1
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Aliberti SM, Donato A, Funk RHW, Capunzo M. A Narrative Review Exploring the Similarities between Cilento and the Already Defined "Blue Zones" in Terms of Environment, Nutrition, and Lifestyle: Can Cilento Be Considered an Undefined "Blue Zone"? Nutrients 2024; 16:729. [PMID: 38474857 DOI: 10.3390/nu16050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Longevity is rightly considered one of the greatest achievements of modern society, not only as a function of lifespan, but, more importantly, as a function of healthspan. There are Longevity Blue Zones (LBZs), regions around the world, such as in Okinawa, Japan; the Nicoya Peninsula, Costa Rica; Loma Linda, California; Icaria, Greece; and Ogliastra, Sardinia, that are characterized by a significant percentage of residents who live exceptionally long lives, often avoiding age-related disability to a significantly higher degree than in the Western way of life. Longevity is not a universal phenomenon, so if there are places in the world with characteristics similar to the LBZs, it is important to identify them in order to better understand what other factors, in addition to the known ones, might contribute to a long and healthy life. This narrative review aims to identify common factors between Cilento and the five LBZs, taking into account environmental, nutritional, and lifestyle factors. Articles from 2004 to the present, limited to studies published in English, German, and Italian, were searched in PubMed/Medline, Scopus, and Google Scholar. The co-authors agreed on 18 final reference texts. In order to evaluate the similarities between Cilento and the LBZs, a descriptive comparative approach was used. Cilento and the LBZs share several common factors, including a hilly altitude ranging from 355 to 600 m; a mild climate throughout the year, with temperatures between 17.4 and 23.5 degrees Celsius; traditional professions, such as agriculture and animal husbandry; and a predominantly Mediterranean or plant-based diet, with typical recipes based on legumes, tubers, vegetables, and extra virgin olive oil. Additionally, maintenance of strong intergenerational family relationships, religious devotion, and social relationships within the community are also prevalent. Given the similarities to Cilento, one might wonder if this is an LBZ waiting to be discovered. The lessons learned from this discovery could be applied to the general population to protect them from non-communicable chronic diseases and help slow the aging process.
Collapse
Affiliation(s)
- Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Antonio Donato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Richard H W Funk
- Institute of Anatomy, Technische Universität Dresden, 01307 Dresden, Germany
- Division of Preventive Medicine, Dresden International University (DIU), 01067 Dresden, Germany
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
- Complex Operational Unit Health Hygiene, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| |
Collapse
|
3
|
Costa JP, Magalhães V, Araújo J, Ramos E. A lower energy intake contributes to a better cardiometabolic profile in adolescence: Data from the EPITeen cohort. Nutr Res 2023; 111:14-23. [PMID: 36791661 DOI: 10.1016/j.nutres.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Caloric restriction has been associated with improved cardiometabolic health. Available data in humans are commonly based on short follow-up periods, specific diets, or population groups. We hypothesized that participants of a population-based cohort (Epidemiological Health Investigation of Teenagers in Porto) with a dietary pattern characterized by a lower energy intake during adolescence have a better cardiometabolic profile in adolescence and young adulthood than other dietary patterns. At aged 13 and 21 year evaluations, diet, anthropometric, and cardiometabolic measures were assessed. Diet was assessed through a food frequency questionnaire and, at 13 years, summarized in dietary patterns identified by cluster analysis. The lower intake dietary pattern included 40% of the participants. The energy intake misreport was estimated using the Goldberg method. Analysis of variance and analysis of covariance were used to compare cardiometabolic risk factors according to dietary patterns. The mean energy intake was 2394 and 2242 Kcal/d for the total sample at aged 13 years (n = 962) and 21 years (n = 862), respectively. Those belonging to the lower intake dietary pattern showed a 25% and 5% lower energy intake, respectively. In the cross-sectional analysis at aged 13, adolescents belonging to the lower intake dietary pattern presented lower glucose, insulin, triglycerides, and blood pressure values after adjusting for body mass index and parents' education level. Among the plausible reporters, differences were only statistically significant for glucose and systolic blood pressure. Our data support that a dietary pattern characterized by a lower energy intake may contribute to a better cardiometabolic profile in adolescents. However, no significant effect was found in young adulthood.
Collapse
Affiliation(s)
- Joana Pinto Costa
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas n° 135, 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Vânia Magalhães
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas n° 135, 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Joana Araújo
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas n° 135, 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, 4200-319, Porto, Portugal
| | - Elisabete Ramos
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas n° 135, 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, 4200-319, Porto, Portugal
| |
Collapse
|
4
|
Shin TH, Zhou Y, Chen S, Cordes S, Grice MZ, Fan X, Lee BC, Aljanahi AA, Hong SG, Vaughan KL, Mattison JA, Kohama SG, Fabre MA, Uchida N, Demirci S, Corat MA, Métais JY, Calvo KR, Buscarlet M, Natanson H, McGraw KL, List AF, Busque L, Tisdale JF, Vassiliou GS, Yu KR, Dunbar CE. A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. Blood 2022; 140:1774-1789. [PMID: 35714307 PMCID: PMC9837449 DOI: 10.1182/blood.2021014875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/26/2022] [Indexed: 01/21/2023] Open
Abstract
Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1β (IL-1β) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Shirley Chen
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Stefan Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Max Z. Grice
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Aisha A. Aljanahi
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Margarete A. Fabre
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Marcus A.F. Corat
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Multidisciplinary Center for Biological Research, University of Campinas, Campinas, Brazil
| | - Jean-Yves Métais
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Katherine R. Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD
| | - Manuel Buscarlet
- Hôpital Maisonneuve-Rosemont, Universite de Montreal, Montreal, QC, Canada
| | - Hannah Natanson
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Kathy L. McGraw
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | | | - Lambert Busque
- Hôpital Maisonneuve-Rosemont, Universite de Montreal, Montreal, QC, Canada
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - George S. Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kyung-Rok Yu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
5
|
Pes GM, Dore MP, Tsofliou F, Poulain M. Diet and longevity in the Blue Zones: A set-and-forget issue? Maturitas 2022; 164:31-37. [PMID: 35780634 DOI: 10.1016/j.maturitas.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
The Blue Zones (BZs) are areas of the globe inhabited by exceptionally long-lived populations. They include the island of Okinawa in Japan, the island of Ikaria in Greece, the mountain area of the island of Sardinia in Italy, and the peninsula of Nicoya in Costa Rica. Their longevity is a relatively recent phenomenon that has been progressively investigated since the dawn of this century. Research efforts over the past two decades have sought to shed light on the factors associated with this longevity, as well as explore the possibility of lessons transferable to the general population. Among the features of BZ inhabitants, described in the literature, their eating habits hold a prominent place, as these have the advantage of being easily quantifiable and applicable on a larger scale. However, it is too often taken for granted that the mere fact of being documented in a long-lived population makes the diet a causal factor of that population's longevity; this is a claim which should be proven. Furthermore, it is implicitly assumed that a specific BZ diet is homogeneous and remains stable over time, whereas some evidence suggests the opposite. Therefore, this review summarizes our current knowledge of the BZ diets and discusses whether they can be considered as a paradigmatic example of healthy nutrition valid for anyone or, rather, a set of evolving food patterns that has offered benefits to a few specific communities in recent decades.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Italy; Sardinia Longevity Blue Zone Observatory, Ogliastra, Italy.
| | - Maria Pina Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Italy; Baylor College of Medicine, One Baylor Plaza, Houston, USA
| | - Fotini Tsofliou
- Department of Rehabilitation and Sport Sciences, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; Centre for Midwifery, Maternal & Perinatal Health, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK
| | - Michel Poulain
- IACCHOS Université catholique de Louvain, Louvain-la-Neuve, Belgium; Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| |
Collapse
|
6
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
7
|
Rao B, Xu D, Zhao C, Wang S, Li X, Sun W, Gang Y, Fang J, Xu H. Development of functional connectivity within and among the resting-state networks in anesthetized rhesus monkeys. Neuroimage 2021; 242:118473. [PMID: 34390876 DOI: 10.1016/j.neuroimage.2021.118473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The age-related changes in the resting-state networks (RSNs) exhibited temporally specific patterns in humans, and humans and rhesus monkeys have similar RSNs. We hypothesized that the RSNs in rhesus monkeys experienced similar developmental patterns as humans. METHODS We acquired resting-state fMRI data from 62 rhesus monkeys, which were divided into childhood, adolescence, and early adulthood groups. Group independent component analysis (ICA) was used to identify monkey RSNs. We detected the between-group differences in the RSNs and static, dynamic, and effective functional network connections (FNCs) using one-way variance analysis (ANOVA) and post-hoc analysis. RESULTS Eight rhesus RSNs were identified, including cerebellum (CN), left and right lateral visual (LVN and RVN), posterior default mode (pDMN), visuospatial (VSN), frontal (FN), salience (SN), and sensorimotor networks (SMN). In internal connections, the CN, SN, FN, and SMN mainly matured in early adulthood. The static FNCs associated with FN, SN, pDMN primarily experienced fast descending slow ascending type (U-shaped) developmental patterns for maturation, and the dynamic FNCs related to pDMN (RVN, CN, and SMN) and SMN (CN) were mature in early adulthood. The effective FNC results showed that the pDMN and VSN (stimulated), SN (inhibited), and FN (first inhibited then stimulated) chiefly matured in early adulthood. CONCLUSION We identified eight monkey RSNs, which exhibited similar development patterns as humans. All the RSNs and FNCs in monkeys were not widely changed but fine-tuned. Our study clarified that the progressive synchronization, exploration, and regulation of cognitive RSNs within the pDMN, FN, SN, and VSN denoted potential maturation of the RSNs throughout development. We confirmed the development patterns of RSNs and FNCs would support the use of monkeys as a best animal model for human brain function.
Collapse
Affiliation(s)
- Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China.
| | - Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China.
| | - Chaoyang Zhao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China.
| | - Shouchao Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China
| | - Yadong Gang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China
| | - Jian Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuchang District, Wuhan, Hubei 430071, China.
| |
Collapse
|
8
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
10
|
Adriansjach J, Baum ST, Lefkowitz EJ, Van Der Pol WJ, Buford TW, Colman RJ. Age-Related Differences in the Gut Microbiome of Rhesus Macaques. J Gerontol A Biol Sci Med Sci 2021; 75:1293-1298. [PMID: 32052009 DOI: 10.1093/gerona/glaa048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a multifactorial process characterized by progressive changes in gut physiology and the intestinal mucosal immune system. These changes, along with alterations in lifestyle, diet, nutrition, inflammation and immune function alter both composition and stability of the gut microbiota. Given the impact of environmental influences on the gut microbiota, animal models are particularly useful in this field. To understand the relationship between the gut microbiota and aging in nonhuman primates, we collected fecal samples from 20 male and 20 female rhesus macaques (Macaca mulatta), across the natural macaque age range, for 16S rRNA gene analyses. Operational taxonomic units were then grouped together to summarize taxon abundance at different hierarchical levels of classification and alpha- and beta-diversity were calculated. There were no age or sex differences in alpha diversity. At the phylum level, relative abundance of Proteobacteria and Firmicutes and Firmicutes to Bacteriodetes ratio were different between age groups though significance disappeared after correction for multiple comparisons. At the class level, relative abundance of Firmicutes_Bacilli decreased and Proteobacteria_Alphaproteobacteria and Proteobacteria_Betaproteobacteria increased with each successively older group. Only differences in Firmicutes_Bacilli remained significant after correction for multiple comparisons. No sex differences were identified in relative abundances after correction for multiple comparisons. Our results are not surprising given the known impact of environmental factors on the gut microbiota.
Collapse
Affiliation(s)
- Julie Adriansjach
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Scott T Baum
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Madison
| | - William J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Madison
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Madison
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison
| |
Collapse
|
11
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|
12
|
Lee JR, Choe SH, Kim YH, Cho HM, Park HR, Lee HE, Jin YB, Kim JS, Jeong KJ, Park SJ, Huh JW. Longitudinal profiling of the blood transcriptome in an African green monkey aging model. Aging (Albany NY) 2020; 13:846-864. [PMID: 33290253 PMCID: PMC7834999 DOI: 10.18632/aging.202190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
African green monkeys (AGMs, Chlorocebus aethiops) are Old World monkeys which are used as experimental models in biomedical research. Recent technological advances in next generation sequencing are useful for unraveling the genetic mechanisms underlying senescence, aging, and age-related disease. To elucidate the normal aging mechanisms in older age, the blood transcriptomes of nine healthy, aged AGMs (15‒23 years old), were analyzed over two years. We identified 910‒1399 accumulated differentially expressed genes (DEGs) in each individual, which increased with age. Aging-related DEGs were sorted across the three time points. A major proportion of the aging-related DEGs belonged to gene ontology (GO) categories involved in translation and rRNA metabolic processes. Next, we sorted common aging-related DEGs across three time points over two years. Common aging-related DEGs belonged to GO categories involved in translation, cellular component biogenesis, rRNA metabolic processes, cellular component organization, biogenesis, and RNA metabolic processes. Furthermore, we identified 29 candidate aging genes that were upregulated across the time series analysis. These candidate aging genes were linked to protein synthesis. This study describes a changing gene expression pattern in AGMs during aging using longitudinal transcriptome sequencing. The candidate aging genes identified here may be potential targets for the treatment of aging.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hye-Ri Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Eun Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ji-Su Kim
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea
| | - Kang Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Abstract
OBJECTIVE We aim to evaluate the effect of caloric restriction (CR) in cognition by comparing performance in neuropsychological tests for working memory between a group of non-obese healthy subjects doing CR for 2 years with another consuming ad libitum diet (AL). METHODS This study was part of a larger multicenter trial called CALERIE that consisted of a randomized clinical trial with parallel-group comparing 2 years of 25% CR and AL in 220 volunteers with a BMI between 22 and 28 kg/m2, across 3 sites. The cognitive tests used were the Cambridge Neuropsychological Tests Automated Battery (CANTAB) for Spatial Working Memory (SWM) including the total number of errors (SWMTE) and strategy (SWMS). Included as possible moderators were sleep quality, mood states, perceived stress, and energy expenditure. Analyses were performed at baseline and months 12 and 24. RESULTS After adjustments, there was a significantly greater improvement in working memory assessed by the SWM for CR individuals, compared to AL. At month 24, it was related mostly to lower protein intake, compared to other macronutrients. Changes in SWM were moderated by changes in sleep quality, physical activity, and energy expenditure. CONCLUSION On the long term, CR in healthy individuals seems to have a slightly positive effect on working memory. The study of brain CR targets opens new possibilities to prevent and treat cognitive deficits.
Collapse
|
14
|
Abstract
Traditional animal models have been used to make seminal discoveries in biomedical research including a better understanding of the biology of the aging process. However, translation of these findings from laboratory to clinical populations has likely been hindered due to fundamental biological and physiological differences between common laboratory animals and humans. Non-human primates (NHP) may serve as an effective bridge towards translation, and short-lived NHP like the common marmoset offer many advantages as models for aging research. Here, we address these advantages and discuss what is currently understood about the changes in physiology and pathology that occur with age in the marmoset. In addition, we discuss how aging research might best utilize this model resource, and outline an ongoing study to address whether pharmaceutical intervention can slow aging in the marmoset. With this manuscript, we clarify how common marmosets might assist researchers in geroscience as a potential model for pre-clinical translation.
Collapse
Affiliation(s)
- Corinna N Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, TX, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA.,Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
15
|
Chiu KB, Lee KM, Robillard KN, MacLean AG. A Method to Investigate Astrocyte and Microglial Morphological Changes in the Aging Brain of the Rhesus Macaque. Methods Mol Biol 2019; 1938:265-276. [PMID: 30617987 DOI: 10.1007/978-1-4939-9068-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
With a rapidly aging population, studies of neuroinflammation and degeneration associated with eugeric aging are becoming critical. Using the unique archive at the Tulane National Primate Research Center as a resource, we have developed tools to quantify morphological changes in astrocytes and microglia across the life span of monkeys. This method can be used for morphometric studies of multiple parameters simultaneously in an unbiased manner.
Collapse
Affiliation(s)
- Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, USA.,Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kim M Lee
- Tulane National Primate Research Center, Covington, LA, USA.,Vanderbilt Hospital Nashville, Nashville, TN, USA.,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Katelyn N Robillard
- Tulane National Primate Research Center, Covington, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA. .,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA. .,Tulane Brain Institute, Tulane University, New Orleans, LA, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
16
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
17
|
Yamada Y, Kemnitz JW, Weindruch R, Anderson RM, Schoeller DA, Colman RJ. Caloric Restriction and Healthy Life Span: Frail Phenotype of Nonhuman Primates in the Wisconsin National Primate Research Center Caloric Restriction Study. J Gerontol A Biol Sci Med Sci 2019; 73:273-278. [PMID: 28398464 DOI: 10.1093/gerona/glx059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023] Open
Abstract
Calorie restriction without malnutrition increases longevity and delays the onset of age-associated disorders in multiple species. Recently, greater emphasis has been placed on healthy life span and preventing frailty than on longevity. Here, we show the beneficial effect of long-term calorie restriction on frailty in later life in a nonhuman primate. Frail phenotypes were evaluated using metabolic and physical activity data and defined using the Fried index. Shrinking was defined as unintentional weight loss of greater than 5% of body weight. Weakness was indicated by decline in high intensity spontaneous physical activity. Poor endurance or exhaustion was indicated by a reduction in energy efficiency of movements. Slowness was indicated by physical activity counts in the morning. Low physical activity level was measured by total energy expenditure using doubly labeled water divided by sleeping metabolic rate. Weakness, poor endurance, slowness, and low physical activity level were significantly higher in control compared with calorie restriction (p < .05) as was total incidence of frailty (p < .001). In conclusion, we established a novel set of measurable criteria of frailty in nonhuman primates, and using these criteria, showed that calorie restriction reduces the incidence of frailty and increases healthy life span in nonhuman primates.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Nutritional Science, National Institutes of Biomedical Health, Innovation, and Nutrition, Tokyo, Japan
| | - Joseph W Kemnitz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| | | | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison.,GRECC, William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | | | - Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| |
Collapse
|
18
|
Shnitko TA, Gonzales SW, Grant KA. Low cognitive flexibility as a risk for heavy alcohol drinking in non-human primates. Alcohol 2019; 74:95-104. [PMID: 30097387 PMCID: PMC6202248 DOI: 10.1016/j.alcohol.2018.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022]
Abstract
Chronic alcohol abuse is frequently considered a habitual or inflexible behavior; however, measures of pre-existing cognitive flexibility prior to initiation of alcohol use are usually not available. This study used rhesus monkeys and an attentional set-shifting task to investigate whether pre-existing cognitive flexibility would predict increased risk for heavy alcohol drinking. As previously reported, monkeys were given 30 daily set-shifting sessions prior to alcohol access. These sessions consisted of the same sequence of eight unique visual discriminations (sets) of two objects that varied on two dimensions (shapes and colors). The ratio of errors per trials, session duration, and maximum set reached were primary dependent variables from each session and were used to compose a session performance index (PI) that ranged from a low performance PI of 31 to an optimal performance PI of 247. Here, animals underwent an alcohol induction period followed by 22 weeks of daily (22-h) self-administration sessions with free access to water and alcohol. Based on average daily alcohol intake during 22 weeks of 22-h/day access, the monkeys were categorized as non-heavy (mean = 2.0 ± 0.3 g/kg/day; n = 3) and heavy (mean = 3.3 ± 0.5 g/kg/day; n = 6) drinkers. The two groups diverged in performance on the set-shifting task across the 30 pre-alcohol sessions, and at the end of the pre-alcohol testing, the group average PI was 216 ± 27 and 137 ± 71 for the future non-heavy and heavy drinkers, respectively. The data show that low cognitive flexibility assessed with a set-shifting procedure was predictive of future classification as a heavy alcohol drinker. The data highlight individual differences in both cognitive flexibility and in alcohol self-administration in this population of rhesus monkeys.
Collapse
Affiliation(s)
- Tatiana A Shnitko
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| | - Steven W Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-470, Portland, OR 97239-3098, United States.
| |
Collapse
|
19
|
Gouras P, Brown KR, Mattison JA, Neuringer M, Nagasaki T, Ivert L. The Ultrastructure, Spatial Distribution, and Osmium Tetroxide Binding of Lipofuscin and Melanosomes in Aging Monkey Retinal Epithelium. Curr Eye Res 2018; 43:1019-1023. [PMID: 29641909 DOI: 10.1080/02713683.2018.1464194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To examine the ultrastructure of lipofuscin bodies and melanosomes in retinal epithelium of elderly rhesus monkeys and determines changes in their number and morphology as a function of retinal eccentricity. METHODS Electron microscopy was used to describe and quantify two major organelles in elderly monkey retinal epithelium, lipofuscin bodies and melanosomes, at different retinal loci extending from the macula to the peri-macula, equator, periphery and ora serrata. Osmium tetroxide was used to distinguish lipofuscin bodies from melanosomes. RESULTS Lipofuscin bodies and melanosomes diminished in number with advanced age but there was an inverse relationship between these two organelles. Lipofuscin bodies were more numerous in the macula and melanosomes more numerous in the peripheral retina. Three types of lipofuscin bodies were identified: 1) smaller and tending to locate in the middle third of the epithelial cell, 2) larger, less common, and located more basally, and 3) extremely rare, melano-lipofuscin, containing a melanosome. When osmicated, all lipofuscin bodies contained electron dense materials. When osmium tetroxide was not used for fixation, the first two types of lipofuscin bodies lost their electron densities while the third type retained its electron density due to the melanosome it contained. CONCLUSION As previously reported for human retina, lipofuscin is most abundant in the macular and peri-macular epithelium and least abundant in the periphery, whereas melanosomes show the opposite relationship. This distribution pattern could contribute to the macula's greater vulnerability to photo-toxicity. Three types of lipofuscin bodies are found in aging monkey retinal epithelium. All types contain electron dense material, but the most prominent two types lose their densities in the absence of osmium tetroxide during fixation. Most of the electron densities in lipofuscin bodies must contain a material that binds strongly to osmium tetroxide such as polyunsaturated fatty acids.
Collapse
Affiliation(s)
| | - Kristy R Brown
- b Department of Pathology and Cell Biology , Columbia University , New York , NY , USA
| | - Julie A Mattison
- c National Institute on Aging Intramural Research Program , NIH , Baltimore , MD , USA
| | - Martha Neuringer
- d Division of Neuroscience , Oregon National Primate Research Center , Beaverton , OR , USA
| | - Takayuki Nagasaki
- a Department of Ophthalmology , Columbia University , New York , NY , USA
| | - Lena Ivert
- e Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
20
|
Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. Int J Mol Sci 2018; 19:E928. [PMID: 29561771 PMCID: PMC5979282 DOI: 10.3390/ijms19040928] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Fighting diseases and controlling the signs of ageing are the major goals of biomedicine. Sirtuins, enzymes with mainly deacetylating activity, could be pivotal targets of novel preventive and therapeutic strategies to reach such aims. Scientific proofs are accumulating in experimental models, but, to a minor extent, also in humans, that the ancient practice of calorie restriction could prove an effective way to prevent several degenerative diseases and to postpone the detrimental signs of ageing. In the present review, we summarize the evidence about the central role of sirtuins in mediating the beneficial effects of calorie restriction in skeletal and cardiac muscle since these tissues are greatly damaged by diseases and advancing years. Moreover, we entertain the possibility that the identification of sirtuin activators that mimic calorie restriction could provide the benefits without the inconvenience of this dietary style.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Simone
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Maddalena Grimaldi
- Department of Pediatric Oncology and Hematology, Charité University Hospital, 13353 Berlin, Germany.
| | - Vincenzina Musto
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | | |
Collapse
|
21
|
Abstract
Caloric restriction (CR) extends lifespan and delays the onset of age-related disorders in diverse species. Metabolic regulatory pathways have been implicated in the mechanisms of CR, but the molecular details have not been elucidated. Here, we show that CR engages RNA processing of genes associated with a highly integrated reprogramming of hepatic metabolism. We conducted molecular profiling of liver biopsies collected from adult male rhesus monkeys (Macaca mulatta) at baseline and after 2 years on control or CR (30% restricted) diet. Quantitation of over 20,000 molecules from the hepatic transcriptome, proteome, and metabolome indicated that metabolism and RNA processing are major features of the response to CR. Predictive models identified lipid, branched-chain amino acid, and short-chain carbon metabolic pathways, with alternate transcript use for over half of the genes in the CR network. We conclude that RNA-based mechanisms are central to the CR response and integral in metabolic reprogramming.
Collapse
|
22
|
Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455:148-157. [PMID: 28412520 PMCID: PMC7153268 DOI: 10.1016/j.mce.2017.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison WI, USA.
| | - Yasoma K Weerasekara
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
23
|
Cummings NE, Lamming DW. Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol 2017; 455:13-22. [PMID: 27884780 PMCID: PMC5440210 DOI: 10.1016/j.mce.2016.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 11/19/2016] [Indexed: 01/20/2023]
Abstract
All organisms need to be capable of adapting to changes in the availability and composition of nutrients. Over 75 years ago, researchers discovered that a calorie restricted (CR) diet could significantly extend the lifespan of rats, and since then a CR diet has been shown to increase lifespan and healthspan in model organisms ranging from yeast to non-human primates. In this review, we discuss the effects of a CR diet on metabolism and healthspan, and highlight emerging evidence that suggests that dietary composition - the precise macronutrients that compose the diet - may be just as important as caloric content. In particular, we discuss recent evidence that suggests protein quality may influence metabolic health. Finally, we discuss key metabolic pathways which may influence the response to CR diets and altered macronutrient composition. Understanding the molecular mechanisms responsible for the effects of CR and dietary composition on health and longevity may allow the design of novel therapeutic approaches to age-related diseases.
Collapse
Affiliation(s)
- Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Balasubramanian P, Mattison JA, Anderson RM. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res Rev 2017; 39:29-35. [PMID: 28219777 PMCID: PMC5563491 DOI: 10.1016/j.arr.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/29/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
This short review focuses on the importance of nonhuman primate nutrition and aging studies and makes the case that a targeted expansion of the use of this highly translatable model would be advantageous to the biology of aging field. First, we describe the high degree of similarity of the model in terms of aging phenotypes including incidence and prevalence of common human age-related diseases. Second, we discuss the importance of the nonhuman primate nutrition and aging studies and the extent to which the outcomes of two ongoing long-term studies of caloric restriction are congruent with short-term equivalent studies in humans. Third, we showcase a number of pharmacological agents previously employed in nonhuman primate studies that display some potential as caloric restriction mimetics. Finally, we present nonhuman primates as an important model for translation of mechanisms of delayed aging identified in studies of shorter-lived animals. Proof of efficacy and safety of candidate longevity agents in nonhuman primates would be a cost-effective means to bring these exciting new avenues a step closer to clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Geriatic Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
25
|
Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2733-2741. [PMID: 28729086 DOI: 10.1016/j.bbadis.2017.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
There has been, and continues to be, a dramatic shift in the human population towards older ages necessitating biomedical research aimed at better understanding the basic biology of aging and age-related diseases and facilitating new and improved therapeutic options. As it is not practical to perform the breadth of this research in humans, animal models are necessary to recapitulate the complexity of the aging environment. The mouse model is most frequently chosen for these endeavors, however, they are frequently not the most appropriate model. Non-human primates, on the other hand, are more closely related to humans and recapitulate the human aging process and development of age-related diseases. Extensive aging research has been performed in the well-characterized rhesus macaque aging model. More recently, the common marmoset, a small non-human primate with a shorter lifespan, has been explored as a potential aging model. This model holds particular promise as an aging disease model in part due to the successful creation of transgenic marmosets. Limitations to the use of non-human primates in aging research exist but can be mitigated somewhat by the existence of available resources supported by the National Institutes of Health. This article is part of a Special Issue entitled: Animal models of aging - edited by "Houtkooper Riekelt".
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
26
|
Balasubramanian P, Howell PR, Anderson RM. Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential. EBioMedicine 2017; 21:37-44. [PMID: 28648985 PMCID: PMC5514430 DOI: 10.1016/j.ebiom.2017.06.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Aging as a research pursuit is fairly new compared with traditional lines of medical research. A growing field of investigators is focused on understanding how changes in tissue biology, physiology, and systemic homeostasis, conspire to create increased vulnerability to disease as a function of age. Aging research as a discipline is necessarily broad; in part because aging itself is multi-faceted and in part because different model systems are employed to define the underlying biology. In this review we outline aspects of aging research that are likely to uncover the pivotal events leading to age-related disease vulnerability. We focus on studies of human aging and discuss the value of research on caloric restriction, an intervention with proven efficacy in delaying aging. We propose that studies such as these will deliver target factors and processes that create vulnerability in human aging, an advance that would potentially be transformative in clinical care.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Porsha R Howell
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Rozalyn M Anderson
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States; Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, United States.
| |
Collapse
|
27
|
Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 2017; 164:127-138. [DOI: 10.1016/j.mad.2017.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
|
28
|
Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 2017; 8:14063. [PMID: 28094793 PMCID: PMC5247583 DOI: 10.1038/ncomms14063] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
Caloric restriction (CR) without malnutrition extends lifespan and delays the onset of age-related disorders in most species but its impact in nonhuman primates has been controversial. In the late 1980s two parallel studies were initiated to determine the effect of CR in rhesus monkeys. The University of Wisconsin study reported a significant positive impact of CR on survival, but the National Institute on Aging study detected no significant survival effect. Here we present a direct comparison of longitudinal data from both studies including survival, bodyweight, food intake, fasting glucose levels and age-related morbidity. We describe differences in study design that could contribute to differences in outcomes, and we report species specificity in the impact of CR in terms of optimal onset and diet. Taken together these data confirm that health benefits of CR are conserved in monkeys and suggest that CR mechanisms are likely translatable to human health. Caloric restriction (CR) delays ageing of model organisms, but whether it works in nonhuman primates has been controversial. Here, the authors pool and reanalyse data from two long-running CR primate studies, concluding that moderate CR indeed improves health and survival of rhesus monkeys.
Collapse
Affiliation(s)
- Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, USA.,Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, Alabama 35233, USA
| | - David B Allison
- Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, USA
| | - Joseph W Kemnitz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | - Richard Weindruch
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA
| |
Collapse
|
29
|
Robillard KN, Lee KM, Chiu KB, MacLean AG. Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav Immun 2016; 55:60-69. [PMID: 26851132 PMCID: PMC4899176 DOI: 10.1016/j.bbi.2016.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/18/2022] Open
Abstract
How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques.
Collapse
Affiliation(s)
- Katelyn N Robillard
- Tulane National Primate Research Center, Covington, LA, United States; Southeastern Louisiana University, Hammond, LA, United States
| | - Kim M Lee
- Tulane National Primate Research Center, Covington, LA, United States; Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, United States
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, United States; Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, United States; Tulane Program in Neuroscience, Tulane University, New Orleans, LA, United States; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
30
|
Abstract
Recent studies indicate that dietary interventions have the potential to prevent and even treat cardiovascular disease, which is the leading cause of death. Many of these studies have focused on various animal models that are able to recreate one or more conditions or elevate risk factors that characterize the disease. Here, we highlight macronutrient-focused interventions in both mammalian model organisms and humans with emphasis on some of the most relevant and well-established diets known to be associated with cardiovascular disease prevention and treatment. We also discuss more recent dietary interventions in rodents, monkeys, and humans, which affect atherosclerosis and cardiovascular diseases with focus on those that also delay aging.
Collapse
|
31
|
Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat Commun 2016; 7:11445. [PMID: 27165717 PMCID: PMC4865854 DOI: 10.1038/ncomms11445] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
Machado–Joseph disease (MJD) is a neurodegenerative disorder characterized by an abnormal expansion of the CAG triplet in the ATXN3 gene, translating into a polyglutamine tract within the ataxin-3 protein. The available treatments only ameliorate symptomatology and do not block disease progression. In this study we find that caloric restriction dramatically rescues the motor incoordination, imbalance and the associated neuropathology in transgenic MJD mice. We further show that caloric restriction rescues SIRT1 levels in transgenic MJD mice, whereas silencing SIRT1 is sufficient to prevent the beneficial effects on MJD pathology. In addition, the re-establishment of SIRT1 levels in MJD mouse model, through the gene delivery approach, significantly ameliorates neuropathology, reducing neuroinflammation and activating autophagy. Furthermore, the pharmacological activation of SIRT1 with resveratrol significantly reduces motor incoordination of MJD mice. The pharmacological SIRT1 activation could provide important benefits to treat MJD patients. SIRTs have been reported to provide neuroprotective actions in polyglutamine diseases, and are linked to the beneficial effects of caloric restrictive diets. Here, the authors show caloric restriction improves behavioural and neuropathological deficits in MJD model mice, an effect dependent on SIRT1 activity.
Collapse
|
32
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
33
|
VAN MINH NGUYEN, MOURI TOSHIO, HAMADA YUZURU. Aging-related changes in the skulls of Japanese macaques ( Macaca fuscata). ANTHROPOL SCI 2015. [DOI: 10.1537/ase.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- NGUYEN VAN MINH
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama
| | - TOSHIO MOURI
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama
| | - YUZURU HAMADA
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama
| |
Collapse
|
34
|
Skulachev MV, Severin FF, Skulachev VP. Receptor regulation of senile phenoptosis. BIOCHEMISTRY (MOSCOW) 2014; 79:994-1003. [PMID: 25519059 DOI: 10.1134/s0006297914100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we present a concept that considers organism aging as an additional facultative function promoting evolution, but counterproductive for an individual. We hypothesize that aging can be inhibited or even arrested when full mobilization of all resources is needed for the survival of an individual. We believe that the organism makes such a decision based on the analysis of signals of special receptors that monitor a number of parameters of the internal and external environment. The amount of available food is one of these parameters. Food restriction is perceived by the organism as a signal of coming starvation; in response to it, the organism inhibits its counterproductive programs, in particular, aging. We hypothesize that the level of protein obtained with food is estimated based on blood concentration of one of the essential amino acids (methionine), of carbohydrates - via glucose level, and fats - based on the level of one of the free fatty acids. When the amount of available food is sufficient, these receptors transmit the signal allowing aging. In case of lack of food, this signal is cancelled, and as a result aging is inhibited, i.e. age-related weakening of physiological functions is inhibited, and lifespan increases (the well-known geroprotective effect of partial food restriction). In Caenorhabditis elegans, lowering of the ambient temperature has a similar effect. This geroprotective effect is removed by the knockout of one of the cold receptors, and replacement of the C. elegans receptor by a similar human receptor restores the ability of low temperature to increase the lifespan of the nematode. A chain of events linking the receptor with the aging mechanism has been discovered in mice - for one of the pain receptors in neurons, the nerve endings of which entwine pancreas β-cells. Age-related activation of these receptors inhibits the work of insulin genes in β-cells. Problems with insulin secretion lead to oxidative stress, chronic inflammation, and type II diabetes, which can be regarded as one of the forms of senile phenoptosis. In conclusion, we consider the role of some psychological factors in the regulation of the aging program.
Collapse
Affiliation(s)
- M V Skulachev
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | |
Collapse
|
35
|
Yang NC, Song TY, Chang YZ, Chen MY, Hu ML. Up-regulation of nicotinamide phosphoribosyltransferase and increase of NAD+ levels by glucose restriction extend replicative lifespan of human fibroblast Hs68 cells. Biogerontology 2014; 16:31-42. [PMID: 25146190 DOI: 10.1007/s10522-014-9528-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Calorie restriction (CR) extends lifespan in a remarkable range of organisms. However, the mechanisms of CR related to the longevity effects are not fully elucidated to date. Using human fibroblast Hs68 (Hs68) cells cultured at a lower level of medium glucose (i.e., glucose restriction; GR) to mimic CR, we investigated the crucial role of nicotinamide phosphoribosyltransferase (Nampt), nicotinamide adenine dinucleotide (NAD(+)), and nicotinamide (NAM) in GR-extended replicative lifespan of Hs68 cells. We found that GR extended the lifespan of Hs68 cells, in parallel to significantly increased expression of Nampt, intracellular NAD(+) levels, and SIRT1 activities, and to significantly decreased NAM levels. The lifespan-extending effects of GR were profoundly diminished by FK866 (a noncompetitive inhibitor of Nampt) and blocked by sirtinol (a noncompetitive inhibitor of sirtuins). However, the steady-state intracellular NAM level (averaged 2.5 μM) was much lower than the IC50 of NAM on human SIRT1 (about 50 μM). All these results suggest that up-regulation of Nampt play an important role in GR-extended lifespan of Hs68 cells by increasing the intracellular NAD(+) levels followed by activating SIRT1 activity in Hs68 cells. In contrast, the role of NAM depletion is limited.
Collapse
Affiliation(s)
- Nae-Cherng Yang
- School of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung City, 40201, Taiwan, ROC,
| | | | | | | | | |
Collapse
|
36
|
Lorenzini A. How Much Should We Weigh for a Long and Healthy Life Span? The Need to Reconcile Caloric Restriction versus Longevity with Body Mass Index versus Mortality Data. Front Endocrinol (Lausanne) 2014; 5:121. [PMID: 25126085 PMCID: PMC4115619 DOI: 10.3389/fendo.2014.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Total caloric restriction (CR) without malnutrition is a well-established experimental approach to extend life span in laboratory animals. Although CR in humans is capable of shifting several endocrinological parameters, it is not clear where the minimum inflection point of the U-shaped curve linking body mass index (BMI) with all-cause mortality lies. The exact trend of this curve, when used for planning preventive strategies for public health is of extreme importance. Normal BMI ranges from 18.5 to 24.9; many epidemiological studies show an inverse relationship between mortality and BMI inside the normal BMI range. Other studies show that the lowest mortality in the entire range of BMI is obtained in the overweight range (25-29.9). Reconciling the extension of life span in laboratory animals by experimental CR with the BMI-mortality curve of human epidemiology is not trivial. In fact, one interpretation is that the CR data are identifying a known: "excess fat is deleterious for health"; although a second interpretation may be that: "additional leanness from a normal body weight may add health and life span delaying the process of aging." This short review hope to start a discussion aimed at finding the widest consensus on which weight range should be considered the "healthiest" for our species, contributing in this way to the picture of what is the correct life style for a long and healthy life span.
Collapse
Affiliation(s)
- Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 2014; 5:3557. [PMID: 24691430 PMCID: PMC3988801 DOI: 10.1038/ncomms4557] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Caloric restriction (CR) without malnutrition increases longevity and delays the onset of age-associated disorders in short-lived species, from unicellular organisms to laboratory mice and rats. The value of CR as a tool to understand human ageing relies on translatability of CR’s effects in primates. Here we show that CR significantly improves age-related and all-cause survival in monkeys on a long-term ~30% restricted diet since young adulthood. These data contrast with observations in the 2012 NIA intramural study report, where a difference in survival was not detected between control-fed and CR monkeys. A comparison of body weight of control animals from both studies with each other, and against data collected in a multi-centred relational database of primate ageing, suggests that the NIA control monkeys were effectively undergoing CR. Our data indicate that the benefits of CR on ageing are conserved in primates. Caloric restriction extends the lifespan of various organisms but whether it works in monkeys is controversial. Here, Colman et al. report that caloric restriction reduces all-cause mortality of rhesus macaques, and perform a weight comparison that aims to reconcile their findings with contradictory results from a similar study.
Collapse
|
38
|
Effect of age and calorie restriction on corpus callosal integrity in rhesus macaques: a fiber tractography study. Neurosci Lett 2014; 569:38-42. [PMID: 24686192 DOI: 10.1016/j.neulet.2014.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/13/2014] [Accepted: 03/19/2014] [Indexed: 01/31/2023]
Abstract
The rhesus macaque exhibits age-related brain changes similar to humans, making an excellent model of normal aging. Calorie restriction is a dietary intervention that reduces age-related comorbidities in short-lived animals, and its effects are still under study in rhesus macaques. Here, using deterministic fiber tracking method, we examined the effects of age and calorie restriction on a diffusion tensor imaging measure of white matter integrity, fractional anisotropy (FA), within white matter tracks traversing the anterior (genu) and posterior (splenium) corpus callosum in rhesus monkeys. Our results show: (1) a significant inverse relationship between age and mean FA of tracks traversing the genu and splenium; (2) higher mean FA of the splenium tracks as compared to that of genu tracks across groups; and (3) no significant diet effect on mean track FA through either location. These results are congruent with the age-related decline in white matter integrity reported in humans and monkeys, and the anterior-to-posterior gradient in white matter vulnerability to normal aging in humans. Further studies are warranted to critically evaluate the effect of calorie restriction on brain aging in this unique cohort of elderly primates.
Collapse
|
39
|
Yamada Y, Colman RJ, Kemnitz JW, Baum ST, Anderson RM, Weindruch R, Schoeller DA. Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 2013; 48:1226-35. [PMID: 23954367 DOI: 10.1016/j.exger.2013.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Short-term (<1 year) calorie restriction (CR) has been reported to decrease physical activity and metabolic rate in humans and non-human primate models; however, studies examining the very long-term (>10 year) effect of CR on these parameters are lacking. OBJECTIVE The objective of this study was to examine metabolic and behavioral adaptations to long-term CR longitudinally in rhesus macaques. DESIGN Eighteen (10 male, 8 female) control (C) and 24 (14 male, 10 female) age matched CR rhesus monkeys between 19.6 and 31.9 years old were examined after 13 and 18 years of moderate adult-onset CR. Energy expenditure (EE) was examined by doubly labeled water (DLW; TEE) and respiratory chamber (24 h EE). Physical activity was assessed both by metabolic equivalent (MET) in a respiratory chamber and by an accelerometer. Metabolic cost of movements during 24 h was also calculated. Age and fat-free mass were included as covariates. RESULTS Adjusted total and 24 h EE were not different between C and CR. Sleeping metabolic rate was significantly lower, and physical activity level was higher in CR than in C independent from the CR-induced changes in body composition. The duration of physical activity above 1.6 METs was significantly higher in CR than in C, and CR had significantly higher accelerometer activity counts than C. Metabolic cost of movements during 24 h was significantly lower in CR than in C. The accelerometer activity counts were significantly decreased after seven years in C animals, but not in CR animals. CONCLUSIONS The results suggest that long-term CR decreases basal metabolic rate, but maintains higher physical activity with lower metabolic cost of movements compared with C.
Collapse
Affiliation(s)
- Yosuke Yamada
- Nutritional Sciences, University of Wisconsin-Madison, United States.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sridharan A, Pehar M, Salamat MS, Pugh TD, Bendlin BB, Willette AA, Anderson RM, Kemnitz JW, Colman RJ, Weindruch RH, Puglielli L, Johnson SC. Calorie restriction attenuates astrogliosis but not amyloid plaque load in aged rhesus macaques: a preliminary quantitative imaging study. Brain Res 2013; 1508:1-8. [PMID: 23473840 DOI: 10.1016/j.brainres.2013.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
While moderate calorie restriction (CR) in the absence of malnutrition has been consistently shown to have a systemic, beneficial effect against aging in several animals models, its effect on the brain microstructure in a non-human primate model remains to be studied using post-mortem histopathologic techniques. In the present study, we investigated differences in expression levels of glial fibrillary acid protein (GFAP) and β-amyloid plaque load in the hippocampus and the adjacent cortical areas of 7 Control (ad libitum)-fed and 6 CR male rhesus macaques using immunostaining methods. CR monkeys expressed significantly lower levels (∼30% on average) of GFAP than Controls in the CA region of the hippocampus and entorhinal cortex, suggesting a protective effect of CR in limiting astrogliosis. These results recapitulate the neuroprotective effects of CR seen in shorter-lived animal models. There was a significant positive association between age and average amyloid plaque pathology in these animals, but there was no significant difference in amyloid plaque distribution between the two groups. Two of the seven Control animals (28.6%) and one of the six CR animal (16.7%) did not express any amyloid plaques, five of seven Controls (71.4%) and four of six CR animals (66.7%) expressed minimal to moderate amyloid pathology, and one of six CR animals (16.7%) expressed severe amyloid pathology. That CR affects levels of GFAP expression but not amyloid plaque load provides some insight into the means by which CR is beneficial at the microstructural level, potentially by offsetting the increased load of oxidatively damaged proteins, in this non-human primate model of aging. The present study is a preliminary post-mortem histological analysis of the effects of CR on brain health, and further studies using molecular and biochemical techniques are warranted to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Aadhavi Sridharan
- Medical Scientist Training Program, University of Wisconsin-Madison, 750 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Roth LW, Polotsky AJ. Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas 2012; 71:315-9. [PMID: 22281163 DOI: 10.1016/j.maturitas.2011.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Caloric restriction, decreasing caloric intake by 20-30%, was first shown to extend life in rats nearly 80 years ago. Since that time, limiting food intake for longevity has been investigated in species from yeast to humans. In yeast and lower animals, caloric restriction has repeatedly been demonstrated to lengthen the life span. Studies of caloric restriction in non-human primates and in humans are ongoing and initial results suggest prolongation of life as well as prevention of age-related disease. There is also data in rodents suggesting that short term caloric restriction has beneficial effects on fertility. Although caloric restriction has many positive effects on health and longevity, quality of life on a restricted diet as well as the ability to maintain that diet long term are concerns that must be considered in humans.
Collapse
Affiliation(s)
- Lauren W Roth
- University of Colorado, Denver, Department of Obstetrics and Gynecology, Section of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, B-189-3 Aurora, CO 80045, USA.
| | | |
Collapse
|
42
|
Rocha J, Bonkowski M, Masternak M, França L, Bartke A. Effects of adult onset mild calorie restriction on weight of reproductive organs, plasma parameters and gene expression in male mice. Anim Reprod 2012; 9:40-51. [PMID: 23667390 PMCID: PMC3649015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Calorie restriction (CR) extends lifespan and delays onset of age-related diseases in various organisms, even when started later in life. Despite benefits for health and lifespan, CR's negative impact on reproduction is documented in some animals. Studies employing approximately 40% CR detected a delay in sexual maturation and impairment of fertility, which were combined with extension of the reproductive period. In contrast, mild CR (10-20%) is apparently not deleterious to reproduction. Hence, we hypothesized that mild CR started at 8 months of age would prolong reproductive capabilities and improve health parameters of male mice. To test this hypothesis, we assessed the effects of 10 and 20% CR on reproductive organ weights, selected plasma parameters and hepatic/testicular gene expression in normal male mice of heterogeneous genetic background. Starting at 8 months of age (adult), mice were assigned to 3 regimen groups: 10% CR (n = 8), 20% CR (n = 9) or ad libitum (AL; n = 8). Four months of CR were sufficient to reduce glycemia in a non-fasted protocol. Mild CR initiated in adulthood did not significantly impact final body weight, most of the analyzed plasma parameters or weight of androgen-dependent organs. Moreover, CR did not interfere with expression of the assessed testicular genes, or most of the hepatic genes, but it did cause an increase in the levels of peroxisome proliferator-activated receptor gamma (Pparg) and mouse sulfotransferase (mSTa); and a decrease in glucose-6-phosphatase-α (G6pc) mRNA, which might signify improvement of body condition. The important finding of our study was that a mild CR regimen, as low as 10 and 20%, was sufficient to impair glycemia in a non-fasted state, and also the levels of plasma IGF-1, corroborating the concept that mild CR has the potential for improving health and longevity, even when started later in life.
Collapse
Affiliation(s)
- J.S. Rocha
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - M.S. Bonkowski
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M.M. Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - L.R. França
- Department of Morphology, Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A. Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University, School of Medicine, Springfield, IL, USA
| |
Collapse
|
43
|
Bauer SA, Arndt TP, Leslie KE, Pearl DL, Turner PV. Obesity in rhesus and cynomolgus macaques: a comparative review of the condition and its implications for research. Comp Med 2011; 61:514-26. [PMID: 22330579 PMCID: PMC3236694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/30/2011] [Accepted: 08/13/2011] [Indexed: 05/31/2023]
Abstract
Obesity is an increasingly important health issue in both humans and animals and has been highly correlated as a risk factor for hyperglycemic conditions in humans. Naturally occurring obesity has been extensively studied in nonhuman primates with a focus on the development of biomarkers for characterizing overweight individuals and tracking the progression of obesity to conditions such as type 2 diabetes mellitus. Animal models have provided a basic understanding of metabolism and carbohydrate physiology, and continue to contribute to ongoing research of obesity and its adverse health effects. This review focuses on spontaneous obesity in rhesus and cynomolgus macaques as a model for human obesity and type 2 diabetes mellitus, including associated risk factors for the development of obesity and obesity-related health conditions. Little is known about preventive measures to minimize obesity while maintaining a healthy colony of macaques, and numerous complexities such as social status, feeding behaviors, timing of feeding, food distribution, and stress have been identified as contributing factors to overweight body condition in both single and group housed nonhuman primates. As in humans, increased body weight and obesity in macaques affect their overall health status. These conditions may interfere with the suitability of some animals in various studies unrelated to obesity.
Collapse
Affiliation(s)
| | - Tara P Arndt
- Pathobiology, University of Guelph, Guelph, Canada
| | | | | | | |
Collapse
|
44
|
Gardner EM, Beli E, Clinthorne JF, Duriancik DM. Energy intake and response to infection with influenza. Annu Rev Nutr 2011; 31:353-67. [PMID: 21548773 DOI: 10.1146/annurev-nutr-081810-160812] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza is a worldwide public health concern, particularly with emerging new strains of influenza to which vaccines are ineffective, limited, or unavailable. In addition, the relationship between adequate nutrition and immune function has been repeatedly demonstrated. Mouse models provide strong evidence that energy extremes, including energy restriction (ER) and diet-induced obesity (DIO), have deleterious effects on the immune response to influenza infection. Both ER and DIO mice demonstrate increased susceptibility and mortality to influenza infection. The effects of ER are more pronounced during innate responses to influenza infection, whereas the effects of DIO are evidenced during innate and adaptive responses to both primary and secondary infection. There are striking similarities between ER and DIO during influenza infection, including impaired natural killer cell function and altered inflammation. Future studies must develop effective nutritional paradigms to offset the effects of these energy extremes on the immune response to an acute infection.
Collapse
Affiliation(s)
- Elizabeth M Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | |
Collapse
|
45
|
Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011; 146:969-79. [PMID: 21906795 DOI: 10.1016/j.cell.2011.07.044] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/02/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory β subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.
Collapse
|
46
|
Abstract
As improvements in standard of living and advances in medicine have resulted in greater life expectancy, the relative proportion of elderly has continued to increase in human populations across the globe. The primary goal of aging research is to gain a better understanding of the series of events that lead to increased frailty and disease vulnerability with age. The direct study of human aging is an active area of research; however, the opportunity to conduct mechanistic studies and gain insights into the underlying biology is limited. In this special forum issue of Antioxidant & Redox Signaling, we present a selection of articles and reviews that illustrate some of the recent advances in primate aging research. The overarching goal of this work is to underscore the potential for mechanistic discovery that is presented by nonhuman primate models, and to promote studies that validate novel approaches and techniques in nonhuman primates before their adaptation for human health care.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
47
|
Dumesic DA, Patankar MS, Barnett DK, Lesnick TG, Hutcherson BA, Abbott DH. Early prenatal androgenization results in diminished ovarian reserve in adult female rhesus monkeys. Hum Reprod 2009; 24:3188-95. [PMID: 19740899 DOI: 10.1093/humrep/dep324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Early prenatal androgenization (PA) accelerates follicle differentiation and impairs embryogenesis in adult female rhesus monkeys (Macaca mulatta) undergoing FSH therapy for IVF. To determine whether androgen excess in utero affects follicle development over time, this study examines whether PA exposure, beginning at gestational days 40-44 (early treated) or 100-115 (late treated), alters the decline in serum anti-Mullerian hormone (AMH) levels with age in adult female rhesus monkeys and perturbs their ovarian response to recombinant human FSH (rhFSH) therapy for IVF. METHODS Thirteen normal (control), 11 early-treated and 6 late-treated PA adult female monkeys had serum AMH levels measured at random times of the menstrual cycle or anovulatory period. Using some of the same animals, basal serum AMH, gonadotrophins and steroids were also measured in six normal, five early-treated and three late-treated PA female monkeys undergoing FSH therapy for IVF during late-reproductive life (>17 years); serum AMH also was measured on day of HCG administration and at oocyte retrieval. RESULTS Serum AMH levels in early-treated PA females declined with age to levels that were significantly lower than those of normal (P < or = 0.05) and late-treated PA females (P < or = 0.025) by late-reproductive life. Serum AMH levels positively predicted numbers of total/mature oocytes retrieved, with early-treated PA females having the lowest serum AMH levels, fewest oocytes retrieved and lowest percentage of females with fertilized oocytes that cleaved. CONCLUSIONS Based on these animals, early PA appears to program an exaggerated decline in ovarian reserve with age, suggesting that epigenetically induced hormonal factors during fetal development may influence the cohort size of ovarian follicles after birth.
Collapse
Affiliation(s)
- D A Dumesic
- National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | |
Collapse
|