1
|
Plasterer C, Semenikhina M, Tsaih SW, Flister MJ, Palygin O. NNAT is a novel mediator of oxidative stress that suppresses ER + breast cancer. Mol Med 2023; 29:87. [PMID: 37400769 PMCID: PMC10318825 DOI: 10.1186/s10020-023-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Neuronatin (NNAT) was recently identified as a novel mediator of estrogen receptor-positive (ER+) breast cancer cell proliferation and migration, which correlated with decreased tumorigenic potential and prolonged patient survival. However, despite these observations, the molecular and pathophysiological role(s) of NNAT in ER + breast cancer remains unclear. Based on high protein homology with phospholamban, we hypothesized that NNAT mediates the homeostasis of intracellular calcium [Ca2+]i levels and endoplasmic reticulum (EndoR) function, which is frequently disrupted in ER + breast cancer and other malignancies. METHODS To evaluate the role of NNAT on [Ca2+]i homeostasis, we used a combination of bioinformatics, gene expression and promoter activity assays, CRISPR gene manipulation, pharmacological tools and confocal imaging to characterize the association between ROS, NNAT and calcium signaling. RESULTS Our data indicate that NNAT localizes predominantly to EndoR and lysosome, and genetic manipulation of NNAT levels demonstrated that NNAT modulates [Ca2+]i influx and maintains Ca2+ homeostasis. Pharmacological inhibition of calcium channels revealed that NNAT regulates [Ca2+]i levels in breast cancer cells through the interaction with ORAI but not the TRPC signaling cascade. Furthermore, NNAT is transcriptionally regulated by NRF1, PPARα, and PPARγ and is strongly upregulated by oxidative stress via the ROS and PPAR signaling cascades. CONCLUSION Collectively, these data suggest that NNAT expression is mediated by oxidative stress and acts as a regulator of Ca2+ homeostasis to impact ER + breast cancer proliferation, thus providing a molecular link between the longstanding observation that is accumulating ROS and altered Ca2+ signaling are key oncogenic drivers of cancer.
Collapse
Affiliation(s)
- Cody Plasterer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
2
|
Wang H, Li J, Li X. Construction and validation of an oxidative-stress-related risk model for predicting the prognosis of osteosarcoma. Aging (Albany NY) 2023; 15:204764. [PMID: 37285835 DOI: 10.18632/aging.204764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Osteosarcoma is the most common bone malignancy in teenagers, and warrants effective measures for diagnosis and prognosis. Oxidative stress (OS) is the key driver of several cancers and other diseases. METHODS The TARGET-osteosarcoma database was employed as the training cohort and GSE21257 and GSE39055 was applied for external validation. The patients were classified into the high- and low-risk groups based on the median risk score of each sample. ESTIMATE and CIBERSORT were applied for the evaluation of tumor microenvironment immune infiltration. GSE162454 of single-cell sequencing was employed for analyzing OS-related genes. RESULTS Based on the gene expression and clinical data of 86 osteosarcoma patients in the TARGET database, we identified eight OS-related genes, including MAP3K5, G6PD, HMOX1, ATF4, ACADVL, MAPK1, MAPK10, and INS. In both the training and validation sets, the overall survival of patients in the high-risk group was significantly worse than that in the low-risk group. The ESTIMATE algorithm revealed that patients in the high-risk group had higher tumor purity but lower immune score and stromal score. In addition, the CIBERSORT algorithm showed that the M0 and M2 macrophages were the predominant infiltrating cells in osteosarcoma. Based on the expression analysis of immune checkpoint, CD274(PDL1), CXCL12, BTN3A1, LAG3, and IL10 were identified as potential immune therapy targets. Analysis of the single cell sequencing data also revealed the expression patterns of OS-related genes in different cell types. CONCLUSIONS An OS-related prognostic model can accurately provide the prognosis of osteosarcoma patients, and may help identify suitable candidates for immunotherapy.
Collapse
Affiliation(s)
- Hanning Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| |
Collapse
|
3
|
Leite CBG, Tavares LP, Leite MS, Demange MK. Revisiting the role of hyperbaric oxygen therapy in knee injuries: Potential benefits and mechanisms. J Cell Physiol 2023; 238:498-512. [PMID: 36649313 DOI: 10.1002/jcp.30947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Knee injury negatively impacts routine activities and quality of life of millions of people every year. Disruption of tendons, ligaments, and articular cartilage are major causes of knee lesions, leading to social and economic losses. Besides the attempts for an optimal recovery of knee function after surgery, the joint healing process is not always adequate given the nature of intra-articular environment. Based on that, different therapeutic methods attempt to improve healing capacity. Hyperbaric oxygen therapy (HBOT) is an innovative biophysical approach that can be used as an adjuvant treatment post-knee surgery, to potentially prevent chronic disorders that commonly follows knee injuries. Given the well-recognized role of HBOT in improving wound healing, further research is necessary to clarify the benefits of HBOT in damaged musculoskeletal tissues, especially knee disorders. Here, we review important mechanisms of action for HBOT-induced healing including the induction of angiogenesis, modulation of inflammation and extracellular matrix components, and activation of parenchyma cells-key events to restore knee function after injury. This review discusses the basic science of the healing process in knee injuries, the role of oxygen during cicatrization, and shed light on the promising actions of HBOT in treating knee disorders, such as tendon, ligament, and cartilage injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Luciana P Tavares
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Magno S Leite
- Laboratório de Poluição Atmosférica Experimental LIM05, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marco K Demange
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
5
|
Bagyi J, Sripada V, Aidone AM, Lin HY, Ruder EH, Crawford DR. Dietary rational targeting of redox-regulated genes. Free Radic Biol Med 2021; 173:19-28. [PMID: 34274490 DOI: 10.1016/j.freeradbiomed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Nutrigenomics is the study of how food and associated nutrients affect gene expression. This field sits at the intersection of diet, the genome and health with the ultimate goal of exploiting its understanding to design a precision nutrition strategy for humans. We have studied diet and nutrigenomics in the context of something we call "dietary rational gene targeting." Here, healthy diet is used to alter disease-causing gene expression back toward the normal to treat various diseases and conditions while lowering treatment cost and toxicity. In this paper, we discuss the use of this strategy to modulate the expression of redox-associated genes to improve human health. Most human disorders are associated, at least to some extent, with oxidative stress and so treatments (including diet) that target redox-related genes have major potential clinical significance. Healthy dietary options here are wide-ranging and include whole foods and botanical-based beverages. In some cases, botanical supplements may also be useful gene modulators although their health benefits are less clear. Key redox gene targets for these dietary agents include antioxidant genes, related transcription factors, detoxification genes, and DNA repair genes. Other important considerations include bioavailability, the contribution of the microbiome, and advancing technologies. In this review, specific examples of redox associated genes and pathologies and their potential treatment with healthy diet are presented to illustrate our approach. This will also serve as a foundation for the design of future clinical studies to improve diet-related health.
Collapse
Affiliation(s)
- Joyce Bagyi
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Andrea M Aidone
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - H-Y Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Wan Fang Hospital, Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Elizabeth H Ruder
- Wegmans School of Health and Nutrition, College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, 14620, USA
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Matsumoto M, Liu J, Iwata K, Ibi M, Asaoka N, Zhang X, Katsuyama M, Matsuda M, Nabe T, Schröder K, Yabe-Nishimura C. NOX1/NADPH oxidase is involved in the LPS-induced exacerbation of collagen-induced arthritis. J Pharmacol Sci 2021; 146:88-97. [PMID: 33941325 DOI: 10.1016/j.jphs.2021.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
We investigate as yet an unidentified role of NOX1, a non-phagocytic isoform of the superoxide-generating NADPH oxidase, in immune responses using Nox1-knockout mice (Nox1-KO). The transcripts of NOX1 was expressed in lymphoid tissues, including the spleen, thymus, bone marrow, and inguinal lymphoid nodes. When antibody production after ovalbumin (OVA) immunization was examined, no significant differences were observed in serum anti-OVA IgG levels between wild-type mice (WT) and Nox1-KO. In the experimental asthma, the infiltration of eosinophils and the Th2 cytokine response after the induction of asthma with OVA were similar between the two genotypes. However, the severity and incidence of experimental collagen-induced arthritis (CIA) following the administration of a low dose of endotoxin (LPS) were significantly lower in Nox1-KO. While neither serum levels of autoantibodies nor in vitro cytokine responses were affected by Nox1 deficiency, NOX1 mRNA levels in the spleen significantly increased after the LPS challenge. Among the spleen cells, remarkable LPS-induced upregulation of NOX1 was demonstrated in both CD11b+ monocytes/macrophages and CD11c+ dendritic cells, suggesting that LPS-inducible NOX1 in monocytes/macrophages/dendritic cells may modulate the development of experimental CIA. Therapeutic targeting of NOX1 may therefore control the onset and/or severity of arthritis which is exacerbated by bacterial infection.
Collapse
Affiliation(s)
- Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Junjie Liu
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Xueqing Zhang
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | | |
Collapse
|
7
|
van der Post S, Birchenough GMH, Held JM. NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation. Cell Rep 2021; 35:108949. [PMID: 33826887 PMCID: PMC10327654 DOI: 10.1016/j.celrep.2021.108949] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The colon epithelium is a primary point of interaction with the microbiome and is regenerated by a few rapidly cycling colonic stem cells (CSCs). CSC self-renewal and proliferation are regulated by growth factors and the presence of bacteria. However, the molecular link connecting the diverse inputs that maintain CSC homeostasis remains largely unknown. We report that CSC proliferation is mediated by redox-dependent activation of epidermal growth factor receptor (EGFR) signaling via NADPH oxidase 1 (NOX1). NOX1 expression is CSC specific and is restricted to proliferative CSCs. In the absence of NOX1, CSCs fail to generate ROS and have a reduced proliferation rate. NOX1 expression is regulated by Toll-like receptor activation in response to the microbiota and serves to link CSC proliferation with the presence of bacterial components in the crypt. The TLR-NOX1-EGFR axis is therefore a critical redox signaling node in CSCs facilitating the quiescent-proliferation transition and responds to the microbiome to maintain colon homeostasis.
Collapse
Affiliation(s)
- Sjoerd van der Post
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Chiara F, Indraccolo S, Trevisan A. Filling the gap between risk assessment and molecular determinants of tumor onset. Carcinogenesis 2020; 42:507-516. [PMID: 33319226 DOI: 10.1093/carcin/bgaa135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, a ponderous epidemiological literature has causally linked tumor onset to environmental exposure to carcinogens. As consequence, risk assessment studies have been carried out with the aim to identify both predictive models of estimating cancer risks within exposed populations and establishing rules for minimizing hazard when handling carcinogenic compounds. The central assumption of these works is that neoplastic transformation is directly related to the mutational burden of the cell without providing further mechanistic clues to explain increased cancer onset after carcinogen exposure. Nevertheless, in the last few years, a growing number of studies have implemented the traditional models of cancer etiology, proposing that neoplastic transformation is a complex process in which several parameters and crosstalk between tumor and microenvironmental cells must be taken into account and integrated with mutagenesis. In this conceptual framework, the current strategies of risk assessment that are solely based on the 'mutator model' require an urgent update and revision to keep pace with advances in our understanding of cancer biology. We will approach this topic revising the most recent theories on the biological mechanisms involved in tumor formation in order to envision a roadmap leading to a future regulatory framework for a new, protective policy of risk assessment.
Collapse
Affiliation(s)
- Federica Chiara
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, Padua, Italy
| | | | - Andrea Trevisan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani, Padua, Italy
| |
Collapse
|
9
|
Sasaki M, Ogiwara H. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers. Cancer Sci 2020; 111:774-782. [PMID: 31955490 PMCID: PMC7060479 DOI: 10.1111/cas.14311] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex is composed of approximately 15 subunits, and approximately 20% of all cancers carry mutations in the genes encoding these subunits. Most of the genetic alterations in these genes are loss‐of‐function mutations. The identification of vulnerability based on synthetic lethality in cancers with SWI/SNF chromatin remodeling complex deficiency contributes to precision medicine. The SWI/SNF chromatin remodeling complex is involved in transcription, DNA repair, DNA replication, and chromosomal segregation. Cancers with deficiency in the SWI/SNF chromatin remodeling complex show increased vulnerability derived from the loss of these functions. Synthetic lethal targets have been identified based on vulnerabilities in the functions of the SWI/SNF chromatin remodeling complex. In this review article, we propose a precision medicine strategy using chemotherapeutic methods, such as molecular targeted therapy and immunotherapy, based on harnessing synthetic lethality in cancers with deficiency in the SWI/SNF chromatin remodeling complex.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan.,Molecular Oncology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
10
|
Asadi-Samani M, Kaffash Farkhad N, Reza Mahmoudian-Sani M, Shirzad H. Antioxidants as a Double-Edged Sword in the Treatment of Cancer. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
12
|
Ishii T, Warabi E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2 and Epidermal Growth Factor Receptor (EGFR). Antioxidants (Basel) 2019; 8:antiox8030069. [PMID: 30889865 PMCID: PMC6466580 DOI: 10.3390/antiox8030069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Membrane-associated estrogen receptors (ER)-α36 and G protein-coupled estrogen receptor (GPER) play important roles in the estrogen’s rapid non-genomic actions including stimulation of cell proliferation. Estrogen via these receptors induces rapid activation of transcription factor nuclear factor-E2-related factor 2 (Nrf2), a master regulator of detoxification and antioxidant systems, playing a key role in the metabolic reprogramming to support cell proliferation. This review highlights the possible mechanism underlying rapid Nrf2 activation via membrane-associated estrogen receptors by estrogen and phytoestrogens. Stimulation of ER-α36-GPER signaling complex rapidly induces Src-mediated transactivation of epidermal growth factor receptor (EGFR) leading to a kinase-mediated signaling cascade. We propose a novel hypothesis that ER-α36-GPER signaling initially induces rapid and temporal activation of NADPH oxidase 1 to generate superoxide, which subsequently activates redox-sensitive neutral sphingomyelinase 2 generating the lipid signaling mediator ceramide. Generation of ceramide is required for Ras activation and ceramide-protein kinase C ζ-casein kinase 2 (CK2) signaling. Notably, CK2 enhances chaperone activity of the Cdc37-Hsp90 complex supporting activation of various signaling kinases including Src, Raf and Akt (protein kinase B). Activation of Nrf2 may be induced by cooperation of two signaling pathways, (i) Nrf2 stabilization by direct phosphorylation by CK2 and (ii) EGFR-Ras-PI 3 kinase (PI3K)-Akt axis which inhibits glycogen synthase kinase 3β leading to enhanced nuclear transport and stability of Nrf2.
Collapse
Affiliation(s)
- Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| |
Collapse
|
13
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2018; 8:38113-38135. [PMID: 28498822 PMCID: PMC5503519 DOI: 10.18632/oncotarget.17494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
Human colon cancers express higher levels of NADPH oxidase 1 [NOX1] than adjacent normal epithelium. It has been suggested that reactive oxygen species [ROS] derived from NOX1 contribute to DNA damage and neoplastic transformation in the colon, particularly during chronic inflammatory stress. However, the mechanism(s) underlying increased NOX1 expression in malignant tumors or chronic inflammatory states involving the intestine are poorly characterized. We examined the effects of two pro-inflammatory cytokines, IL-4 and IL-13, on the regulation of NOX1. NOX1 expression was increased 4- to 5-fold in a time- and concentration-dependent manner by both cytokines in human colon cancer cell lines when a functional Type II IL-4 receptor was present. Increased NOX1 transcription following IL-4/IL-13 exposure was mediated by JAK1/STAT6 signaling, was associated with a ROS-related inhibition of protein tyrosine phosphatase activity, and was dependent upon activation and specific binding of GATA3 to the NOX1 promoter. NOX1-mediated ROS production increased cell cycle progression through S-phase leading to a significant increase in cellular proliferation. Evaluation of twenty pairs of surgically-resected colon cancers and their associated uninvolved adjacent colonic epithelium demonstrated a significant increase in the active form of NOX1, NOX1-L, in tumors compared to normal tissues, and a significant correlation between the expression levels of NOX1 and the Type II IL-4 receptor in tumor and the uninvolved colon. These studies imply that NOX1 expression, mediated by IL-4/IL-13, could contribute to an oxidant milieu capable of supporting the initiation or progression of colonic cancer, suggesting a role for NOX1 as a therapeutic target.
Collapse
|
15
|
Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, Dayem AA, Cho SG. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int J Mol Sci 2017; 18:E1544. [PMID: 28714931 PMCID: PMC5536032 DOI: 10.3390/ijms18071544] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of various tissues. Several foods and consumption patterns have been associated with various cancers and approximately 30-35% of the cancer cases are correlated with overnutrition or malnutrition. However, several contradictory studies are available regarding the association between diet and cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply. Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free radicals are generated. Several signaling pathways associated with carcinogenesis can additionally control ROS generation and regulate ROS downstream mechanisms, which could have potential implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage, and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of nutrient-mediated regulation of antioxidant capability against cancer therapy.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
16
|
Varasteh S, Fink-Gremmels J, Garssen J, Braber S. α-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: model experiments in Caco-2 cells. Eur J Nutr 2017; 57:1577-1589. [PMID: 28349254 PMCID: PMC5960005 DOI: 10.1007/s00394-017-1442-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/14/2017] [Indexed: 01/18/2023]
Abstract
Purpose Under conditions of high ambient temperatures and/or strenuous exercise, humans and animals experience considerable heat stress (HS) leading among others to intestinal epithelial damage through induction of cellular oxidative stress. The aim of this study was to characterize the effects of α-Lipoic Acid (ALA) on HS-induced intestinal epithelial injury using an in vitro Caco-2 cell model. Methods A confluent monolayer of Caco-2 cells was pre-incubated with ALA (24 h) prior to control (37 °C) or HS conditions (42 °C) for 6 or 24 h and the expression of heat shock protein 70 (HSP70), heat shock factor-1 (HSF1), and the antioxidant Nrf2 were investigated. Intestinal integrity was determined by measuring transepithelial resistance, paracellular permeability, junctional complex reassembly, and E-cadherin expression and localization. Furthermore, cell proliferation was measured in an epithelial wound healing assay and the expression of the inflammatory markers cyclooxygenase-2 (COX-2) and transforming growth Factor-β (TGF-β) was evaluated. Results ALA pretreatment increased the HSP70 mRNA and protein expression under HS conditions, but did not significantly modulate the HS-induced activation of HSF1. The HS-induced increase in Nrf2 gene expression as well as the Nrf2 nuclear translocation was impeded by ALA. Moreover, ALA prevented the HS-induced impairment of intestinal integrity. Cell proliferation under HS conditions was improved by ALA supplementation as demonstrated in an epithelial wound healing assay and ALA was able to affect the HS-induced inflammatory response by decreasing the COX-2 and TGF-β mRNA expression. Conclusions ALA supplementation could prevent the disruption of intestinal epithelial integrity by enhancing epithelial cell proliferation, and reducing the inflammatory response under HS conditions in an in vitro Caco-2 cell model. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1442-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soheil Varasteh
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands. .,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Johanna Fink-Gremmels
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
17
|
Jiang Y, Cao Y, Wang Y, Li W, Liu X, Lv Y, Li X, Mi J. Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Am J Cancer Res 2017; 7:1036-1046. [PMID: 28382174 PMCID: PMC5381264 DOI: 10.7150/thno.18005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cysteine is an essential amino acid for infants, aged people as well as patients with metabolic disorders. Although the thiol group of cysteine side chain is active in oxidative reactions, the role of cysteine in cancer remains largely unknown. Here, we report that the expression level of the solute carrier family 3, member 1 (SLC3A1), the cysteine carrier, tightly correlated with clinical stages and patients' survival. Elevated SLC3A1 expression accelerated the cysteine uptake and the accumulation of reductive glutathione (GSH), leading to reduced reactive oxygen species (ROS). ROS increased the stability and activity of PP2Ac, resulting in decreased AKT activity. Hence, SLC3A1 activated the AKT signaling through inhibiting PP2A phosphatase activity. Consistently, overexpression of SLC3A1 enhanced tumorigenesis of breast cancer cells, whereas blocking SLC3A1 either with specific siRNA or SLC3A1 specific inhibitor sulfasalazine suppressed tumor growth and also abolished dietary NAC-promoted tumor growth. Collectively, our data demonstrate that SLC3A1 promotes cysteine uptake and determines cellular response to antioxidant N-acetylcysteine, suggesting SLC3A1 is a potential therapeutic target for breast cancer.
Collapse
|
18
|
Gill JG, Piskounova E, Morrison SJ. Cancer, Oxidative Stress, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:163-175. [PMID: 28082378 DOI: 10.1101/sqb.2016.81.030791] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that arise from a number of cellular sources, including oxidative metabolism in mitochondria. At low levels they can be advantageous to cells, activating signaling pathways that promote proliferation or survival. At higher levels, ROS can damage or kill cells by oxidizing proteins, lipids, and nucleic acids. It was hypothesized that antioxidants might benefit high-risk patients by reducing the rate of ROS-induced mutations and delaying cancer initiation. However, dietary supplementation with antioxidants has generally proven ineffective or detrimental in clinical trials. High ROS levels limit cancer cell survival during certain windows of cancer initiation and progression. During these periods, dietary supplementation with antioxidants may promote cancer cell survival and cancer progression. This raises the possibility that rather than treating cancer patients with antioxidants, they should be treated with pro-oxidants that exacerbate oxidative stress or block metabolic adaptations that confer oxidative stress resistance.
Collapse
Affiliation(s)
- Jennifer G Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elena Piskounova
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
19
|
Bekeschus S, Schmidt A, Weltmann KD, von Woedtke T. The plasma jet kINPen – A powerful tool for wound healing. CLINICAL PLASMA MEDICINE 2016. [DOI: 10.1016/j.cpme.2016.01.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Acuña-Macías I, Vera E, Vázquez-Sánchez AY, Mendoza-Garrido ME, Camacho J. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells. Onco Targets Ther 2015; 8:2959-65. [PMID: 26527881 PMCID: PMC4621197 DOI: 10.2147/ott.s85504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development.
Collapse
Affiliation(s)
- Isabel Acuña-Macías
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eunice Vera
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alma Yolanda Vázquez-Sánchez
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Eugenia Mendoza-Garrido
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Camacho
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
21
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-60. [PMID: 26106143 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
22
|
Kim KS, Lee D, Song CG, Kang PM. Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine (Lond) 2015; 10:2709-23. [PMID: 26328770 PMCID: PMC4612518 DOI: 10.2217/nnm.15.108] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.
Collapse
Affiliation(s)
- Kye S Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02215, USA
| | - Dongwon Lee
- Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, Chonbuk 561–756, South Korea
| | - Chul Gyu Song
- Department of Electronic Engineering, Chonbuk National University, Jeonju, Chonbuk 561–756, South Korea
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Jiang J, Wang K, Nice EC, Zhang T, Huang C. High-throughput screening of cellular redox sensors using modern redox proteomics approaches. Expert Rev Proteomics 2015; 12:543-55. [PMID: 26184698 DOI: 10.1586/14789450.2015.1069189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cells are characterized by higher levels of intracellular reactive oxygen species (ROS) due to metabolic aberrations. ROS are widely accepted as second messengers triggering pivotal signaling pathways involved in the process of cell metabolism, cell cycle, apoptosis, and autophagy. However, the underlying cellular mechanisms remain largely unknown. Recently, accumulating evidence has demonstrated that ROS initiate redox signaling through direct oxidative modification of the cysteines of key redox-sensitive proteins (termed redox sensors). Uncovering the functional changes underlying redox regulation of redox sensors is urgently required, and the role of different redox sensors in distinct disease states still remains to be identified. To assist this, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for cancer treatment. Highlighted here are recent advances in redox proteomics approaches and their applications in identifying redox sensors involved in tumor development.
Collapse
Affiliation(s)
- Jingwen Jiang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.,b 2 Hainan Medical University, Haikou, 571199, PR China
| | - Kui Wang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- c 3 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tao Zhang
- d 4 School of Biomedical Sciences, Chengdu Medical College, Chengdu 610500, PR China
| | - Canhua Huang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.,b 2 Hainan Medical University, Haikou, 571199, PR China
| |
Collapse
|
24
|
Babu D, Leclercq G, Goossens V, Remijsen Q, Vandenabeele P, Motterlini R, Lefebvre RA. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicol Appl Pharmacol 2015; 288:161-78. [PMID: 26187750 DOI: 10.1016/j.taap.2015.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022]
Abstract
Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H2O2-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O2(-)) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψm) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H2O2-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O2(-) production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O2(-) levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-derived ROS to protect MODE-K cells from TNF-α/CHX-induced cell death. This might explain the more pronounced cytoprotective effect of resveratrol.
Collapse
Affiliation(s)
- Dinesh Babu
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Vera Goossens
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Quinten Remijsen
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Roberto Motterlini
- Inserm U955, Equipe 12 and University Paris-Est Créteil, Faculty of Medicine, F-94000 Créteil, France
| | - Romain A Lefebvre
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| |
Collapse
|
25
|
Chen P, Umeda M. DNA double-strand breaks induce the expression of flavin-containing monooxygenase and reduce root meristem size in Arabidopsis thaliana. Genes Cells 2015; 20:636-46. [PMID: 26033196 DOI: 10.1111/gtc.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023]
Abstract
Plants use various mechanisms to cope with environmental stresses, which often threaten genome integrity. In Arabidopsis, DNA double-strand breaks (DSBs) reduce root meristem size in a SOG1-dependent manner. SOG1 is a key transcription factor controlling the response to DNA damage. However, the underlying mechanism remains largely unknown. In this study, we found that treatment with the DSB inducer zeocin increased the accumulation of H2O2 in root tips. Chromatin immunoprecipitation analysis showed that SOG1 directly binds to the promoter of FMO1, which encodes a flavin-containing monooxygenase and is associated with the production of reactive oxygen species (ROS), H2O2 in particular. Indeed, zeocin induced the expression of FMO1 in a SOG1-dependent manner, and neither the sog1 nor the fmo1 knockout mutant exhibited higher H2O2 accumulation in root tips. Consequently, both sog1 and fmo1 could tolerate exposure to zeocin, in terms of root growth and the maintenance of the meristem size. However, transgenic plants over-expressing FMO1 also accumulated H2O2 in response to zeocin exposure, suggesting that other ROS-synthesis genes are also involved in the regulation of ROS production. We conclude that SOG1-mediated regulation of ROS homeostasis plays a key role in the reduction of root meristem size under DNA stress conditions.
Collapse
Affiliation(s)
- Poyu Chen
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,JST, CREST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
26
|
Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 2014; 9:601-16. [PMID: 25435281 PMCID: PMC5528704 DOI: 10.1016/j.molonc.2014.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 10/28/2022] Open
Abstract
Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.
Collapse
Affiliation(s)
| | - Jitka Ostrakova
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Martin Kosar
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Pavlina Duskova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic
| | - Jirina Bartkova
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic.
| |
Collapse
|
27
|
Kostecka A, Sznarkowska A, Meller K, Acedo P, Shi Y, Mohammad Sakil HA, Kawiak A, Lion M, Królicka A, Wilhelm M, Inga A, Zawacka-Pankau J. JNK-NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death Dis 2014; 5:e1484. [PMID: 25341038 PMCID: PMC4649515 DOI: 10.1038/cddis.2014.408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/24/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis--such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer--withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target--NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger--NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS and proteasomal stress to kill advanced tumors by pharmacological activation of TAp73 using molecules like WA.
Collapse
Affiliation(s)
- A Kostecka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Sznarkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - K Meller
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - P Acedo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Shi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - H A Mohammad Sakil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - M Lion
- Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Italy
| | - A Królicka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - M Wilhelm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A Inga
- Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Italy
| | - J Zawacka-Pankau
- 1] Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland [2] Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal 2014; 21:1634-47. [PMID: 24730726 PMCID: PMC4175035 DOI: 10.1089/ars.2014.5940] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. RECENT ADVANCES This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. CRITICAL ISSUES Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. FUTURE DIRECTIONS Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed.
Collapse
Affiliation(s)
- Katina M. Fosen
- Department of Emergency Medicine, Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Stephen R. Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
29
|
Abstract
Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator.
Collapse
Affiliation(s)
- Soo Jin Kim
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX, USA
| | - Paul K Y Wong
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
30
|
Nuclear Nox4-derived reactive oxygen species in myelodysplastic syndromes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:456937. [PMID: 24719867 PMCID: PMC3955662 DOI: 10.1155/2014/456937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/25/2022]
Abstract
A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(P)H oxidase (Nox) complexes, are frequently activated in AML (acute myeloid leukemia) blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.
Collapse
|
31
|
Cunniff B, Snider GW, Fredette N, Stumpff J, Hondal RJ, Heintz NH. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine. Redox Biol 2014; 2:475-84. [PMID: 24624337 PMCID: PMC3949094 DOI: 10.1016/j.redox.2014.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 01/01/2023] Open
Abstract
Thioredoxin reductase (TR) catalyzes the reduction of thioredoxin (TRX), which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1-4), thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX) and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1) and mitochondrial TR2 (Sec-TR2) that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2). In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP), but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic responses to oxidative insults.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gregg W. Snider
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Nicholas Fredette
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Robert J. Hondal
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Nicholas H. Heintz
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
32
|
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2014; 12:931-47. [PMID: 24287781 DOI: 10.1038/nrd4002] [Citation(s) in RCA: 2512] [Impact Index Per Article: 228.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The regulation of oxidative stress is an important factor in both tumour development and responses to anticancer therapies. Many signalling pathways that are linked to tumorigenesis can also regulate the metabolism of reactive oxygen species (ROS) through direct or indirect mechanisms. High ROS levels are generally detrimental to cells, and the redox status of cancer cells usually differs from that of normal cells. Because of metabolic and signalling aberrations, cancer cells exhibit elevated ROS levels. The observation that this is balanced by an increased antioxidant capacity suggests that high ROS levels may constitute a barrier to tumorigenesis. However, ROS can also promote tumour formation by inducing DNA mutations and pro-oncogenic signalling pathways. These contradictory effects have important implications for potential anticancer strategies that aim to modulate levels of ROS. In this Review, we address the controversial role of ROS in tumour development and in responses to anticancer therapies, and elaborate on the idea that targeting the antioxidant capacity of tumour cells can have a positive therapeutic impact.
Collapse
Affiliation(s)
- Chiara Gorrini
- 1] The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada. [2]
| | | | | |
Collapse
|
33
|
Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv 2014. [DOI: 10.1039/c4ra02450h] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
34
|
Sattayakhom A, Chunglok W, Ittarat W, Chamulitrat W. Study designs to investigate Nox1 acceleration of neoplastic progression in immortalized human epithelial cells by selection of differentiation resistant cells. Redox Biol 2013; 2:140-7. [PMID: 24494188 PMCID: PMC3909263 DOI: 10.1016/j.redox.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022] Open
Abstract
To investigate the role of NADPH oxidase homolog Nox1 at an early step of cell transformation, we utilized human gingival mucosal keratinocytes immortalized by E6/E7 of human papillomavirus (HPV) type 16 (GM16) to generate progenitor cell lines either by chronic ethanol exposure or overexpression with Nox1. Among several cobblestone epithelial cell lines obtained, two distinctive spindle cell lines - FIB and NuB1 cells were more progressively transformed exhibiting tubulogenesis and anchorage-independent growth associated with increased invasiveness. These spindle cells acquired molecular markers of epithelial mesenchymal transition (EMT) including mesenchymal vimentin and simple cytokeratins (CK) 8 and 18 as well as myogenic alpha-smooth muscle actin and caldesmon. By overexpression and knockdown experiments, we showed that Nox1 on a post-translational level regulated the stability of CK18 in an ROS-, phosphorylation- and PKCepilon-dependent manner. PKCepilon may thus be used as a therapeutic target for EMT inhibition. Taken together, Nox1 accelerates neoplastic progression by regulating structural intermediate filaments leading to EMT of immortalized human gingival epithelial cells.
Collapse
Key Words
- AIG, anchorage-independent growth
- CK, cytokeratin
- Cobblestone cells
- Cytokeratins
- EGF, epidermal growth factor
- EMT
- EMT, epithelial mesenchymal transition
- GM, gingival mucosal
- HPV, human papillomavirus
- IAP, inhibitor of apoptosis protein
- Immortalized gingival keratinocytes
- Intermediate filaments
- Invasion
- MEF2, myocyte enhancing factor 2
- MMP, matrix metalloproteinases
- Nox, NAD(P)H oxidase
- PMA, 12-O- tetradecanoylphorbol-13-acetate
- ROS, reactive oxygen species
- Spindle cells
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Apsorn Sattayakhom
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wanida Ittarat
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 2013; 19:2213-31. [PMID: 23706097 DOI: 10.1089/ars.2012.4904] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Chronic hypoxia induces pulmonary hypertension (PH) that is concomitant with pulmonary vascular remodeling. Reactive oxygen species (ROS) are thought to play a major role in this. Recent findings suggest that ROS production by NADPH oxidase 4 (Nox4) is important in this remodeling. We investigated whether ROS production by Nox is also important in an inflammatory model of monocrotaline (MCT)-induced PH. We examined ROS production, their possible sources, and their impact on the function of pulmonary arterial smooth muscle cells (PASMC) isolated from MCT-treated and healthy rats. RESULTS MCT-PASMC showed increased intracellular superoxide production, migration, and proliferation compared with healthy controls due to increased Nox1 expression. A comparison of PASMC from MCT- and nontreated rats revealed an up-regulation of Sod2, Nrf2, cyclin D1, and matrix metalloproteinase-9 (MMP-9) as well as an increased phosphorylation of cofilin and extracellular signal-regulated kinases (Erk). Expression of Sod2, Nrf2, and cyclin D1 and phosphorylation of cofilin and Erk were Nox1 dependent. INNOVATION The role of ROS in PH is not fully understood. Mitochondria and Nox have been suggested as sources of altered ROS generation in PH, yet it remains unclear whether increased or decreased ROS contributes to the development of PH. Our studies provide evidence that for different triggers of PH, different Nox isoforms regulate proliferation and migration of PASMC. CONCLUSION In contrast to hypoxia-induced PH, Nox1 but not Nox4 is responsible for pathophysiological proliferation and migration of PASMC in an inflammatory model of MCT-induced PH via increased superoxide production. Thus, different Nox isoforms may be targeted in different forms of PH.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellencecluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen , Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:119-45. [PMID: 24050626 DOI: 10.1146/annurev-pathol-012513-104651] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are a chemical class of molecules that have generally been conceptualized as deleterious entities, albeit ones whose destructive properties could be harnessed as antimicrobial effector functions to benefit the whole organism. This appealingly simplistic notion has been turned on its head in recent years with the discovery of the NADPH oxidases, or Noxes, a family of enzymes dedicated to the production of ROS in a variety of cells and tissues. The Nox-dependent, physiological generation of ROS is highly conserved across virtually all multicellular life, often as a generalized response to microbes and/or other exogenous stressors. This review discusses the current knowledge of the role of physiologically generated ROS and the enzymes that form them in both normal biology and disease.
Collapse
Affiliation(s)
- J David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322;
| | | |
Collapse
|
37
|
Ishihara Y, Shimamoto N. Critical role of exposure time to endogenous oxidative stress in hepatocyte apoptosis. Redox Rep 2013; 12:275-81. [DOI: 10.1179/135100007x200362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Choi J, Park SJ, Jo EJ, Lee HY, Hong S, Kim SJ, Kim BC. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway. Biochem Biophys Res Commun 2013; 435:634-9. [PMID: 23685151 DOI: 10.1016/j.bbrc.2013.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/07/2023]
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1.
Collapse
Affiliation(s)
- Jiyeon Choi
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Paletta-Silva R, Rocco-Machado N, Meyer-Fernandes JR. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int J Mol Sci 2013; 14:3683-704. [PMID: 23434665 PMCID: PMC3588065 DOI: 10.3390/ijms14023683] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/15/2022] Open
Abstract
The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP-) to oxygen to make O(2)•-. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice.
Collapse
Affiliation(s)
- Rafael Paletta-Silva
- Clinical Research Coordination, Nacional Institute of Cancer (INCA), André Cavalcanti Street, 37, Rio de Janeiro, RJ 20231-050, Brazil
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
40
|
Daugaard M, Nitsch R, Razaghi B, McDonald L, Jarrar A, Torrino S, Castillo-Lluva S, Rotblat B, Li L, Malliri A, Lemichez E, Mettouchi A, Berman JN, Penninger JM, Sorensen PH. Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat Commun 2013; 4:2180. [PMID: 23864022 PMCID: PMC3759041 DOI: 10.1038/ncomms3180] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/21/2013] [Indexed: 02/04/2023] Open
Abstract
The Hace1-HECT E3 ligase is a tumor suppressor that ubiquitylates the activated GTP-bound form of the Rho family GTPase Rac1, leading to Rac1 proteasomal degradation. Here we show that, in vertebrates, Hace1 targets Rac1 for degradation when Rac1 is localized to the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme. This event blocks de novo reactive oxygen species generation by Rac1-dependent NADPH oxidases, and thereby confers cellular protection from reactive oxygen species-induced DNA damage and cyclin D1-driven hyper-proliferation. Genetic inactivation of Hace1 in mice or zebrafish, as well as Hace1 loss in human tumor cell lines or primary murine or human tumors, leads to chronic NADPH oxidase-dependent reactive oxygen species elevation, DNA damage responses and enhanced cyclin D1 expression. Our data reveal a conserved ubiquitin-dependent molecular mechanism that controls the activity of Rac1-dependent NADPH oxidase complexes, and thus constitutes the first known example of a tumor suppressor protein that directly regulates reactive oxygen species production in vertebrates.
Collapse
Affiliation(s)
- Mads Daugaard
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roberto Nitsch
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohrgasse 3, Vienna 1030 Austria
| | - Babak Razaghi
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Lindsay McDonald
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Ameer Jarrar
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Stéphanie Torrino
- Equipe labellisée Ligue Contre Le Cancer, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Université de Nice-Sophia-Antipolis, 8 06204 Nice, France
| | - Sonia Castillo-Lluva
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK
| | - Barak Rotblat
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Liheng Li
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK
| | - Emmanuel Lemichez
- Equipe labellisée Ligue Contre Le Cancer, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Université de Nice-Sophia-Antipolis, 8 06204 Nice, France
| | - Amel Mettouchi
- Equipe labellisée Ligue Contre Le Cancer, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Université de Nice-Sophia-Antipolis, 8 06204 Nice, France
| | - Jason N. Berman
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohrgasse 3, Vienna 1030 Austria
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
41
|
Antioxidant treatment regulates the humoral immune response during acute viral infection. J Virol 2012; 87:2577-86. [PMID: 23255789 DOI: 10.1128/jvi.02714-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generation of reactive oxygen intermediates (ROI) following antigen receptor ligation is critical to promote cellular responses. However, the effect of antioxidant treatment on humoral immunity during a viral infection was unknown. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a superoxide dismutase mimetic, from days 0 to 8 postinfection. On day 8, at the peak of the splenic response in vehicle-treated mice, virus-specific IgM and IgG antibody-secreting cells (ASC) were decreased 22- and 457-fold in MnTBAP-treated animals. By day 38, LCMV-specific IgG ASC were decreased 5-fold in the bone marrow of drug-treated mice, and virus-specific antibodies were of lower affinity. Interestingly, antioxidant treatment had no effect on the number of LCMV-specific IgG memory B cells. In addition to decreases in ASC, MnTBAP treatment decreased the number of functional virus-specific CD4(+) T cells. The decreased numbers of ASC observed on day 8 in drug-treated mice were due to a combination of Bim-mediated cell death and decreased proliferation. Together, these data demonstrate that ROI regulate antiviral ASC expansion and have important implications for understanding the effects of antioxidants on humoral immunity during infection and immunization.
Collapse
|
42
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
43
|
Eliades A, Matsuura S, Ravid K. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J Cell Physiol 2012; 227:3355-62. [PMID: 22331622 DOI: 10.1002/jcp.24071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is a site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS-generating oxidases in MK biology and pathology, including myelofibrosis, is also described.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Carnesecchi S, Pache JC, Barazzone-Argiroffo C. NOX enzymes: potential target for the treatment of acute lung injury. Cell Mol Life Sci 2012; 69:2373-85. [PMID: 22581364 PMCID: PMC7095984 DOI: 10.1007/s00018-012-1013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), is characterized by acute inflammation, disruption of the alveolar-capillary barrier, and in the organizing stage by alveolar pneumocytes hyperplasia and extensive lung fibrosis. The cellular and molecular mechanisms leading to the development of ALI/ARDS are not completely understood, but there is evidence that reactive oxygen species (ROS) generated by inflammatory cells as well as epithelial and endothelial cells are responsible for inflammatory response, lung damage, and abnormal repair. Among all ROS-producing enzymes, the members of NADPH oxidases (NOXs), which are widely expressed in different lung cell types, have been shown to participate in cellular processes involved in the maintenance of lung integrity. It is not surprising that change in NOXs’ expression and function is involved in the development of ALI/ARDS. In this context, the use of NOX inhibitors could be a possible therapeutic perspective in the management of this syndrome. In this article, we summarize the current knowledge concerning some cellular aspects of NOXs localization and function in the lungs, consider their contribution in the development of ALI/ARDS and discuss the place of NOX inhibitors as potential therapeutical target.
Collapse
Affiliation(s)
- Stéphanie Carnesecchi
- Department of Pediatrics/Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
45
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
46
|
Protoporphyrin IX-dependent photodynamic production of endogenous ROS stimulates cell proliferation. Eur J Cell Biol 2012; 91:216-23. [DOI: 10.1016/j.ejcb.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 01/02/2023] Open
|
47
|
Wattamwar PP, Dziubla TD. Modulation of the Wound Healing Response Through Oxidation Active Materials. ENGINEERING BIOMATERIALS FOR REGENERATIVE MEDICINE 2012:161-192. [DOI: 10.1007/978-1-4614-1080-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Kennedy KAM, Sandiford SDE, Skerjanc IS, Li SSC. Reactive oxygen species and the neuronal fate. Cell Mol Life Sci 2012; 69:215-21. [PMID: 21947442 PMCID: PMC11114775 DOI: 10.1007/s00018-011-0807-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/29/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Aberrant or elevated levels of reactive oxygen species (ROS) can mediate deleterious cellular effects, including neuronal toxicity and degeneration observed in the etiology of a number of pathological conditions, including Alzheimer's and Parkinson's diseases. Nevertheless, ROS can be generated in a controlled manner and can regulate redox sensitive transcription factors such as NFκB, AP-1 and NFAT. Moreover, ROS can modulate the redox state of tyrosine phosphorylated proteins, thereby having an impact on many transcriptional networks and signaling cascades important for neurogenesis. A large body of literature links the controlled generation of ROS at low-to-moderate levels with the stimulation of differentiation in certain developmental programs such as neurogenesis. In this regard, ROS are involved in governing the acquisition of the neural fate-from neural induction to the elaboration of axons. Here, we summarize and discuss the growing body of literature that describe a role for ROS signaling in neuronal development.
Collapse
Affiliation(s)
- Karen A. M. Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Shelley D. E. Sandiford
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Shawn S.-C. Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| |
Collapse
|
49
|
Hasan NM, Lutsenko S. Regulation of copper transporters in human cells. CURRENT TOPICS IN MEMBRANES 2012; 69:137-61. [PMID: 23046650 DOI: 10.1016/b978-0-12-394390-3.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for normal growth and development of human organisms. The role of copper as a cofactor of important metabolic enzymes, such as cytochrome c oxidase, superoxide dismutase, lysyl oxidase, dopamine-β-hydroxylase, and many others, has been well established. In recent years, new regulatory roles of copper have emerged. Accumulating evidence points to the involvement of copper in lipid metabolism, antimicrobial defense, neuronal activity, resistance of tumor cells to platinum-based chemotherapeutic drugs, kinase-mediated signal transduction, and other essential cellular processes. For many of these processes, the precise mechanism of copper action remains to be established. Nevertheless, it is increasingly clear that many regulatory and signaling events are associated with changes in the intracellular localization and abundance of copper transporters, as well as distinct compartmentalization of copper itself. In this review, we discuss current data on regulation of the localization and abundance of copper transporters in response to metabolic and signaling events in human cells. Regulation by kinase-mediated phosphorylation will be addressed along with the emerging area of the redox-driven control of copper transport. We highlight mechanistic questions that await further testing.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
50
|
Iruthayanathan M, O'Leary B, Paul G, Dillon JS. Hydrogen peroxide signaling mediates DHEA-induced vascular endothelial cell proliferation. Steroids 2011; 76:1483-90. [PMID: 21864554 DOI: 10.1016/j.steroids.2011.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Dehydroepiandrosterone (DHEA) activates a putative plasma membrane G(i)-protein coupled receptor to induce vascular endothelial proliferation. We now test the hypothesis that hydrogen peroxide (H(2)O(2)) signaling mediates this effect. Incubation of EA.hy926 cells, a human vascular endothelial cell line, with DHEA for 5 min produced a significant increase in H(2)O(2) production, measured by oxidation of either p-hydroxyphenylacetate or dichlorodihydrofluorescein. The DHEA effect on H(2)O(2) production was maximal at 1 nM DHEA, was evident within the first minute of incubation, and remained for 10 min. Similar results were present in primary bovine aortic endothelial cells. The induction of H(2)O(2) in EA.hy926 cells was mimicked by a membrane-impermeable albumin-conjugated DHEA and was inhibited by either catalase or pertussis toxin. Incubation of endothelial cells with DHEA for 5 min resulted in a 2-fold increase of cyclin D1 mRNA and protein expression at 4h. These effects were abolished by co-incubation with catalase. DHEA induced a 50 ± 7% increase in cell proliferation over 24h, measured as cellular Ki-67 immunoreactivity. This proliferative effect was abolished by either catalase or pertussis toxin co-incubation, indicating an H(2)O(2) and G(i)-protein-dependent effect. We conclude that H(2)O(2) is a key signaling molecule mediating the proliferative effects of DHEA in vascular endothelial cells, possibly by up-regulating cell-cycle associated genes, such as cyclin D1.
Collapse
Affiliation(s)
- Mary Iruthayanathan
- Research Service, Veterans Administration Medical Center, and Division of Endocrinology, Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | |
Collapse
|