer capable of δ13C measurements in exhaled air. The technical details of the various measurement conditions have been discussed. Standard gas samples were measured. 12CO2 and 13CO2 calibration coefficients were determined. The Raman spectrum of the exhaled air was measured and the δ13C change (in the process of the urea breath test) was calculated. The total error measured was 6% and does not exceed the limit of 10% that was analytically calculated.
Collapse
Affiliation(s)
- Evgeniy Popov
- Institute of Advanced Data Transfer Systems, ITMO University, Birzhevaya Liniya 14, 199034 Saint Petersburg, Russia; (A.P.); (A.K.); (V.V.)
| | | | | | | |
Collapse
|
36
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
37
|
Géczy A, Havellant G, Bátorfi R, Skwarek A, Dušek K, Bušek D, Illés B. Filtering Efficiency of Sustainable Textile Materials Applied in Personal Protective Face Mask Production during Pandemic. MATERIALS (BASEL, SWITZERLAND) 2023; 16:903. [PMID: 36769913 PMCID: PMC9917621 DOI: 10.3390/ma16030903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 outbreak increased demand for personal protective respirator masks. Textile masks based on cloth materials appeared to be a sustainable, comfortable, and cost-effective alternative available in global communities. In this study, we used laser-based particle counting for mask material qualification to determine the concentration filtering efficiency in general, everyday community use. The efficiencies of eleven different commercially available textile materials were measured in single-, double-, and triple-layer configurations according to their grammage, mesh (XY), and inter-yarn gap. It was found that in the single-layer configurations, most materials were well below the acceptable standards, with a wide variation in filtering efficiency, which ranged from 5% to ~50%. However, when testing the fabrics in two or three layers, the efficiency increased significantly, exceeding or approaching the standard for medical masks. Three layers of natural silk was able to produce a level of filtration efficiency of 84.68%. Two-layered natural silk achieved 70.98%, cotton twill achieved 75.6%, and satin-weave viscose achieved 69.77%. Further options can also be considered in cases where lower filtration is acceptable It was statistically shown that applying a second layer was more significant in terms of overall filtering than increasing the layer count to three. However, layer stacking limited the breathability. The paper presents measurement-based qualitative and quantitative recommendations for future textile applications in face mask manufacturing.
Collapse
Affiliation(s)
- Attila Géczy
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- Department of Electrotechnology, Faculty of Electrical Engineering (K13113), Czech Technical University in Prague, Technická 2, 1902/2, Praha 6, Dejvice, 166 27 Prague, Czech Republic
| | - Gergő Havellant
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Réka Bátorfi
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Agata Skwarek
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 30-701 Kraków, Poland
| | - Karel Dušek
- Department of Electrotechnology, Faculty of Electrical Engineering (K13113), Czech Technical University in Prague, Technická 2, 1902/2, Praha 6, Dejvice, 166 27 Prague, Czech Republic
| | - David Bušek
- Department of Electrotechnology, Faculty of Electrical Engineering (K13113), Czech Technical University in Prague, Technická 2, 1902/2, Praha 6, Dejvice, 166 27 Prague, Czech Republic
| | - Balázs Illés
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- Department of Electrotechnology, Faculty of Electrical Engineering (K13113), Czech Technical University in Prague, Technická 2, 1902/2, Praha 6, Dejvice, 166 27 Prague, Czech Republic
| |
Collapse
|
38
|
Kwak H, Kim H, Park S, Lee M, Jang M, Park SB, Hwang SY, Kim HJ, Jeon H, Koo JM, Park J, Oh DX. Biodegradable, Water-Resistant, Anti-Fizzing, Polyester Nanocellulose Composite Paper Straws. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205554. [PMID: 36403230 PMCID: PMC9811439 DOI: 10.1002/advs.202205554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Among plastic items, single-use straws are particularly detrimental to marine ecosystems because such straws, including those made of poly(lactic acid) (PLA), are sharp and extremely slowly degradable in the ocean. While paper straws are promising alternatives, they exhibit hydration-induced swelling even when coated with a non-degradable plastic coating and promote effervescence (fizzing) in soft drinks owing to their surface heterogeneities. In this study, upgraded paper straw is coated with poly(butylene succinate) cellulose nanocrystal (PBS/CNC) composites. CNC increases adhesion to paper owing to their similar chemical structures, optimizes crystalline PBS spherulites through effective nucleation, and reinforces the matrix through its anisotropic and rigid features. The straws are not only anti-fizzing when used with soft drinks owing to their homogeneous and seamless surface coatings, but also highly water-resistant and tough owing to their watertight surfaces. All degradable components effectively decompose under aerobic composting and in the marine environment. This technology contributes to United Nations Sustainable Development Goal 14 (Life Below Water).
Collapse
Affiliation(s)
- Hojung Kwak
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeri Kim
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Seul‐A Park
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Minkyung Lee
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Min Jang
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Sung Bae Park
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Sung Yeon Hwang
- Department of Plant and Environmental New ResourcesKyung Hee UniversityYongin17104Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials EngineeringChungnam National UniversityDaejeon34134Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| |
Collapse
|
39
|
Benmamoun Z, Wyhopen T, Li Y, Ducker WA. Mechanism and Efficacy of Cu 2O-Treated Fabric. Antibiotics (Basel) 2022; 11:1633. [PMID: 36421277 PMCID: PMC9686972 DOI: 10.3390/antibiotics11111633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/11/2023] Open
Abstract
Pathogenic bacteria can remain viable on fabrics for several days and therefore are a source of infection. Antimicrobial fabrics are a potential method of reducing such infections, and advances in antimicrobial fabrics can be enhanced by knowledge of how the fabric kills bacteria. Metal oxides have been considered and used as antimicrobial ingredients in self-sanitizing surfaces, including in clinical settings. In this work, we examine how the addition of cuprous oxide (Cu2O) particles to polypropylene fibers kills bacteria. First, we show that the addition of the Cu2O particles reduces the viability of common hospital pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae, by 99.9% after 30 min of contact with the treated polypropylene. Then, we demonstrate that the main killing effect is due to the drying of the bacteria onto the cuprous oxide particles. There is also a weaker effect due to free Cu+ ions that dissolve into the liquid. Other dissolved species were unimportant. Chelation of these Cu+ ions in soluble form or precipitation removes their antimicrobial activity.
Collapse
Affiliation(s)
- Zachary Benmamoun
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Trent Wyhopen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - You Li
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - William A. Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
40
|
Yao Z, Zhao T, Su W, You S, Wang CH. Towards understanding respiratory particle transport and deposition in the human respiratory system: Effects of physiological conditions and particle properties. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129669. [PMID: 35908402 PMCID: PMC9306224 DOI: 10.1016/j.jhazmat.2022.129669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Fly ash is a common solid residue of incineration plants and poses a great environmental concern because of its toxicity upon inhalation exposure. The inhalation health impacts of fly ash is closely related to its transport and deposition in the human respiratory system which warrants significant research for health guideline setting and inhalation exposure protection. In this study, a series of fly ash transport and deposition experiments have been carried out in a bifurcation airway model by optical aerosol sampling analysis. Three types of fly ash samples of different morphologies were tested and their respiratory deposition and transport processes were compared. The deposition efficiencies were calculated and relevant transport dynamics mechanisms were discussed. The influences of physiological conditions such as breathing rate, duration, and fly ash physical properties (size, morphology, and specific surface area) were investigated. The deposition characteristics of respiratory particles containing SARS-CoV-2 has also been analyzed, which could further provide some guidance on COVID-19 prevention. The results could potentially serve as a basis for setting health guidelines and recommending personal respiratory protective equipment for fly ash handlers and people who are in the high exposure risk environment for COVID-19 transmission.
Collapse
Affiliation(s)
- Zhiyi Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Tianyang Zhao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - Weiling Su
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siming You
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore; James Watt School of Engineering, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
41
|
Owen MJ, Celik U, Chaudhary SK, Yik JHN, Patton JS, Kuo MC, Haudenschild DR, Liu GY. Production of Inhalable Ultra-Small Particles for Delivery of Anti-Inflammation Medicine via a Table-Top Microdevice. MICROMACHINES 2022; 13:1382. [PMID: 36144005 PMCID: PMC9501338 DOI: 10.3390/mi13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
A table-top microdevice was introduced in this work to produce ultrasmall particles for drug delivery via inhalation. The design and operation are similar to that of spray-drying equipment used in industry, but the device itself is much smaller and more portable in size, simpler to operate and more economical. More importantly, the device enables more accurate control over particle size. Using Flavopiridol, an anti-inflammation medication, formulations have been developed to produce inhalable particles for pulmonary delivery. A solution containing the desired components forms droplets by passing through an array of micro-apertures that vibrate via a piezo-electrical driver. High-purity nitrogen gas was introduced and flew through the designed path, which included the funnel collection and cyclone chamber, and finally was pumped away. The gas carried and dried the micronized liquid droplets along the pathway, leading to the precipitation of dry solid microparticles. The formation of the cyclone was essential to assure the sufficient travel path length of the liquid droplets to allow drying. Synthesis parameters were optimized to produce microparticles, whose morphology, size, physio-chemical properties, and release profiles met the criteria for inhalation. Bioactivity assays have revealed a high degree of anti-inflammation. The above-mentioned approach enabled the production of inhalable particles in research laboratories in general, using the simple table-top microdevice. The microparticles enable the inhalable delivery of anti-inflammation medicine to the lungs, thus providing treatment for diseases such as pulmonary fibrosis and COVID-19.
Collapse
Affiliation(s)
- Matthew J. Owen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Umit Celik
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Jasper H. N. Yik
- Tesio Pharmaceuticals, Inc., Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | | | | | - Dominik R. Haudenschild
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
A BLE-Connected Piezoresistive and Inertial Chest Band for Remote Monitoring of the Respiratory Activity by an Android Application: Hardware Design and Software Optimization. FUTURE INTERNET 2022. [DOI: 10.3390/fi14060183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Breathing is essential for human life. Issues related to respiration can be an indicator of problems related to the cardiorespiratory system; thus, accurate breathing monitoring is fundamental for establishing the patient’s condition. This paper presents a ready-to-use and discreet chest band for monitoring the respiratory parameters based on the piezoresistive transduction mechanism. In detail, it relies on a strain sensor realized with a pressure-sensitive fabric (EeonTex LTT-SLPA-20K) for monitoring the chest movements induced by respiration. In addition, the band includes an Inertial Measurement Unit (IMU), which is used to remove the motion artefacts from the acquired signal, thereby improving the measurement reliability. Moreover, the band comprises a low-power conditioning and acquisition section that processes the signal from sensors, providing a reliable measurement of the respiration rate (RR), in addition to other breathing parameters, such as inhalation (TI) and exhalation (TE) times, inhalation-to-exhalation ratio (IER), and flow rate (V). The device wirelessly transmits the extracted parameters to a host device, where a custom mobile application displays them. Different test campaigns were carried out to evaluate the performance of the designed chest band in measuring the RR, by comparing the measurements provided by the chest band with those obtained by breath count. In detail, six users, of different genders, ages, and physical constitutions, were involved in the tests. The obtained results demonstrated the effectiveness of the proposed approach in detecting the RR. The achieved performance was in line with that of other RR monitoring systems based on piezoresistive textiles, but which use more powerful acquisition systems or have low wearability. In particular, the inertia-assisted piezoresistive chest band obtained a Pearson correlation coefficient with respect to the measurements based on breath count of 0.96 when the user was seated. Finally, Bland–Altman analysis demonstrated that the developed system obtained 0.68 Breaths Per Minute (BrPM) mean difference (MD), and Limits of Agreement (LoAs) of +3.20 and −1.75 BrPM when the user was seated.
Collapse
|
43
|
Christensen L, Mansour K, Pleil JD, Troy R. Tunable laser spectroscopy for carbon dioxide capnography and water vapor sensing inside a breathing mask: application to pilot life support. J Breath Res 2022; 16. [PMID: 35623323 DOI: 10.1088/1752-7163/ac740e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Tunable laser spectroscopy (TLS) near 2683 nm was used to measure carbon dioxide and water vapor inside a pilot mask during jet fighter flights. Measurement frequency was 100 Hz in order to capture breathing profiles and other gas flow dynamics. Analysis of the full inhalation and exhalation breathing cycle allowed precise monitoring of breathing performance and interaction of the pilot with the life-support system. Measurements revealed dynamic phenomena pertaining to mechanical gas flow and pilot respiration that may be used to understand gas delivery stresses imposed upon the pilot and pilot physiology during flight. Typically, such measurements are made with non-dispersive infrared (NDIR) instrumentation for only carbon dioxide with intrinsic challenges regarding time and optical resolution. The TLS approach is a major advance because the sensor is placed directly into the mask improving its time response and enabling use of water vapor measurements that are less impacted from memory effects. This article presents the implementation of TLS and shows highly time-resolved pilot breathing data for high-performance aircraft tests.
Collapse
Affiliation(s)
- Lance Christensen
- NASA Jet Propulsion Laboratory, 183-401, 4800 Oak Grove Dr., Pasadena, California, 91109-8001, UNITED STATES
| | - Kamjou Mansour
- NASA Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California, 91109-8001, UNITED STATES
| | - Joachim D Pleil
- University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, 27515, UNITED STATES
| | - Robert Troy
- Self, N/A, N/A, California, N/A, UNITED STATES
| |
Collapse
|
44
|
Issitt T, Wiggins L, Veysey M, Sweeney S, Brackenbury W, Redeker K. Volatile compounds in human breath: critical review and meta-analysis. J Breath Res 2022; 16. [PMID: 35120340 DOI: 10.1088/1752-7163/ac5230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. - methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.
Collapse
Affiliation(s)
- Theo Issitt
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Laura Wiggins
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Martin Veysey
- The University of Newcastle, School of Medicine & Public Health, Callaghan, New South Wales, 2308, AUSTRALIA
| | - Sean Sweeney
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Brackenbury
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kelly Redeker
- Biology, University of York, Biology Dept. University of York, York, York, North Yorkshire, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|