1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Jin X, Tang J, Qiu X, Nie X, Ou S, Wu G, Zhang R, Zhu J. Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation. Cell Death Discov 2024; 10:45. [PMID: 38267442 PMCID: PMC10808233 DOI: 10.1038/s41420-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Ferroptosis represents a distinct form of programmed cell death triggered by excessive iron accumulation and lipid peroxidation-induced damage. This mode of cell death differentiates from classical programmed cell death in terms of morphology and biochemistry. Ferroptosis stands out for its exceptional biological characteristics and has garnered extensive research and conversations as a form of programmed cell death. Its dysfunctional activation is closely linked to the onset of diseases, particularly inflammation and cancer, making ferroptosis a promising avenue for combating these conditions. As such, exploring ferroptosis may offer innovative approaches to treating cancer and inflammatory diseases. Our review provides insights into the relevant regulatory mechanisms of ferroptosis, examining the impact of ferroptosis-related factors from both physiological and pathological perspectives. Describing the crosstalk between ferroptosis and tumor- and inflammation-associated signaling pathways and the potential of ferroptosis inducers in overcoming drug-resistant cancers are discussed, aiming to inform further novel therapeutic directions for ferroptosis in relation to inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Xin Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiuren Tang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengming Ou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Solati Z, Surendran A, Aukema HM, Ravandi A. Impact of Reperfusion on Plasma Oxylipins in ST-Segment Elevation Myocardial Infarction. Metabolites 2023; 14:19. [PMID: 38248822 PMCID: PMC10821107 DOI: 10.3390/metabo14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
ST-segment elevation myocardial infarction (STEMI) occurs as a result of acute occlusion of the coronary artery. Despite successful reperfusion using primary percutaneous coronary intervention (PPCI), a large percentage of myocardial cells die after reperfusion, which is recognized as ischemia/reperfusion injury (I/R). There are rapid changes in plasma lipidome during myocardial reperfusion injury. However, the impact of coronary artery reperfusion on plasma oxylipins is unknown. This study aimed to investigate alterations in the oxylipin profiles of STEMI patients during ischemia and at various reperfusion time points following PPCI. Blood samples were collected from patients presenting with STEMI prior to PPCI (Isch, n = 45) and subsequently 2 h following successful reperfusion by PPCI (R-2 h, n = 42), after 24 h (R-24 h, n = 44), after 48 h (R-48 h, n = 43), and then 30 days post PPCI (R-30 d, n = 29). As controls, blood samples were collected from age- and sex-matched patients with non-obstructive coronary artery disease after diagnostic coronary angiography. High-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) using deuterated standards was used to identify and quantify oxylipins. In patients presenting with STEMI prior to reperfusion (Isch group), the levels of docosahexaenoic acid (DHA)-derived oxylipins were significantly higher when compared with controls. Their levels were also significantly correlated with the peak levels of creatine kinase (CK) and troponin T(TnT) before reperfusion (CK: r = 0.33, p = 0.046, TnT: r = 0.50, p = 1.00 × 10-3). The total concentrations of oxylipins directly produced by 5-lipoxygenase (5-LOX) were also significantly elevated in the Isch group compared with controls. The ratio of epoxides (generated through epoxygenase) to diols (generated by soluble epoxide hydrolysis (sEH)) was significantly lower in the Isch group compared with the controls. Following reperfusion, there was an overall reduction in plasma oxylipins in STEMI patients starting at 24 h post PPCI until 30 days. Univariate receiver operating characteristic (ROC) curve analysis also showed that an elevated ratio of epoxides to diols during ischemia is a predictor of smaller infarct size in patients with STEMI. This study revealed a large alteration in plasma oxylipins in patients presenting with STEMI when compared with controls. Total oxylipin levels rapidly reduced post reperfusion with stable levels reached 24 h post reperfusion and maintained for up to 30 days post infarct. Given the shifts in plasma oxylipins following coronary artery reperfusion, further research is needed to delineate their clinical impact in STEMI patients.
Collapse
Affiliation(s)
- Zahra Solati
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Arun Surendran
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Harold M. Aukema
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Amir Ravandi
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Cardiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
4
|
Li Y, He Y, Cheng W, Zhou Z, Ni Z, Yu C. Double-edged roles of ferroptosis in endometriosis and endometriosis-related infertility. Cell Death Discov 2023; 9:306. [PMID: 37607902 PMCID: PMC10444804 DOI: 10.1038/s41420-023-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Endometriosis is strongly associated with infertility. Several mechanisms have been reported in an attempt to elucidate the pathophysiological effects that lead to reduced fertility in women with endometriosis. However, the mechanisms by which endometriosis affects fertility have not been fully elucidated. Ferroptosis is a novel form of nonapoptotic cell death that is characterized by iron-dependent lipid peroxidation membrane damage. In past reports, elevated iron levels in ectopic lesions, peritoneal fluid and follicular fluid have been reported in patients with endometriosis. The high-iron environment is closely associated with ferroptosis, which appears to exhibit a double-edged effect on endometriosis. Ferroptosis can cause damage to ovarian granulosa cells, oocytes, and embryos, leading to endometriosis-related infertility. This article summarizes the main pathways and regulatory mechanisms of ferroptosis and explores the possible mechanisms of the formation of an iron-overloaded environment in endometriotic ectopic lesions, peritoneal fluid and follicular fluid. Finally, we reviewed recent studies on the main and potential mechanisms of ferroptosis in endometriosis and endometriosis-related infertility.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Yalun He
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Zhihao Zhou
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
5
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Chen ST, Yang N. Constructing ferroptosis-related competing endogenous RNA networks and exploring potential biomarkers correlated with immune infiltration cells in asthma using combinative bioinformatics strategy. BMC Genomics 2023; 24:294. [PMID: 37259023 DOI: 10.1186/s12864-023-09400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Asthma is a common chronic respiratory disease worldwide. Recent studies have revealed the critical effects of the ceRNA network and ferroptosis on patients with asthma. Thus, this study aimed to explore the potential ferroptosis-related ceRNA network, investigate the immune cell infiltration level in asthma through integrated analysis of public asthma microarray datasets, and find suitable diagnostic biomarkers for asthma. METHODS First, three asthma-related datasets which were downloaded from the Gene Expression Omnibus (GEO) database were integrated into one pooled dataset after correcting for batch effects. Next, we screened differentially expressed lncRNAs (DElncRNAs) between patients and healthy subjects, constructed a ceRNA network using the StarBase database and screened ferroptosis-related genes from the predicted target mRNAs for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We also performed Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on the batch effect-corrected mRNA expression profile. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to screen potential diagnostic biomarkers, and the diagnostic efficacy was assessed using a receiver operating characteristic (ROC) curve. Finally, we determined the proportion of 22 immune cells in patients with asthma using CIBERSORT and investigated the correlation between key RNAs and immune cells. RESULTS We obtained 19 DElncRNAs, of which only LUCAT1 and MIR222HG had corresponding target miRNAs. The differentially expressed ferroptosis-related genes were involved in multiple programmed cell death-related pathways. We also found that the mRNA expression profile was primarily enriched in innate immune system responses. We screened seven candidate diagnostic biomarkers for asthma using LASSO regression (namely, BCL10, CD300E, IER2, MMP13, OAF, TBC1D3, and TMEM151A), among which the area under the curve (AUC) value for CD300E and IER2 were 0.722 and 0.856, respectively. Finally, we revealed the infiltration ratio of different immune cells in asthma and found a correlation between LUCAT1, MIR222HG, CD300E, and IER2 with some immune cells. CONCLUSION This study explored a potential lncRNA-miRNA-mRNA regulatory network and its underlying diagnostic biomarkers (CD300E and IER2) in asthma and identified the immune cells most associated with them, providing possible diagnostic markers and immunotherapeutic targets for asthma.
Collapse
Affiliation(s)
- Shao-Tian Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China
| | - Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
7
|
Qi D, Peng M. Ferroptosis-mediated immune responses in cancer. Front Immunol 2023; 14:1188365. [PMID: 37325669 PMCID: PMC10264078 DOI: 10.3389/fimmu.2023.1188365] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Cell death is a universal biological process in almost every physiological and pathological condition, including development, degeneration, inflammation, and cancer. In addition to apoptosis, increasing numbers of cell death types have been discovered in recent years. The biological significance of cell death has long been a subject of interest and exploration and meaningful discoveries continue to be made. Ferroptosis is a newfound form of programmed cell death and has been implicated intensively in various pathological conditions and cancer therapy. A few studies show that ferroptosis has the direct capacity to kill cancer cells and has a potential antitumor effect. As the rising role of immune cells function in the tumor microenvironment (TME), ferroptosis may have additional impact on the immune cells, though this remains unclear. In this study we focus on the ferroptosis molecular network and the ferroptosis-mediated immune response, mainly in the TME, and put forward novel insights and directions for cancer research in the near future.
Collapse
Affiliation(s)
- Desheng Qi
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Milin Peng
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Haeggström JZ, Newcomer ME. Structures of Leukotriene Biosynthetic Enzymes and Development of New Therapeutics. Annu Rev Pharmacol Toxicol 2023; 63:407-428. [PMID: 36130059 DOI: 10.1146/annurev-pharmtox-051921-085014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.
Collapse
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden;
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
9
|
Yi J, Che H, Ren J, Yu H, Song K, Wang X, Zhao X, Wang X, Li Q. Insights into the interaction of cyclooxygenase and lipoxygenase with natural compound 3,4',5,7-Tetrahydroxyflavone based on multi-spectroscopic and metabolomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121800. [PMID: 36067623 DOI: 10.1016/j.saa.2022.121800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.
Collapse
Affiliation(s)
- Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Jiping Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Kexin Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
10
|
Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, Fan W. Identification of Markers for Diagnosis and Treatment of Diabetic Kidney Disease Based on the Ferroptosis and Immune. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9957172. [PMID: 36466094 PMCID: PMC9712001 DOI: 10.1155/2022/9957172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/05/2023]
Abstract
BACKGROUND In advanced diabetic kidney disease (DKD), iron metabolism and immune dysregulation are abnormal, but the correlation is not clear. Therefore, we aim to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with immune inflammatory response and to identify new diagnostic biomarkers to help treat and diagnose DKD. METHODS Download data from gene expression omnibus (GEO) database and FerrDb database, and construct random forest tree (RF) and support vector machine (SVM) model to screen hub ferroptosis genes (DE-FRGs). We used consistent unsupervised consensus clustering to cluster DKD samples, and enrichment analysis was performed by Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) and then assessed immune cell infiltration abundance using the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms. Ferroptosis scoring system was established based on the Boruta algorithm, and then, core compounds were screened, and binding sites were predicted by Coremine Medical database. RESULTS We finally established a 7-gene signature (DUSP1, PRDX6, PEBP1, ZFP36, GABARAPL1, TSC22D3, and RGS4) that exhibited good stability across different datasets. Consistent clustering analysis divided the DKD samples into two ferroptosis modification patterns. Meanwhile, autophagy and peroxisome pathways and immune-related pathways can participate in the regulation of ferroptosis modification patterns. The abundance of immune cell infiltration differs significantly across patterns. Further, molecular docking results showed that the core compound could bind to the protein encoded by the core gene. CONCLUSIONS Our findings suggest that ferroptosis modification plays a crucial role in the diversity and complexity of the DKD immune microenvironment, and the ferroptosis score system can be used to effectively verify the relationship between ferroptosis and immune cell infiltration in DKD patients. Kaempferol and quercetin may be potential drugs to improve the immune and inflammatory mechanisms of DKD by affecting ferroptosis.
Collapse
Affiliation(s)
- JingYuan Ma
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - ChangYan Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Tao Liu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
| | - XiaoLing Wen
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - XiaoLing Liu
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - WenXing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
11
|
McCullough D, Harrison T, Boddy LM, Enright KJ, Amirabdollahian F, Schmidt MA, Doenges K, Quinn K, Reisdorph N, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial. Nutrients 2022; 14:3691. [PMID: 36145067 PMCID: PMC9505524 DOI: 10.3390/nu14183691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
High carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation.
Collapse
Affiliation(s)
- Deaglan McCullough
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Tanja Harrison
- Department of Clinical Sciences and Nutrition, University of Chester, Chester CH1 4BJ, UK
| | - Lynne M. Boddy
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Kevin J. Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Michael A. Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Boulder, CO 80302, USA
- Sovaris Aerospace, Boulder, CO 80302, USA
| | - Katrina Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Mohsen Mazidi
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Twin Research & Genetic Epidemiology, South Wing St Thomas’, King’s College London, London SE1 7EH, UK
| | - Katie E. Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Claire E. Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ian G. Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
12
|
Tang X, Hou Y, Schwartz TW, Haeggström JZ. Metabolite G-protein coupled receptor signaling: Potential regulation of eicosanoids. Biochem Pharmacol 2022; 204:115208. [PMID: 35963340 DOI: 10.1016/j.bcp.2022.115208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Eicosanoids are a family of bioactive compounds derived from arachidonic acid (AA) that play pivotal roles in physiology and disease, including inflammatory conditions of multiple organ systems. The biosynthesis of eicosanoids requires a series of catalytic steps that are controlled by designated enzymes, which can be regulated by inflammatory and stress signals via transcriptional and translational mechanisms. In the past decades, evidence have emerged indicating that G-protein coupled receptors (GPCRs) can sense extracellular metabolites, and regulate inflammatory responses including eicosanoid production. This review focuses on the recent advances of metabolite GPCRs research, their role in regulation of eicosanoid biosynthesis, and the link to pathophysiological conditions.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Yaolin Hou
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden.
| |
Collapse
|
13
|
Loef M, van de Stadt L, Böhringer S, Bay-Jensen AC, Mobasheri A, Larkin J, Lafeber FPJG, Blanco FJ, Haugen IK, Berenbaum F, Giera M, Ioan-Facsinay A, Kloppenburg M. The association of the lipid profile with knee and hand osteoarthritis severity: the IMI-APPROACH cohort. Osteoarthritis Cartilage 2022; 30:1062-1069. [PMID: 35644463 DOI: 10.1016/j.joca.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the association of the lipidomic profile with osteoarthritis (OA) severity, considering the outcomes radiographic knee and hand OA, pain and function. DESIGN We used baseline data from the Applied Public-Private Research enabling OsteoArthritis Clinical Headway (APPROACH) cohort, comprising persons with knee OA fulfilling the clinical American College of Rheumatology classification criteria. Radiographic knee and hand OA severity was quantified with Kellgren-Lawrence sum scores. Knee and hand pain and function were assessed with validated questionnaires. We quantified fasted plasma higher order lipids and oxylipins with liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based platforms. Using penalised linear regression, we assessed the variance in OA severity explained by lipidomics, with adjustment for clinical covariates (age, sex, body mass index (BMI) and lipid lowering medication), measurement batch and clinical centre. RESULTS In 216 participants (mean age 66 years, mean BMI 27.3 kg/m2, 75% women) we quantified 603 higher order lipids (triacylglycerols, diacylglycerols, cholesteryl esters, ceramides, free fatty acids, sphingomyelins, phospholipids) and 28 oxylipins. Lipidomics explained 3% and 2% of the variance in radiographic knee and hand OA severity, respectively. Lipids were not associated with knee pain or function. Lipidomics accounted for 12% and 6% of variance in hand pain and function, respectively. The investigated OA severity outcomes were associated with the lipidomic fraction of bound and free arachidonic acid, bound palmitoleic acid, oleic acid, linoleic acid and docosapentaenoic acid. CONCLUSIONS Within the APPROACH cohort lipidomics explained a minor portion of the variation in OA severity, which was most evident for the outcome hand pain. Our results suggest that eicosanoids may be involved in OA severity.
Collapse
Affiliation(s)
- M Loef
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - L van de Stadt
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - S Böhringer
- Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands.
| | - A-C Bay-Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - A Mobasheri
- Regenerative Medicine, State Research Institute Center of Innovative Medicine, Vilnius, Lithuania.
| | - J Larkin
- GlaxoSmithKline USA, Philadelphia, PA, USA.
| | - F P J G Lafeber
- Rheumatology and Clinical Immunology, UMC Utrecht, Utrecht, the Netherlands.
| | - F J Blanco
- Servicio de Reumatologia, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain.
| | - I K Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - F Berenbaum
- Rheumatology, Sorbonne University, INSERM, AP-HP Saint-Antoine Hospital, Paris, France.
| | - M Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - A Ioan-Facsinay
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Kloppenburg
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
Badi YE, Pavel AB, Pavlidis S, Riley JH, Bates S, Kermani NZ, Knowles R, Kolmert J, Wheelock CE, Worsley S, Uddin M, Alving K, Bakke PS, Behndig A, Caruso M, Chanez P, Fleming LJ, Fowler SJ, Frey U, Howarth P, Horváth I, Krug N, Maitland-van der Zee AH, Montuschi P, Roberts G, Sanak M, Shaw DE, Singer F, Sterk PJ, Djukanovic R, Dahlen SE, Guo YK, Chung KF, Guttman-Yassky E, Adcock IM. Mapping atopic dermatitis and anti-IL-22 response signatures to type 2-low severe neutrophilic asthma. J Allergy Clin Immunol 2022; 149:89-101. [PMID: 33891981 DOI: 10.1016/j.jaci.2021.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.
Collapse
Affiliation(s)
- Yusef Eamon Badi
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom; Data Science Institute, Imperial College London, London, United Kingdom
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, The University of Mississippi, Oxford, Miss
| | - Stelios Pavlidis
- Data Science Institute, Imperial College London, London, United Kingdom
| | - John H Riley
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | - Stewart Bates
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | | | | | - Johan Kolmert
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sally Worsley
- GSK Value Evidence and Outcomes, Brentford, United Kingdom
| | - Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health: Paediatric Research, Uppsala University, Uppsala, Sweden
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Aix-Marseille Universite, Assistance Publique des Hopitaux de Marseille, Clinic des Bronches, Allergies et Sommeil, Marseille, France
| | - Louise J Fleming
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Howarth
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Ildikó Horváth
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | | | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Agostino Gemelli University Hospital Foundation, Rome, Italy
| | - Graham Roberts
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominick E Shaw
- University of Nottingham, NIHR Biomedical Research Centre, Nottingham, United Kingdom
| | - Florian Singer
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ratko Djukanovic
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ian M Adcock
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
15
|
Rossner P, Cervena T, Vojtisek-Lom M, Neca J, Ciganek M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Sima M, Simova Z, Holan V, Beranek V, Pechout M, Macoun D, Rossnerova A, Topinka J. Markers of lipid oxidation and inflammation in bronchial cells exposed to complete gasoline emissions and their organic extracts. CHEMOSPHERE 2021; 281:130833. [PMID: 34015653 DOI: 10.1016/j.chemosphere.2021.130833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Road traffic emissions consist of gaseous components, particles of various sizes, and chemical compounds that are bound to them. Exposure to vehicle emissions is implicated in the etiology of inflammatory respiratory disorders. We investigated the inflammation-related markers in human bronchial epithelial cells (BEAS-2B) and a 3D model of the human airways (MucilAir™), after exposure to complete emissions and extractable organic matter (EOM) from particles generated by ordinary gasoline (E5), and a gasoline-ethanol blend (E20; ethanol content 20% v/v). The production of 22 lipid oxidation products (derivatives of linoleic and arachidonic acid, AA) and 45 inflammatory molecules (cytokines, chemokines, growth factors) was assessed after days 1 and 5 of exposure, using LC-MS/MS and a multiplex immunoassay, respectively. The response observed in MucilAir™ exposed to E5 gasoline emissions, characterized by elevated levels of pro-inflammatory AA metabolites (prostaglandins) and inflammatory markers, was the most pronounced. E20 EOM exposure was associated with increased levels of AA metabolites with anti-inflammatory effects in this cell model. The exposure of BEAS-2B cells to complete emissions reduced lipid oxidation, while E20 EOM tended to increase concentrations of AA metabolite and chemokine production; the impacts on other inflammatory markers were limited. In summary, complete E5 emission exposure of MucilAir™ induces the processes associated with the pro-inflammatory response. This observation highlights the potential negative health impacts of ordinary gasoline, while the effects of alternative fuel are relatively weak.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague, Czech Republic.
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic.
| | - Jiri Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00, Brno, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00, Brno, Czech Republic.
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Vit Beranek
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21, Prague, Czech Republic.
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21, Prague, Czech Republic.
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
16
|
Han YH, Lee K, Saha A, Han J, Choi H, Noh M, Lee YH, Lee MO. Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders. Biomol Ther (Seoul) 2021; 29:455-464. [PMID: 34162770 PMCID: PMC8411019 DOI: 10.4062/biomolther.2021.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.
Collapse
Affiliation(s)
- Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeongjin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Abhirup Saha
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Elzahhar PA, Alaaeddine RA, Nassra R, Ismail A, Labib HF, Temraz MG, Belal ASF, El-Yazbi AF. Challenging inflammatory process at molecular, cellular and in vivo levels via some new pyrazolyl thiazolones. J Enzyme Inhib Med Chem 2021; 36:669-684. [PMID: 33618602 PMCID: PMC7901699 DOI: 10.1080/14756366.2021.1887169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azza Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | | | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, E gypt
| |
Collapse
|
18
|
Tian W, Jiang X, Kim D, Guan T, Nicolls MR, Rockson SG. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol 2020; 11:1289. [PMID: 32973519 PMCID: PMC7466732 DOI: 10.3389/fphar.2020.01289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Leukotrienes are biologically active eicosanoid lipid mediators that originate from oxidative metabolism of arachidonic acid. Biosynthesis of leukotrienes involves a set of soluble and membrane-bound enzymes that constitute a machinery complex primarily expressed by cells of myeloid origin. Leukotrienes and their synthetic enzymes are critical immune modulators for leukocyte migration. Increased concentrations of leukotrienes are implicated in a number of inflammatory disorders. More recent work indicates that leukotrienes may also interact with a variety of tissue cells, contributing to the low-grade inflammation of cardiovascular, neurodegenerative, and metabolic conditions, as well as that of cancer. Leukotriene signaling contributes to the active tumor microenvironment, promoting tumor growth and resistance to immunotherapy. This review summarizes recent insights into the intricate roles of leukotrienes in promoting tumor growth and metastasis through shaping the tumor microenvironment. The emerging possibilities for pharmacological targeting of leukotriene signaling in tumor metastasis are considered.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongeon Kim
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark R Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stanley G Rockson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Front Immunol 2020; 11:1356. [PMID: 32714332 PMCID: PMC7344291 DOI: 10.3389/fimmu.2020.01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis, asthma, allergic rhinitis and many other disorders related to an aberrant immune response have a higher incidence and severity in women than in men. Emerging evidences from scientific studies indicate that the activity of the immune system is superior in females and that androgens may act as “immunosuppressive” molecules with inhibitory effects on inflammatory reactions. Among the multiple factors that contribute to the inflammatory response, lipid mediators (LM), produced from polyunsaturated fatty acids, represent a class of bioactive small molecules with pivotal roles in the onset, maintenance and resolution of inflammation. LM encompass pro-inflammatory eicosanoids and specialized pro-resolving mediators (SPM) that coexist in a tightly regulated balance necessary for the return to homeostasis. Innate immune cells including neutrophils, monocytes and macrophages possess high capacities to generate distinct LM. In the last decades it became more and more evident that sex represents an important variable in the regulation of inflammation where sex hormones play crucial roles. Recent findings showed that the biosynthesis of inflammation-related LM is sex-biased and that androgens impact LM formation with consequences not only for pathophysiology but also for pharmacotherapy. Here, we review the modulation of the inflammatory response by sex and androgens with a specific focus on LM pathways. In particular, we highlight the impact of androgens on the biosynthetic pathway of inflammation-related eicosanoids in innate immune cells.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Maciejewska D, Drozd A, Skonieczna-Żydecka K, Skórka-Majewicz M, Dec K, Jakubczyk K, Pilutin A, Stachowska E. Eicosanoids in Nonalcoholic Fatty Liver Disease (NAFLD) Progression. Do Serum Eicosanoids Profile Correspond with Liver Eicosanoids Content during NAFLD Development and Progression? Molecules 2020; 25:molecules25092026. [PMID: 32349225 PMCID: PMC7248881 DOI: 10.3390/molecules25092026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a major public health problem worldwide. The study aimed to evaluate the concentration of eicosanoids in serum and liver tissue during steatosis progression and to assess whether eicosanoid change scores may predict liver tissue remodeling. Thirty six eight-week-old male Sprague Dawley rats were enrolled and sacrificed at different stages of NAFLD. Eicosanoid concentrations, namely lipoxin A4, hydroxyeicosatetraenoic acids (HETE), hydroxyloctadecadienoic acids (HODE), protectin DX, Maresine1, leucotriene B4, prostaglandin E2, and resolvin D1 measurement in serum and liver tissue with Agilent Technologies 1260 liquid chromatography were evaluated. For the liver and serum concentrations of 9-HODE and 13-HODE, the correlations were found to be strong and positive (r > 0.7, p < 0.05). Along with NAFLD progression, HODE concentration significantly increased, and change scores were more abundant in the liver. The moderate positive correlation between liver and serum (r = 0.52, p < 0.05) was also observed for resolvin E1. The eicosanoid concentration decreased during NAFLD progression, but mostly in serum. There were significant correlations between HETE concentrations in liver and serum, but their associations were relatively low and changes the most in liver tissue. Eicosanoids profile, predominantly 9-HODE and 13-HODE, may serve as a potential biomarker for NAFLD development.
Collapse
Affiliation(s)
- Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
- Correspondence: ; Tel.: (+48)-91-441-48-09
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| | - Marta Skórka-Majewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.D.); (K.S.-Ż.); (M.S.-M.); (K.D.); (K.J.); (E.S.)
| |
Collapse
|
21
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G. The emerging role of ferroptosis in inflammation. Biomed Pharmacother 2020; 127:110108. [PMID: 32234642 DOI: 10.1016/j.biopha.2020.110108] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death triggered by intracellular phospholipid peroxidation that is morphologically, biologically and genetically distinct from other types of cell death. Ferroptosis is classified as regulated necrosis and is more immunogenic than apoptosis. To date, compelling evidence indicates that ferroptosis plays an important role in inflammation, and several antioxidants functioning as ferroptosis inhibitors have been shown to exert anti-inflammatory effects in experimental models of certain diseases. Our review provides an overview of the link between ferroptosis and inflammation; a better understanding of the mechanisms underlying ferroptosis and inflammation may hasten the development of promising therapeutic strategies involving ferroptosis inhibitors to address inflammation.
Collapse
Affiliation(s)
- Yitian Sun
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Peng Chen
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Bingtao Zhai
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Mingming Zhang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Yu Xiang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Jiaheng Fang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Sinan Xu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Yufei Gao
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xin Chen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xinbing Sui
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China.
| | - Guoxiong Li
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
22
|
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 2019; 19:405-414. [PMID: 31101865 DOI: 10.1038/s41568-019-0149-1] [Citation(s) in RCA: 739] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.
Collapse
Affiliation(s)
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
23
|
Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8107265. [PMID: 31316721 PMCID: PMC6604337 DOI: 10.1155/2019/8107265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Specialized proresolving mediators (SPMs) are a novel class of endogenous lipids, derived by ω-6 and ω-3 essential polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) that trigger and orchestrate the resolution of inflammation, which is the series of cellular and molecular events that leads to spontaneous regression of inflammatory processes and restoring of tissue homeostasis. These lipids are emerging as highly effective therapeutic agents that exert their immunoregulatory activity by activating the proresolving pathway, as reported by a consistent bulk of evidences gathered in the last two decades since their discovery. The production of reactive oxygen (ROS) and nitrogen (RNS) species by immune cells plays indeed an important role in the inflammatory mechanisms of host defence, and it is now clear that oxidative stress, viewed as an imbalance between such species and their elimination, can lead to many chronic inflammatory diseases. This review, the first of its kind, is aimed at exploring the manifold effects of SPMs on modulation of reactive species production, along with the mechanisms through which they either inhibit molecular signalling pathways that are activated by oxidative stress or induce the expression of endogenous antioxidant systems. Furthermore, the possible role of SPMs in oxidative stress-mediated chronic disorders is also summarized, suggesting not only that their anti-inflammatory and proresolving properties are strictly associated with their antioxidant role but also that these endogenous lipids might be exploited in the treatment of several pathologies in which uncontrolled production of ROS and RNS or impairment of the antioxidant machinery represents a main pathogenetic mechanism.
Collapse
|
24
|
Spyrou J, Gardner DK, Harvey AJ. Metabolism Is a Key Regulator of Induced Pluripotent Stem Cell Reprogramming. Stem Cells Int 2019; 2019:7360121. [PMID: 31191682 PMCID: PMC6525803 DOI: 10.1155/2019/7360121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Reprogramming to pluripotency involves drastic restructuring of both metabolism and the epigenome. However, induced pluripotent stem cells (iPSC) retain transcriptional memory, epigenetic memory, and metabolic memory from their somatic cells of origin and acquire aberrant characteristics distinct from either other pluripotent cells or parental cells, reflecting incomplete reprogramming. As a critical link between the microenvironment and regulation of the epigenome, nutrient availability likely plays a significant role in the retention of somatic cell memory by iPSC. Significantly, relative nutrient availability impacts iPSC reprogramming efficiency, epigenetic regulation and cell fate, and differentially alters their ability to respond to physiological stimuli. The significance of metabolites during the reprogramming process is central to further elucidating how iPSC retain somatic cell characteristics and optimising culture conditions to generate iPSC with physiological phenotypes to ensure their reliable use in basic research and clinical applications. This review serves to integrate studies on iPSC reprogramming, memory retention and metabolism, and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- James Spyrou
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David K. Gardner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J. Harvey
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
COX-2-PGE 2 Signaling Impairs Intestinal Epithelial Regeneration and Associates with TNF Inhibitor Responsiveness in Ulcerative Colitis. EBioMedicine 2018; 36:497-507. [PMID: 30190207 PMCID: PMC6197735 DOI: 10.1016/j.ebiom.2018.08.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Inhibition of tumor necrosis factor-α (TNF) signaling is beneficial in the management of ulcerative colitis (UC), but up to one-third of patients do not have a clinical response of relevance to TNF inhibitors during induction therapy (i.e. primary non-responders [PNRs]). Through production of prostaglandins (PGs) and thromboxanes, cyclooxygenase-2 (COX-2) affects inflammation and epithelial regeneration and may in this way be implicated in treatment resistance to TNF inhibitors. Methods In this study, COX-2 expression was analyzed in human intestinal biopsies and patient-derived monocytes, and the downstream consequences of COX-2 activity was evaluated by assessing the influence of the down-stream effector, PGE2, on intestinal epithelial stem cell self-renewal and differentiation using primary human intestinal organoids (“mini-guts”). Findings We found that TNF stimulation induced COX-2 expression in monocytes isolated from responders (Rs), whereas COX-2 expression was constitutively high and non-inducible in monocytes from PNRs. Additionally, PGE2 in combination with proliferative signals transformed human intestinal epithelial cells to a proinflammatory state akin to flaring UC, whereas PGE2 in combination with differentiation signals supported robust mucin induction. Interpretation Our work indicates that COX-2-PGE2 signaling could be a novel target for the management of PNRs to TNF inhibitors. We additionally demonstrate that COX-2–PGE2 signaling has dual functions during tissue repair and normal lineage differentiation, explaining in part the lack of response to TNF inhibitors among PNRs. Fund This work was funded by grants from the Novo Nordisk Foundation, the Lundbeck Foundation, the Vanderbilt Digestive Disease Research Center, NIH Grants, Aase and Ejnar Danielsen's Foundation and the A.P. Møller Foundation. Monocytes derived from primary non-responders to therapy with TNF inhibitors have a higher basal expression level of COX-2. The sustained induction of PGE2 maintains an inflammatory state of TNF-stimulated intestinal epithelium. The COX-2–PGE2 pathway might be a druggable pathway to affect TNF inhibitor responsiveness.
Collapse
|
26
|
Musso G, Cassader M, Paschetta E, Gambino R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018; 155:282-302.e8. [PMID: 29906416 DOI: 10.1053/j.gastro.2018.06.031] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing worldwide, yet there are no effective treatments. A decade has passed since the initial lipidomics analyses of liver tissues from patients with nonalcoholic fatty liver disease. We have learned that liver cells from patients with NASH have an abnormal lipid composition and that the accumulation of lipids leads to organelle dysfunction, cell injury and death, and chronic inflammation, called lipotoxicity. We review the lipid species and metabolic pathways that contribute to the pathogenesis of NASH and potential therapeutic targets, including enzymes involved in fatty acid and triglyceride synthesis, bioactive sphingolipids and polyunsaturated-derived eicosanoids, and specialized pro-resolving lipid mediators. We discuss the concept that NASH is a disease that can resolve and the roles of lipid molecules in the resolution of inflammation and regression of fibrosis.
Collapse
Affiliation(s)
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
28
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
29
|
Kamleh MA, McLeod O, Checa A, Baldassarre D, Veglia F, Gertow K, Humphries SE, Rauramaa R, de Faire U, Smit AJ, Giral P, Kurl S, Mannarino E, Tremoli E, Silveira A, Örvik J, Hamsten A, Wheelock CE. Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. J Proteome Res 2018; 17:870-878. [PMID: 29235871 DOI: 10.1021/acs.jproteome.7b00671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide, particularly in individuals with diabetes. The current study objective was to determine the circulating metabolite profiles associated with the risk of future cardiovascular events, with emphasis on diabetes status. Nontargeted metabolomics analysis was performed by LC-HRMS in combination with targeted quantification of eicosanoids and endocannabinoids. Plasma from 375 individuals from the IMPROVE pan-European cohort was included in a case-control study design. Following data processing, the three metabolite data sets were concatenated to produce a single data set of 267 identified metabolites. Factor analysis identified six factors that described 26.6% of the variability in the given set of predictors. An association with cardiovascular events was only observed for one factor following adjustment (p = 0.026). From this factor, we identified a free fatty acid signature (n = 10 lipids, including saturated, monounsaturated, and polyunsaturated fatty acids) that was associated with lower risk of future cardiovascular events in nondiabetics only (OR = 0.65, 0.27-0.80 95% CI, p = 0.030), whereas no association was observed among diabetic individuals. These observations support the hypothesis that increased levels of circulating omega-6 and omega-3 fatty acids are associated with protective effects against future cardiovascular events. However, these effects were only observed in the nondiabetic population, further highlighting the need for patient stratification in clinical investigations.
Collapse
Affiliation(s)
- Muhammad Anas Kamleh
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , 17177 Stockholm, Sweden
| | - Olga McLeod
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , 17177 Stockholm, Sweden
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , 20133 Milan, Italy.,Centro Cardiologico Monzino, I.R.C.C.S. , 20138 Milan, Italy
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, I.R.C.C.S. , 20138 Milan, Italy
| | - Karl Gertow
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden
| | - Steve E Humphries
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College of London , London WC1E 6BT, United Kingdom
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine , 70100 Kuopio, Finland
| | - Ulf de Faire
- Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden.,Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet , 17177 Stockholm, Sweden
| | - Andries J Smit
- Department of Medicine, University Medical Center Groningen , 9713 GZ Groningen, The Netherlands
| | - Philippe Giral
- Assistance Publique - Hopitaux de Paris ; Service Endocrinologie-Metabolisme, Groupe Hôpitalier Pitie-Salpetriere, Unités de Prévention Cardiovasculaire, 75004 Paris, France
| | - Sudhir Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio Campus, 70211 Kuopio, Finland
| | - Elmo Mannarino
- Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Clinical and Experimental Medicine, University of Perugia , Perugia 06132, Italy
| | - Elena Tremoli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , 20133 Milan, Italy.,Centro Cardiologico Monzino, I.R.C.C.S. , 20138 Milan, Italy
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden
| | - John Örvik
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Solna , 17176 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , 17177 Stockholm, Sweden
| |
Collapse
|