1
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
2
|
Singh G, Singh K, Sinha RA, Singh A, Khushi, Kumar A. Japanese encephalitis virus infection causes reactive oxygen species-mediated skeletal muscle damage. Eur J Neurosci 2024; 60:4843-4860. [PMID: 39049535 DOI: 10.1111/ejn.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.
Collapse
Affiliation(s)
- Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kulwant Singh
- Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anjali Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khushi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
3
|
Jiang XX, Zhang R, Wang HS. Neferine mitigates angiotensin II-induced atrial fibrillation and fibrosis via upregulation of Nrf2/HO-1 and inhibition of TGF-β/p-Smad2/3 pathways. Aging (Albany NY) 2024; 16:8630-8644. [PMID: 38775722 PMCID: PMC11164477 DOI: 10.18632/aging.205829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is often associated with atrial fibrosis and oxidative stress. Neferine, a bisbenzylisoquinoline alkaloid, has been reported to exert an antiarrhythmic effect. However, its impact on Angiotensin II (Ang II) infusion-induced AF and the underlying mechanism remains unclear. This study aimed to investigate whether neferine alleviates Ang II-induced AF and explore the underlying mechanisms. METHODS Mice subjected to Ang II infusion to induce AF were concurrently treated with neferine or saline. AF incidence, myocardial cell size, fibrosis, and oxidative stress were then examined. RESULTS Neferine treatment inhibited Ang II-induced AF, atrial size augmentation, and atrial fibrosis. Additionally, we observed that Ang II increased reactive oxygen species (ROS) generation, induced mitochondrial membrane potential depolarization, and reduced glutathione (GSH) and superoxide dismutase (SOD) levels, which were reversed to some extent by neferine. Mechanistically, neferine activated the Nrf2/HO-1 signaling pathway and inhibited TGF-β/p-Smad2/3 in Ang II-infused atria. Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, reduced the anti-oxidative effect of neferine to some extent and subsequently abolished the beneficial effect of neferine on Ang II-induced AF. CONCLUSIONS These findings provide hitherto undocumented evidence that the protective role of neferine in Ang II-induced AF is dependent on HO-1.
Collapse
Affiliation(s)
- Xiao-Xiao Jiang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ri Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Shan Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
4
|
Alsabaani NA, Amawi K, Eleawa SM, Nabeel Ibrahim W, Aldhaban W, Alaraj AM, Alkhalaf B, Sami W, Alshaikhli H, Alkhateeb MA. Nrf-2-dependent antioxidant and anti-inflammatory effects underlie the protective effect of esculeoside A against retinal damage in streptozotocin-induced diabetic rats. Biomed Pharmacother 2024; 173:116461. [PMID: 38503237 DOI: 10.1016/j.biopha.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Esculeoside A (ESA) is a tomato-derived glycoside with antioxidant and anti-inflammatory properties. The protective effect of ESA against diabetic retinopathy is not well-investigated and was the core objective of this study. In addition, we tested if such protection involves the activation of Nrf2 signaling. Type 1 diabetes mellitus (T1DM) was induced in adult Wistar male rats by an intraperitoneal injection of streptozotocin (65 mg/kg). Non-diabetic and T1DM rats were divided into two subgroup groups given either the vehicle or ESA (100 mg)/kg. An additional T1DM group was given ESA (100 mg/kg) and an Nrf2 inhibitor (2 mg/kg) (n=8 rats/group). Treatments continued for 12 weeks. In this study, according to the histological features, ESA improved the structure of ganglionic cells and increased the number of cells of the inner nuclear and plexiform layers in the retinas of T1DM rats. Concomitantly, it reduced the retina levels of malondialdehyde (lipid peroxides), vascular endothelial growth factor, interleukin-6, tumor necrosis factor-α, Bax, and caspase-3. In the retinas of the control and diabetic rats, ESA boosted the levels of total glutathione, superoxide dismutase, heme-oxygenase-1, and Bcl2, reduced the mRNA levels of REDD1, and enhanced cytoplasmic and nuclear levels of Nrf2. However, ESA failed to alter the mRNA levels of Nrf2 and keap1, protein levels of keap1, plasma glucose, plasma insulin, serum triglycerides, cholesterol, and LDL-c in both the control and T1DM rats. In conclusion, ESA alleviates retinopathy in T1DM rats by suppressing REDD1-associated degradation and inhibiting the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Nasser A Alsabaani
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Kawther Amawi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa, P.O. Box: 132222, Jordan.
| | - Samy M Eleawa
- Department of Applied Medical Sciences. College of Health Sciences, Public Authority for Applied Education and Training (PAAET), Kuwait P.O. Box: 2378, Kuwait.
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU health, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Walid Aldhaban
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Ahmad Mohammad Alaraj
- Department of Ophthalmology, College of Medicine, Qassim University, Qassim P.O. Box 52751, Saudi Arabia.
| | - Badr Alkhalaf
- Department of Environmental Sciences. College of Health Health Sciences, PAAET, Kuwait.
| | - Waqas Sami
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Hisham Alshaikhli
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Mahmoud A Alkhateeb
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| |
Collapse
|
5
|
Bose K, Agrawal R, Sairam T, Mil J, Butler MP, Dhandapany PS. Sleep fragmentation induces heart failure in a hypertrophic cardiomyopathy mouse model by altering redox metabolism. iScience 2024; 27:109075. [PMID: 38361607 PMCID: PMC10867644 DOI: 10.1016/j.isci.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Sleep fragmentation (SF) disrupts normal biological rhythms and has major impacts on cardiovascular health; however, it has never been shown to be a risk factor involved in the transition from cardiac hypertrophy to heart failure (HF). We now demonstrate devastating effects of SF on hypertrophic cardiomyopathy (HCM). We generated a transgenic mouse model harboring a patient-specific myosin binding protein C3 (MYBPC3) variant displaying HCM, and measured the progression of pathophysiology in the presence and absence of SF. SF induces mitochondrial damage, sarcomere disarray, and apoptosis in HCM mice; these changes result in a transition of hypertrophy to an HF phenotype by chiefly targeting redox metabolic pathways. Our findings for the first time show that SF is a risk factor for HF transition and have important implications in clinical settings where HCM patients with sleep disorders have worse prognosis, and strategic intervention with regularized sleep patterns might help such patients.
Collapse
Affiliation(s)
- Karthikeyan Bose
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Radhika Agrawal
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| | - Thiagarajan Sairam
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| | - Jessenya Mil
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthew P. Butler
- Oregon Institute of Occupational Health Sciences, and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Perundurai S. Dhandapany
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| |
Collapse
|
6
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H317-H333. [PMID: 38038719 PMCID: PMC11219063 DOI: 10.1152/ajpheart.00632.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Dongli Yang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nadia R Sutton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Yang Q, Yan R, Zhang J, Zhang T, Kong Q, Zhang X, Xia H, Ye A, Qiao X, Kato K, Chen C, An Y. Reductive stress induced by NRF2/G6PD through glucose metabolic reprogramming promotes malignant transformation in Arsenite-exposed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165207. [PMID: 37391132 DOI: 10.1016/j.scitotenv.2023.165207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Our previous research found that the nuclear factor-E2-related factor 2 (NRF2) protein was sustained activated in malignant transformation of human keratinocyte (HaCaT cells) caused by NaAsO2, but the role of NRF2 in it remains unknown. In this study, malignant transformation of HaCaT cells and labeled HaCaT cells used to detect mitochondrial glutathione levels (Mito-Grx1-roGFP2 HaCaT cells) were induced by 1.0 μM NaAsO2. Redox levels were measured at passages 0, early stage (passages 1, 7, 14), later stage (passages 21, 28 and 35) of arsenite-treated HaCaT cells. Oxidative stress levels increased at early stage. The NRF2 pathway was sustained activated. Cells and mitochondrial reductive stress levels (GSH/GSSG and NADPH/NADP+) increased. The mitochondrial GSH/GSSG levels of Mito-Grx1-roGFP2 HaCaT cells also increased. The indicators of glucose metabolism glucose-6-phosphate, lactate and the glucose-6-phosphate dehydrogenase (G6PD) levels increased, however Acetyl-CoA level decreased. Expression levels of glucose metabolic enzymes increased. After transfection with NRF2 siRNA, the indicators of glucose metabolism were reversed. After transfection with NRF2 or G6PD siRNA, cells and mitochondrial reductive stress levels decreased and the malignant phenotype was reversed. In conclusion, oxidative stress occurred in the early stage and the NRF2 was sustained high expression. In the later stage, increased NRF2/G6PD through glucose metabolic reprogramming induced reductive stress, thereby leading to malignant transformation.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Ting Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Xu K, Mu C, Zhang C, Deng S, Lin S, Zheng L, Chen W, Zhang Q. Antioxidative and antibacterial gallium (III)-phenolic coating for enhanced osseointegration of titanium implants via pro-osteogenesis and inhibiting osteoclastogenesis. Biomaterials 2023; 301:122268. [PMID: 37572468 DOI: 10.1016/j.biomaterials.2023.122268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Improving the ability of implants to integrate with natural bone tissue at the initial stage of implantation remains a huge challenge because bone-to-implant interfaces are often accompanied by abnormal microenvironments with infection, reactive oxygen species (ROS) and unbalanced bone homeostasis. In this study, a multifunctional coating was fabricated on the basis of gallium (III)-phenolic networks. It is easily obtained by immersing the implants into a mixed solution of tannic acids (TAs) and gallium ions. The thickness of the coating can be precisely controlled by adjusting the number and time of immersion experiments. The resulting coating displays excellent near-infrared photothermal property. As the coating degrades, TAs and gallium ions with low concentration are released from the coating, which is more rapid in acidic and oxidative stress microenvironments. Photothermal performance as well as released TAs and gallium ions give the coating outstanding broad-spectrum antibacterial ability. Furthermore, the coating effectively reduces intracellular ROS of osteoblasts. In vitro and in vivo experiments demonstrate the capability of the coating enhancing implants' osseointegration via pro-osteogenesis and inhibiting osteoclastogenesis. The findings imply that gallium (III)-phenolic coating holds great promise to promote implant osseointegration by rescuing abnormal microenvironments of infection, oxidative stress and unbalanced bone homeostasis.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, PR China; Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China; The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, PR China.
| | - Caiyun Mu
- College of Acumox and Tuina, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, PR China
| | - Chi Zhang
- Medical Research Center, Ningbo City First Hospital, Ningbo, Zhejiang, 315010, PR China
| | - Sijie Deng
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China
| | - Shan Lin
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China
| | - Linlin Zheng
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China
| | - Weizhen Chen
- Center of Clinical Laboratory & the Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China.
| | - Qiqing Zhang
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China.
| |
Collapse
|
9
|
Uche N, Dai Q, Lai S, Kolander K, Thao M, Schibly E, Sendaydiego X, Zielonka J, Benjamin IJ. Carvedilol Phenocopies PGC-1α Overexpression to Alleviate Oxidative Stress, Mitochondrial Dysfunction and Prevent Doxorubicin-Induced Toxicity in Human iPSC-Derived Cardiomyocytes. Antioxidants (Basel) 2023; 12:1585. [PMID: 37627583 PMCID: PMC10451268 DOI: 10.3390/antiox12081585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular 'redox poise' as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents.
Collapse
Affiliation(s)
- Nnamdi Uche
- Cardiovascular Center, Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Qiang Dai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Shuping Lai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Kurt Kolander
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Mai Thao
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Elizabeth Schibly
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Xavier Sendaydiego
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Jacek Zielonka
- Free Radical Laboratory, Department of Biophysics, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Ivor J. Benjamin
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| |
Collapse
|
10
|
Vardar Acar N, Özgül RK. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI JOURNAL 2023; 22:520-555. [PMID: 37534225 PMCID: PMC10390897 DOI: 10.17179/excli2023-6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
As a requirement of aerobic metabolism, regulation of redox homeostasis is indispensable for the continuity of living homeostasis and life. Since the stability of the redox state is necessary for the maintenance of the biological functions of the cells, the balance between the pro-oxidants, especially ROS and the antioxidant capacity is kept in balance in the cells through antioxidant defense systems. The pleiotropic transcription factor, Nrf2, is the master regulator of the antioxidant defense system. Disruption of redox homeostasis leads to oxidative and reductive stress, bringing about multiple pathophysiological conditions. Oxidative stress characterized by high ROS levels causes oxidative damage to biomolecules and cell death, while reductive stress characterized by low ROS levels disrupt physiological cell functions. The fact that ROS, which were initially attributed as harmful products of aerobic metabolism, at the same time function as signal molecules at non-toxic levels and play a role in the adaptive response called mithormesis points out that ROS have a dose-dependent effect on cell fate determination. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Nese Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Riza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
More than Just Antioxidants: Redox-Active Components and Mechanisms Shaping Redox Signalling Network. Antioxidants (Basel) 2022; 11:antiox11122403. [PMID: 36552611 PMCID: PMC9774234 DOI: 10.3390/antiox11122403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The concept of oxidative stress as a condition underlying a multitude of human diseases has led to immense interest in the search for antioxidant-based remedies. The simple and intuitive story of "the bad" reactive oxygen species (ROS) and "the good" antioxidants quickly (and unsurprisingly) lead to the commercial success of products tagged "beneficial to health" based solely on the presence of antioxidants. The commercial success of antioxidants by far preceded the research aimed at understanding the exact redox-related mechanisms that are in control of shaping the states of health and disease. This review describes the redox network formed by the interplay of ROS with cellular molecules and the resulting regulation of processes at the genomic and proteomic levels. Key players of this network are presented, both involved in redox signalling and control of cellular metabolism linked to most, if not all, physiological processes. In particular, this review focuses on the concept of reductive stress, which still remains less well-established compared to oxidative stress.
Collapse
|
12
|
Jyothidasan A, Sunny S, Murugesan S, Quiles JM, Challa AK, Dalley B, Cinghu SK, Nanda V, Rajasekaran NS. Transgenic Expression of Nrf2 Induces a Pro-Reductive Stress and Adaptive Cardiac Remodeling in the Mouse. Genes (Basel) 2022; 13:1514. [PMID: 36140682 PMCID: PMC9498410 DOI: 10.3390/genes13091514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Nuclear factor, erythroid 2 like 2 (Nfe2l2 or Nrf2), is a transcription factor that protects cells by maintaining a homeostatic redox state during stress. The constitutive expression of Nrf2 (CaNrf2-TG) was previously shown to be pathological to the heart over time. We tested a hypothesis that the cardiac-specific expression of full length Nrf2 (mNrf2-TG) would moderately increase the basal antioxidant defense, triggering a pro-reductive environment leading to adaptive cardiac remodeling. Transgenic and non-transgenic (NTG) mice at 7−8 months of age were used to analyze the myocardial transcriptome, structure, and function. Next generation sequencing (NGS) for RNA profiling and qPCR-based validation of the NGS data, myocardial redox levels, and imaging (echocardiography) were performed. Transcriptomic analysis revealed that out of 14,665 identified mRNAs, 680 were differently expressed (DEG) in TG hearts. Of 680 DEGs, 429 were upregulated and 251 were downregulated significantly (FC > 2.0, p < 0.05). Gene set enrichment analysis revealed that the top altered pathways were (a) Nrf2 signaling, (b) glutathione metabolism and (c) ROS scavenging. A comparative analysis of the glutathione redox state in the hearts demonstrated significant differences between pro-reductive vs. hyper-reductive conditions (233 ± 36.7 and 380 ± 68.7 vs. 139 ± 8.6 µM/mg protein in mNrf2-TG and CaNrf2-TG vs. NTG). Genes involved in fetal development, hypertrophy, cytoskeletal rearrangement, histone deacetylases (HDACs), and GATA transcription factors were moderately increased in mNrf2-TG compared to CaNrf2-TG. Non-invasive echocardiography analysis revealed an increase in systolic function (ejection fraction) in mNrf2-TG, suggesting an adaptation, as opposed to pathological remodeling in CaNrf2-TG mice experiencing a hyper-reductive stress, leading to reduced survival (40% at 60 weeks). The effects of excess Nrf2-driven antioxidant transcriptome revealed a pro-reductive condition in the myocardium leading to an adaptive cardiac remodeling. While pre-conditioning the myocardial redox with excess antioxidants (i.e., pro-reductive state) could be beneficial against oxidative stress, a chronic pro-reductive environment in the myocardium might transition the adaptation to pathological remodeling.
Collapse
Affiliation(s)
- Arun Jyothidasan
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sini Sunny
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saravanakumar Murugesan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Justin M. Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Anil Kumar Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Dalley
- Huntsman Cancer Center-Genomic Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Senthil Kumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivek Nanda
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Namakkal-Soorappan Rajasekaran
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Center for Free Radical Biology (CFRB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Déméautis T, Delles M, Tomaz S, Monneret G, Glehen O, Devouassoux G, George C, Bentaher A. Pathogenic Mechanisms of Secondary Organic Aerosols. Chem Res Toxicol 2022; 35:1146-1161. [PMID: 35737464 DOI: 10.1021/acs.chemrestox.1c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air pollution represents a major health problem and an economic burden. In recent years, advances in air pollution research has allowed particle fractionation and identification of secondary organic aerosol (SOA). SOA is formed from either biogenic or anthropogenic emissions, through a mass transfer from the gaseous mass to the particulate phase in the atmosphere. They can have deleterious impact on health and the mortality of individuals with chronic inflammatory diseases. The pleiotropic effects of SOA could involve different and interconnected pathogenic mechanisms ranging from oxidative stress, inflammation, and immune system dysfunction. The purpose of this review is to present recent findings about SOA pathogenic roles and potential underlying mechanisms focusing on the lungs; the latter being the primary exposed organ to atmospheric pollutants.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Marie Delles
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Sophie Tomaz
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Guillaume Monneret
- Pathophysiology of Immunosuppression Associated with Systemic Inflammatory Responses, EA7426 (PI3), Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Digestive and Endocrine Surgery Department, University Hospital of Lyon, Lyon South Hospital,165 Chemin du Grand Revoyet 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Pulmonology Department, Croix Rousse Hospital, Lyon Civil Hospices, Lyon 1 Claude Bernard University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Christian George
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
14
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
15
|
Bromage DI, Trevelin SC, Huntington J, Yang VX, Muthukumar A, Mackie SJ, Sawyer G, Zhang X, Santos CXC, Safinia N, Smyrnias I, Giacca M, Ivetic A, Shah AM. Nrf2 attenuates the innate immune response after experimental myocardial infarction. Biochem Biophys Res Commun 2022; 606:10-16. [PMID: 35338853 DOI: 10.1016/j.bbrc.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.
Collapse
Affiliation(s)
- Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Silvia C Trevelin
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Josef Huntington
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Victoria X Yang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ananya Muthukumar
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Sarah J Mackie
- School of Cancer and Pharmaceutical Sciences, SGDP Centre, King's College London, Memory Lane, London, SE5 8AF, UK
| | - Greta Sawyer
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Xiaohong Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, GU2 7AL, UK
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
16
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
17
|
Chen L, Jiang X, Lv M, Wang X, Zhao P, Zhang M, Lv G, Wu J, Liu Y, Yang Y, Chen J, Bu W. Reductive-damage-induced intracellular maladaptation for cancer electronic interference therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Qiao X, Zhang Y, Ye A, Zhang Y, Xie T, Lv Z, Shi C, Wu D, Chu B, Wu X, Zhang W, Wang P, Liu GH, Wang CC, Wang L, Chen C. ER reductive stress caused by Ero1α S-nitrosation accelerates senescence. Free Radic Biol Med 2022; 180:165-178. [PMID: 35033630 DOI: 10.1016/j.freeradbiomed.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Oxidative stress in aging has attracted much attention; however, the role of reductive stress in aging remains largely unknown. Here, we report that the endoplasmic reticulum (ER) undergoes reductive stress during replicative senescence, as shown by specific glutathione and H2O2 fluorescent probes. We constructed an ER-specific reductive stress cell model by ER-specific catalase overexpression and observed accelerated senescent phenotypes accompanied by disrupted proteostasis and a compromised ER unfolded protein response (UPR). Mechanistically, S-nitrosation of the pivotal ER sulfhydryl oxidase Ero1α led to decreased activity, therefore resulting in reductive stress in the ER. Inhibition of inducible nitric oxide synthase decreased the level of Ero1α S-nitrosation and decreased cellular senescence. Moreover, the expression of constitutively active Ero1α restored an oxidizing state in the ER and successfully rescued the senescent phenotypes. Our results uncover a new mechanism of senescence promoted by ER reductive stress and provide proof-of-concept that maintaining the oxidizing power of the ER and organelle-specific precision redox regulation could be valuable future geroprotective strategies.
Collapse
Affiliation(s)
- Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongli Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Boyu Chu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
20
|
Niederkorn M, Ishikawa C, M. Hueneman K, Bartram J, Stepanchick E, R. Bennett J, E. Culver-Cochran A, Bolanos LC, Uible E, Choi K, Wunderlich M, Perentesis JP, M. Chlon T, Filippi MD, Starczynowski DT. The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia 2022; 36:438-451. [PMID: 34465865 PMCID: PMC8807387 DOI: 10.1038/s41375-021-01394-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.
Collapse
Affiliation(s)
- Madeline Niederkorn
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Chiharu Ishikawa
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kathleen M. Hueneman
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - James Bartram
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily Stepanchick
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joshua R. Bennett
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ashley E. Culver-Cochran
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Lyndsey C. Bolanos
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Emma Uible
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kwangmin Choi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Mark Wunderlich
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - John P. Perentesis
- grid.239573.90000 0000 9025 8099Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Timothy M. Chlon
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Marie-Dominique Filippi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel T. Starczynowski
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
21
|
Temporary Upregulation of Nrf2 by Naringenin Alleviates Oxidative Damage in the Retina and ARPE-19 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4053276. [PMID: 34840667 PMCID: PMC8612781 DOI: 10.1155/2021/4053276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Dry age-related macular degeneration (dAMD) is a chronic degenerative ophthalmopathy that leads to serious burden of visual impairment. Antioxidation in retinal pigment epithelium (RPE) cells is considered as a potential treatment for dAMD. Our previous studies have showed that naringenin (NAR) protects RPE cells from oxidative damage partly through SIRT1-mediated antioxidation. In this study, we tested the hypothesis that the Nrf2 signaling is another protective mechanism of NAR on dAMD. NaIO3-induced mouse retinopathy and ARPE-19 cell injury models were established. Immunochemical staining, immunofluorescence, and western blotting were performed to detect the protein expressions of Nrf2 and HO-1. In addition, ML385 (activity inhibitor of Nrf2) and zinc protoporphyrin (ZnPP, activity inhibitor of HO-1) were applied to explore the effect of NaIO3 or NAR. The results showed that NAR increased the protein expressions of Nrf2 and HO-1 in the retinas in mice exposed to NaIO3 at the early stage. NAR treatment also resulted in a stronger activation of Nrf2 at the early stage in NaIO3-treated ARPE-19 cells. Moreover, inhibition of HO-1 by ZnPP weakened the cytoprotective effect of NAR. The constitutive accumulation and activation of Nrf2 induced by NaIO3 led to the death of RPE cells. However, NAR decreased the protein expressions of Nrf2 and HO-1 towards normal level in the mouse retinas and ARPE-19 cells exposed to NaIO3 at the late stage. Our findings indicate that NAR protects RPE cells from oxidative damage via activating the Nrf2 signaling pathway.
Collapse
|
22
|
Coombs GS, Rios-Monterrosa JL, Lai S, Dai Q, Goll AC, Ketterer MR, Valdes MF, Uche N, Benjamin IJ, Wallrath LL. Modulation of muscle redox and protein aggregation rescues lethality caused by mutant lamins. Redox Biol 2021; 48:102196. [PMID: 34872044 PMCID: PMC8646998 DOI: 10.1016/j.redox.2021.102196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mutations in the human LMNA gene cause a collection of diseases called laminopathies, which includes muscular dystrophy and dilated cardiomyopathy. The LMNA gene encodes lamins, filamentous proteins that form a meshwork on the inner side of the nuclear envelope. How mutant lamins cause muscle disease is not well understood, and treatment options are currently limited. To understand the pathological functions of mutant lamins so that therapies can be developed, we generated new Drosophila models and human iPS cell-derived cardiomyocytes. In the Drosophila models, muscle-specific expression of the mutant lamins caused nuclear envelope defects, cytoplasmic protein aggregation, activation of the Nrf2/Keap1 redox pathway, and reductive stress. These defects reduced larval motility and caused death at the pupal stage. Patient-derived cardiomyocytes expressing mutant lamins showed nuclear envelope deformations. The Drosophila models allowed for genetic and pharmacological manipulations at the organismal level. Genetic interventions to increase autophagy, decrease Nrf2/Keap1 signaling, or lower reducing equivalents partially suppressed the lethality caused by mutant lamins. Moreover, treatment of flies with pamoic acid, a compound that inhibits the NADPH-producing malic enzyme, partially suppressed lethality. Taken together, these studies have identified multiple new factors as potential therapeutic targets for LMNA-associated muscular dystrophy.
Collapse
Affiliation(s)
- Gary S Coombs
- Biology Department, Waldorf University, Forest City, IA, USA
| | | | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qiang Dai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley C Goll
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Margaret R Ketterer
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Maria F Valdes
- Biology Department, Waldorf University, Forest City, IA, USA
| | - Nnamdi Uche
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WO, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lori L Wallrath
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
23
|
Manford AG, Mena EL, Shih KY, Gee CL, McMinimy R, Martínez-González B, Sherriff R, Lew B, Zoltek M, Rodríguez-Pérez F, Woldesenbet M, Kuriyan J, Rape M. Structural basis and regulation of the reductive stress response. Cell 2021; 184:5375-5390.e16. [PMID: 34562363 PMCID: PMC8810291 DOI: 10.1016/j.cell.2021.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Elijah L Mena
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Rachael McMinimy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Rumi Sherriff
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brandon Lew
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Madeline Zoltek
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Fernando Rodríguez-Pérez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Makda Woldesenbet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Loss of FCHSD1 leads to amelioration of chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 2021; 118:2019167118. [PMID: 34168078 DOI: 10.1073/pnas.2019167118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD/emphysema) is a life-threatening disorder and there are few effective therapies. Cigarette smoke-induced oxidative stress, airway inflammation, and apoptosis of lung cells have been reported to be involved in the pathogenesis of COPD/emphysema and lead to alveolar septal destruction. Here we show that the expression level of FCH and double SH3 domains 1 (FCHSD1) was drastically increased in mice in response to elastase instillation, an experimental model of COPD. FCHSD1 is a member of the F-BAR family with two SH3 domains. We found that Fchsd1 knockout (Fchsd1 -/-) mice were protected against airspace enlargement induced by elastase. Elastase-instilled lungs of Fchsd1 -/- mice showed reduced inflammation and apoptosis compared with WT mice. We also found that elastase-induced reduction of Sirtuin 1 (SIRT1) levels, a histone deacetylase reported to protect against emphysema, was attenuated in the lungs of Fchsd1 -/- mice. Furthermore, FCHSD1 deficiency enhanced nuclear translocation of nuclear factor-like 2 (NRF2), a redox-sensitive transcription factor, following H2O2 stimulation. Conversely, Fchsd1 overexpression inhibited NRF2 nuclear translocation and increased the reduction of SIRT1 levels. Notably, FCHSD1 interacted with NRF2 and SNX9. Our results show that FCHSD1 forms a multicomplex with NRF2 and SNX9 in the cytosol that prevents NRF2 from translocating to the nucleus. We propose that FCHSD1 promotes initiation of emphysema development by inhibiting nuclear translocation of NRF2, which leads to down-regulation of SIRT1.
Collapse
|
25
|
Azzimato V, Jager J, Chen P, Morgantini C, Levi L, Barreby E, Sulen A, Oses C, Willerbrords J, Xu C, Li X, Shen JX, Akbar N, Haag L, Ellis E, Wålhen K, Näslund E, Thorell A, Choudhury RP, Lauschke VM, Rydén M, Craige SM, Aouadi M. Liver macrophages inhibit the endogenous antioxidant response in obesity-associated insulin resistance. Sci Transl Med 2021; 12:12/532/eaaw9709. [PMID: 32102936 DOI: 10.1126/scitranslmed.aaw9709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Obesity and insulin resistance are risk factors for nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. Because no approved medication nor an accurate and noninvasive diagnosis is currently available for NAFLD, there is a clear need to better understand the link between obesity and NAFLD. Lipid accumulation during obesity is known to be associated with oxidative stress and inflammatory activation of liver macrophages (LMs). However, we show that although LMs do not become proinflammatory during obesity, they display signs of oxidative stress. In livers of both humans and mice, antioxidant nuclear factor erythroid 2-related factor 2 (NRF2) was down-regulated with obesity and insulin resistance, yielding an impaired response to lipid accumulation. At the molecular level, a microRNA-targeting NRF2 protein, miR-144, was elevated in the livers of obese insulin-resistant humans and mice, and specific silencing of miR-144 in murine and human LMs was sufficient to restore NRF2 protein expression and the antioxidant response. These results highlight the pathological role of LMs and their therapeutic potential to restore the impaired endogenous antioxidant response in obesity-associated NAFLD.
Collapse
Affiliation(s)
- Valerio Azzimato
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Jennifer Jager
- Université Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, 06000 Nice, France
| | - Ping Chen
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Cecilia Morgantini
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Laura Levi
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Emelie Barreby
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - André Sulen
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Carolina Oses
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Joost Willerbrords
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Connie Xu
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Xidan Li
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Joanne X Shen
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Solna, Sweden
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DU Oxford, UK
| | - Lars Haag
- Department of Laboratory Medicine, Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ewa Ellis
- Division of Transplantation Surgery, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Kerstin Wålhen
- Unit of Endocrinology Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 182 88 Stockholm, Sweden
| | - Anders Thorell
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 182 88 Stockholm, Sweden.,Department of Surgery, Ersta Hospital, Karolinska Institutet, 116 28 Stockholm, Sweden
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DU Oxford, UK
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Solna, Sweden
| | - Mikael Rydén
- Unit of Endocrinology Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Siobhan M Craige
- Human Nutrition, Food, and Exercise Department, Virginia Tech, Blacksburg, VA 24060, USA
| | - Myriam Aouadi
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
26
|
KUBERAPANDIAN D, DOSS VA. Identification of serum predictors of n-acetyl-l-cysteine and isoproterenol induced remodelling in cardiac hypertrophy. Turk J Biol 2021; 45:323-332. [PMID: 34377056 PMCID: PMC8313937 DOI: 10.3906/biy-2101-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 11/12/2022] Open
Abstract
Cardiac hypertrophy (CH), leading to cardiac failure is due to chronic metabolic alterations occurring during cellular stress. Besides the already known relationship between oxidative stress and CH, there are implications of reductive stress leading to CH. This study attempted to develop reductive stress-based CH rat model using n-acetyl-L-cysteine (NAC), a glutathione agonist that was compared with typical isoproterenol (ISO) induced CH model. The main objective was to identify serum metabolites that can serve as potent predictors for seven routine clinical and diagnostic parameters in CH: 3-hydroxybutyrate (3-HB), lactic acid (LA), urea, and ECG-CH parameters (QRS complex, R-amplitude, R-R interval, heart rate) that were hypothesized to underlie metabolic remodelling in this study. CH was assessed using electrocardiography, hypertrophic index and histopathological analysis (H&E stain) in both ventricles after 2 weeks. Gas chromatography mass spectroscopy analysis (GC-MS) identified unique metabolite finger-prints. Correlation and pattern analysis revealed strong relationships between specific metabolites and parameters (Pearson's score > 0.7) of this study. Multiple regression analysis (MRA) for the strongly related metabolites (independent variables) with each of the seven parameters (dependent variables) identified significant predictors for the latter namely fructose, valine, butanoic acid in NAC and cholesterol, erythrose, isoleucine in ISO models, with proline and succinic acid as common for both models. Metabolite set enrichment analysis (MSEA) of those significant predictors (p < 0.05) mapped butyrate metabolism as highly influential pathway in NAC, with arginine-proline metabolism and branched chain amino acid (BCAA) degradation as common pathways in both models, thus providing new insights towards initial metabolic remodeling in the pathogenesis of CH.
Collapse
Affiliation(s)
| | - Victor Arokia DOSS
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil NaduIndia
| |
Collapse
|
27
|
Quiles JM, Pepin ME, Sunny S, Shelar SB, Challa AK, Dalley B, Hoidal JR, Pogwizd SM, Wende AR, Rajasekaran NS. Identification of Nrf2-responsive microRNA networks as putative mediators of myocardial reductive stress. Sci Rep 2021; 11:11977. [PMID: 34099738 PMCID: PMC8184797 DOI: 10.1038/s41598-021-90583-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although recent advances in the treatment of acute coronary heart disease have reduced mortality rates, few therapeutic strategies exist to mitigate the progressive loss of cardiac function that manifests as heart failure. Nuclear factor, erythroid 2 like 2 (Nfe2l2, Nrf2) is a transcriptional regulator that is known to confer transient myocardial cytoprotection following acute ischemic insult; however, its sustained activation paradoxically causes a reductive environment characterized by excessive antioxidant activity. We previously identified a subset of 16 microRNAs (miRNA) significantly diminished in Nrf2-ablated (Nrf2-/-) mouse hearts, leading to the hypothesis that increasing levels of Nrf2 activation augments miRNA induction and post-transcriptional dysregulation. Here, we report the identification of distinct miRNA signatures (i.e. "reductomiRs") associated with Nrf2 overexpression in a cardiac-specific and constitutively active Nrf2 transgenic (caNrf2-Tg) mice expressing low (TgL) and high (TgH) levels. We also found several Nrf2 dose-responsive miRNAs harboring proximal antioxidant response elements (AREs), implicating these "reductomiRs" as putative meditators of Nrf2-dependent post-transcriptional regulation. Analysis of mRNA-sequencing identified a complex network of miRNAs and effector mRNAs encoding known pathological hallmarks of cardiac stress-response. Altogether, these data support Nrf2 as a putative regulator of cardiac miRNA expression and provide novel candidates for future mechanistic investigation to understand the relationship between myocardial reductive stress and cardiac pathophysiology.
Collapse
Affiliation(s)
- Justin M Quiles
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E Pepin
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sini Sunny
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep B Shelar
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Challa
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Dalley
- Huntsman Cancer Center-Genomic Core Facility, University of Utah, Salt Lake City, UT, USA
| | - John R Hoidal
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Steven M Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.
- Division of Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.
- Division of Molecular and Cellular Pathology, Department of Pathology, Center for Free Radical Biology, The University of Alabama at Birmingham, BMR2 Room 533, 901 19th Street South, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
28
|
Endocannabinoid System and Its Regulation by Polyunsaturated Fatty Acids and Full Spectrum Hemp Oils. Int J Mol Sci 2021; 22:ijms22115479. [PMID: 34067450 PMCID: PMC8196941 DOI: 10.3390/ijms22115479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system (ECS) consists of endogenous cannabinoids, their receptors, and metabolic enzymes that play a critical homeostatic role in modulating polyunsaturated omega fatty acid (PUFA) signaling to maintain a balanced inflammatory and redox state. Whole food-based diets and dietary interventions linked to PUFAs of animal (fish, calamari, krill) or plant (hemp, flax, walnut, algae) origin, as well as full-spectrum hemp oils, are increasingly used to support the ECS tone, promote healthy metabolism, improve risk factors associated with cardiovascular disorders, encourage brain health and emotional well-being, and ameliorate inflammation. While hemp cannabinoids of THC and CBD groups show distinct but complementary actions through a variety of cannabinoid (CB1 and CB2), adenosine (A2A), and vanilloid (TRPV1) receptors, they also modulate PUFA metabolism within a wide variety of specialized lipid mediators that promote or resolve inflammation and oxidative stress. Clinical evidence reviewed in this study links PUFAs and cannabinoids to changes in ECS tone, immune function, metabolic and oxidative stress adaptation, and overall maintenance of a well-balanced systemic function of the body. Understanding how the body coordinates signals from the exogenous and endogenous ECS modulators is critical for discerning the underlying molecular mechanisms of the ECS tone in healthy and disease states. Nutritional and lifestyle interventions represent promising approaches to address chronic metabolic and inflammatory disorders that may overlap in the population at risk. Further investigation and validation of dietary interventions that modulate the ECS are required in order to devise clinically successful second-generation management strategies.
Collapse
|
29
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
30
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
31
|
Abstract
Reductive stress is defined as a condition characterized by excess accumulation of reducing equivalents (e.g., NADH, NADPH, GSH), surpassing the activity of endogenous oxidoreductases. Excessive reducing equivalents can perturb cell signaling pathways, change the formation of disulfide bonding in proteins, disturb mitochondrial homeostasis or decrease metabolism. Reductive stress is influenced by cellular antioxidant load, its flux and a subverted homeostasis that paradoxically can result in excess ROS induction. Balanced reducing equivalents and antioxidant enzymes that contribute to reductive stress can be regulated by Nrf2, typically considered as an oxidative stress induced transcription factor. Cancer cells may coordinate distinct pools of redox couples under reductive stress and these may link to biological consequences from both molecular and translational standpoints. In cancer, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic management and disease progression.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
32
|
The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
|
33
|
Jin Q, Zhu Q, Wang K, Chen M, Li X. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF‑κB signalling pathway in diabetic cardiomyopathy rats. Mol Med Rep 2021; 23:215. [PMID: 33495841 PMCID: PMC7845586 DOI: 10.3892/mmr.2021.11854] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Allisartan isoproxil is a new nonpeptide angiotensin II receptor blocker (ARB) precursor drug that is used to treat hypertension and reduce the risk of heart disease. The present study explored the effects of allisartan isoproxil on diabetic cardiomyopathy (DCM) and revealed the roles of hyperglycaemia-induced oxidative stress and inflammation. A rat DCM model was established by high-fat diet feeding in combination with intraperitoneal injection of streptozocin. Echocardiographs showed that diabetic rats exhibited significantly decreased cardiac function. Troponin T (cTnT) and B-type natriuretic peptide (BNP) were significantly increased in DCM rats as obtained by ELISA. Allisartan isoproxil significantly improved the EF% and E™/A™ ratio. Histopathologic staining showed that allisartan isoproxil prevented histological alterations, attenuated the accumulation of collagen, and ameliorated cTnT and BNP levels. Western blot and immunohistochemical results indicated that the expression levels of silent information regulator 2 homologue 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were decreased in the hearts of diabetic rats, and antioxidant defences were also decreased. In addition, allisartan isoproxil decreased the expression of NF-κB p65 and the inflammatory cytokines TNF-α and IL-1β which were determined by reverse transcription-quantitative PCR in the diabetic heart. Western blotting and TUNEL staining results also showed that cardiac Bax and cleaved caspase-3 and the number of apoptotic myocardial cells were increased in the diabetic heart and decreased following treatment with allisartan isoproxil. In conclusion, the present results indicated that allisartan isoproxil alleviated DCM by attenuating diabetes-induced oxidative stress and inflammation through the SIRT1/Nrf2/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Qinyang Jin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qin Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
34
|
Zhang J. The Promise of a Golden Era for Exploring the Frontiers of Aging, Metabolism and Redox Biology. FRONTIERS IN AGING 2020; 1:610406. [PMID: 36212526 PMCID: PMC9541140 DOI: 10.3389/fragi.2020.610406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
|
35
|
Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8819719. [PMID: 33204398 PMCID: PMC7649698 DOI: 10.1155/2020/8819719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Oxidative (OS), reductive (RS), and nitrosative (NSS) stresses produce carbonylation, glycation, glutathionylation, sulfhydration, nitration, and nitrosylation reactions. OS, RS, and NSS are interrelated since RS results from an overactivation of antioxidant systems and NSS is the result of the overactivation of the oxidation of nitric oxide (NO). Here, we discuss the general characteristics of the three types of stress and the way by which the reactions they induce (a) damage the DNA structure causing strand breaks or inducing the formation of 8-oxo-d guanosine; (b) modify histones; (c) modify the activities of the enzymes that determine the establishment of epigenetic cues such as DNA methyl transferases, histone methyl transferases, acetyltransferases, and deacetylases; (d) alter DNA reparation enzymes by posttranslational mechanisms; and (e) regulate the activities of intracellular enzymes participating in metabolic reactions and in signaling pathways through posttranslational modifications. Furthermore, the three types of stress may establish new epigenetic marks through these reactions. The development of cardiometabolic disorders in adult life may be programed since early stages of development by epigenetic cues which may be established or modified by OS, RS, and NSS. Therefore, the three types of stress participate importantly in mediating the impact of the early life environment on later health and heritability. Here, we discuss their impact on cardiometabolic diseases. The epigenetic modifications induced by these stresses depend on union and release of chemical residues on a DNA sequence and/or on amino acid residues in proteins, and therefore, they are reversible and potentially treatable.
Collapse
|
36
|
Bublitz K, Böckmann S, Peters K, Hinz B. Cannabinoid-Induced Autophagy and Heme Oxygenase-1 Determine the Fate of Adipose Tissue-Derived Mesenchymal Stem Cells under Stressful Conditions. Cells 2020; 9:cells9102298. [PMID: 33076330 PMCID: PMC7602569 DOI: 10.3390/cells9102298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023] Open
Abstract
The administration of adipose tissue-derived mesenchymal stem cells (ADMSCs) represents a promising therapeutic option after myocardial ischemia or myocardial infarction. However, their potential is reduced due to the high post-transplant cell mortality probably caused by oxidative stress and mitogen-deficient microenvironments. To identify protection strategies for ADMSCs, this study investigated the influence of the non-psychoactive phytocannabinoid cannabidiol (CBD) and the endocannabinoid analogue R(+)-methanandamide (MA) on the induction of heme oxygenase-1 (HO-1) and autophagy under serum-free conditions. At a concentration of 3 µM, CBD induced an upregulation of HO-1 mRNA and protein within 6 h, whereas for MA only a late and comparatively lower increase in the HO-1 protein could be detected after 48 h. In addition, both cannabinoids induced time- and concentration-dependent increases in LC3A/B-II protein, a marker of autophagy, and in metabolic activity. A participation of several cannabinoid-binding receptors in the effect on metabolic activity and HO-1 was excluded. Similarly, knockdown of HO-1 by siRNA or inhibition of HO-1 activity by tin protoporphyrin IX (SnPPIX) had no effect on CBD-induced autophagy and metabolic activity. On the other hand, the inhibition of autophagy by bafilomycin A1 led to a significant decrease in cannabinoid-induced metabolic activity and to an increase in apoptosis. Under these circumstances, a significant induction of HO-1 expression after 24 h could also be demonstrated for MA. Remarkably, inhibition of HO-1 by SnPPIX under conditions of autophagy deficit led to a significant reversal of apoptosis in cannabinoid-treated cells. In conclusion, the investigated cannabinoids increase metabolic viability of ADMSCs under serum-free conditions by inducing HO-1-independent autophagy but contribute to apoptosis under conditions of additional autophagy deficit via an HO-1-dependent pathway.
Collapse
Affiliation(s)
- Katharina Bublitz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany;
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
- Correspondence: ; Tel.: +49-381-494-5770
| |
Collapse
|
37
|
Manford AG, Rodríguez-Pérez F, Shih KY, Shi Z, Berdan CA, Choe M, Titov DV, Nomura DK, Rape M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020; 183:46-61.e21. [PMID: 32941802 DOI: 10.1016/j.cell.2020.08.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.
Collapse
Affiliation(s)
- Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Fernando Rodríguez-Pérez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Zhuo Shi
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Charles A Berdan
- Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Mangyu Choe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Daniel K Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California at Berkeley, CA 94720, USA
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
S Narasimhan KK, Devarajan A, Karan G, Sundaram S, Wang Q, van Groen T, Monte FD, Rajasekaran NS. Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biol 2020; 37:101739. [PMID: 33242767 PMCID: PMC7695986 DOI: 10.1016/j.redox.2020.101739] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Redox homeostasis regulates key cellular signaling in both physiology and pathology. While perturbations result in shifting the redox homeostasis towards oxidative stress are well documented, the influence of reductive stress (RS) in neurodegenerative diseases and its mechanisms are unknown. Here, we postulate that a redox shift towards the reductive arm (through the activation of Nrf2 signaling) will damage neurons and impair neurogenesis. In proliferating and differentiating neuroblastoma (Neuro 2a/N2a) cells, sulforaphane-mediated Nrf2 activation resulted in increased transcription/translation of antioxidants and glutathione (GSH) production along with significantly declined ROS in a dose-dependent manner leading to a reductive-redox state (i.e. RS). Interestingly, this resulted in endoplasmic reticulum (ER) stress leading to subsequent protein aggregation/proteotoxicity in neuroblastoma cells. Under RS, we also observed elevated Tau/α-synuclein and their co-localization with other protein aggregates in these cells. Surprisingly, we noticed that acute RS impaired neurogenesis as evidenced from reduced neurite outgrowth/length. Furthermore, maintaining the cells in a sustained RS condition (for five consecutive generations) dramatically reduced their differentiation and prevented the formation of axons (p < 0.05). This impairment in RS mediated neurogenesis occurs through the alteration of Tau dynamics i.e. RS activates the pathogenic GSK3β/Tau cascade thereby promoting the phosphorylation of Tau leading to proteotoxicity. Of note, intermittent withdrawal of sulforaphane from these cells suppressed the proteotoxic insult and re-activated the differentiation process. Overall, this results suggest that either acute or chronic RS could hamper neurogenesis through GSK3β/TAU signaling and proteotoxicity. Therefore, investigations identifying novel redox mechanisms impacting proteostasis are crucial to preserve neuronal health.
Collapse
Affiliation(s)
- Kishore Kumar S Narasimhan
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Asokan Devarajan
- Department of Medicine, Division of Cardiology, Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, United States
| | - Goutam Karan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical University & Research Institute, Chennai, India
| | - Qin Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
39
|
Bellezza I, Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. Reductive stress in striated muscle cells. Cell Mol Life Sci 2020; 77:3547-3565. [PMID: 32072237 PMCID: PMC11105111 DOI: 10.1007/s00018-020-03476-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine β-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario Di Ricerca Sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
40
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
41
|
Wang T, Jian Z, Baskys A, Yang J, Li J, Guo H, Hei Y, Xian P, He Z, Li Z, Li N, Long Q. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials 2020; 257:120264. [PMID: 32791387 DOI: 10.1016/j.biomaterials.2020.120264] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a major cause of skin injury induced by damaging stimuli such as UV radiation. Currently, owing to their immunomodulatory properties, mesenchymal stem cell-derived exosomes (MSC-Exo), as a nanotherapeutic agent, have attracted considerable attention. Here, we investigated the therapeutic effects of MSC-Exo on oxidative injury in H2O2-stimulated epidermal keratinocytes and UV-irradiated wild type and nuclear factor-erythroid 2-related factor-2 (Nrf2) knocked down cell and animal models. Our findings showed that MSC-Exo treatment reduced reactive oxygen species generation, DNA damage, aberrant calcium signaling, and mitochondrial changes in H2O2-stimulated keratinocytes or UV-irradiated mice skin. Exosome therapy also improved antioxidant capacities shown by increased ferric ion reducing antioxidant power and glutathione peroxidase or superoxide dismutase activities in oxidative stress-induced cell and skin injury. In addition, it alleviated cellular and histological responses to inflammation and oxidation in cell or animal models. Furthermore, the NRF2 signaling pathway was involved in the antioxidation activity of MSC-Exo, while Nrf2 knockdown attenuated the antioxidant capacities of MSC-Exo in vitro and in vivo, suggesting that these effects are partially mediated by the NRF2 signaling pathway. These results indicate that MSC-Exo can repair oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Thus, MSC-Exo may be used as a potential dermatological nanotherapeutic agent for treating oxidative stress-induced skin diseases or disorders.
Collapse
Affiliation(s)
- Tian Wang
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Andrius Baskys
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Junle Yang
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Jianying Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Hua Guo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yue Hei
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Panpan Xian
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhongzheng He
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhengyu Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Namiao Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China.
| |
Collapse
|
42
|
Knoell DL, Smith D, Bao S, Sapkota M, Wyatt TA, Zweier JL, Flury J, Borchers MT, Knutson M. Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure. J Trace Elem Med Biol 2020; 60:126483. [PMID: 32155573 PMCID: PMC10557405 DOI: 10.1016/j.jtemb.2020.126483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
Abstract
Cigarette smoke exposure is a major cause of chronic obstructive pulmonary disease. Cadmium is a leading toxic component of cigarette smoke. Cadmium and zinc are highly related metals. Whereas, zinc is an essential metal required for normal health, cadmium is highly toxic. Zrt- and Irt-like protein 8 (ZIP8) is an avid transporter of both zinc and cadmium into cells and is abundantly expressed in the lung of smokers compared to nonsmokers. Our objective was to determine whether disturbed zinc homeostasis through diet or the zinc transporter ZIP8 increase susceptibility to lung damage following prolonged cigarette smoke exposure. METHODS Cigarette smoke exposure was evaluated in the lungs of mice subject to insufficient and sufficient zinc intakes, in transgenic ZIP8 overexpressing mice, and a novel myeloid-specific ZIP8 knockout strain. RESULTS Moderate depletion of zinc intakes in adult mice resulted in a significant increase in lung cadmium burden and permanent lung tissue loss following prolonged smoke exposure. Overexpression of ZIP8 resulted in increased lung cadmium burden and more extensive lung damage, whereas cigarette smoke exposure in ZIP8 knockout mice resulted in increased lung tissue loss without a change in lung cadmium content, but a decrease in zinc. CONCLUSIONS Overall, findings were consistent with past human studies. Imbalance in Zn homeostasis increases susceptibility to permanent lung injury following prolonged cigarette smoke exposure. Based on animal studies, both increased and decreased ZIP8 expression enhanced irreversible tissue damage in response to prolonged tobacco smoke exposure. We believe these findings represent an important advancement in our understanding of how imbalance in zinc homeostasis and cadmium exposure via tobacco smoke may increase susceptibility to smoking-induced lung disease.
Collapse
Affiliation(s)
- Daren L Knoell
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Deandra Smith
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Shengying Bao
- The Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Muna Sapkota
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Todd A Wyatt
- The University of Nebraska Medical Center College of Public Health, Omaha, NE, 68198, United States; VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States.
| | - Jay L Zweier
- The Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Jennifer Flury
- The University of Cincinnati Department of Internal Medicine, United States
| | - Michael T Borchers
- The University of Cincinnati Department of Internal Medicine, United States.
| | - Mitch Knutson
- The University of Florida Food Science and Nutrition Institute, United States.
| |
Collapse
|
43
|
Abstract
Significance: Reducing equivalents (NAD(P)H and glutathione [GSH]) are essential for maintaining cellular redox homeostasis and for modulating cellular metabolism. Reductive stress induced by excessive levels of reduced NAD+ (NADH), reduced NADP+ (NADPH), and GSH is as harmful as oxidative stress and is implicated in many pathological processes. Recent Advances: Reductive stress broadens our view of the importance of cellular redox homeostasis and the influences of an imbalanced redox niche on biological functions, including cell metabolism. Critical Issues: The distribution of cellular NAD(H), NADP(H), and GSH/GSH disulfide is highly compartmentalized. Understanding how cells coordinate different pools of redox couples under unstressed and stressed conditions is critical for a comprehensive view of redox homeostasis and stress. It is also critical to explore the underlying mechanisms of reductive stress and its biological consequences, including effects on energy metabolism. Future Directions: Future studies are needed to investigate how reductive stress affects cell metabolism and how cells adapt their metabolism to reductive stress. Whether or not NADH shuttles and mitochondrial nicotinamide nucleotide transhydrogenase enzyme can regulate hypoxia-induced reductive stress is also a worthy pursuit. Developing strategies (e.g., antireductant approaches) to counteract reductive stress and its related adverse biological consequences also requires extensive future efforts.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Shanmugam G, Wang D, Gounder SS, Fernandes J, Litovsky SH, Whitehead K, Radhakrishnan RK, Franklin S, Hoidal JR, Kensler TW, Dell'Italia L, Darley-Usmar V, Abel ED, Jones DP, Ping P, Rajasekaran NS. Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction. Antioxid Redox Signal 2020; 32:1293-1312. [PMID: 32064894 PMCID: PMC7247052 DOI: 10.1089/ars.2019.7808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Redox homeostasis is tightly controlled and regulates key cellular signaling pathways. The cell's antioxidant response provides a natural defense against oxidative stress, but excessive antioxidant generation leads to reductive stress (RS). This study elucidated how chronic RS, caused by constitutive activation of nuclear erythroid related factor-2 (caNrf2)-dependent antioxidant system, drives pathological myocardial remodeling. Results: Upregulation of antioxidant transcripts and proteins in caNrf2-TG hearts (TGL and TGH; transgenic-low and -high) dose dependently increased glutathione (GSH) redox potential and resulted in RS, which over time caused pathological cardiac remodeling identified as hypertrophic cardiomyopathy (HCM) with abnormally increased ejection fraction and diastolic dysfunction in TGH mice at 6 months of age. While the TGH mice exhibited 60% mortality at 18 months of age, the rate of survival in TGL was comparable with nontransgenic (NTG) littermates. Moreover, TGH mice had severe cardiac remodeling at ∼6 months of age, while TGL mice did not develop comparable phenotypes until 15 months, suggesting that even moderate RS may lead to irreversible damages of the heart over time. Pharmacologically blocking GSH biosynthesis using BSO (l-buthionine-SR-sulfoximine) at an early age (∼1.5 months) prevented RS and rescued the TGH mice from pathological cardiac remodeling. Here we demonstrate that chronic RS causes pathological cardiomyopathy with diastolic dysfunction in mice due to sustained activation of antioxidant signaling. Innovation and Conclusion: Our findings demonstrate that chronic RS is intolerable and adequate to induce heart failure (HF). Antioxidant-based therapeutic approaches for human HF should consider a thorough evaluation of redox state before the treatment.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ding Wang
- Department of Physiology, NIH BD2K Center of Excellence for Biomedical Computing at UCLA, University of California, Los Angeles, California, USA
| | - Sellamuthu S Gounder
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Silvio H Litovsky
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Whitehead
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rajesh Kumar Radhakrishnan
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah Franklin
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John R Hoidal
- Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | - Louis Dell'Italia
- Comprehensive Cardiovascular Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Peipei Ping
- Department of Physiology, NIH BD2K Center of Excellence for Biomedical Computing at UCLA, University of California, Los Angeles, California, USA.,Department of Medicine/Cardiology, NHLBI Integrated Cardiovascular Data Science Training Program at UCLA, Bioinformatics and Medical Informatics, and Scalable Analytics Institute (ScAi) at UCLA School of Engineering, Los Angeles, California, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
Ma WX, Li CY, Tao R, Wang XP, Yan LJ. Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5136957. [PMID: 32566086 PMCID: PMC7277050 DOI: 10.1155/2020/5136957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control & Prevention, 266034 Qingdao, Shandong, China
| | - Xin-Ping Wang
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
| |
Collapse
|
46
|
Quiles JM, Gustafsson ÅB. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Front Physiol 2020; 11:515. [PMID: 32528313 PMCID: PMC7263099 DOI: 10.3389/fphys.2020.00515] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of cardiac pathophysiology. Defects in mitochondrial performance disrupt contractile function, overwhelm myocytes with reactive oxygen species (ROS), and transform these cellular powerhouses into pro-death organelles. Thus, quality control (QC) pathways aimed at identifying and removing damaged mitochondrial proteins, components, or entire mitochondria are crucial processes in post-mitotic cells such as cardiac myocytes. Almost all of the mitochondrial proteins are encoded by the nuclear genome and the trafficking of these nuclear-encoded proteins necessitates significant cross-talk with the cytosolic protein QC machinery to ensure that only functional proteins are delivered to the mitochondria. Within the organelle, mitochondria contain their own protein QC system consisting of chaperones and proteases. This system represents another level of QC to promote mitochondrial protein folding and prevent aggregation. If this system is overwhelmed, a conserved transcriptional response known as the mitochondrial unfolded protein response is activated to increase the expression of proteins involved in restoring mitochondrial proteostasis. If the mitochondrion is beyond repair, the entire organelle must be removed before it becomes cytotoxic and causes cellular damage. Recent evidence has also uncovered mitochondria as participants in cytosolic protein QC where misfolded cytosolic proteins can be imported and degraded inside mitochondria. However, this process also places increased pressure on mitochondrial QC pathways to ensure that the imported proteins do not cause mitochondrial dysfunction. This review is focused on discussing the pathways involved in regulating mitochondrial QC and their relationship to cellular proteostasis and mitochondrial health in the heart.
Collapse
Affiliation(s)
- Justin M Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
47
|
Pereira EJ, Burns JS, Lee CY, Marohl T, Calderon D, Wang L, Atkins KA, Wang CC, Janes KA. Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Sci Signal 2020; 13:13/627/eaba4200. [PMID: 32291314 DOI: 10.1126/scisignal.aba4200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast and mammary epithelial cells experience different local environments during tissue development and tumorigenesis. Microenvironmental heterogeneity gives rise to distinct cell regulatory states whose identity and importance are just beginning to be appreciated. Cellular states diversify when clonal three-dimensional (3D) spheroids are cultured in basement membrane, and one such state is associated with stress tolerance and poor response to anticancer therapeutics. Here, we found that this state was jointly coordinated by the NRF2 and p53 pathways, which were costabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53 individually disrupted some of the transcripts defining the regulatory state but did not yield a notable phenotype in nontransformed breast epithelial cells. In contrast, combined perturbation prevented 3D growth in an oxidative stress-dependent manner. By integrating systems models of NRF2 and p53 signaling in a single oxidative stress network, we recapitulated these observations and made predictions about oxidative stress profiles during 3D growth. NRF2 and p53 signaling were similarly coordinated in normal breast epithelial tissue and hormone-negative ductal carcinoma in situ lesions but were uncoupled in triple-negative breast cancer (TNBC), a subtype in which p53 is usually mutated. Using the integrated model, we correlated the extent of this uncoupling in TNBC cell lines with the importance of NRF2 in the 3D growth of these cell lines and their predicted handling of oxidative stress. Our results point to an oxidative stress tolerance network that is important for single cells during glandular development and the early stages of breast cancer.
Collapse
Affiliation(s)
- Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Joseph S Burns
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor Marohl
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Delia Calderon
- Biology and Chemistry Programs, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
48
|
Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, Durairajanayagam D, Sharma R, Pushparaj PN, Baskaran S. Aberrant Upregulation of Compensatory Redox Molecular Machines May Contribute to Sperm Dysfunction in Infertile Men with Unilateral Varicocele: A Proteomic Insight. Antioxid Redox Signal 2020; 32:504-521. [PMID: 31691576 DOI: 10.1089/ars.2019.7828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach. Results: Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status. Innovation: This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction. Conclusions: Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.
Collapse
Affiliation(s)
- Nirlipta Swain
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Luna Samanta
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Centre for Excellence in Environment and Public Health, Ravenshaw University, Odisha, India
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Sugandh Kumar
- Computational Biology and Bioinformatics Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Anshuman Dixit
- Computational Biology and Bioinformatics Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | | | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Peter N Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
49
|
Okazaki K, Papagiannakopoulos T, Motohashi H. Metabolic features of cancer cells in NRF2 addiction status. Biophys Rev 2020; 12:435-441. [PMID: 32112372 PMCID: PMC7242251 DOI: 10.1007/s12551-020-00659-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
The KEAP1-NRF2 system is a sulfur-employing defense mechanism against oxidative and electrophilic stress. NRF2 is a potent transcription activator for genes mediating sulfur-involving redox reactions, and KEAP1 controls the NRF2 activity in response to the stimuli by utilizing reactivity of sulfur atoms. In many human cancer cells, the KEAP1-mediated regulation of NRF2 activity is abrogated, resulting in the persistent activation of NRF2. Persistently activated NRF2 drives malignant progression of cancers by increasing therapeutic resistance and promoting aggressive tumorigenesis, a state termed as NRF2 addiction. In NRF2-addicted cancer cell, NRF2 contributes to metabolic reprogramming in cooperation with other oncogenic pathways. In particular, NRF2 strongly activates cystine uptake coupled with glutamate excretion and glutathione synthesis, which increases consumption of intracellular glutamate. Decreased availability of glutamate limits anaplerosis of the TCA cycle, resulting in low mitochondrial respiration, and nitrogen source, resulting in the high dependency on exogenous non-essential amino acids. The highly enhanced glutathione synthesis is also likely to alter sulfur metabolism, which can contribute to the maintenance of the mitochondrial membrane potential in normal cells. The potent antioxidant and detoxification capacity supported by abundant production of glutathione is achieved at the expense of central carbon metabolism and requires skewed metabolic flow of sulfur. These metabolic features of NRF2 addiction status provide clues for novel therapeutic strategies to target NRF2-addicted cancer cells.
Collapse
Affiliation(s)
- Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
50
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|