1
|
Rosales RS, Risco D, García-Nicolás O, Pallarés FJ, Ramírez AS, Poveda JB, Nicholas RAJ, Salguero FJ. Differential Gene Expression in Porcine Lung Compartments after Experimental Infection with Mycoplasma hyopneumoniae. Animals (Basel) 2024; 14:1290. [PMID: 38731294 PMCID: PMC11083927 DOI: 10.3390/ani14091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-β, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.
Collapse
Affiliation(s)
- Rubén S. Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Extremadura, Avenida de la Universidad, s/n, 10003 Cáceres, Spain
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Francisco J. Pallarés
- Pathology and Immunology Group (UCO-PIG), Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus “CeiA3”, 14001 Córdoba, Spain;
| | - Ana S. Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - José B. Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | | | - Francisco J. Salguero
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK;
| |
Collapse
|
2
|
Vega-Munguía G, Vargas Sánchez A, Camacho-Medina JE, Suárez-Vélez L, Bárcenas-Morales G, Quintar Guerrero D, Ciprian-Carrasco A, Mendoza Elvira S. Effect of Live and Fragmented Saccharomyces cerevisiae in the Feed of Pigs Challenged with Mycoplasma hyopneumoniae. Pathogens 2024; 13:322. [PMID: 38668277 PMCID: PMC11054539 DOI: 10.3390/pathogens13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Currently, the responsible use of antimicrobials in pigs has allowed the continuous development of alternatives to these antimicrobials. In this study, we describe the impact of treatments with two probiotics, one based on live Saccharomyces cerevisiae (S. cerevisiae) and another based on fragmented S. cerevisiae (beta-glucans), that were administered to piglets at birth and at prechallenge with Mycoplasma hyopneumoniae. Thirty-two pigs were divided into four groups of eight animals each. The animals had free access to water and food. The groups were as follows: Group A, untreated negative control; Group B, inoculated by nebulization with M. hyopneumoniae positive control; Group C, first treated with disintegrated S. cerevisiae (disintegrated Sc) and inoculated by nebulization with M. hyopneumoniae; and Group D, treated with live S. cerevisiae yeast (live Sc) and inoculated by nebulization with M. hyopneumoniae. In a previous study, we found that on Days 1 and 21 of blood sampling, nine proinflammatory cytokines were secreted, and an increase in their secretion occurred for only five of them: TNF-α, INF-α, INF-γ, IL-10, and IL-12 p40. The results of the clinical evolution, the degree of pneumonic lesions, and the productive parameters of treated Groups C and D suggest that S. cerevisiae has an immunomodulatory effect in chronic proliferative M. hyopneumoniae pneumonia characterized by delayed hypersensitivity, which depends on the alteration or modulation of the respiratory immune response. The data presented in this study showed that S. cerevisiae contributed to the innate resistance of infected pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susana Mendoza Elvira
- Department of Biological Sciences, Facultad de Estudios Superiores Cuatitlan, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54720, Mexico; (G.V.-M.); (J.E.C.-M.); (L.S.-V.); (G.B.-M.); (D.Q.G.); (A.C.-C.)
| |
Collapse
|
3
|
Li J, Chen C, Gao L, Wang L, Wang W, Zhang J, Gong Z, Wang J, Guo Y. Analysis of histopathology and changes of major cytokines in the lesions caused by Mycoplasma ovipneumoniae infection. BMC Vet Res 2023; 19:273. [PMID: 38102682 PMCID: PMC10722778 DOI: 10.1186/s12917-023-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Mycoplasma ovipneumoniae (M. ovipneumoniae) is one of the main pathogens of sheep pneumonia, causing a series of clinical symptoms, such as depression, anorexia, hyperthermia, cough, dyspnea, and tract secretions. In recent years, the prevalence of M. ovipneumoniae pneumonia has become increasingly serious in sheep farms in Ningxia, China, leading to the death of sheep, and causing significant economic losses. In this study, the pathological organs infected by M. ovipneumoniae were collected to observe histopathological change, to determine the tissue localization of M. ovipneumoniae, and to analyze the cytokine changes, which lays a basis for the diagnosis and pathogenesis of M. ovipneumoniae disease. RESULTS In this study, M. ovipneumoniae was detected in 97 of 105 samples collected from 13 large-scale sheep farms for nucleic acid by PCR. One representative isolate per farm was isolated from 13 farms. The lesions caused by M. ovipneumoniae were mainly in the trachea, bronchus, and lung, including necrosis of tracheal mucosal epithelial cells, disintegration of some epithelial cells, edema of mucosal lamina propria, with inflammatory cell infiltration, cytoplasmic vacuolization of epithelial cells of bronchial mucosa, massive infiltration of inflammatory cells in the alveolar space of lung, necrosis and hyperplasia of alveolar epithelial cells. Immunohistochemical analysis showed that the proportion of M. ovipneumoniae positive area in the lung was the largest, followed by that in the bronchus and trachea. Compared to healthy animals, diseased animals exhibited up-regulated gene expression levels of IL-1β, IL-6, and NF-κB in the trachea, bronchus, and lungs. In contrast, the expression of IL-10, IL-12, and IFN-γ was primarily limited to the trachea and bronchus. The expression of IL-1β showed differential patterns across different lung regions, with variations observed among lung lobes. Additionally, other cytokines consistently showed significant up-regulation specifically in the bronchus. CONCLUSIONS M. ovipneumoniae is primarily found in the lungs of infected individuals. NF-κB, an essential transcription factor, is involved in the regulation of IL-1β transcription. IL-12 may enhance the cytotoxic function of natural killer cells during M. ovipneumoniae infection. Those findings demonstrate the distinct expression profiles of cytokines in various anatomical sites throughout disease progression, suggesting the potential role of bronchial tissue as a major site of immune response.
Collapse
Affiliation(s)
- Jidong Li
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Can Chen
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Le Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Lingling Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wei Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jinhua Zhang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Zhenxing Gong
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| |
Collapse
|
4
|
Hsu CY, Jang Y, Huang WR, Wang CY, Wen HW, Tsai PC, Yang CY, Munir M, Liu HJ. Development of Polycistronic Baculovirus Surface Display Vectors to Simultaneously Express Viral Proteins of Porcine Reproductive and Respiratory Syndrome and Analysis of Their Immunogenicity in Swine. Vaccines (Basel) 2023; 11:1666. [PMID: 38005998 PMCID: PMC10674950 DOI: 10.3390/vaccines11111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
To simultaneously express and improve expression levels of multiple viral proteins of a porcine reproductive and respiratory syndrome virus (PRRSV), polycistronic baculovirus surface display vectors were constructed and characterized. We engineered polycistronic baculovirus surface display vectors, namely, pBacDual Display EGFP(BacDD)-2GP2-2GP4 and pBacDD-4GP5N34A/N51A (mtGP5), which simultaneously express and display the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP4-gp64TM-CTD, and His-tagged mtGP5-gp64TM-CTD fusion proteins of PRRSV on cell membrane of Sf-9 cells. Specific pathogen-free (SPF) pigs were administered intramuscularly in 2 doses at 21 and 35 days of age with genetic recombinant baculoviruses-infected cells. Our results revealed a high level of ELISA-specific antibodies, neutralizing antibodies, IL-4, and IFN-γ in SPF pigs immunized with the developed PRRSV subunit vaccine. To further assess the co-expression efficiency of different gene combinations, pBacDD-GP2-GP3-2GP4 and pBacDD-2mtGP5-2M constructs were designed for the co-expression of the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP3-gp64TM-CTD, and His-tagged GP4-gp64TM-CTD proteins as well as the ectodomain of His-tagged mtGP5-gp64TM-CTD and His-tagged M-gp64TM-CTD fusion proteins of PRRSV. To develop an ELISA assay for detecting antibodies against PRRSV proteins, the sequences encoding the ectodomain of the GP2, GP3, GP4, mtGP5, and M of PRRSV were amplified and subcloned into the pET32a vector and expressed in E. coli. In this work, the optimum conditions for expressing PRRSV proteins were evaluated, and the results suggested that 4 × 105 of Sf-9 cells supplemented with 7% fetal bovine serum and infected with the recombinant baculoviruses at an MOI of 20 for three days showed a higher expression levels of the protein. Taken together, the polycistronic baculovirus surface display system is a useful tool to increase expression levels of viral proteins and to simultaneously express multiple viral proteins of PRRSV for the preparation of subunit vaccines.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun Jang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
6
|
Rodríguez F, Rosales RS, Ramírez AS, Poveda JB. Vaccination Upregulates Th1 Cytokines in the Lung of Pigs Experimentally Infected with Mycoplasma hyopneumoniae. Animals (Basel) 2023; 13:ani13030520. [PMID: 36766408 PMCID: PMC9913433 DOI: 10.3390/ani13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae (Mhy) is the causative agent of enzootic pneumonia, characterized by high morbidity and low mortality rates in intensive swine production systems. To better understand the mechanisms underlying the protection of an inactivated whole cell vaccine, we investigated the immunohistochemical differences in the cytokine expression in vaccinated and non-vaccinated pigs experimentally infected with Mhy. Four-week-old Mhy-negative pigs (n = 24) were allocated to negative control (n = 8), or one of two Mhy-infected groups: vaccinated (n = 8) and non-vaccinated (n = 8). Infection was carried out by a combination of trans-tracheal and aerosol route. Lung samples were processed for histopathological and immunohistochemical studies, by using antibodies against Mhy, IL1-α, IL1-β, IL-2, IL-4, IL-5, IL-6, Il-8, IL-10, IL-12p35, IL-13, IL-17A, TNF-α, IFN-γ, and CD-4 lymphocytes. Although all cytokines increased in both infected groups, IL-2, IL-12, and IFN-γ were significantly overexpressed in vaccinated pigs. These findings, in conjunction with the decrease of macroscopic and histological lesions in vaccinated animals, indicate the importance to enhance Th1 response in the immunization strategies to control Mhy infection.
Collapse
|
7
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
8
|
Rodrigues LA, Ferreira FNA, Costa MO, Wellington MO, Columbus DA. Factors affecting performance response of pigs exposed to different challenge models: a multivariate approach. J Anim Sci 2021; 99:6290803. [PMID: 34061959 DOI: 10.1093/jas/skab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (-187.7; P < 0.05) compared with M (-39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Felipe N A Ferreira
- Technical Services Department, Agroceres Multimix, Rio Claro, SP 13502-741, Brazil
| | - Matheus O Costa
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.,Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
9
|
Sakuma A, Sugawara S, Hidaka H, Nakajo M, Suda Y, Shimazu T, Rose MT, Urakawa M, Zhuang T, Zhao G, Watanabe K, Nochi T, Kitazawa H, Katoh K, Suzuki K, Aso H. IL-12p40 gene expression in lung and hilar lymph nodes of MPS-resistant pigs. Anim Sci J 2020; 91:e13450. [PMID: 32881233 DOI: 10.1111/asj.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) is caused by Mycoplasma hyopneumoniae (M.hp) and is a common chronic respiratory disease of pigs. Recently, a genetically selected variant of the Landrace pig (Miyagino L2) has a lower incidence of pulmonary MPS lesions. We investigated the pathological and immunological characteristics of MPS resistance in these pigs (n = 24) by comparing with the normal landrace pig (control: n = 24). The pathological MPS lung lesion score in MPS-selected landrace pigs was significantly lower than in the control. The gene expression of interleukin (IL)-12p40, which acts as a chemoattractant and a component of the bioactive cytokines IL-12 and IL-23, was significantly higher at the hilar lymph nodes, lung, and spleen in MPS-selected landrace pigs than in control landrace pigs, and these were negatively correlated with the macroscopic MPS lung lesion score. In summary, we demonstrate that resistance against MPS in Miyagino L2 pigs is associated with IL-12p40 up-regulation, in comparison with normal landrace pigs without the MPS vaccine. In addition, a comparative study of macroscopic MPS lung lesions and IL-12p40 gene expression in lung and hilar lymph nodes may lead to beneficial selection traits for the genetic selection for MPS resistance in pigs.
Collapse
Affiliation(s)
- Akiko Sakuma
- Miyagi Livestock Experimental Station, Osaki, Japan.,Miyagi Prefectural Sendai Livestock Hygiene Service Center, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shizuka Sugawara
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hikaru Hidaka
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Tomoyuki Shimazu
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Michael T Rose
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, TAS, Australia
| | - Megumi Urakawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tao Zhuang
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keiichi Suzuki
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Yang S, Oh T, Mago J, Iwakuma A, Chae C. Optimal vaccination strategy against Mycoplasma hyopneumoniae, porcine reproductive and respiratory syndrome virus, and porcine circovirus type 2 in case of early M. hyopneumoniae infection. Vet Med Sci 2020; 6:860-874. [PMID: 32462794 PMCID: PMC7738734 DOI: 10.1002/vms3.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the optimal vaccination strategies for the control of porcine respiratory disease complex (PRDC) caused by Mycoplasma hyopneumoniae, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine circovirus type 2 (PCV2) in case of early mycoplasmal infection. METHODS A total of 120 pigs were randomly divided into 6 groups (20 pigs per group). Four separate vaccine regimen groups were selected. Pigs from the four vaccinated groups were challenged with M. hyopneumoniae at 28 days old followed by a challenge of PRRSV or PCV2 at 49 days old. RESULTS Regardless of PRRSV or PCV2 vaccination, pigs vaccinated with one of the M. hyopneumoniae vaccines at 7 days old had a significantly better growth performance over the whole length of the study compared to pigs vaccinated with a second M. hyopneumoniae vaccine at 21 days old. Vaccination of pigs with M. hyopneumoniae at 7 days and PRRSV at either 7, 14 or 21 days old resulted in significantly reduced PRRSV viremia and lung lesions compared to vaccination of pigs with M. hyopneumoniae and PRRSV at 21 days old. CONCLUSIONS The efficacy of the PRRSV MLV vaccine is influenced by the different timing of M. hyopneumoniae vaccination whereas the efficacy of the PCV2 vaccine is not. This experiment study demonstrated that early vaccination with a M. hyopneumoniae vaccine should be the highest priority in order to control M. hyopneumoniae and PRRSV infection in cases of early M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
San Andres JV, Mastromano GA, Li Y, Tran H, Bundy JW, Miller PS, Burkey TE. The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Transl Anim Sci 2019; 3:1315-1325. [PMID: 32704894 PMCID: PMC7200398 DOI: 10.1093/tas/txz129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The objective of the experiment was to investigate the effects of prebiotics in nursery pigs on growth performance and immune biomarkers. Sixty-four weaned pigs (31 ± 1 d; BW 8 ± 0.1 kg) of mixed gender were housed (4 pigs/pen) in an environmentally controlled nursery with ad libitum access to feed and water over a 35-d study. Pigs were randomly assigned to one of four treatments: control (53% corn, 32% SBM, 7% fishmeal, 8% others), control + 2.5% GroBiotic-S (GS), control + 0.05% chicory (CL), or control + 0.5% chicory (CH). Feeders and pigs were weighed weekly. On day 21, blood samples were obtained from three pigs/treatment for collection of peripheral blood mononuclear cells (PBMC). Isolated PBMC were cultured and subsequently challenged with lipopolysaccharide (LPS; 20 ng/mL). Cell culture supernatants were collected for quantification of the pro- and anti-inflammatory cytokines, interleukin (IL)-8 and IL-10, respectively. Dietary treatment had no effect on BW. At days 28 to 35, pigs fed GS (790 ± 15 g), CL (704 ± 15 g), or CH (692 ± 15 g) had greater (P < 0.05) ADG compared with control (643 ± 15 g) pigs. In addition, overall (days 0–35), pigs fed GS (823 ± 18 g), CL (783 ± 18 g), or CH (782 ± 18 g) had greater (P < 0.05) ADFI compared with control, and ADFI for GS-fed pigs was greater (P < 0.05) than either CL or CH. There was no difference in G:F among treatments. In vitro LPS challenge increased (P < 0.05) IL-8 secretion from PBMC isolated from CL (23,731 ± 3,221 pg/mL) pigs compared with control (10,061 ± 3,221 pg/mL) and CH (12,411 ± 3,221 pg/mL) pigs. Secretion of IL-10 from PBMC isolated from CL (63 ± 9 pg/mL) pigs was greater (P < 0.05) compared with control (22 ± 9 pg/mL) pigs and tended (P < 0.1) to be greater compared with CH (34 ± 9 pg/mL) pigs. Results indicate that inclusion of prebiotics in nursery pig diets has positive effects on growth performance and may have immunomodulatory effects (in vitro) on cells isolated from prebiotic-fed pigs.
Collapse
Affiliation(s)
- Joice V San Andres
- Department of Animal Science, University of Nebraska, Lincoln, NE.,Department of Animal Science, Central Luzon State University, Philippines
| | | | - Yanshuo Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Huyen Tran
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Justin W Bundy
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
12
|
Li Y, Wu Z, Liu K, Qi P, Xu J, Wei J, Li B, Shao D, Shi Y, Qiu Y, Ma Z. Proteomic Analysis of the Secretome of Porcine Alveolar Macrophages Infected with Porcine Reproductive and Respiratory Syndrome Virus. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/31/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Yuming Li
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Zhuanchang Wu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Pengfei Qi
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Yuanyuan Shi
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| |
Collapse
|
13
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
14
|
Enhancement of innate immunity with granulocyte colony-stimulating factor did not mitigate disease in pigs infected with a highly pathogenic Chinese PRRSV strain. Vet Immunol Immunopathol 2016; 179:70-6. [PMID: 27590428 DOI: 10.1016/j.vetimm.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for one of the most economically important diseases in swine worldwide. It causes reproductive failure in sows and pneumonia in pigs that predisposes them to secondary bacterial infections. Methods to control PRRSV and/or limit secondary bacterial infections are desired to reduce the impact of this virus on animal health. Neutrophils play a major role in combatting infection; they can act as phagocytes as well as produce and release lytic enzymes that have potent antimicrobial effects leading to the destruction and clearance of bacterial pathogens. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that controls the production, differentiation and function of granulocytes (including neutrophils) from the bone marrow. Recent work from our laboratory has shown that encoding porcine G-CSF in a replication-defective adenovirus (Ad5-G-CSF) and delivering a single dose to pigs induced a neutrophilia lasting more than two weeks. As secondary bacterial infection is a common occurrence following PRRSV infection, particularly following challenge with highly pathogenic (HP)-PRRSV, the aim of the current study was to evaluate the effectiveness of a single prophylactic dose of adenovirus-encoded G-CSF to mitigate secondary bacterial disease associated with HP-PRRSV infection. Administration of Ad5-G-CSF induced a significant neutrophilia as expected. However, between 1 and 2days following HP-PRRSV challenge the number of circulating neutrophils decreased dramatically in the HP-PRRSV infected group, but not the non-infected Ad5-G-CSF group. Ad5-G-CSF administration induced monocytosis as well, which was also reduced by HP-PRRSV challenge. There was no difference in the progression of disease between the Ad5-G-CSF and Ad5-empty groups following HP-PRRSV challenge, with pneumonia and systemic bacterial infection occurring in both treatment groups. Given the impact of HP-PRRSV infection on the neutrophilia induced by the Ad5-G-CSF administration, additional studies are warranted to evaluate the timing of Ad5-G-CSF induced neutrophilia and multiple G-CSF inoculations on protection against secondary bacterial infection following PRRSV infection. Nevertheless, this study may provide insight into the pathogenesis of HP-PRRSV.
Collapse
|
15
|
Yu Z, Huang C, Zhang Q, Feng WH. Porcine reproductive and respiratory syndrome virus (PRRSV) induces IL-12p40 production through JNK-AP-1 and NF-κB signaling pathways. Virus Res 2016; 225:73-81. [PMID: 27663131 DOI: 10.1016/j.virusres.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects monocyte/macrophage cells and modulates cytokine production to regulate host immune response. IL-12p40 is the basic subunit of IL-12, a heterodimeric cytokine, which plays key roles in the cell-mediated immune response. In the present study, we demonstrated that PRRSV infection induced IL-12p40 production in vitro and in vivo. Subsequently, we showed that inhibitors of p38 MAPK, JNK, and NF-κB dramatically reduced PRRSV-induced IL-12p40 expression. To further characterize the molecular mechanism of IL-12p40 production induced by PRRSV infection, we cloned and analyzed the porcine IL-12p40 promoter, in which AP-1 and NF-κB motifs were found. In addition, both JNK-AP-1 and NF-κB signaling pathways were activated by PRRSV infection. Taken together, these data indicate that PRRSV induces IL-12p40 expression through the JNK-AP-1 and NF-κB signaling pathways. Our findings might facilitate our understanding of the molecular mechanisms of IL-12 production induced by PRRSV infection.
Collapse
Affiliation(s)
- Zhibin Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiong Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J 2015; 212:1-6. [PMID: 27256017 DOI: 10.1016/j.tvjl.2015.10.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/27/2015] [Accepted: 10/10/2015] [Indexed: 11/21/2022]
Abstract
Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens.
Collapse
|
17
|
Different clinical, virological, serological and tissue tropism outcomes of two new and one old Belgian type 1 subtype 1 porcine reproductive and respiratory virus (PRRSV) isolates. Vet Res 2015; 46:37. [PMID: 25885416 PMCID: PMC4367851 DOI: 10.1186/s13567-015-0166-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
In this study, the pathogenic behavior of PRRSV 13V091 and 13V117, isolated in 2013 from two different Belgian farms with enzootic respiratory problems shortly after weaning in the nursery, were compared with the Belgian strain 07V063 isolated in 2007. Full-length genome sequencing was performed to identify their origin. Twelve weeks-old pigs were inoculated intranasally (IN) with 13V091, 13V117 or 07V063 (9 pigs/group). At 10 days post inoculation (dpi), 4 animals from each group were euthanized and tissues were collected for pathology, virological and serological analysis. 13V091 infection resulted in the highest respiratory disease scores and longest period of fever. Gross lung lesions were more pronounced for 13V091 (13%), than for 13V117 (7%) and 07V063 (11%). The nasal shedding and viremia was also most extensive with 13V091. The 13V091 group showed the highest virus replication in conchae, tonsils and retropharyngeal lymph nodes. 13V117 infection resulted in the lowest virus replication in lymphoid tissues. 13V091 showed higher numbers of sialoadhesin− infected cells/mm2 in conchae, tonsils and spleen than 13V117 and 07V063. Neutralizing antibody response with 07V063 was stronger than with 13V091 and 13V117. It can be concluded that (i) 13V091 is a highly pathogenic type 1 subtype 1 PRRSV strain that replicates better than 07V063 and 13V117 and has a strong tropism for sialoadhesin− cells and (ii) despite the close genetic relationship between 13V117 and 07V063, 13V117 has an increased nasal replication and shedding, but a decreased replication in lymphoid tissues compared to 07V063.
Collapse
|
18
|
Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 2014; 202:101-11. [PMID: 25529442 PMCID: PMC7132515 DOI: 10.1016/j.virusres.2014.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Five PRRSV viral proteins are shown to inhibit type I IFN induction and signaling by targeting different intracellular signaling intermediates. PRRSV regulates the expression of IL-10 and TNFα. PRRSV modulates apoptosis during infection. MicroRNAs might play significant roles in subverting immunity for PRRSV. PRRSV escapes from adaptive immunity by impairing antigen presentation, activating Tregs, and ADE.
Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV–host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines.
Collapse
|
19
|
Transcription analysis on response of porcine alveolar macrophages to co-infection of the highly pathogenic porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Virus Res 2014; 196:60-9. [PMID: 25445346 DOI: 10.1016/j.virusres.2014.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
Abstract
Porcine respiratory disease complex (PRDC) is of great concern economically, for swine producers worldwide. Co-infections with porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhp) are considered the major causative agents of PRDC, and responsible for mass mortality in pigs. Nevertheless, the molecular mechanisms underlying the host factors involved in pathogenesis and persistent infection have not been clearly established because of a lack of information regarding host responses following co-infection. In the current study, high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages (PAM) to co-infection with highly pathogenic PRRSV (HP-PRRSV) and Mhp. A total of 2152 and 1760 genes were identified as being differentially expressed between the control group and PRRSV+Mhp co-infected group at 6 and 15 h post infection, respectively. The DE genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, defense response, signal transduction. The pathway analysis demonstrated that the most significant pathways were associated with chemokine signaling pathway, cytokine, TLR, RLR and NLR signaling pathways and Jak-STAT signaling pathway. STRING analysis demonstrated that IL-1β is an integral gene in co-infections with PRRSV and Mhp. The present study is the first to document the response of PAMs to co-infection with HP-PRRSV and Mhp. The observed gene expression profile could help with the screening of potential host agents for reducing the prevalence of co-infections, and to further develop our understanding of the molecular pathogenesis associated with PRRSV and Mhp co-infection in pigs.
Collapse
|
20
|
Identification of a single nucleotide promoter polymorphism regulating the transcription of ubiquitin specific protease 18 gene related to the resistance to porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 2014; 162:65-71. [PMID: 25446846 DOI: 10.1016/j.vetimm.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failure in sows and respiratory disease and mortality in piglets, is a major infectious disease that causes great economic loss throughout the world. Previous studies revealed that the overexpression of porcine ubiquitin specific protease 18 (USP18) gene inhibits PRRSV replication in vitro. The objective of this study is to compare the promoter activity of USP18 in Chinese indigenous Dapulian (DPL) pigs and Duroc×Landrace×Yorkshire (DLY) commercial pigs and screen single nucleotide polymorphism (SNP) affecting porcine USP18 transcription. We found that the promoter activity was significantly higher in DPL pigs than DLY commercial pigs (p<0.05), deletion of the promoter from -1790 to -1314bp decreased the transcriptional activity by roughly 60% (p<0.05) and a SNP G-1533A in this region increased the mRNA expression both prior to and post PRRSV infection in MARC-145 cells. Population genetics analysis showed that allele A was only detected in Chinese pig breeds which are generally resistant to PRRSV. These results suggest that the SNP G-1533A polymorphism in the promoter region of porcine USP18 gene is a potential DNA marker for the resistance to PRRSV.
Collapse
|
21
|
Park SJ, Seo HW, Park C, Chae C. Interaction between single-dose Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus vaccines on dually infected pigs. Res Vet Sci 2014; 96:516-22. [DOI: 10.1016/j.rvsc.2014.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
22
|
Guo B, Lager KM, Henningson JN, Miller LC, Schlink SN, Kappes MA, Kehrli ME, Brockmeier SL, Nicholson TL, Yang HC, Faaberg KS. Experimental infection of United States swine with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus. Virology 2012; 435:372-84. [PMID: 23079105 PMCID: PMC7111980 DOI: 10.1016/j.virol.2012.09.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/22/2012] [Accepted: 09/15/2012] [Indexed: 12/20/2022]
Abstract
The pathogenesis of Type 2 highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in 10-week old swine in the United States was investigated. rJXwn06, rescued from an infectious clone of Chinese HP-PRRSV, replicated in swine with at least 100-fold increased kinetics over U.S. strain VR-2332. rJXwn06 caused significant weight loss, exacerbated disease due to bacterial sepsis and more severe histopathological lung lesions in pigs exposed to HP-PRRSV than to those infected with VR-2332. Novel findings include identification of bacterial species present, the degree of thymic atrophy seen, and the inclusion of contact animals that highlighted the ability of HP-PRRSV to rapidly transmit between animals. Furthermore, comprehensive detailed cytokine analysis of serum, bronchoalveolar lavage fluid, and tracheobronchial lymph node tissue homogenate revealed a striking elevation in levels of cytokines associated with both innate and adaptive immunity in HP-PRRSV infected swine, and showed that contact swine differed in the degree of cytokine response.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Jamie N. Henningson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Sarah N. Schlink
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Matthew A. Kappes
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Susan L. Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Tracy L. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | | | - Kay S. Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
- Correspondence to: USDA, Agricultural Research Service, Virus and Prion Research Unit, Mailstop 2S-209, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA 50010. Fax: +1 515 337 7428.
| |
Collapse
|
23
|
Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-κB signaling pathway. J Virol 2012; 86:7625-36. [PMID: 22573868 DOI: 10.1128/jvi.00177-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects macrophages/dendritic cells and modulates cytokine expression in these cells. Interleukin-15 (IL-15) is a pleiotropic cytokine involved in wide range of biological activities. It has been shown to be essential for the generation, activation, and proliferation of NK and NKT cells and for the survival and activation of CD8(+) effector and memory T cells. In this study, we discovered that PRRSV infection upregulated IL-15 production at both the mRNA and protein levels in porcine alveolar macrophages (PAMs), blood monocyte-derived macrophages (BMo), and monocyte-derived dendritic cells (DCs). We subsequently demonstrated that the NF-κB signaling pathway was essential for PRRSV infection-induced IL-15 production. First, addition of an NF-κB inhibitor drastically reduced PRRSV infection-induced IL-15 production. We then found that NF-κB was indeed activated upon PRRSV infection, as evidenced by IκB phosphorylation and degradation. Moreover, we revealed an NF-κB binding motif in the cloned porcine IL-15 (pIL-15) promoter, deletion of which abrogated the pIL-15 promoter activity in PRRSV-infected alveolar macrophages. In addition, we demonstrated that PRRSV nucleocapsid (N) protein had the ability to induce IL-15 production in porcine alveolar macrophage cell line CRL2843 by transient transfection, which was mediated by its multiple motifs, and it also activated NF-κB. These data indicated that PRRSV infection-induced IL-15 production was likely through PRRSV N protein-mediated NF-κB activation. Our findings provide new insights into the molecular mechanisms underling the IL-15 production induced by PRRSV infection.
Collapse
|
24
|
Wongyanin P, Buranapraditkul S, Yoo D, Thanawongnuwech R, Roth JA, Suradhat S. Role of porcine reproductive and respiratory syndrome virus nucleocapsid protein in induction of interleukin-10 and regulatory T-lymphocytes (Treg). J Gen Virol 2012; 93:1236-1246. [PMID: 22422061 DOI: 10.1099/vir.0.040287-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection induces interleukin (IL)-10 production and increased numbers of PRRSV-specific regulatory T-lymphocytes in infected pigs. In the present study, the roles of the nucleocapsid (N) protein in induction of IL-10 and CD4(+)CD25(+)Foxp3(+) lymphocytes (T(reg)) were investigated. Transfection of porcine monocyte-derived dendritic cells (MoDCs) and pulmonary alveolar macrophages (PAMs) with a plasmid encoding N protein resulted in significant upregulation of IL-10 gene expression in the gene-transfected cells. Structural conformation, but not nuclear localization, of the expressed N protein was indicated to be essential for the ability to induce IL-10. Furthermore, the presence of recombinant N proteins in cultured PBMCs increased the number of IL-10-producing lymphocytes. Strong induction of IL-10-producing cells and T(reg) was observed when using N protein-pulsed MoDCs, suggesting an important role of MoDCs in induction of IL-10 and T(reg) by the N protein. Neutralization of IL-10 by addition of an anti-IL-10 antibody in the culture system resulted in marked reduction of PRRSV-induced T(reg) in the cultured PBMCs. Together, the data demonstrate the immunomodulatory properties of the PRRSV N protein and the linkage between IL-10 production and development of PRRSV-induced T(reg). Our results reveal an immunomodulatory function of the PRRSV N protein that may contribute to the unique immunological outcome observed following PRRSV infection.
Collapse
Affiliation(s)
- Piya Wongyanin
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supranee Buranapraditkul
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | - James A Roth
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanipa Suradhat
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Lawson SR, Li Y, Patton JB, Langenhorst RJ, Sun Z, Jiang Z, Christopher-Hennings J, Nelson EA, Knudsen D, Fang Y, Chang KO. Interleukin-1β expression by a recombinant porcine reproductive and respiratory syndrome virus. Virus Res 2011; 163:461-8. [PMID: 22119401 PMCID: PMC7114469 DOI: 10.1016/j.virusres.2011.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/03/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
The cytokine interleukin-1 beta (IL-1β) is a potent inflammatory mediator in response to infection, and can be used as an immunological adjuvant. In this study, we constructed a recombinant porcine reproductive and respiratory syndrome virus (vP129/swIL1β) expressing swine IL-1β from the separate subgenomic mRNA inserted between the ORF1b and ORF2 genome region. MARC-145 cells infected with vP129/swIL1β secreted 1947 pg of IL-1β per 2 × 10(5)cells at 36 h post-infection. In vitro growth kinetics analysis in MARC-145 cells showed that the vP129/swIL1β virus had a similar replication rate as that of parental virus. We further performed in vivo characterization of the vP129/swIL1β virus in a nursery pig disease model. The vP129/swIL1β infected pigs did not show visible clinical signs, while respiratory distress and lethargy were evident in pigs infected with the parental virus. The expression of various cytokines from peripheral blood mononuclear cells measured by fluorescent microsphere immunoassay showed that IL-1β, IL-4 and IFN-γ expression levels were up-regulated in pigs infected with vP129/swIL1β at 7 and 14 days post-infection. However, no detectable level of IL-1β was found in serum samples from pigs infected with either vP129/swIL1β or parental virus. In summary, this study demonstrated a recombinant PRRSV as a useful tool to study the role of different cytokines in disease progression and immune responses, which represents a new strategy for future therapeutic application and vaccine development.
Collapse
Affiliation(s)
- Steven R Lawson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
27
|
Opriessnig T, Halbur PG. Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 2011; 164:20-32. [PMID: 21959087 PMCID: PMC7114432 DOI: 10.1016/j.virusres.2011.09.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the essential component of porcine circovirus disease (PCVD) as the disease syndrome is referred to in Europe and porcine circovirus associated disease (PCVAD) as it is referred to in North America. Singular PCV2 infection rarely results in clinical disease; however, PCVAD is often accelerated in onset, enhanced in severity and prolonged in duration by concurrent viral or bacterial infections. Due to its effect on the immune system, PCV2 has also been shown to enhance protozoal, metazoal, and fungal infections. Several retrospective or cross-sectional studies have investigated the presence and prevalence of various infectious agents associated with PCVAD under field conditions. Experimental models confirm that PCV2 replication and associated lesions can be enhanced by concurrent infection with other viruses or bacteria. The exact mechanisms by which concurrent pathogens upregulate PCV2 are unknown. Co-infections may promote PCV2 infection by increasing immune host cell replication and accumulation in tissues thereby enhancing targets for PCV2 replication. It has also been proposed that co-infections interfere with PCV2 clearance by alteration of cytokine production and profiles. The outcome of differences in timing of co-infections in PCV2-infected pigs is also likely very important and is an area where more research is needed. Given the current knowledge base, it is important that veterinarians do a thorough diagnostic investigation on herds where PCVAD is a recurrent problem in order to implement the most appropriate and cost effective intervention strategies.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | | |
Collapse
|
28
|
Wang G, Song T, Yu Y, Liu Y, Shi W, Wang S, Rong F, Dong J, Liu H, Cai X, Zhou EM. Immune responses in piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2011; 142:170-8. [PMID: 21612828 DOI: 10.1016/j.vetimm.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/05/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection compromises the host's innate and adaptive immunity. The aim of this study was to investigate the immune responses of piglets infected with highly pathogenic (HP) PRRSV (HuN4 strain) with or without the immunization with CH-1R attenuated PRRSV vaccine. The response was evaluated for the clinical signs, pathological changes and virus load in immune organs, antibody responses and levels of serum IFN-γ, IL-4 and IL-10. The result showed that in comparison with the piglets received the immunization, the piglets infected with HP-PRRSV alone had the thymus atrophy, decreased serum levels of IL-4 and increased serum levels of IL-10 and INF-γ. These results suggest that elevated IL-10 levels at the early stage of the infection may enhance virus survival and delay the induction of protective immunity, while increased levels of IL-4 induce the effective immune responses and increase the animals' health status.
Collapse
Affiliation(s)
- Gang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sørensen KK, Gregersen VR, Christensen OF, Velander IH, Bendixen C. Genomic regions associated with ventro-cranial chronic pleuritis in pig. J Anim Breed Genet 2011; 128:314-8. [PMID: 21749478 DOI: 10.1111/j.1439-0388.2010.00914.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ventro-cranial chronic pleuritis can be a result of pleuropneumonia and enzootic pneumonia. These diseases cause severe losses in intensive pig production worldwide, but host resistance is difficult to breed for. It could be beneficial to use marker-assisted selection, and a step towards this is to identify genomic regions associated with the trait. For this purpose, 7304 pigs from 11 boar families were analysed for associations between single nucleotide polymorphisms and ventro-cranial chronic pleuritis. The pigs were genotyped by the use of the iSelect Custom 7 K porcine SNP Chip. Quantitative trait loci (QTL), significant at the chromosome-wide level, were identified on Sus scrofa chromosomes (SSC) 2, 4, 11, 12 and 13 in four different boar families. The QTL on SSC 4 in family G was also significant at the genome-wide threshold according to Bonferroni correction. We have identified a number of candidate genes, but the causative mutations still need to be identified. Markers closely associated with the resistance traits have a strong potential for use in breeding towards animals with improved characteristics concerning ventro-cranial chronic pleuritis.
Collapse
Affiliation(s)
- K K Sørensen
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Tjele, Denmark
| | | | | | | | | |
Collapse
|
30
|
Che TM, Johnson RW, Kelley KW, Van Alstine WG, Dawson KA, Moran CA, Pettigrew JE. Mannan oligosaccharide improves immune responses and growth efficiency of nursery pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci 2011; 89:2592-602. [PMID: 21454863 DOI: 10.2527/jas.2010-3208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to determine whether the ingestion of mannan oligosaccharide (MOS, Bio-Mos) alters the immune response of nursery pigs challenged with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 64 pigs (3 wk old), free of PRRSV, were used in 2 separate but similar experiments conducted sequentially. Pigs were blocked by initial BW. Sex and ancestry were equalized across treatments. Pigs were randomly assigned from within blocks to 1 of 4 treatments in a 2 × 2 factorial arrangement [2 types of diet: control (0%) and MOS addition (0.2%); 2 levels of PRRSV: with and without]. There were 8 replicate chambers of 2 pigs each. After 2 wk of a 4-wk period of feeding the treatments, pigs were intranasally inoculated with PRRSV or a sterile medium at 5 wk of age. The PRRSV challenge decreased ADG, ADFI, and G:F throughout the experiment (P < 0.001). Feeding MOS improved G:F of the pigs during d 7 to 14 (P=0.041) postinfection (PI). Serum concentrations of tumor necrosis factor (TNF)-α, C-reactive protein, and haptoglobin were increased by PRRSV (P < 0.001). The MOS × PRRSV interaction was significant for TNF-α at d 14 PI (P=0.028), suggesting that infected pigs fed MOS had less TNF-α than those fed the control. Dietary MOS increased serum IL-10 at d 14 PI (P=0.036). Further, MOS-fed pigs had greater numbers of white blood cells (WBC) at d 3 (P=0.048) and 7 PI (P=0.042) and lymphocytes at d 7 PI (P=0.023) than control-fed pigs. In contrast, PRRSV decreased (P < 0.01) WBC numbers until d 14 PI. Dietary MOS appeared (P=0.060) to increase the neutrophils in PRRSV-infected pigs at d 3 PI, but no (P=0.202) MOS × PRRSV interaction was found. Infection with PRRSV increased rectal temperature (RT) of pigs at d 3 PI (P < 0.001) and continued to affect the infected pigs fed the control diet until d 14 PI. The MOS × PRRSV interaction for RT was found at d 7 (P < 0.01) and 10 (P=0.098) PI, indicating that the infected pigs fed MOS had a decreased RT compared with those fed the control. This could explain why feed efficiency was improved by MOS. No effect (P > 0.05) of treatments on viremia or PRRSV-specific antibody was observed. These results suggest that MOS is associated with rapidly increased numbers of WBC at the early stage of infection and alleviates PRRSV-induced effects on G:F and fever. The results also indicate that the reduced intensity of inflammation by MOS may be related to changes in inflammatory mediator levels at the end of the acute phase.
Collapse
Affiliation(s)
- T M Che
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Thanawongnuwech R, Suradhat S. Taming PRRSV: revisiting the control strategies and vaccine design. Virus Res 2010; 154:133-40. [PMID: 20851723 DOI: 10.1016/j.virusres.2010.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat, causing economically significant impacts on the swine industry worldwide. In this article, we share the information related to the Thai PRRSV and review the available options for PRRS control strategies. Unfortunately, the traditional control strategies and conventional vaccines fail to provide sustainable disease control, as they suffer from both antigenic heterogeneity and various immune evasion strategies of PRRSV. Induction of interleukin (IL)-10 following PRRSV infection is believed to be a focal mechanism leading to the unique immunological outcomes and interference of PRRS vaccine efficacy. It is likely that the nucleocapsid protein plays an important role in induction of IL-10 following PRRSV infection. We propose that removal or reduction of the PRRSV-induced, negative immunomodulatory effects especially during the first 2 weeks following infection is essential to establish proper anti-PRRSV immunity. In other word, incorporation of the "taming strategy" will be needed to reduce PRRSV-induced immunomodulatory effects, and to ensure maximal vaccine-induced immunity in the face of viral exposure. Any PRRSV vaccine that can induce cross-protective immunity and simultaneously eliminate the immunoinhibitory effects of PRRSV would be ideal. In addition, tracking of the inhibitory parameters, following the PRRSV challenge should be included in the vaccine testing protocol. Therefore, the future of PRRSV vaccine development relies tremendously on the basic knowledge of host-virus interactions and the communication between the basic and clinical PRRSV research fields.
Collapse
Affiliation(s)
- Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | | |
Collapse
|
32
|
Lunney JK, Fritz ER, Reecy JM, Kuhar D, Prucnal E, Molina R, Christopher-Hennings J, Zimmerman J, Rowland RRR. Interleukin-8, interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral Immunol 2010; 23:127-34. [PMID: 20373993 DOI: 10.1089/vim.2009.0087] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection with porcine reproductive and respiratory syndrome virus (PRRSV) results in a weak antiviral immune response that leads to a persistent infection in a subset of pigs. We investigated the intensity and timing of the early cytokine responses to PRRSV infection to determine their utility as a predictor of persistence. As part of the "Big Pig" project, we evaluated cytokine gene expression in lymphoid tissues collected from pigs for up 202 days post-infection (dpi); serum samples were collected biweekly. Cytokine mRNA levels were compared between pigs that cleared the viral infection from serum and tissues (non-persistent [NP] pigs) to those of persistent (P) pigs, that had viral RNA in their serum for up to 126 dpi. The gene expression studies in the tracheobronchial lymph nodes (TBLN) of all the pigs showed upregulation of interferon-gamma (IFN-gamma)-associated T-helper 1 (Th-1) markers from 14-84 dpi, and of T-regulatory interleukin-10 (IL-10), but no upregulation of innate markers (IFN-A, IL-1B, and IL-8). At later time points (>112 dpi) these genes were no longer differentially expressed and thus were uninformative for persistence studies. Statistical analyses of serum cytokine levels indicated that innate cytokine (IL-1beta and IL-8) levels were upregulated early after infection. Interestingly, serum IL-8 levels in NP pigs were significantly higher than in P pigs at 14 dpi. When analyzed together, variations in all three of the serum cytokines tested (IL-8, IL-1beta, and IFN-gamma) was significantly correlated with virus level, accounting for approximately 84% of the variations observed. These results indicate that while each cytokine individually has minor effects on the length of virus replication, the combination of cytokine activities should be considered when understanding the role of immunity in persistence.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoo D, Song C, Sun Y, Du Y, Kim O, Liu HC. Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res 2010; 154:48-60. [PMID: 20655963 PMCID: PMC7114477 DOI: 10.1016/j.virusres.2010.07.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/24/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Klinge KL, Vaughn EM, Roof MB, Bautista EM, Murtaugh MP. Age-dependent resistance to Porcine reproductive and respiratory syndrome virus replication in swine. Virol J 2009; 6:177. [PMID: 19860914 PMCID: PMC2773768 DOI: 10.1186/1743-422x-6-177] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/27/2009] [Indexed: 12/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes a prolonged, economically devastating infection in pigs, and immune resistance to infection appears variable. Since the porcine adaptive immune system is not fully competent at birth, we hypothesized that age influences the dynamics of PRRSV infection. Thus, young piglets, growing 16-20-week-old finisher pigs, and mature third parity sows were infected with virulent or attenuated PRRSV, and the dynamics of viral infection, disease, and immune response were monitored over time. Results Virulent PRRSV infection and disease were markedly more severe and prolonged in young piglets than in finishers or sows. Attenuated PRRSV in piglets also produced a prolonged viremia that was delayed and reduced in magnitude, and in finishers and sows, about half the animals showed no viremia. Despite marked differences in infection, antibody responses were observed in all animals irrespective of age, with older pigs tending to seroconvert sooner and achieve higher antibody levels than 3-week-old animals. Interferon γ (IFN γ) secreting peripheral blood mononuclear cells were more abundant in sows but not specifically increased by PRRSV infection in any age group, and interleukin-10 (IL-10) levels in blood were not correlated with PRRSV infection status. Conclusion These findings show that animal age, perhaps due to increased innate immune resistance, strongly influences the outcome of acute PRRSV infection, whereas an antibody response is triggered at a low threshold of infection that is independent of age. Prolonged infection was not due to IL-10-mediated immunosuppression, and PRRSV did not elicit a specific IFN γ response, especially in non-adult animals. Equivalent antibody responses were elicited in response to virulent and attenuated viruses, indicating that the antigenic mass necessary for an immune response is produced at a low level of infection, and is not predicted by viremic status. Thus, viral replication was occurring in lung or lymphoid tissues even though viremia was not always observed.
Collapse
Affiliation(s)
- Kelly L Klinge
- Boehringer Ingelheim Vetmedica Inc, 2501 North Loop Drive, Suite 1000, Ames, IA, 50014, USA.
| | | | | | | | | |
Collapse
|
35
|
Gómez-Laguna J, Salguero FJ, De Marco MF, Pallarés FJ, Bernabé A, Carrasco L. Changes in lymphocyte subsets and cytokines during European porcine reproductive and respiratory syndrome: increased expression of IL-12 and IL-10 and proliferation of CD4(-)CD8(high). Viral Immunol 2009; 22:261-71. [PMID: 19594397 DOI: 10.1089/vim.2009.0003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The changes in peripheral blood mononuclear cells (PBMCs) have been studied in several reports in an attempt to determine the immune response against porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, how these changes are evoked after PRRSV infection has not yet been clarified. The aim of this study was to analyze the changes seen in lymphocyte subsets and immunomodulatory cytokine expression in pigs after an acute experimental infection with a European PRRSV field isolate. Pigs were inoculated intramuscularly with PRRSV field isolate 2982. Samples from blood, medial retropharyngeal and tracheobronchial lymph nodes, and spleen were collected at different time points for flow cytometry studies and for cytokine expression by ELISA. CD21(+) cell counts increased in PBMCs and tracheobronchial lymph node cells from 17 to 24 dpi, coinciding with an increase in PRRSV-specific antibody titer in blood. CD3(+) T-cell counts increased mainly due to an enhancement of CD4(-)CD8(high) and CD4(+)CD8(+) T cells. CD4(-)CD8(low) T cells were decreased in all organs studied, whereas CD4(+)CD8(-) T cells decreased only in the spleen. The drop in viremia correlated with an enhancement of CD4(-)CD8(high) T cells, and with a higher expression of interleukin-10 (IL-10) and interleukin-12 p40 (IL-12 p40). No efficient interferon-gamma (IFN-gamma) response was detected during the acute phase of the infection, and the expression of interferon-alpha (IFN-alpha) was late and reached its maximum expression once the viremia decreased. These results point to IL-10 and IL-12 as cytokines that might play a significant role in the PRRSV immune response, as may CD4(-)CD8(high) T cells.
Collapse
Affiliation(s)
- Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Córdoba University, Campus de Rabanales, Edificio de Sanidad Animal, Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Costers S, Lefebvre DJ, Goddeeris B, Delputte PL, Nauwynck HJ. Functional impairment of PRRSV-specific peripheral CD3+CD8high cells. Vet Res 2009; 40:46. [PMID: 19445889 PMCID: PMC2701180 DOI: 10.1051/vetres/2009029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 05/14/2009] [Indexed: 12/13/2022] Open
Abstract
The replication of porcine reproductive and respiratory syndrome virus (PRRSV) in lungs and lymphoid tissues of PRRSV-infected pigs is already strongly reduced before the appearance of neutralizing antibodies, indicating that other immune mechanisms are involved in eliminating PRRSV at those sites. This study aimed to determine whether PRRSV Lelystad virus (LV)-specific cytotoxic T-lymphocytes (CTL) can efficiently eliminate PRRSV-infected alveolar macrophages. Therefore, CTL assays were performed with PRRSV-infected alveolar macrophages as target cells and autologous peripheral blood mononuclear cells (PBMC) from PRRSV-infected pigs as a source of PRRSV-specific CTL. PBMC of 3 PRRSV-infected pigs were used either directly in CTL assays, or following restimulation in vitro. CTL assays with pseudorabies virus (PRV) Begonia-infected alveolar macrophages and autologous PBMC, from 2 PRV Begonia-inoculated pigs, were performed for validation of the assays. In freshly isolated PBMC, derived from PRRSV-infected pigs, CTL activity towards PRRSV-infected macrophages was not detected until the end of the experiment (56 days post infection-dpi). Restimulating the PBMC with PRRSV in vitro resulted in proliferation of CD3+CD8high cells starting from 14 dpi. Although CD+CD8high cells are generally considered to be CTL, CTL activity was not detected in PRRSV-restimulated PBMC of the 3 pigs until 49 dpi. A weak PRRSV-specific CTL activity was observed only at 56 dpi in PRRSV-restimulated PBMC of one pig. In contrast, a clear CTL activity was observed in PRV Begonia-restimulated PBMC, derived from PRV Begonia-infected pigs, starting from 21 dpi. This study indicates that PBMC of PRRSV-infected pigs contain proliferating CD3+CD8high cells upon restimulation in vitro, but these PBMC fail to exert CTL activity towards PRRSV-infected alveolar macrophages.
Collapse
Affiliation(s)
- Sarah Costers
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Histopathological and Immunohistochemical Findings in the Lungs of Pigs Infected Experimentally with Mycoplasma hyopneumoniae. J Comp Pathol 2009; 140:260-70. [DOI: 10.1016/j.jcpa.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 12/06/2008] [Indexed: 11/23/2022]
|
38
|
Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, Giuffra E. Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 2008; 89:2550-2564. [PMID: 18796724 PMCID: PMC2885007 DOI: 10.1099/vir.0.2008/003244-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.
Collapse
Affiliation(s)
- Sem Genini
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Peter L Delputte
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Maria Cecere
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Alessandra Stella
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Hans J Nauwynck
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
39
|
Sang Y, Ross CR, Rowland RR, Blecha F. Toll-like Receptor 3 Activation Decreases Porcine Arterivirus Infection. Viral Immunol 2008; 21:303-13. [DOI: 10.1089/vim.2008.0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yongming Sang
- Departments of Anatomy and Physiology and Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Chris R. Ross
- Departments of Anatomy and Physiology and Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raymond R.R. Rowland
- Departments of Anatomy and Physiology and Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Frank Blecha
- Departments of Anatomy and Physiology and Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
40
|
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295:L240-63. [PMID: 18487356 DOI: 10.1152/ajplung.90203.2008] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Collapse
Affiliation(s)
- Christopher S Rogers
- Department of Internal Medicine, Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Charerntantanakul W, Platt R, Roth JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral Immunol 2007; 19:646-61. [PMID: 17201660 DOI: 10.1089/vim.2006.19.646] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of porcine reproductive and respiratory syndrome virus (PRRSV) to suppress T cell expression of CD25 (alpha chain of interleukin [IL]-2 receptor), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) was determined by flow cytometry in naive porcine T cells in response to mitogen (concanavalin A) and cytokine inducers (phorbol 12-myristate 13-acetate plus ionomycin [PMA/I]). Four PRRSV isolates of varying clinical virulence and three different types of porcine myeloid antigen-presenting cells (APCs) were used. T cells cultured with monocytes infected with virulent PRRSV (VR-2385, SDSU-73, and VR-2332), but not with a vaccine strain (Ingelvac PRRS MLV; Boehringer Ingelheim Vetmedica, St. Joseph, MO), demonstrated significantly reduced CD25 expression (%CD25(+)) and IFN-gamma expression (%IFN-gamma (+)) compared with T cells incubated with uninoculated monocyte cultures. T cells cultured with monocytes infected with all four PRRSV isolates demonstrated significantly reduced %TNF-alpha (+). The significant reduction of %CD25(+), %IFN-gamma (+), and %TNF-alpha (+) was not detected in T cells cultured with monocyte-derived macrophages (MDMs) and immature monocyte-derived dendritic cells (MDCs) infected with any PRRSV isolates. Heat-inactivated PRRSV did not induce significantly reduced T cell responses in any APC cultures. The reduction of T cell response in monocyte cultures was not due to PRRSV-induced T cell death. Gene expression of IL-10 detected by semiquantitative reverse transcriptase-polymerase chain reaction was significantly increased in virulent PRRSV-infected monocyte cultures after PMA/I, but not concanavalin A, stimulation compared with IL-10 gene expression from uninoculated monocyte cultures. Increased IL-10 gene expression contributed to significantly reduced %IFN-gamma (+) and %TNF-alpha (+), but not %CD25(+), as determined by IL-10 neutralization assay. This study reports that PRRSV has the ability to suppress T cell responses. The suppressive ability of PRRSV is associated with viral virulence and is mediated by virus-infected monocytes, but not by virus-infected MDMs and immature MDCs.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | |
Collapse
|
42
|
Rodríguez F, Quesada O, Poveda JB, Fernández A, Lorenzo H. Immunohistochemical Detection of Interleukin-12 and Interferon-γ in Pigs Experimentally Infected with Mycoplasma hyopneumoniae. J Comp Pathol 2007; 136:79-82. [PMID: 17258224 DOI: 10.1016/j.jcpa.2006.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The expression of interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) was examined immunohistochemically in the lungs of pigs aged 21 days infected experimentally with Mycoplasma hyopneumoniae (Mh). Ten pigs were inoculated intranasally with Mh and killed in pairs weekly from 7 to 35 days post-infection (dpi). Immunolabelling for IL-12 and IFN-gamma was usually associated with inflammation, particularly in macrophages and lymphocytes in the thickened alveolar septa and in the hyperplastic bronchus-associated lymphoid tissue (BALT). Cells positive for both cytokines were detected at 7 dpi, their numbers increasing at 14 and 21 dpi, and slightly decreasing thereafter. The results suggest that IL-12 and IFN-gamma play a role in pulmonary defence mechanisms against Mh infection.
Collapse
Affiliation(s)
- F Rodríguez
- Department of Comparative Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Gran Canaria, Spain.
| | | | | | | | | |
Collapse
|
43
|
Cafruny WA, Duman RG, Wong GHW, Said S, Ward-Demo P, Rowland RRR, Nelson EA. Porcine reproductive and respiratory syndrome virus (PRRSV) infection spreads by cell-to-cell transfer in cultured MARC-145 cells, is dependent on an intact cytoskeleton, and is suppressed by drug-targeting of cell permissiveness to virus infection. Virol J 2006; 3:90. [PMID: 17081295 PMCID: PMC1635561 DOI: 10.1186/1743-422x-3-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 11/02/2006] [Indexed: 12/31/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs. Results Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2. Conclusion The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.
Collapse
Affiliation(s)
- William A Cafruny
- Division of Basic Biomedical Science, Sanford School ofMedicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Richard G Duman
- Division of Basic Biomedical Sciences, Sanford School ofMedicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Grace HW Wong
- Actokine Therapeutics, 12 Middlesex Rd. Chestnut Hill, MA02467, USA
| | - Suleman Said
- Division of Basic Biomedical Sciences, Sanford School ofMedicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Pam Ward-Demo
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Raymond RR Rowland
- Department of Diagnostic Medicine and Pathobiology, KansasState University, Manhattan, KS 66506, USA
| | - Eric A Nelson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
44
|
de Castro LA, Rodrigues Pedroso T, Kuchiishi SS, Ramenzoni M, Kich JD, Zaha A, Henning Vainstein M, Bunselmeyer Ferreira H. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol 2006; 116:258-69. [PMID: 16730926 DOI: 10.1016/j.vetmic.2006.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 11/28/2022]
Abstract
The Mycoplasma hyopneumoniae genome contains at least 22 regions with a variable number of tandem nucleotide repeats (VNTRs) within coding DNA sequences (CDSs). In this work, the VNTR-containing CDSs were analysed in order to evaluate their degree of variation, possible correlations with antigenic properties, and their potential to be used as a basis for a strain typing PCR assay. We have analysed the VNTRs in five M. hyopneumoniae strains (J, 7448, 7422, PMS, and 232), based on published genomic sequences and on amplified and sequenced DNA segments. These VNTRs are distributed among 12 genes, most of which encode putative surface proteins, including known adhesins. The number of repeat units in any of the VNTRs is highly variable among the analysed strains, but they are, without exception, translationally in frame, and, therefore, code for a variable number of aminoacid repeats (VNTARs). These VNTARs determine putative structural, physicochemical and antigenic variations in the corresponding proteins, with potential implications for aspects associated to M. hyopneumoniae pathogenicity, such as cell adhesion and interactions with the host immune system. Considering that the characterized VNTARs are relatively stable, at least in vitro, and their sizes are strain-specific, we have developed a VNTR-based PCR assay for M. hyopneumoniae strain identification, useful for enzootic pneumonia (EP) diagnosis, strain typing, and distinction of circulating field isolates from vaccine strains in animals vaccinated against EP.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Adhesion/genetics
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Base Sequence
- Blotting, Southern
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- Genes, Bacterial
- Genetic Variation
- Molecular Sequence Data
- Mycoplasma hyopneumoniae/genetics
- Mycoplasma hyopneumoniae/pathogenicity
- Pneumonia of Swine, Mycoplasmal/microbiology
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/veterinary
- Sequence Alignment/veterinary
- Sequence Analysis, DNA
- Swine
- Tandem Repeat Sequences/genetics
- Tandem Repeat Sequences/immunology
Collapse
|
45
|
Lorenzo H, Quesada O, Assunçao P, Castro A, Rodríguez F. Cytokine expression in porcine lungs experimentally infected with Mycoplasma hyopneumoniae. Vet Immunol Immunopathol 2005; 109:199-207. [PMID: 16325264 DOI: 10.1016/j.vetimm.2005.07.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
To gain further insight into the pathogenesis of porcine enzootic pneumonia (PEP), cytokine expression in different pulmonary compartments was examined. Mycoplasma hyopneumoniae (Mh) and proinflammatory and immunoregulatory cytokines (IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-alpha) were detected by immunohistochemical methods in porcine lungs experimentally infected with Mh. Ten pigs were inoculated intranasally with Mh and killed in pairs weekly from 1- to 5-week post-inoculation (wpi). Three Mh-free pigs were taken as controls. Mh-antigen was shown in paraffin-wax-embedded tissues by immunohistochemistry in the luminal surface of bronchial and bronchiolar epithelial cells of all Mh-infected pigs. Significant increase in cytokine expression was detected on snap-frozen tissues from the bronchoalveolar exudate of the airways, mononuclear cells of the alveolar septa and macrophages and lymphocytes of the peribronchial and peribronchiolar lymphoid tissue, from 1 wpi onwards, compared to expression in non-pneumonic lungs. The main cytokines in the BALT of Mh-infected animals that showed an increase were IL-2, IL-4, IL-8, IL-10 and TNF-alpha. In the alveolar septa and bronchoalveolar exudate IL-1 (alpha and beta), IL-2, IL-4, IL-8 and IL-10 expression also increased in infected animals.
Collapse
Affiliation(s)
- Héctor Lorenzo
- Department of Comparative Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Gran Canaria, Spain
| | | | | | | | | |
Collapse
|
46
|
Lowe JE, Husmann R, Firkins LD, Zuckermann FA, Goldberg TL. Correlation of cell-mediated immunity against porcine reproductive and respiratory syndrome virus with protection against reproductive failure in sows during outbreaks of porcine reproductive and respiratory syndrome in commercial herds. J Am Vet Med Assoc 2005; 226:1707-11. [PMID: 15906573 DOI: 10.2460/javma.2005.226.1707] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether cell-mediated immunity against porcine reproductive and respiratory syndrome (PRRS) virus is correlated with protection against reproductive failure in sows during clinical outbreaks of PRRS in commercial herds. DESIGN Outbreak investigation in 4 swine breeding herds. ANIMALS 97 sows. PROCEDURES On each farm, blood samples were collected from sows with clinical signs (abortion or increased fetal death; case sows) and from clinically normal sows (control sows). The intensity of the cell-mediated immune (CMI) response was determined by use of an interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Multiple logistic regression analyses and t tests were used to compare ELISPOT assay values between case and control sows. Multiple linear regression was used to investigate associations between cell-mediated immunity and the magnitude of clinical signs. RESULTS In 2 farms, case sows had lower ELISPOT assay values than control sows. A negative association between the intensity of the CMI response and the number of pigs born dead per litter was detected on 1 farm. In 1 farm, no association was detected between the intensity of the CMI response and protection against reproductive failure. CONCLUSIONS AND CLINICAL RELEVANCE Evidence that a strong CMI response was correlated with protection against clinical PRRS was detected in 3 of 4 farms. However, farms and sows within farms varied considerably in their immune responsiveness and in the degree to which they were protected clinically. Increasing cell-mediated immunity within infected herds has the potential to decrease clinical reproductive disease, but only if the sources of intra- and interfarm variation in the intensity of cell-mediated immunity to PRRS virus can be identified.
Collapse
Affiliation(s)
- James E Lowe
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
47
|
Thanawongnuwech R, Thacker B, Halbur P, Thacker EL. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:901-8. [PMID: 15358650 PMCID: PMC515260 DOI: 10.1128/cdli.11.5.901-908.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of the proinflammatory cytokines interleukin-1 (IL-1) (alpha and beta), IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor alpha (TNF-alpha) in pulmonary alveolar macrophages (PAMs) was assessed following experimental infection with porcine reproductive and respiratory syndrome virus (PRRSV) and/or Mycoplasma hyopneumoniae by using in vivo and in vitro models. The in vivo model consisted of pigs infected with PRRSV and/or M. hyopneumoniae and necropsied at 10, 28, or 42 days postinfection. Pigs infected with both pathogens had a greater percentage of macroscopic lung lesions, increased clinical disease, and slower viral clearance than pigs infected with either pathogen alone. The pigs infected with both PRRSV and M. hyopneumoniae had significantly increased levels of mRNA for many proinflammatory cytokines in PAMs collected by bronchoalveolar lavage (BAL) at all necropsy dates compared to those in uninfected control pigs. Increased levels of IL-1beta, IL-8, IL-10, and TNF-alpha proteins in BAL fluid, as measured by enzyme-linked immunosorbent assay, confirmed the increased cytokine induction induced by the pathogens. An in vitro model consisted of M. hyopneumoniae-inoculated tracheal ring explants cultured with PRRSV-infected PAMs. PAMs were harvested at 6 or 15 h postinfection with either or both pathogens. The in vitro study detected increased IL-10 and IL-12 mRNA levels in PAMs infected with PRRSV at all time periods. In addition, IL-10 protein levels were significantly elevated in the culture supernatants in the presence of M. hyopneumoniae-inoculated tracheal ring explants. The increased production of proinflammatory cytokines in vivo and in vitro associated with concurrent M. hyopneumoniae and PRRSV infection may play a role in the increased rates of pneumonia associated with PRRSV infection. The increased levels of IL-10 may be a possible mechanism that PRRSV and M. hyopneumoniae use to exacerbate the severity and duration of pneumonia induced by PRRSV and modulate the respiratory immune response.
Collapse
|
48
|
Lee C, Bachand A, Murtaugh MP, Yoo D. Differential host cell gene expression regulated by the porcine reproductive and respiratory syndrome virus GP4 and GP5 glycoproteins. Vet Immunol Immunopathol 2004; 102:189-98. [PMID: 15507305 PMCID: PMC7112691 DOI: 10.1016/j.vetimm.2004.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) GP4 and GP5 proteins are two membrane-associated viral glycoproteins that have been shown to induce neutralizing antibodies. In the present study, the host cell gene expression profiles altered by the GP4 and GP5 proteins were investigated by the use of DNA microarrays. Sublines of Marc-145 and HeLa cells were established by stable transfection with open reading frame (ORF)4 and ORF5 of PRRSV, respectively, and differential gene expressions were studied using microarray chips embedded with 1718 human-expressed sequence tags. The genes for protein degradation, protein synthesis and transport, and various other biochemical pathways were identified. No genes involved in the apoptosis pathway appeared to be regulated in GP5-expressing cells. The microarray data may provide insights into the specific cellular responses to the GP4 and GP5 proteins during PRRSV infection.
Collapse
Affiliation(s)
- Changhee Lee
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., N1G 2W1, Canada
| | | | | | | |
Collapse
|
49
|
Royaee AR, Husmann RJ, Dawson HD, Calzada-Nova G, Schnitzlein WM, Zuckermann FA, Lunney JK. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Vet Immunol Immunopathol 2004; 102:199-216. [PMID: 15507306 PMCID: PMC7112652 DOI: 10.1016/j.vetimm.2004.09.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The natural response of pigs to porcine reproductive and respiratory syndrome virus (PRRSV) infections and vaccinations needs to be altered so that better protection is afforded against both homologous and heterologous challenges by this pathogen. To address this problem, real-time gene expression assays were coupled with cytokine Elispot and protein analyses to assess the nature of the anti-PRRSV response of pigs immunized with modified live virus (MLV) vaccine. Although T helper 1 (Th1) immunity was elicited in all vaccinated animals, as evidenced by the genesis of PRRSV-specific interferon-gamma secreting cells (IFNG SC), the overall extent of the memory response was variable and generally weak. Peripheral blood mononuclear cells (PBMC) isolated from these pigs responded to PRRSV exposure with a limited increase in their expression of the Th1 immune markers, IFNG, tumor necrosis factor-alpha and interleukin-15 (IL15), and a reduction in the quantity of mRNAs encoding the innate and inflammatory proteins, IL1B, IL8 and IFNA. Efforts to enhance Th1 immunity, by utilizing an expression plasmid encoding porcine IFNA (pINA) as an adjuvant, resulted in a temporary increase in the frequency of PRRSV-specific IFNG SC but only minor changes overall in the expression of Th1 associated cytokine or innate immune marker mRNA by virus-stimulated PBMC. Administration of pINA, however, did correlate with decreased IL1B secretion by cultured, unstimulated PBMC but had no effect on their ability to release IFNG. Thus, while exogenous addition of IFNA during PRRSV vaccination has an impact on the development of a Th1 immune response, other alterations will be required for substantial boosting of virus-specific protection.
Collapse
Affiliation(s)
- Atabak R Royaee
- Animal Parasitic Disease Laboratory, Animal and Natural Resources Institute, Beltsville Human Nutrition Research Center, ARS, BARC, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Suradhat S, Thanawongnuwech R. Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus. J Gen Virol 2003; 84:2755-2760. [PMID: 13679610 DOI: 10.1099/vir.0.19230-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that porcine reproductive and respiratory syndrome virus (PRRSV) may have immunomodulatory effects on the host immune system by upregulating interleukin (IL)-10 gene expression. To determine the effect of PRRSV on porcine cytokine gene expression in vivo, we infected pigs with either the European or North American strain of PRRSV and monitored cytokine gene expression in peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage cells (BALC) using a multiplex PCR assay. Our results showed that both European and North American strains of PRRSV significantly upregulated IL-10 gene expression in PBMC of infected pigs from 5 days post-infection (p.i.). In addition, upregulation of IL-10 and interferon (IFN)-gamma gene expression was observed in BALC starting from 9 days p.i. The upregulation of cytokine gene expression in BALC was observed concurrent with an increased percentage of lymphocytes in the BALC population, suggesting a role for peripheral leukocytes in cytokine production in lungs. Our results showed that PRRSV infection resulted in an upregulation of IL-10 gene expression in vivo and that both European and North American strains induced comparable levels of IL-10 gene expression in the infected pigs, despite differences in the clinical signs. Our data support the notion that induction of IL-10 production may be one of the strategies used by PRRSV to modulate the host's immune responses, and this may contribute to the unique clinical picture observed following PRRSV infection.
Collapse
Affiliation(s)
- Sanipa Suradhat
- The Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Roongroje Thanawongnuwech
- The Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|