1
|
Hidalgo C, Paula-Lima A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol Med 2024; 30:25-36. [PMID: 37957056 DOI: 10.1016/j.molmed.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Hippocampal synaptic plasticity is widely considered the cellular basis of learning and spatial memory processes. This article highlights the central role of Ca2+ release from the endoplasmic reticulum (ER) in hippocampal synaptic plasticity and hippocampus-dependent memory in health and disease. The key participation of ryanodine receptor (RyR) channels, which are the principal Ca2+ release channels expressed in the hippocampus, in these processes is emphasized. It is proposed that the increased neuronal oxidative tone displayed by hippocampal neurons during aging or Alzheimer's disease (AD) leads to excessive activation of RyR-mediated Ca2+ release, a process that is highly redox-sensitive, and that this abnormal response contributes to and aggravates these deleterious conditions.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism, and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile.
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile.
| |
Collapse
|
2
|
Lobos P, Vega-Vásquez I, Bruna B, Gleitze S, Toledo J, Härtel S, Hidalgo C, Paula-Lima A. Amyloid β-Oligomers Inhibit the Nuclear Ca 2+ Signals and the Neuroprotective Gene Expression Induced by Gabazine in Hippocampal Neurons. Antioxidants (Basel) 2023; 12:1972. [PMID: 38001825 PMCID: PMC10669355 DOI: 10.3390/antiox12111972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AβOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AβOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AβOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AβOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AβOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AβOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
Collapse
Affiliation(s)
- Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Barbara Bruna
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
| | - Jorge Toledo
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Steffen Härtel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Laboratory for Scientific Image Analysis, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Anatomy and Biology of Development Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Interuniversity Center for Healthy Aging (CIES), Santiago 8380000, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| |
Collapse
|
3
|
Stirling DP. Potential physiological and pathological roles for axonal ryanodine receptors. Neural Regen Res 2023; 18:756-759. [PMID: 36204832 PMCID: PMC9700104 DOI: 10.4103/1673-5374.354512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022] Open
Abstract
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia. Although excessive Ca2+ is an established driver of axonal degeneration, therapeutically targeting externally sourced Ca2+ to date has had limited success in both basic and clinical studies. Contributing factors that may underlie this limited success include the complexity of the many potential sources of Ca2+ entry and the discovery that axons also contain substantial amounts of stored Ca2+ that if inappropriately released could contribute to axonal demise. Axonal Ca2+ storage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Ca2+ from the tips of dendrites to axonal terminals. This "neuron-within-a-neuron" is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Ca2+ levels and generating short and long distance regenerative Ca2+ waves through Ca2+ induced Ca2+ release. This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Ca2+ release in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca2+-dependent axonal demise. Neuronal ryanodine receptors expressed in dendrites, soma, and axonal terminals have been implicated in synaptic transmission and synaptic plasticity, but a physiological role for internodal localized ryanodine receptors remains largely obscure. Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed.
Collapse
Affiliation(s)
- David P. Stirling
- Kentucky Spinal Cord Injury Research Center and Departments of Neurological Surgery, Anatomical Sciences and Neurobiology, Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
4
|
Gleitze S, Ramírez OA, Vega-Vásquez I, Yan J, Lobos P, Bading H, Núñez MT, Paula-Lima A, Hidalgo C. Ryanodine Receptor Mediated Calcium Release Contributes to Ferroptosis Induced in Primary Hippocampal Neurons by GPX4 Inhibition. Antioxidants (Basel) 2023; 12:antiox12030705. [PMID: 36978954 PMCID: PMC10045106 DOI: 10.3390/antiox12030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
5
|
Valdés-Undurraga I, Lobos P, Sánchez-Robledo V, Arias-Cavieres A, SanMartín CD, Barrientos G, More J, Muñoz P, Paula-Lima AC, Hidalgo C, Adasme T. Long-term potentiation and spatial memory training stimulate the hippocampal expression of RyR2 calcium release channels. Front Cell Neurosci 2023; 17:1132121. [PMID: 37025696 PMCID: PMC10071512 DOI: 10.3389/fncel.2023.1132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 μM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.
Collapse
Affiliation(s)
- Ismael Valdés-Undurraga
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- IVIRMA, Santiago, Chile
| | - Pedro Lobos
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | | | - Alejandra Arias-Cavieres
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Carol D. SanMartín
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
| | - Pablo Muñoz
- Translational Neurology Center and Biomedical Research Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
- *Correspondence: Tatiana Adasme
| |
Collapse
|
6
|
Vega-Vásquez I, Lobos P, Toledo J, Adasme T, Paula-Lima A, Hidalgo C. Hippocampal dendritic spines express the RyR3 but not the RyR2 ryanodine receptor isoform. Biochem Biophys Res Commun 2022; 633:96-103. [PMID: 36344175 DOI: 10.1016/j.bbrc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The hippocampus is a brain region implicated in synaptic plasticity and memory formation; both processes require neuronal Ca2+ signals generated by Ca2+ entry via plasma membrane Ca2+ channels and Ca2+ release from the endoplasmic reticulum (ER). Through Ca2+-induced Ca2+ release, the ER-resident ryanodine receptor (RyR) Ca2+ channels amplify and propagate Ca2+ entry signals, leading to activation of cytoplasmic and nuclear Ca2+-dependent signaling pathways required for synaptic plasticity and memory processes. Earlier reports have shown that mice and rat hippocampus expresses mainly the RyR2 isoform, with lower expression levels of the RyR3 isoform and almost undetectable levels of the RyR1 isoform; both the RyR2 and RyR3 isoforms have central roles in synaptic plasticity and hippocampal-dependent memory processes. Here, we describe that dendritic spines of rat primary hippocampal neurons express the RyR3 channel isoform, which is also expressed in the neuronal body and neurites. In contrast, the RyR2 isoform, which is widely expressed in the neuronal body and neurites of primary hippocampal neurons, is absent from the dendritic spines. We propose that this asymmetric distribution is of relevance for hippocampal neuronal function. We suggest that the RyR3 isoform amplifies activity-generated Ca2+ entry signals at postsynaptic dendritic spines, from where they propagate to the dendrite and activate primarily RyR2-mediated Ca2+ release, leading to Ca2+ signal propagation into the soma and the nucleus where they activate the expression of genes that mediate synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Interuniversity Center for Healthy Aging (CIES), Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Center for Exercise, Metabolism, and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free Radic Biol Med 2021; 175:28-41. [PMID: 34461261 DOI: 10.1016/j.freeradbiomed.2021.08.231] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
9
|
Ryanodine receptor-mediated Ca 2+ release and atlastin-2 GTPase activity contribute to IP 3-induced dendritic Ca 2+ signals in primary hippocampal neurons. Cell Calcium 2021; 96:102399. [PMID: 33812310 DOI: 10.1016/j.ceca.2021.102399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Neuronal Ca2+ signals are fundamental for synaptic transmission and activity-dependent changes in gene expression. Voltage-gated Ca2+ channels and N-methyl-d-aspartate receptors play major roles in mediating external Ca2+ entry during action potential firing and glutamatergic activity. Additionally, the inositol-1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) channels expressed in the endoplasmic reticulum (ER) also contribute to the generation of Ca2+ signals in response to neuronal activity. The ER forms a network that pervades the entire neuronal volume, allowing intracellular Ca2+ release in dendrites, soma and presynaptic boutons. Despite its unique morphological features, the contributions of ER structure and of ER-shaping proteins such as atlastin - an ER enriched GTPase that mediates homotypic ER tubule fusion - to the generation of Ca2+ signals in dendrites remains unreported. Here, we investigated the contribution of RyR-mediated Ca2+ release to IP3-generated Ca2+ signals in dendrites of cultured hippocampal neurons. We also employed GTPase activity-deficient atlastin-2 (ATL2) mutants to evaluate the potential role of atlastin on Ca2+ signaling and ER-resident Ca2+ channel distribution. We found that pharmacological suppression of RyR channel activity increased the rising time and reduced the magnitude and propagation of IP3-induced Ca2+ signals. Additionally, ATL2 mutants induced specific ER morphological alterations, delayed the onset and increased the rising time of IP3-evoked Ca2+ signals, and caused RyR2 and IP3R1 aggregation and RyR2 redistribution. These results indicate that both RyR and ATL2 activity regulate IP3-induced Ca2+ signal dynamics through RyR-mediated Ca2+-induced Ca2+ release, ER shaping and RyR2 distribution.
Collapse
|
10
|
Calsequestrin Deletion Facilitates Hippocampal Synaptic Plasticity and Spatial Learning in Post-Natal Development. Int J Mol Sci 2020; 21:ijms21155473. [PMID: 32751833 PMCID: PMC7432722 DOI: 10.3390/ijms21155473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.
Collapse
|
11
|
Uryash A, Flores V, Adams JA, Allen PD, Lopez JR. Memory and Learning Deficits Are Associated With Ca 2+ Dyshomeostasis in Normal Aging. Front Aging Neurosci 2020; 12:224. [PMID: 32765253 PMCID: PMC7378956 DOI: 10.3389/fnagi.2020.00224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuronal intracellular Ca2+ homeostasis is critical to the normal physiological functions of neurons and neuronal Ca2+ dyshomeostasis has been associated with the age-related decline of cognitive functions. Accumulated evidence indicates that the underlying mechanism for this is that abnormal intracellular Ca2+ levels stimulate the dysregulation of intracellular signaling, which subsequently induces neuronal cell death. We examined intracellular Ca2+ homeostasis in cortical (in vivo) and hippocampal (in vitro) neurons from young (3-months), middle-age (12-months), and aged (24-months) wild type C57BL6J mice. We found a progressive age-related elevation of intracellular resting calcium ([Ca2+]r) in cortical (in vivo) and hippocampal (in vitro) neurons associated with increased hippocampal neuronal calpain activity and reduced cell viability. In vitro, removal of extracellular Ca2+ or treatment with SAR7334 or dantrolene reduced [Ca2+]r in all age groups and dantrolene treatment lowered calpain activity and increased cell viability. In vivo, both middle-aged and aged mice showed cognitive deficits compared to young mice, which improved after dantrolene treatment. These findings support the hypothesis that intracellular Ca2+ dyshomeostasis is a major mechanism underlying the cognitive deficits seen in both normal aging and degenerative neurologic diseases.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - Valentina Flores
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - Paul D. Allen
- Malignant Hyperthermia Investigation Unit, St James’ University Hospital, University of Leeds, Leeds, United Kingdom
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| |
Collapse
|
12
|
García F, Lobos P, Ponce A, Cataldo K, Meza D, Farías P, Estay C, Oyarzun-Ampuero F, Herrera-Molina R, Paula-Lima A, Ardiles ÁO, Hidalgo C, Adasme T, Muñoz P. Astaxanthin Counteracts Excitotoxicity and Reduces the Ensuing Increases in Calcium Levels and Mitochondrial Reactive Oxygen Species Generation. Mar Drugs 2020; 18:md18060335. [PMID: 32604880 PMCID: PMC7345213 DOI: 10.3390/md18060335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Astaxanthin (ASX) is a carotenoid pigment with strong antioxidant properties. We have reported previously that ASX protects neurons from the noxious effects of amyloid-β peptide oligomers, which promote excessive mitochondrial reactive oxygen species (mROS) production and induce a sustained increase in cytoplasmic Ca2+ concentration. These properties make ASX a promising therapeutic agent against pathological conditions that entail oxidative and Ca2+ dysregulation. Here, we studied whether ASX protects neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, a noxious process which decreases cellular viability, alters gene expression and promotes excessive mROS production. Incubation of the neuronal cell line SH-SY5Y with NMDA decreased cellular viability and increased mitochondrial superoxide production; pre-incubation with ASX prevented these effects. Additionally, incubation of SH-SY5Y cells with ASX effectively reduced the basal mROS production and prevented hydrogen peroxide-induced cell death. In primary hippocampal neurons, transfected with a genetically encoded cytoplasmic Ca2+ sensor, ASX also prevented the increase in intracellular Ca2+ concentration induced by NMDA. We suggest that, by preventing the noxious mROS and Ca2+ increases that occur under excitotoxic conditions, ASX could be useful as a therapeutic agent in neurodegenerative pathologies that involve alterations in Ca2+ homeostasis and ROS generation.
Collapse
Affiliation(s)
- Francisca García
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
| | - Alejandra Ponce
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Karla Cataldo
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Daniela Meza
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Patricio Farías
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Carolina Estay
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Felipe Oyarzun-Ampuero
- Department of Technology and Pharmaceutical Sciences, Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile;
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Álvaro O. Ardiles
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Interdisciplinary Center of Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
- Interdisciplinary Center for Health Studies, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
- Department of Neurosciences and Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Tatiana Adasme
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: (T.A.); (P.M.); Tel.: +56-29-786-496 (T.A.); +56-32-250-7368 (P.M.)
| | - Pablo Muñoz
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Correspondence: (T.A.); (P.M.); Tel.: +56-29-786-496 (T.A.); +56-32-250-7368 (P.M.)
| |
Collapse
|
13
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
More J, Galusso N, Veloso P, Montecinos L, Finkelstein JP, Sanchez G, Bull R, Valdés JL, Hidalgo C, Paula-Lima A. N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model. Front Aging Neurosci 2018; 10:399. [PMID: 30574085 PMCID: PMC6291746 DOI: 10.3389/fnagi.2018.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
We have previously reported that primary hippocampal neurons exposed to synaptotoxic amyloid beta oligomers (AβOs), which are likely causative agents of Alzheimer’s disease (AD), exhibit abnormal Ca2+ signals, mitochondrial dysfunction and defective structural plasticity. Additionally, AβOs-exposed neurons exhibit a decrease in the protein content of type-2 ryanodine receptor (RyR2) Ca2+ channels, which exert critical roles in hippocampal synaptic plasticity and spatial memory processes. The antioxidant N-acetylcysteine (NAC) prevents these deleterious effects of AβOs in vitro. The main contribution of the present work is to show that AβOs injections directly into the hippocampus, by engaging oxidation-mediated reversible pathways significantly decreased RyR2 protein content but increased single RyR2 channel activation by Ca2+ and caused considerable spatial memory deficits. AβOs injections into the CA3 hippocampal region impaired rat performance in the Oasis maze spatial memory task, decreased hippocampal glutathione levels and overall content of plasticity-related proteins (c-Fos, Arc, and RyR2) and increased ERK1/2 phosphorylation. In contrast, in hippocampus-derived mitochondria-associated membranes (MAM) AβOs injections increased RyR2 levels. Rats fed with NAC for 3-weeks prior to AβOs injections displayed comparable redox potential, RyR2 and Arc protein contents, similar ERK1/2 phosphorylation and RyR2 single channel activation by Ca2+ as saline-injected (control) rats. NAC-fed rats subsequently injected with AβOs displayed the same behavior in the spatial memory task as control rats. Based on the present in vivo results, we propose that redox-sensitive neuronal RyR2 channels partake in the mechanism underlying AβOs-induced memory disruption in rodents.
Collapse
Affiliation(s)
- Jamileth More
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Nadia Galusso
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Pablo Veloso
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Gina Sanchez
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Bull
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Arias-Cavieres A, Barrientos GC, Sánchez G, Elgueta C, Muñoz P, Hidalgo C. Ryanodine Receptor-Mediated Calcium Release Has a Key Role in Hippocampal LTD Induction. Front Cell Neurosci 2018; 12:403. [PMID: 30459562 PMCID: PMC6232521 DOI: 10.3389/fncel.2018.00403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 10/18/2018] [Indexed: 01/04/2023] Open
Abstract
The induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission entails pre- and postsynaptic Ca2+ signals, which represent transient increments in cytoplasmic free Ca2+ concentration. In diverse synapse types, Ca2+ release from intracellular stores contributes to amplify the Ca2+ signals initially generated by activation of neuronal Ca2+ entry pathways. Here, we used hippocampal slices from young male rats to evaluate whether pharmacological activation or inhibition of Ca2+ release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels modifies LTD induction at Schaffer collateral-CA1 synapses. Pre-incubation of slices with ryanodine (1 μM, 1 h) or caffeine (1 mM, 30 min) to promote RyR-mediated Ca2+ release facilitated LTD induction by low frequency stimulation (LFS), but did not affect the amplitude of synaptic transmission, the profiles of field excitatory postsynaptic potentials (fEPSP) or the paired-pulse (PP) responses. Conversely, treatment with inhibitory ryanodine (20 μM, 1 h) to suppress RyR-mediated Ca2+ release prevented LTD induction, but did not affect baseline synaptic transmission or PP responses. Previous literature reports indicate that LTD induction requires presynaptic CaMKII activity. We found that 1 h after applying the LTD induction protocol, slices displayed a significant increase in CaMKII phosphorylation relative to the levels exhibited by un-stimulated (naïve) slices. In addition, LTD induction (1 h) enhanced the phosphorylation of the presynaptic protein Synapsin I at a CaMKII-dependent phosphorylation site, indicating that LTD induction stimulates presynaptic CaMKII activity. Pre-incubation of slices with 20 μM ryanodine abolished the increased CaMKII and Synapsin I phosphorylation induced by LTD, whereas naïve slices pre-incubated with inhibitory ryanodine displayed similar CaMKII and Synapsin I phosphorylation levels as naïve control slices. We posit that inhibitory ryanodine suppressed LTD-induced presynaptic CaMKII activity, as evidenced by the suppression of Synapsin I phosphorylation induced by LTD. Accordingly, we propose that presynaptic RyR-mediated Ca2+ signals contribute to LTD induction at Schaffer collateral-CA1 synapses.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Elgueta
- Systemic and Cellular Neurophysiology, Physiology Institute I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Pablo Muñoz
- Pathology and Physiology Department, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience and Center of Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
More JY, Bruna BA, Lobos PE, Galaz JL, Figueroa PL, Namias S, Sánchez GL, Barrientos GC, Valdés JL, Paula-Lima AC, Hidalgo C, Adasme T. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory. Antioxid Redox Signal 2018; 29:1125-1146. [PMID: 29357673 DOI: 10.1089/ars.2017.7277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Collapse
Affiliation(s)
- Jamileth Y More
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara A Bruna
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro E Lobos
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Galaz
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula L Figueroa
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Namias
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina L Sánchez
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Valdés
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile
| | - Andrea C Paula-Lima
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,4 Institute for Research in Dental Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile .,5 Center for Exercise , Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,6 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins , Santiago, Chile
| |
Collapse
|
17
|
Okubo Y, Mikami Y, Kanemaru K, Iino M. Role of Endoplasmic Reticulum-Mediated Ca 2+ Signaling in Neuronal Cell Death. Antioxid Redox Signal 2018; 29:1147-1157. [PMID: 29361832 DOI: 10.1089/ars.2018.7498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Properly controlled intracellular Ca2+ dynamics is crucial for regulation of neuronal function and survival in the central nervous system. The endoplasmic reticulum (ER), a major intracellular Ca2+ store, plays a critical role as a source and sink for neuronal Ca2+. Recent Advances: Accumulating evidence indicates that disrupted ER Ca2+ signaling is involved in neuronal cell death under various pathological conditions, providing novel insight into neurodegenerative disease mechanisms. CRITICAL ISSUES We summarize current knowledge concerning the relationship between abnormal ER Ca2+ dynamics and neuronal cell death. We also introduce recent technical advances for probing ER intraluminal Ca2+ dynamics with unprecedented spatiotemporal resolution. FUTURE DIRECTIONS Further studies on ER Ca2+ signaling are expected to provide progress for unmet medical needs in neurodegenerative disease. Antioxid. Redox Signal. 29, 1147-1157.
Collapse
Affiliation(s)
- Yohei Okubo
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Yoshinori Mikami
- 2 Department of Physiology, School of Medicine, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Kazunori Kanemaru
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan .,3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| | - Masamitsu Iino
- 3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| |
Collapse
|
18
|
Bruna B, Lobos P, Herrera-Molina R, Hidalgo C, Paula-Lima A, Adasme T. The signaling pathways underlying BDNF-induced Nrf2 hippocampal nuclear translocation involve ROS, RyR-Mediated Ca 2+ signals, ERK and PI3K. Biochem Biophys Res Commun 2018; 505:201-207. [PMID: 30243728 DOI: 10.1016/j.bbrc.2018.09.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) induces complex neuronal signaling cascades that are critical for the cellular changes underlying synaptic plasticity. These pathways include activation of Ca2+ entry via N-methyl-D-aspartate receptors and sequential activation of nitric oxide synthase and NADPH oxidase, which via generation of reactive nitrogen/oxygen species stimulate Ca2+-induced Ca2+ release mediated by Ryanodine Receptor (RyR) channels. These sequential events underlie BDNF-induced spine remodeling and type-2 RyR up-regulation. In addition, BDNF induces the nuclear translocation of the transcription factor Nrf2, a master regulator of antioxidant protein expression that protects cells against the oxidative damage caused by injury and inflammation. To investigate the possible BDNF-induced signaling cascades that mediate Nrf2 nuclear translocation in primary hippocampal cultures, we tested here whether reactive oxygen species, RyR-mediated Ca2+ release, ERK or PI3K contribute to this response. We found that pre-incubation of cultures with inhibitory ryanodine to suppress RyR-mediated Ca2+ release, with the reducing agent N-acetylcysteine or with inhibitors of ERK or PI3K activity, prevented the nuclear translocation of Nrf2 induced by incubation for 6 h with BFNF. Based on these combined results, we propose that the key role played by BDNF as an inducer of neuronal antioxidant responses, characterized by BDNF-induced Nfr2 nuclear translocation, entails crosstalk between reactive oxygen species and RyR-mediated Ca2+ release, and the participation of ERK and PI3K activities.
Collapse
Affiliation(s)
- Bárbara Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
19
|
Hu E, Mergenthal A, Bingham CS, Song D, Bouteiller JM, Berger TW. A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics. Front Comput Neurosci 2018; 12:58. [PMID: 30100870 PMCID: PMC6072875 DOI: 10.3389/fncom.2018.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/05/2018] [Indexed: 11/30/2022] Open
Abstract
In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experimental studies tend to focus on only one or a small number of these mechanisms, as technical limitations make it difficult to observe all features at once. Computational modeling enables incorporation of many of these properties together, allowing for more complete and integrated studies. However, the scale of existing detailed models is often limited to synaptic and dendritic compartments as the computational burden rapidly increases when these models are integrated in cellular or network level simulations. In this article we present a computational model of calcium dynamics at the postsynaptic spine of a CA1 pyramidal neuron, as well as a methodology that enables its implementation in multi-scale, large-scale simulations. We first present a mechanistic model that includes individually validated models of various components involved in the regulation of calcium at the spine. We validated our mechanistic model by comparing simulated calcium levels to experimental data found in the literature. We performed additional simulations with the mechanistic model to determine how the simulated calcium activity varies with respect to presynaptic-postsynaptic stimulation intervals and spine distance from the soma. We then developed an input-output (IO) model that complements the mechanistic calcium model and provide a computationally efficient representation for use in larger scale modeling studies; we show the performance of the IO model compared to the mechanistic model in terms of accuracy and speed. The models presented here help achieve two objectives. First, the mechanistic model provides a comprehensive platform to describe spine calcium dynamics based on individual contributing factors. Second, the IO model is trained on the main dynamical features of the mechanistic model and enables nonlinear spine calcium modeling on the cell and network level simulation scales. Utilizing both model representations provide a multi-level perspective on calcium dynamics, originating from the molecular interactions at spines and propagating the effects to higher levels of activity involved in network behavior.
Collapse
Affiliation(s)
- Eric Hu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Adam Mergenthal
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Clayton S Bingham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Jean-Marie Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Zhang M, Xu L, Yang H. Schisandra chinensis Fructus and Its Active Ingredients as Promising Resources for the Treatment of Neurological Diseases. Int J Mol Sci 2018; 19:ijms19071970. [PMID: 29986408 PMCID: PMC6073455 DOI: 10.3390/ijms19071970] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Neurological diseases (NDs) are a leading cause of death worldwide and tend to mainly affect people under the age of 50. High rates of premature death and disability caused by NDs undoubtedly constrain societal development. However, effective therapeutic drugs and methods are very limited. Schisandra chinensis Fructus (SCF) is the dry ripe fruit of Schisandra chinensis (Turcz.) Baill, which has been used in traditional Chinese medicine for thousands of years. Recent research has indicated that SCF and its active ingredients show a protective role in NDs, including cerebrovascular diseases, neurodegenerative diseases, or depression. The key neuroprotective mechanisms of SCF and its active ingredients have been demonstrated to include antioxidation, suppression of apoptosis, anti-inflammation, regulation of neurotransmitters, and modulation of brain-derived neurotrophic factor (BDNF) related pathways. This paper summarizes studies of the role of SCF and its active ingredients in protecting against NDs, and highlights them as promising resources for future treatment. Furthermore, novel insights on the future challenges of SCF and its active ingredients are offered.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China.
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
21
|
More J, Casas MM, Sánchez G, Hidalgo C, Haeger P. Contextual Fear Memory Formation and Destabilization Induce Hippocampal RyR2 Calcium Channel Upregulation. Neural Plast 2018; 2018:5056181. [PMID: 30123252 PMCID: PMC6079367 DOI: 10.1155/2018/5056181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022] Open
Abstract
Hippocampus-dependent spatial and aversive memory processes entail Ca2+ signals generated by ryanodine receptor (RyR) Ca2+ channels residing in the endoplasmic reticulum membrane. Rodents exposed to different spatial memory tasks exhibit significant hippocampal RyR upregulation. Contextual fear conditioning generates robust hippocampal memories through an associative learning process, but the effects of contextual fear memory acquisition, consolidation, or extinction on hippocampal RyR protein levels remain unreported. Accordingly, here we investigated if exposure of male rats to contextual fear protocols, or subsequent exposure to memory destabilization protocols, modified the hippocampal content of type-2 RyR (RyR2) channels, the predominant hippocampal RyR isoforms that hold key roles in synaptic plasticity and spatial memory processes. We found that contextual memory retention caused a transient increase in hippocampal RyR2 protein levels, determined 5 h after exposure to the conditioning protocol; this increase vanished 29 h after training. Context reexposure 24 h after training, for 3, 15, or 30 min without the aversive stimulus, decreased fear memory and increased RyR2 protein levels, determined 5 h after reexposure. We propose that both fear consolidation and extinction memories induce RyR2 protein upregulation in order to generate the intracellular Ca2+ signals required for these distinct memory processes.
Collapse
Affiliation(s)
- Jamileth More
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Mercedes Casas
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paola Haeger
- Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
23
|
Bothwell MY, Gillette MU. Circadian redox rhythms in the regulation of neuronal excitability. Free Radic Biol Med 2018; 119:45-55. [PMID: 29398284 PMCID: PMC5910288 DOI: 10.1016/j.freeradbiomed.2018.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of evidence in recent years presents an extensive and complex network of interactions between the circadian and cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is dependent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and cofactors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and membrane excitability. The susceptibility of many different ion channels to modulation by changes in the redox environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.
Collapse
Affiliation(s)
- Mia Y Bothwell
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons. Mol Neurobiol 2018; 55:8965-8977. [PMID: 29619740 DOI: 10.1007/s12035-018-1034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria are widely recognized as fundamental organelles for cellular physiology and constitute the main energy source for different cellular processes. The location, morphology, and interactions of mitochondria with other organelles, such as the endoplasmic reticulum (ER), have emerged as critical events capable of determining cellular fate. Mitochondria-related functions have proven particularly relevant in neurons; mitochondria are necessary for proper neuronal morphogenesis and the highly energy-demanding synaptic transmission process. Mitochondrial health depends on balanced fusion-fission events, termed mitochondrial dynamics, to repair damaged organelles and/or improve the quality of mitochondrial function, ATP production, calcium homeostasis, and apoptosis, which represent some mitochondrial functions closely related to mitochondrial dynamics. Several neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases, have been correlated with severe mitochondrial dysfunction. In this regard, nicotine, which has been associated with relevant neuroprotective effects mainly through activation of the nicotinic acetylcholine receptor (nAChR), exerts its effects at least in part by acting directly on mitochondrial physiology and morphology. Additionally, a recent description of mitochondrial nAChR localization suggests a nicotine-dependent mitochondrial function. In the present work, we evaluated in cultured hipocampal neurons the effects of nicotine on mitochondrial dynamics by assessing mitochondrial morphology, membrane potential, as well as interactions between mitochondria, cytoskeleton and IP3R, levels of the cofactor PGC-1α, and fission-fusion-related proteins. Our results suggest that nicotine modulates mitochondrial dynamics and influences mitochondrial association from microtubules, increasing IP3 receptor clustering showing modulation between mitochondria-ER communications, together with the increase of mitochondrial biogenesis.
Collapse
|
25
|
Carvajal FJ, Mira RG, Rovegno M, Minniti AN, Cerpa W. Age-related NMDA signaling alterations in SOD2 deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2010-2020. [PMID: 29577983 DOI: 10.1016/j.bbadis.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2+/- mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions.
Collapse
Affiliation(s)
- Francisco J Carvajal
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alicia N Minniti
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Muñoz Y, Paula-Lima AC, Núñez MT. Reactive oxygen species released from astrocytes treated with amyloid beta oligomers elicit neuronal calcium signals that decrease phospho-Ser727-STAT3 nuclear content. Free Radic Biol Med 2018; 117:132-144. [PMID: 29309895 DOI: 10.1016/j.freeradbiomed.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
The transcription factor STAT3 has a crucial role in the development and maintenance of the nervous system. In this work, we treated astrocytes with oligomers of the amyloid beta peptide (AβOs), which display potent synaptotoxic activity, and studied the effects of mediators released by AβOs-treated astrocytes on the nuclear location of neuronal serine-727-phosphorylated STAT3 (pSerSTAT3). Treatment of mixed neuron-astrocyte cultures with 0.5µMAβOs induced in neurons a significant decrease of nuclear pSerSTAT3, but not of phosphotyrosine-705 STAT3, the other form of STAT3 phosphorylation. This decrease did not occur in astrocyte-poor neuronal cultures revealing a pivotal role for astrocytes in this response. To test if mediators released by astrocytes in response to AβOs induce pSerSTAT3 nuclear depletion, we used conditioned medium derived from AβOs-treated astrocyte cultures. Treatment of astrocyte-poor neuronal cultures with this medium caused pSerSTAT3 nuclear depletion but did not modify overall STAT3 levels. Extracellular catalase prevented the pSerSTAT3 nuclear depletion caused by astrocyte-conditioned medium, indicating that reactive oxygen species (ROS) mediate this response. This conditioned medium also increased neuronal oxidative tone, leading to a ryanodine-sensitive intracellular calcium signal that proved to be essential for pSerSTAT3 nuclear depletion. In addition, this depletion decreased BCL2 and Survivin transcription and significantly increased BAX/BCL2 ratio. This is the first description that ROS generated by AβOs-treated astrocytes and neuronal calcium signals jointly regulate pSerSTAT3 nuclear distribution in neurons. We propose that astrocytes release ROS in response to AβOs, which by increasing neuronal oxidative tone, generate calcium signals that cause pSerSTAT3 nuclear depletion and loss of STAT3 protective transcriptional activity.
Collapse
Affiliation(s)
- Yorka Muñoz
- Department of Biology, Faculty of Sciences,Universidad de Chile, Santiago, Chile
| | - Andrea C Paula-Lima
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences,Universidad de Chile, Santiago, Chile.
| |
Collapse
|
27
|
García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A, Nagles E, Adasme T, Hidalgo C, Núñez MT. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS One 2017; 12:e0189043. [PMID: 29228015 PMCID: PMC5724820 DOI: 10.1371/journal.pone.0189043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer’s diseases, Friedreich ataxia and Huntington’s disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Natalia P. Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pabla Aguirre
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Germán Barriga-González
- Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Química, Santiago, Chile
| | - Antonio Galdámez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Integrative Center for Applied Biology and Chemistry (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, CEMC and ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| |
Collapse
|
28
|
Carreras-Sureda A, Pihán P, Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium 2017; 70:24-31. [PMID: 29054537 DOI: 10.1016/j.ceca.2017.08.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/21/2023]
Abstract
Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER calcium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under chronic stress. The global coordination between UPR signaling and energetic demands takes place at mitochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Philippe Pihán
- Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Robin G, López JR, Espinal GM, Hulsizer S, Hagerman PJ, Pessah IN. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2017; 26:2649-2666. [PMID: 28444183 PMCID: PMC5886271 DOI: 10.1093/hmg/ddx148] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurological disorder that affects premutation carriers with 55-200 CGG-expansion repeats (preCGG) in FMR1, presenting with early alterations in neuronal network formation and function that precede neurodegeneration. Whether intranuclear inclusions containing DNA damage response (DDR) proteins are causally linked to abnormal synaptic function, neuronal growth and survival are unknown. In a mouse that harbors a premutation CGG expansion (preCGG), cortical and hippocampal FMRP expression is moderately reduced from birth through adulthood, with greater FMRP reductions in the soma than in the neurite, despite several-fold elevation of Fmr1 mRNA levels. Resting cytoplasmic calcium concentration ([Ca2+]i) in cultured preCGG hippocampal neurons is chronically elevated, 3-fold compared to Wt; elevated ROS and abnormal glutamatergic responses are detected at 14 DIV. Elevated µ-calpain activity and a higher p25/p35 ratio in the cortex of preCGG young adult mice indicate abnormal Cdk5 regulation. In support, the Cdk5 substrate, ATM, is upregulated by 1.5- to 2-fold at P0 and 6 months in preCGG brain, as is p-Ser1981-ATM. Bax:Bcl-2 is 30% higher in preCGG brain, indicating a greater vulnerability to apoptotic activation. Elevated [Ca2+]i, ROS, and DDR signals are normalized with dantrolene. Chronic [Ca2+]i dysregulation amplifies Cdk5-ATM signaling, possibly linking impaired glutamatergic signaling and DDR to neurodegeneration in preCGG brain.
Collapse
Affiliation(s)
- Gaëlle Robin
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - José R. López
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
| | - Susan Hulsizer
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Isaac N. Pessah
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Torres RF, Hidalgo C, Kerr B. Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3. Front Mol Neurosci 2017; 10:188. [PMID: 28659760 PMCID: PMC5468404 DOI: 10.3389/fnmol.2017.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/29/2017] [Indexed: 12/03/2022] Open
Abstract
Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 (Ryr3) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132-dependent suppression of p250GAP, a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3, contributing to experience-dependent plasticity.
Collapse
Affiliation(s)
- Rodrigo F Torres
- Laboratory of Biology, Centro de Estudios CientíficosValdivia, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Centro de Estudios Moleculares de la Célula, Department of Neuroscience and Physiology and Biophysics Program, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Bredford Kerr
- Laboratory of Biology, Centro de Estudios CientíficosValdivia, Chile
| |
Collapse
|
31
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
32
|
SanMartín CD, Veloso P, Adasme T, Lobos P, Bruna B, Galaz J, García A, Hartel S, Hidalgo C, Paula-Lima AC. RyR2-Mediated Ca 2+ Release and Mitochondrial ROS Generation Partake in the Synaptic Dysfunction Caused by Amyloid β Peptide Oligomers. Front Mol Neurosci 2017; 10:115. [PMID: 28487634 PMCID: PMC5403897 DOI: 10.3389/fnmol.2017.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Amyloid β peptide oligomers (AβOs), toxic aggregates with pivotal roles in Alzheimer's disease, trigger persistent and low magnitude Ca2+ signals in neurons. We reported previously that these Ca2+ signals, which arise from Ca2+ entry and subsequent amplification by Ca2+ release through ryanodine receptor (RyR) channels, promote mitochondrial network fragmentation and reduce RyR2 expression. Here, we examined if AβOs, by inducing redox sensitive RyR-mediated Ca2+ release, stimulate mitochondrial Ca2+-uptake, ROS generation and mitochondrial fragmentation, and also investigated the effects of the antioxidant N-acetyl cysteine (NAC) and the mitochondrial antioxidant EUK-134 on AβOs-induced mitochondrial dysfunction. In addition, we studied the contribution of the RyR2 isoform to AβOs-induced Ca2+ release, mitochondrial Ca2+ uptake and fragmentation. We show here that inhibition of NADPH oxidase type-2 prevented the emergence of RyR-mediated cytoplasmic Ca2+ signals induced by AβOs in primary hippocampal neurons. Treatment with AβOs promoted mitochondrial Ca2+ uptake and increased mitochondrial superoxide and hydrogen peroxide levels; ryanodine, at concentrations that suppress RyR activity, prevented these responses. The antioxidants NAC and EUK-134 impeded the mitochondrial ROS increase induced by AβOs. Additionally, EUK-134 prevented the mitochondrial fragmentation induced by AβOs, as previously reported for NAC and ryanodine. These findings show that both antioxidants, NAC and EUK-134, prevented the Ca2+-mediated noxious effects of AβOs on mitochondrial function. Our results also indicate that Ca2+ release mediated by the RyR2 isoform causes the deleterious effects of AβOs on mitochondrial function. Knockdown of RyR2 with antisense oligonucleotides reduced by about 50% RyR2 mRNA and protein levels in primary hippocampal neurons, decreased by 40% Ca2+ release induced by the RyR agonist 4-chloro-m-cresol, and significantly reduced the cytoplasmic and mitochondrial Ca2+ signals and the mitochondrial fragmentation induced by AβOs. Based on our results, we propose that AβOs-induced Ca2+ entry and ROS generation jointly stimulate RyR2 activity, causing mitochondrial Ca2+ overload and fragmentation in a feed forward injurious cycle. The present novel findings highlight the specific participation of RyR2-mediated Ca2+ release on AβOs-induced mitochondrial malfunction.
Collapse
Affiliation(s)
- Carol D SanMartín
- Department of de Neurology and Neurosurgery, Clinical Hospital Universidad de ChileSantiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Pablo Veloso
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de ChileSantiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O HigginsSantiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Barbara Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Jose Galaz
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Alejandra García
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Center of Medical Informatics and Telemedicine and National Center for Health Information Systems, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Steffen Hartel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Center of Medical Informatics and Telemedicine and National Center for Health Information Systems, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Andrea C Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de ChileSantiago, Chile
| |
Collapse
|
33
|
Arias-Cavieres A, Adasme T, Sánchez G, Muñoz P, Hidalgo C. Aging Impairs Hippocampal- Dependent Recognition Memory and LTP and Prevents the Associated RyR Up-regulation. Front Aging Neurosci 2017; 9:111. [PMID: 28484388 PMCID: PMC5402473 DOI: 10.3389/fnagi.2017.00111] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/06/2017] [Indexed: 11/21/2022] Open
Abstract
Recognition memory comprises recollection judgment and familiarity, two different processes that engage the hippocampus and the perirhinal cortex, respectively. Previous studies have shown that aged rodents display defective recognition memory and alterations in hippocampal synaptic plasticity. We report here that young rats efficiently performed at short-term (5 min) and long-term (24 h) hippocampus-associated object-location tasks and perirhinal cortex-related novel-object recognition tasks. In contrast, aged rats successfully performed the object-location and the novel-object recognition tasks only at short-term. In addition, aged rats displayed defective long-term potentiation (LTP) and enhanced long-term depression (LTD). Successful long-term performance of object-location but not of novel-object recognition tasks increased the protein levels of ryanodine receptor types-2/3 (RyR2/RyR3) and of IP3R1 in young rat hippocampus. Likewise, sustained LTP induction (1 h) significantly increased RyR2, RyR3 and IP3R1 protein levels in hippocampal slices from young rats. In contrast, LTD induction (1 h) did not modify the levels of these three proteins. Naïve (untrained) aged rats displayed higher RyR2/RyR3 hippocampal protein levels but similar IP3R1 protein content relative to young rats; these levels did not change following exposure to either memory recognition task or after LTP or LTD induction. The perirhinal cortex from young or aged rats did not display changes in the protein contents of RyR2, RyR3, and IP3R1 after exposure at long-term (24 h) to the object-location or the novel-object recognition tasks. Naïve aged rats displayed higher RyR2 channel oxidation levels in the hippocampus compared to naïve young rats. The RyR2/RyR3 up-regulation and the increased RyR2 oxidation levels exhibited by aged rat hippocampus are likely to generate anomalous calcium signals, which may contribute to the well-known impairments in hippocampal LTP and spatial memory that take place during aging.
Collapse
Affiliation(s)
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'HigginsSantiago, Chile
| | - Gina Sánchez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Pablo Muñoz
- Center for Applied Neurological Sciences and Interdisciplinary Center for Innovation in Health, School of Medicine, Universidad de ValparaísoValparaíso, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Center of Molecular Studies of the Cell and Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de ChileSantiago, Chile
| |
Collapse
|
34
|
Berridge MJ. Vitamin D and Depression: Cellular and Regulatory Mechanisms. Pharmacol Rev 2017; 69:80-92. [DOI: 10.1124/pr.116.013227] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol 2017; 429:620-632. [PMID: 28137421 DOI: 10.1016/j.jmb.2017.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Calcium signaling plays an important role in cell survival by influencing mitochondria-related processes such as energy production and apoptosis. The endoplasmic reticulum (ER) is the main storage compartment for cell calcium (Ca2+; ~60-500μM), and the Ca2+ released by the ER has a prompt effect on the homeostasis of the juxtaposed mitochondria. Recent findings have highlighted a close connection between ER redox and Ca2+ signaling that is mediated by Ca2+-handling proteins. This paper describes the redox-regulated mediators and mechanisms that orchestrate Ca2+ signals from the ER to mitochondria.
Collapse
|
36
|
Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP 3 Receptors in the Induction of Hyperalgesic Priming. J Neurosci 2017; 37:2032-2044. [PMID: 28115480 DOI: 10.1523/jneurosci.2911-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP3) receptor inhibitor prevented the induction of priming by ryanodine. For IP3 induced priming, females were also more sensitive. IP3-induced priming was prevented by pretreatment with inhibitors of the sarcoendoplasmic reticulum calcium ATPase and ryanodine receptor. Antisense to EsRα prevented the induction of priming by low-dose IP3 in females. The induction of priming by an EsRα agonist was ryanodine receptor-dependent and prevented by the IP3 antagonist. Thus, an EsRα-dependent bidirectional interaction between endoplasmic reticulum IP3 and ryanodine receptor-mediated calcium signaling is present in the induction of hyperalgesic priming, in females. In cultured male DRG neurons, IP3 (100 μm) potentiated depolarization-induced transients produced by extracellular application of high-potassium solution (20 mm, K20), in nociceptors incubated with β-estradiol. This potentiation of depolarization-induced calcium transients was blocked by the IP3 antagonist, and not observed in the absence of IP3 IP3 potentiation was also blocked by ryanodine receptor antagonist. The application of ryanodine (2 nm), instead of IP3, also potentiated K20-induced calcium transients in the presence of β-estradiol, in an IP3 receptor-dependent manner. Our results point to an EsRα-dependent, reciprocal interaction between IP3 and ryanodine receptors that contributes to sex differences in hyperalgesic priming.SIGNIFICANCE STATEMENT The present study demonstrates a mechanism that plays a role in the marked sexual dimorphism observed in a model of the transition to chronic pain, hyperalgesic priming. This mechanism involves a reciprocal interaction between the endoplasmic reticulum receptors, IP3 and ryanodine, in the induction of priming, regulated by estrogen receptor α in the nociceptor of female rats. The presence of this signaling pathway modulating the susceptibility of nociceptors to develop plasticity may contribute to our understanding of sex differences observed clinically in chronic pain syndromes.
Collapse
|
37
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
38
|
Nakamura S, Nakanishi A, Takazawa M, Okihiro S, Urano S, Fukui K. Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res 2016; 50:1214-1225. [PMID: 27573976 DOI: 10.1080/10715762.2016.1227074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species induce neuronal cell death. However, the detailed mechanisms of cell death have not yet been elucidated. Previously, we reported neurite degeneration before the induction of cell death. Here, we attempted to elucidate the mechanisms of neurite degeneration before the induction of cell death using the neuroblastoma N1E-115 cell line and a time-lapse live cell imaging system. Treatment with the calcium ionophore ionomycin induced cell death and neurite degeneration in a concentration- and time-dependent manner. Treatment with a low concentration of ionomycin immediately produced a significant calcium influx into the intracellular region in N1E-115 cells. After 1-h incubation with ionomycin, the fluorescence emission of MitoSOXTM increased significantly compared to the control. Finally, analysis using a new mitochondrial specific fluorescence dye, MitoPeDPP, indicated that treatment with ionomycin significantly increased the mitochondrial lipid hydroperoxide production in N1E-115 cells. The fluorescence emissions of Fluo-4 AM and MitoPeDPP were detected in the cell soma and neurite regions in ionomycin-treated N1E-115 cells. However, the emissions of neurites were much lower than those of the cell soma. TBARS values of ionomycin-treated cells significantly increased compared to the control. These results indicate that ionomycin induces calcium influx into the intracellular region and reactive oxygen species production in N1E-115 cells. Lipid hydroperoxide production was induced in ionomycin-treated N1E-115 cells. Calcium influx into the intracellular region is a possible activator of neurite degeneration.
Collapse
Affiliation(s)
- Saki Nakamura
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan
| | - Ayumi Nakanishi
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Minami Takazawa
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Shunsuke Okihiro
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan
| | - Shiro Urano
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Koji Fukui
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan.,b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| |
Collapse
|
39
|
Foster TC, Kyritsopoulos C, Kumar A. Central role for NMDA receptors in redox mediated impairment of synaptic function during aging and Alzheimer's disease. Behav Brain Res 2016; 322:223-232. [PMID: 27180169 DOI: 10.1016/j.bbr.2016.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
Abstract
Increased human longevity has magnified the negative impact that aging can have on cognitive integrity of older individuals experiencing some decline in cognitive function. Approximately 30% of the elderly will have cognitive problems that influence their independence. Impaired executive function and memory performance are observed in normal aging and yet can be an early sign of a progressive cognitive impairment of Alzheimer's disease (AD), the most common form of dementia. Brain regions that are vulnerable to aging exhibit the earliest pathology of AD. Senescent synaptic function is observed as a shift in Ca2+-dependent synaptic plasticity and similar mechanisms are thought to contribute to the early cognitive deficits associated with AD. In the case of aging, intracellular redox state mediates a shift in Ca2+ regulation including N-methyl-d-aspartate (NMDA) receptor hypofunction and increased Ca2+ release from intracellular stores to alter synaptic plasticity. AD can interact with these aging processes such that molecules linked to AD, β-amyloid (Aβ) and mutated presenilin 1 (PS1), can also degrade NMDA receptor function, promote Ca2+ release from intracellular stores, and may increase oxidative stress. Thus, age is one of the most important predictors of AD and brain aging likely contributes to the onset of AD. The focus of this review article is to provide an update on mechanisms that contribute to the senescent synapse and possible interactions with AD-related molecules, with special emphasis on regulation of NMDA receptors.
Collapse
Affiliation(s)
- T C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, United States of America.
| | - C Kyritsopoulos
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, United States of America
| | - A Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
40
|
Hidalgo C, Arias-Cavieres A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda) 2016; 31:201-15. [DOI: 10.1152/physiol.00038.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review article, we address how activity-dependent Ca2+ signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca2+ signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca2+ signaling contribute to age-related synaptic plasticity deterioration.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
- Center of Molecular Studies of the Cell and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
| |
Collapse
|
41
|
In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 2016; 113:E2460-8. [PMID: 27071086 DOI: 10.1073/pnas.1517342113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The venom peptide maurocalcin (MCa) is atypical among toxins because of its ability to rapidly translocate into cells and potently activate the intracellular calcium channel type 1 ryanodine receptor (RyR1). Therefore, MCa is potentially subjected to posttranslational modifications within recipient cells. Here, we report that MCa Thr(26) belongs to a consensus PKA phosphorylation site and can be phosphorylated by PKA both in vitro and after cell penetration in cellulo. Unexpectedly, phosphorylation converts MCa from positive to negative RyR1 allosteric modulator. Thr(26) phosphorylation leads to charge neutralization of Arg(24), a residue crucial for MCa agonist activity. The functional effect of Thr(26) phosphorylation is partially mimicked by aspartyl mutation. This represents the first case, to our knowledge, of both ex situ posttranslational modification and pharmacological reprogramming of a small natural cystine-rich peptide by target cells. So far, phosphorylated MCa is the first specific negative allosteric modulator of RyR1, to our knowledge, and represents a lead compound for further development of phosphatase-resistant analogs.
Collapse
|
42
|
Balaban H, Nazıroğlu M, Demirci K, Övey İS. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels. Mol Neurobiol 2016; 54:2852-2868. [PMID: 27021021 DOI: 10.1007/s12035-016-9835-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
Inhibition of Ca2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca2+-permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus neurons of aged rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress, although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). The beta-amyloid plaque induces oxidative stress in hippocampus. SCOP can result in augmented ROS release in hippocampal neurons, leading to Ca2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca2+ provided that intracellular Ca2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Se reduced TRPM2 and TRPV1 channel activation through the modulation of aging oxidative reactions and Se-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.
Collapse
Affiliation(s)
- Hasan Balaban
- Department of Psychiatry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Institute of Health Science, Suleyman Demirel University, Isparta, Turkey. .,Neuroscience Research Center, University of Suleyman Demirel, TR-32260, Isparta, Turkey.
| | - Kadir Demirci
- Department of Psychiatry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Neuroscience, Institute of Health Science, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
43
|
Stebbings KA, Choi HW, Ravindra A, Llano DA. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging. Neurobiol Aging 2016; 42:101-9. [PMID: 27143426 DOI: 10.1016/j.neurobiolaging.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 01/21/2023]
Abstract
The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life.
Collapse
Affiliation(s)
- Kevin A Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hyun W Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aditya Ravindra
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel Adolfo Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
44
|
Patel R, Sesti F. Oxidation of ion channels in the aging nervous system. Brain Res 2016; 1639:174-85. [PMID: 26947620 DOI: 10.1016/j.brainres.2016.02.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Ion channels are integral membrane proteins that allow passive diffusion of ions across membranes. In neurons and in other excitable cells, the harmonious coordination between the numerous types of ion channels shape and propagate electrical signals. Increased accumulation of reactive oxidative species (ROS), and subsequent oxidation of proteins, including ion channels, is a hallmark feature of aging and may contribute to cell failure as a result. In this review we discuss the effects of ROS on three major types of ion channels of the central nervous system, namely the potassium (K(+)), calcium (Ca(2+)) and sodium (Na(+)) channels. We examine two general mechanisms through which ROS affect ion channels: via direct oxidation of specific residues and via indirect interference of pathways that regulate the channels. The overall status of the present studies indicates that the interaction of ion channels with ROS is multimodal and pervasive in the central nervous system and likely constitutes a general mechanism of aging susceptibility.
Collapse
Affiliation(s)
- Rahul Patel
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers. Neural Plast 2016; 2016:3456783. [PMID: 27034843 PMCID: PMC4791503 DOI: 10.1155/2016/3456783] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer's disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs) produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM). We found that incubation with ATX (≤10 μM) for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6 h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 μM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.
Collapse
|
46
|
Polotow TG, Poppe SC, Vardaris CV, Ganini D, Guariroba M, Mattei R, Hatanaka E, Martins MF, Bondan EF, Barros MP. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass. Mar Drugs 2015; 13:6117-37. [PMID: 26426026 PMCID: PMC4626682 DOI: 10.3390/md13106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.
Collapse
Affiliation(s)
- Tatiana G Polotow
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| | - Sandra C Poppe
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| | - Cristina V Vardaris
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| | - Douglas Ganini
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIEHS, Research Triangle Park, NC 27709, USA.
| | - Maísa Guariroba
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| | - Rita Mattei
- Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo SP 04023062, Brazil.
| | - Elaine Hatanaka
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| | - Maria F Martins
- Department of Environmental and Experimental Pathology, Paulista University (UNIP), Sao Paulo SP 04026002, Brazil.
- Program in Veterinary Medicine, Biological Sciences and Health (CBS), Cruzeiro do Sul University, Sao Paulo SP 01506-000, Brazil.
| | - Eduardo F Bondan
- Department of Environmental and Experimental Pathology, Paulista University (UNIP), Sao Paulo SP 04026002, Brazil.
- Program in Veterinary Medicine, Biological Sciences and Health (CBS), Cruzeiro do Sul University, Sao Paulo SP 01506-000, Brazil.
| | - Marcelo P Barros
- Postgraduate program in Health Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, R. Galvao Bueno, 868, Building B, 13th floor, Sao Paulo SP 01506000, Brazil.
| |
Collapse
|
47
|
Du Y, Ge MM, Xue W, Yang QQ, Wang S, Xu Y, Wang HL. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase. PLoS One 2015; 10:e0138112. [PMID: 26368815 PMCID: PMC4569283 DOI: 10.1371/journal.pone.0138112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023] Open
Abstract
NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.
Collapse
Affiliation(s)
- Yang Du
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Weizhen Xue
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Qian-Qian Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Shuang Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yi Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
- * E-mail:
| |
Collapse
|
48
|
Adasme T, Paula-Lima A, Hidalgo C. Inhibitory ryanodine prevents ryanodine receptor-mediated Ca²⁺ release without affecting endoplasmic reticulum Ca²⁺ content in primary hippocampal neurons. Biochem Biophys Res Commun 2015; 458:57-62. [PMID: 25623539 DOI: 10.1016/j.bbrc.2015.01.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function.
Collapse
Affiliation(s)
- Tatiana Adasme
- Biomedical Neuroscience Institute and Centro de Estudios Moleculares de la Célula, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute and Centro de Estudios Moleculares de la Célula, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute and Centro de Estudios Moleculares de la Célula, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
49
|
Mak DOD, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 2014; 58:67-78. [PMID: 25555684 DOI: 10.1016/j.ceca.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
As an intracellular Ca(2+) release channel at the endoplasmic reticulum membrane, the ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a crucial role in the generation, propagation and regulation of intracellular Ca(2+) signals that regulate numerous physiological and pathophysiological processes. This review provides a concise account of the fundamental single-channel properties of the InsP3R channel: its conductance properties and its regulation by InsP3 and Ca(2+), its physiological ligands, studied using nuclear patch clamp electrophysiology.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
50
|
Abstract
Reactive oxygen species and reactive nitrogen species (ROS/RNS) are often by-products of biochemical reactions, but are increasingly recognized as important second messengers involved in regulation of distinct cellular functions. Mild and reversible oxidation of certain amino acids within protein polypeptide chains is known to precisely control the function of transcription factors, protein kinases and phosphatases, receptors, pumps, ion channels, and so on. Conversely, under pathological conditions, high amounts of oxidants irreversibly oxidize DNA, lipids, and proteins and have deleterious effects on cells, ultimately causing cell death. ROS/RNS can thus be involved in the initiation and progression of many pathological conditions. Within this Forum, seven reviews and one original article summarize the current knowledge regarding redox regulation of various ion channels and ion conducting receptors. These include the recently identified mitochondrial Ca2+ uniporter and Orai Ca2+ channels, as well as selected members of the families of transient receptor potential, voltage-gated Ca2+, P2X, voltage-gated K+, and IP3R/RyR channels. In summary, all authors agree on the functional importance of redox-ion channel interplay. However, it is also clear that this is an emerging field of research where much has to be learned about intra- and extracellular sources, concentrations, and types of oxidants. Given their often short-lived nature and effective cellular buffering systems, the development of tools to measure local ROS production in living cells as well as detailed proteomic approaches to pinpoint protein targets and redox modifications are of importance.
Collapse
Affiliation(s)
- Ivan Bogeski
- Department of Biophysics, University of Saarland , Homburg, Germany
| | | |
Collapse
|