1
|
Zhang J, Chen F, Wei W, Ning Q, Zhu D, Fan J, Wang H, Wang J, Zhang A, Jin P, Li Q. Nr-CWS regulates METTL3-mediated m 6A modification of CDS2 mRNA in vascular endothelial cells and has prognostic significance. Commun Biol 2024; 7:1348. [PMID: 39424634 PMCID: PMC11489679 DOI: 10.1038/s42003-024-07047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Metabolic memory (MM) is a major factor in the delayed wound healing observed in diabetic patients. While "Nocardia rubrum cell wall skeleton" (Nr-CWS) is utilized to enhance macrophage proliferation in immune diseases, its impact on MM wounds in diabetes is unclear. This study demonstrates that transient hyperglycemia leads to prolonged damage in vascular endothelial cells by decreasing METTL3 expression, leading to decreased RNA methylation and impaired cellular metabolism. Remarkably, Nr-CWS application increases METTL3 levels in these cells, facilitating the recovery of cell function. Further in vivo and in vitro analyses demonstrate that transient hyperglycemia-induced reduction in METTL3 hinders RNA methylation of the downstream gene Cds2, impacting mitochondrial function and energy metabolism and consequently reducing angiogenic capacity in endothelial cells. This impairment significantly influences diabetic wound healing. Our findings highlight the profound impact of transient hyperglycemia on wound healing, establishing METTL3 as a significant role in vascular complications of diabetes. This study not only elucidates the pathophysiological mechanisms behind MM in diabetic wounds but also suggests Nr-CWS as a potential therapeutic agent, offering a novel approach for treating diabetic wounds.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Chen
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qianqian Ning
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou, Jiangsu, China
| | - Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Fan
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haoyu Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aijun Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Rao G, Peng B, Zhang G, Fu X, Tian J, Tian Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:344. [PMID: 39285459 PMCID: PMC11406791 DOI: 10.1186/s12933-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Nyström T, Andersson Franko M, Ludvigsson J, Lind M, Persson M. Overweight or obesity, weight variability and the risk of retinopathy in type 1 diabetes. Diabetes Obes Metab 2024; 26:2509-2512. [PMID: 38467580 DOI: 10.1111/dom.15545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Thomas Nyström
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Section for Diabetes and Endocrinology, Södersjukhuset AB, Stockholm, Sweden
| | - Mikael Andersson Franko
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Johnny Ludvigsson
- Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children's Hospital and Div of Pediatrics, Linköping, Sweden
| | - Marcus Lind
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Martina Persson
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Diabetes and Endocrinology, Sachsska Childrens'and Youth Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Ichikawa T, Okada H, Hamaguchi M, Nishioka N, Tateyama Y, Shimamoto T, Kurogi K, Murata H, Ito M, Iwami T, Fukui M. The transition of metabolic phenotypes and cardiovascular events: Panasonic cohort study 16. Obesity (Silver Spring) 2024; 32:999-1008. [PMID: 38444281 DOI: 10.1002/oby.23999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE The study objective was to investigate whether changes in metabolic phenotype affect the risk of cardiovascular events. METHODS All 117,589 participants were included in this retrospective cohort study. The metabolic phenotypes of the participants were assessed at two points (the second evaluation was set 2 years after the first evaluation), and the incidence rate of cardiovascular events was observed for 11 years. The main outcome was 3-point major adverse cardiac events (MACE), which comprises cardiovascular death, nonfatal coronary artery disease, and nonfatal stroke incidence. RESULTS Of the participants, 2748 (2.3%) cases of 3-point MACE were identified during follow-up. The stable metabolically healthy obesity group had a higher risk of 3-point MACE than those with stable metabolically healthy nonobesity (MHNO). Additionally, the change from metabolically healthy obesity to MHNO for 2 years decreased the risk of 3-point MACE (hazard ratio [HR], 1.12: 95% CI: 0.84-1.47) to the same level as stable MHNO. However, the change from metabolically abnormal nonobesity and metabolically abnormal obesity to MHNO for 2 years maintained a higher risk of 3-point MACE (HR, 1.66 [95% CI: 1.36-2.01]; HR, 1.91 [95% CI: 1.22-2.81]) than those with stable MHNO. CONCLUSIONS Change in metabolic phenotype is associated with incident 3-point MACE.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University School of Public Health, Kyoto, Japan
| | - Yukiko Tateyama
- Department of Preventive Services, Kyoto University School of Public Health, Kyoto, Japan
| | - Tomonari Shimamoto
- Department of Preventive Services, Kyoto University School of Public Health, Kyoto, Japan
| | - Kazushiro Kurogi
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Masato Ito
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Taku Iwami
- Department of Preventive Services, Kyoto University School of Public Health, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
5
|
Hou W, Yin S, Li P, Zhang L, Chen T, Qin D, Mustafa AU, Liu C, Song M, Qiu C, Xiong X, Wang J. Aberrant splicing of Ca V1.2 calcium channel induced by decreased Rbfox1 enhances arterial constriction during diabetic hyperglycemia. Cell Mol Life Sci 2024; 81:164. [PMID: 38575795 PMCID: PMC10995029 DOI: 10.1007/s00018-024-05198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.
Collapse
Affiliation(s)
- Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ludan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Atta Ul Mustafa
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caijie Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Qiu
- Nanjing Comprehensive Stroke Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
6
|
Monzon AD, Majidi S, Clements MA, Patton SR. The Relationship Between Parent Fear of Hypoglycemia and Youth Glycemic Control Across the Recent-Onset Period in Families of Youth with Type 1 Diabetes. Int J Behav Med 2024; 31:64-74. [PMID: 36745325 DOI: 10.1007/s12529-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aims to examine the relationship between parents' fear of hypoglycemia (FH) over a 1-year period and child glucose metrics in 126 families of youth recently diagnosed with type 1 diabetes (T1D). METHODS Parents completed the Hypoglycemia Fear Survey for Parents (HFS-P) and uploaded 14 days of glucose data at a baseline, 6-month, and 12-month assessment. RESULTS Parents' HFS-P total and worry scores increased to a clinically meaningful degree from baseline to 6-month assessment, while multilevel models revealed within- and between-person variability in parents' HFS-P worry and behavior scores over time associated with child glycemia. Specifically, a significant negative relationship for within-person worry scores suggested that when parents reported higher than their average worry scores, their children recorded fewer glucose values in the target range, while within-person behavior scores suggested that when parents reported lower than their average behavior scores, their children recorded more values above the target range. There was also a negative relationship for between-person behavior scores with child glycated hemoglobin and a positive relationship for between-person behavior scores with child glucose values in the target range. CONCLUSIONS In the recent-onset period of T1D, parental FH worry and behavior associated with child glycemia possibly due to changes in parents' perceptions of their child's hypoglycemia risk. The clinically meaningful increases in parent FH in the recent-onset period and the negative association for between-person behavior scores with child glycated hemoglobin suggest that clinics should consider screening parents for FH, especially among parents of children with lower glycemic levels.
Collapse
Affiliation(s)
- Alexandra D Monzon
- Center for Healthcare Delivery Science, Nemours Children's Health, Orlando, FL, USA
| | - Shideh Majidi
- Division of Endocrinology, Children's National Hospital, Washington, DC, USA
| | - Mark A Clements
- Division of Endocrinology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Susana R Patton
- Center for Healthcare Delivery Science, Nemours Children's Health, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Li P, Qin D, Chen T, Hou W, Song X, Yin S, Song M, Fernando WCHA, Chen X, Sun Y, Wang J. Dysregulated Rbfox2 produces aberrant splicing of Ca V1.2 calcium channel in diabetes-induced cardiac hypertrophy. Cardiovasc Diabetol 2023; 22:168. [PMID: 37415128 PMCID: PMC10324275 DOI: 10.1186/s12933-023-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xinyu Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - W C Hewith A Fernando
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
9
|
Mannar V, Boro H, Patel D, Agstam S, Dalvi M, Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:46-53. [PMID: 37313245 PMCID: PMC10258626 DOI: 10.17925/ee.2023.19.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes and epigenetics' with additional terms such as 'risks', 'pathogenesis', 'complications of diabetes' and 'therapeutics'. Epigenetics plays an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-i nduced permanent epigenetic modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of micro-and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, to the development of newer therapeutic targets.
Collapse
Affiliation(s)
- Velmurugan Mannar
- Department of Medicine, Aarupadai Veedu Medical College, Puducherry, India
| | - Hiya Boro
- Department of Endocrinology and Metabolism, Aadhar Health Institute, Hisar, India
| | - Deepika Patel
- Department of Endocrinology, Mediheal Hospital, Nairobi, Kenya
| | - Sourabh Agstam
- Department of Cardiology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Mazhar Dalvi
- Department of Endocrinology, Mediclinic Al Noor Hospital, Abu Dhabi, United Arab Emirates
| | - Vikash Bundela
- Department of Gastroenterology, Aadhar Health Institute, Hisar, India
| |
Collapse
|
10
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Mendivil CO, Amaya-Montoya M, Hernández-Vargas JA, Ramírez-García N, Romero-Díaz C, Pérez-Londoño A, Guatibonza-García V, Acuña-Merchán L. Achievement of treatment goals among adults with diabetes in Colombia, 2015-2019: Results from a national registry. Diabetes Res Clin Pract 2022; 186:109823. [PMID: 35271878 DOI: 10.1016/j.diabres.2022.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/09/2023]
Abstract
AIMS To assess the achievement of essential treatment goals among patients with diabetes in Colombia. METHODS We analyzed data from a nationwide registry of all individuals with diagnosed diabetes, hypertension or CKD assisted by the health system. We explored the prevalence of treatment goals (HbA1c < 7% [<53 mmol/mol], systolic blood pressure (SBP) < 130 mmHg and LDLc < 100 mg/dL), and their variations by race and type of health insurance, between July 1, 2015, and June 30, 2019. RESULTS We studied 1 352 846 patients with diagnosed diabetes. The prevalence of HbA1c < 7% (<53 mmol/mol) remained steady at 52%, systolic blood pressure (SBP) < 130 mmHg was also stable at 80-82%. Meanwhile, the prevalence of both LDLc < 100 mg/dL and non-HDLc < 130 mg/dL increased by 6 percentage points. Achievement of the triple HbA1c + SBP + LDLc goal was only 21.4% in 2015, increasing to 24.4% by 2019. Goal achievement was consistently lower among patients of black race, especially for HbA1c (5% lower than other races), but also for the SBP, LDLc and joint goals. Patients under third-party insurance reached better HbA1c, SBP, and LDLc control. CONCLUSIONS Achievement of treatment goals of patients with diabetes in Colombia remains substantially low, despite improvements in LDLc control.
Collapse
Affiliation(s)
- Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia; Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | | | | | | | | | | | | | - Lizbeth Acuña-Merchán
- Cuenta de Alto Costo, Fondo Colombiano de Enfermedades de Alto Costo, Bogotá, Colombia
| |
Collapse
|
12
|
Yao Y, Song Q, Hu C, Da X, Yu Y, He Z, Xu C, Chen Q, Wang QK. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res 2022; 118:196-211. [PMID: 33483741 DOI: 10.1093/cvr/cvab013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this study was to identify the molecular mechanism for hyperglycaemia-induced metabolic memory in endothelial cells (ECs), and to show its critical importance to development of cardiovascular dysfunction in diabetes. METHODS AND RESULTS Hyperglycaemia induces increased nuclear factor-κB (NF-κB) signalling, up-regulation of miR-27a-3p, down-regulation of nuclear factor erythroid-2 related factor 2 (NRF2) expression, increased transforming growth factor-β (TGF-β) signalling, down-regulation of miR-29, and induction of endothelial-to-mesenchymal transition (EndMT), all of which are memorized by ECs and not erased when switched to a low glucose condition, thereby causing perivascular fibrosis and cardiac dysfunction. Similar metabolic memory effects are found for production of nitric oxide (NO), generation of reactive oxygen species (ROS), and the mitochondrial oxygen consumption rate in two different types of ECs. The observed metabolic memory effects in ECs are blocked by NRF2 activator tert-butylhydroquinone and a miR-27a-3p inhibitor. In vivo, the NRF2 activator and miR-27a-3p inhibitor block cardiac perivascular fibrosis and restore cardiovascular function by decreasing NF-κB signalling, down-regulating miR-27a-3p, up-regulating NRF2 expression, reducing TGF-β signalling, and inhibiting EndMT during insulin treatment of diabetes in streptozotocin-induced diabetic mice, whereas insulin alone does not improve cardiac function. CONCLUSIONS Our data indicate that disruption of hyperglycaemia-induced EC metabolic memory is required for restoring cardiac function during treatment of diabetes, and identify a novel molecular signalling pathway of NF-κB/miR-27a-3p/NRF2/ROS/TGF-β/EndMT involved in metabolic memory.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Changqing Hu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000 Hubei, China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Yubing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Zuhan He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Metaproteomics Approach and Pathway Modulation in Obesity and Diabetes: A Narrative Review. Nutrients 2021; 14:nu14010047. [PMID: 35010920 PMCID: PMC8746330 DOI: 10.3390/nu14010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Low-grade inflammatory diseases revealed metabolic perturbations that have been linked to various phenotypes, including gut microbiota dysbiosis. In the last decade, metaproteomics has been used to investigate protein composition profiles at specific steps and in specific healthy/pathologic conditions. We applied a rigorous protocol that relied on PRISMA guidelines and filtering criteria to obtain an exhaustive study selection that finally resulted in a group of 10 studies, based on metaproteomics and that aim at investigating obesity and diabetes. This batch of studies was used to discuss specific microbial and human metaproteome alterations and metabolic patterns in subjects affected by diabetes (T1D and T2D) and obesity. We provided the main up- and down-regulated protein patterns in the inspected pathologies. Despite the available results, the evident paucity of metaproteomic data is to be considered as a limiting factor in drawing objective considerations. To date, ad hoc prepared metaproteomic databases collecting pathologic data and related metadata, together with standardized analysis protocols, are required to increase our knowledge on these widespread pathologies.
Collapse
|
14
|
Berlanga-Acosta J, Fernández-Mayola M, Mendoza-Marí Y, García-Ojalvo A, Playford RJ, Guillen-Nieto G. Intralesional Infiltrations of Cell-Free Filtrates Derived from Human Diabetic Tissues Delay the Healing Process and Recreate Diabetes Histopathological Changes in Healthy Rats. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:617741. [PMID: 36994347 PMCID: PMC10012095 DOI: 10.3389/fcdhc.2021.617741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Lower limb ulcers in type-2 diabetic patients are a frequent complication that tributes to amputation and reduces survival. We hypothesized that diabetic healing impairment and other histopathologic hallmarks are mediated by a T2DM-induced tissue priming/metabolic memory that can be transferred from humans to healthy recipient animals and consequently reproduce diabetic donor’s phenotypes. We examined the effect of human T2DM tissue homogenates injected into non-diabetic rat excisional wounds. Fresh granulation tissue, popliteal artery, and peroneal nerve of patients with T2DM were obtained following amputation. Post-mammoplasty granulation and post-traumatic amputation-tissue of normal subjects acted as controls. The homogenates were intralesionally injected for 6–7 days into rats’ excisional thickness wounds. Infiltration with the different homogenates caused impaired wound closure, inflammation, nerve degeneration, and arterial thickening (all P < 0.01 vs relevant control) resembling histopathology of diabetic donor tissues. Control materials caused marginal inflammation only. Infiltration with glycated bovine albumin provoked inflammation and wound healing delay but did not induce arterial thickening. The reproduction of human diabetic traits in healthy recipient animals through a tissue homogenate support the notion on the existence of tissue metabolic memory-associated and transmissible factors, involved in the pathogenesis of diabetic complications. These may have futuristic clinical implications for medical interventions.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
- *Correspondence: Jorge Berlanga-Acosta,
| | - Maday Fernández-Mayola
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Yssel Mendoza-Marí
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Ariana García-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Raymond J. Playford
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Gerardo Guillen-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| |
Collapse
|
15
|
Brew-Sam N, Chhabra M, Parkinson A, Hannan K, Brown E, Pedley L, Brown K, Wright K, Pedley E, Nolan CJ, Phillips C, Suominen H, Tricoli A, Desborough J. Experiences of Young People and Their Caregivers of Using Technology to Manage Type 1 Diabetes Mellitus: Systematic Literature Review and Narrative Synthesis. JMIR Diabetes 2021; 6:e20973. [PMID: 33528374 PMCID: PMC7886614 DOI: 10.2196/20973] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the last decade, diabetes management has begun to transition to technology-based care, with young people being the focus of many technological advances. Yet, detailed insights into the experiences of young people and their caregivers of using technology to manage type 1 diabetes mellitus are lacking. OBJECTIVE The objective of our study was to describe the breadth of experiences and perspectives on diabetes technology use among children and adolescents with type 1 diabetes mellitus and their caregivers. METHODS This systematic literature review used integrated thematic analysis to guide a narrative synthesis of the included studies. We analyzed the perspectives and experiences of young people with type 1 diabetes mellitus and their caregivers reported in qualitative studies, quantitative descriptive studies, and studies with a mixed methods design. RESULTS Seventeen articles met the inclusion criteria, and they included studies on insulin pump, glucose sensors, and remote monitoring systems. The following eight themes were derived from the analysis: (1) expectations of the technology prior to use, (2) perceived impact on sleep and overnight experiences, (3) experiences with alarms, (4) impact on independence and relationships, (5) perceived usage impact on blood glucose control, (6) device design and features, (7) financial cost, and (8) user satisfaction. While many advantages of using diabetes technology were reported, several challenges for its use were also reported, such as cost, the size and visibility of devices, and the intrusiveness of alarms, which drew attention to the fact that the user had type 1 diabetes mellitus. Continued use of diabetes technology was underpinned by its benefits outweighing its challenges, especially among younger people. CONCLUSIONS Diabetes technologies have improved the quality of life of many young people with type 1 diabetes mellitus and their caregivers. Future design needs to consider the impact of these technologies on relationships between young people and their caregivers, and the impact of device features and characteristics such as size, ease of use, and cost.
Collapse
Affiliation(s)
- Nicola Brew-Sam
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Madhur Chhabra
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Anne Parkinson
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Kristal Hannan
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Ellen Brown
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Lachlan Pedley
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Karen Brown
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia.,Canberra Health Services, Canberra, Australia
| | - Kristine Wright
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia.,Canberra Health Services, Canberra, Australia
| | - Elizabeth Pedley
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia.,Canberra Health Services, Canberra, Australia
| | - Christopher J Nolan
- Canberra Health Services, Canberra, Australia.,ANU Medical School, College of Health and Medicine, Australian National University, Canberra, Australia.,The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Christine Phillips
- ANU Medical School, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, Australia.,Department of Computing, University of Turku, Turku, Finland.,Data61, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Antonio Tricoli
- The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australia.,Nanotechnology Research Lab, Research School of Chemistry, College of Science, Australian National University, Canberra, Australia
| | - Jane Desborough
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
17
|
Viñas Esmel E, Naval Álvarez J, Sacanella Meseguer E. The Legacy Effect in the Prevention of Cardiovascular Disease. Nutrients 2020; 12:E3227. [PMID: 33105611 PMCID: PMC7690390 DOI: 10.3390/nu12113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The "legacy effect" describes the long-term benefits that may persist for many years after the end of an intervention period, involving different biological processes. The legacy effect in cardiovascular disease (CVD) prevention has been evaluated by a limited number of studies, mostly based on pharmacological interventions, while few manuscripts on dietary interventions have been published. Most of these studies are focused on intensive treatment regimens, whose main goal is to achieve tight control of one or more cardiovascular risk factors. This review aims to summarise the legacy effect-related results obtained in those studies and to determine the existence of this effect in CVD prevention. There is sufficient data to suggest the existence of a legacy effect after intensive intervention on cardiovascular risk factors; however, this effect is not equivalent for all risk factors and could be influenced by patient characteristics, disease duration, and the type of intervention performed. Currently, available evidence suggests that the legacy effect is greater in subjects with moderately-high cardiovascular risk but without CVD, especially in those patients with recent-onset diabetes. However, preventive treatment for CVD should not be discontinued in high-risk subjects, as the level of existing evidence on the legacy effect is low to moderate.
Collapse
Affiliation(s)
- Esther Viñas Esmel
- Department of Internal Medicine, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (E.V.E.); (J.N.Á.)
| | - José Naval Álvarez
- Department of Internal Medicine, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (E.V.E.); (J.N.Á.)
| | - Emilio Sacanella Meseguer
- Department of Internal Medicine, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (E.V.E.); (J.N.Á.)
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Schwartz SS, Grant SFA, Herman ME. Intersections and Clinical Translations of Diabetes Mellitus with Cancer Promotion, Progression and Prognosis. Postgrad Med 2019; 131:597-606. [PMID: 31419922 DOI: 10.1080/00325481.2019.1657358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The association between cancer and dysglycemia has been well documented. It is underappreciated, however, that sustained dysglycemia could potentially be a catalyst toward a pro-cancer physiologic milieu and/or increase the burden of cancer. Hyperglycemia, hyperinsulinemia and energy metabolism at large impact a cascade of growth pathways, epi/genetic modifications, and mitochondrial changes that could feasibly link to tumor processes. Oxidative stress is a recurring motif in cell dysfunction: in diabetes, oxidative stress and reactive oxygen species (ROS) feature prominently in the damage and demise of pancreatic beta cells, as well as cell damage contributing to diabetes-related complications. Oxidative stress may be one intersection at which metabolic and oncogenic processes cross paths with deleterious results in the development of precancer, cancer, and cancer progression. This would augur for tight glucose control. Regrettably, some medical societies have recently relaxed hemoglobin A1c targets. A framework for the hyperglycemic state is presented that helps account and translate the full scope of effects of dysglycemia to ultimately improve clinical best practices.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Main Line Health System, Wynnewood, PA, USA.,University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Divisions of Human Genetics and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mary E Herman
- Montclair State University, Upper Montclair, NJ, USA.,Social Alchemy Ltd. Building Research Competency in the Developing World, Edgewater, NJ, USA
| |
Collapse
|
19
|
Xu F, Xiao H, Liu R, Yang Y, Zhang M, Chen L, Chen Z, Liu P, Huang H. Paeonol Ameliorates Glucose and Lipid Metabolism in Experimental Diabetes by Activating Akt. Front Pharmacol 2019; 10:261. [PMID: 30941042 PMCID: PMC6433795 DOI: 10.3389/fphar.2019.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 01/09/2023] Open
Abstract
Our previous study proved that paeonol (Pae) could lower blood glucose levels of diabetic mice. There are also a few reports of its potential use for diabetes treatment. However, the role of Pae in regulating glucose and lipid metabolism in diabetes remains largely unknown. Considering the critical role of serine/threonine kinase B (Akt) in glucose and lipid metabolism, we explored whether Pae could improve glucose and lipid metabolism disorders via Akt. Here, we found that Pae attenuated fasting blood glucose, glycosylated serum protein, serum cholesterol and triglyceride (TG), hepatic glycogen, cholesterol and TG in diabetic mice. Moreover, Pae enhanced glucokinase (GCK) and low-density lipoprotein receptor (LDLR) protein expressions, and increased the phosphorylation of Akt. In insulin-resistant HepG2 cells, Pae increased glucose uptake and decreased lipid accumulation. What’s more, Pae elevated LDLR and GCK expressions as well as Akt phosphorylation, which was consistent with the in vivo results. Knockdown and inhibition experiments of Akt revealed that Pae regulated LDLR and GCK expressions through activation of Akt. Finally, molecular docking assay indicated the steady hydrogen bond was formed between Pae and Akt2. Experiments above suggested that Pae ameliorated glucose and lipid metabolism disorders and the underlying mechanism was closely related to the activation of Akt.
Collapse
Affiliation(s)
- Futian Xu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Renbin Liu
- Department of Traditional Chinese Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Ishaq A, Dufour D, Cameron K, von Zglinicki T, Saretzki G. Metabolic memory of dietary restriction ameliorates DNA damage and adipocyte size in mouse visceral adipose tissue. Exp Gerontol 2018; 113:228-236. [PMID: 30312736 DOI: 10.1016/j.exger.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Dietary restriction (DR) is thought to exert its beneficial effects on healthspan at least partially by a senolytic and senostatic action, i.e. by reducing frequencies of cells with markers of DNA damage and senescence in multiple tissues. Due to its importance in metabolic and inflammation regulation, fat is a prime tissue for health span determination as well as a prime target for DR. We aimed to determine here whether the beneficial effects of DR would be retained over a subsequent period of ad libitum (AL) feeding. Male mice were kept under either 40% DR or AL feeding regimes from 3 to 12 months of age and then either switched back to the opposite feeding regimen or kept in the same state for another 3 months. Visceral adipose tissue from 4 to 5 mice per group for all conditions was analysed for markers of senescence (adipocyte size, γH2A.X, p16, p21) and inflammation (e.g. IL-6, TNFα, IL-1β) using immuno-staining or qPCR. Macrophages were detected by immunohistochemistry. We found that both 9 and 12 months DR (long term) as well as 3 month (short term, mid-life onset) DR reduced the number of cells harbouring DNA damage and adipocyte size (area and perimeter) in visceral adipocytes with similar efficiency. Importantly, beneficial health markers induced by DR such as small adipocyte size and low DNA damage were maintained for at least 3 month after termination of DR, demonstrating that the previously identified 'metabolic memory' of the DR state in male mice extends to senescence markers in visceral fat.
Collapse
Affiliation(s)
- Abbas Ishaq
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Damien Dufour
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Kerry Cameron
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Gabriele Saretzki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Gene Expression, Oxidative Stress, and Senescence of Primary Coronary Endothelial Cells Exposed to Postprandial Serum of Healthy Adult and Elderly Volunteers after Oven-Cooked Meat Meals. Mediators Inflamm 2018; 2017:3868545. [PMID: 29379227 PMCID: PMC5742900 DOI: 10.1155/2017/3868545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies have linked high consumption of meat with major age-related diseases including cardiovascular diseases. Abnormal postprandial increases in plasma lipids after a meat meal have been hypothesized among the pathogenetic mechanisms. However, it is still unknown if the postprandial serum derived after a normal meat meal is able to affect endothelial function, and if the type of meat and the age of the donors are critical factors. Here, we show the effects of postprandial sera derived from healthy adults and elderly volunteers who consumed meat meals on human coronary artery endothelial cell (HCAEC) oxidative stress, gene expression, DNA damage, and cellular senescence. We observed that a single exposure to postprandial serum induces a slight increase in ROS that is associated with modulation of gene expression pathways related to oxidative stress response and metabolism. The postprandial-induced increase in ROS is not associated with a measurable DNA oxidative damage. However, repeated exposure to postprandial serum induces an acceleration of cellular senescence. Taking into account the deleterious role of cellular senescence in age-related vascular diseases, the results suggest a new mechanism by which excessive meat consumption and time spent in postprandial state may affect health status during aging.
Collapse
|
22
|
Diabetic Ketoacidosis Severity at Diagnosis and Glycaemic Control in the First Year of Childhood Onset Type 1 Diabetes-A Longitudinal Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:ijerph15010026. [PMID: 29295580 PMCID: PMC5800126 DOI: 10.3390/ijerph15010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
It is unclear whether diabetic ketoacidosis (DKA) severity at diagnosis affects the natural history of type 1 diabetes (T1D). We analysed associations between DKA severity at diagnosis and glycaemic control during the first year post-diagnosis. We followed 341 children with T1D, <19 years (64% non-white) attending paediatric diabetes clinics in East London. Data were extracted from routine medical registers. Subjects were categorized with normal, mild, moderate, or severe DKA. Linear mixed-effects modelling was used to assess differences in longitudinal HbA1c trajectories (glycaemic control) during 12 months post-diagnosis (1288 HbA1c data-points) based on DKA, adjusting for sex, age, ethnicity, SES (Socioeconomic Status) and treatment type. Females (OR 1.6, 95% CI 1.1–2.4) and younger age, 0–6 vs. 13–18 years (OR 2.9, 95% CI 1.5–5.6) had increased risk for DKA at diagnosis. Moderate or severe DKA was associated with higher HbA1c at diagnosis (adjusted estimates 8 mmol/mol, 2–14, and 10 mmol/mol, 4–15, respectively, compared to normal DKA). Differences in HbA1c trajectories by DKA were no longer apparent at six months post-diagnosis. All subjects experienced a steep decrease in HbA1c during the first three months followed by a gradual increase. While, DKA severity was not associated with glycaemic control at 12 months post-diagnosis, age at diagnosis, ethnicity, gender, and treatment type were significantly associated. For example, Black and mixed ethnicity children had increased risk for poor glycaemic control compared to White children (adjusted RRR 5.4, 95% CI 1.7–17.3 and RRR 2.5, 95% CI 1.2–6.0, respectively). DKA severity at diagnosis is associated with higher initial HbA1c but not glycaemic control from six months post-diagnosis. Age at diagnosis, ethnicity, gender, and insulin pump are associated with glycaemic control at one year post-diagnosis.
Collapse
|
23
|
Singh H, Yu Y, Suh MJ, Torralba MG, Stenzel RD, Tovchigrechko A, Thovarai V, Harkins DM, Rajagopala SV, Osborne W, Cogen FR, Kaplowitz PB, Nelson KE, Madupu R, Pieper R. Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function. Theranostics 2017; 7:2704-2717. [PMID: 28819457 PMCID: PMC5558563 DOI: 10.7150/thno.19679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.
Collapse
|
24
|
Effects of Hyperglycemia on Vascular Smooth Muscle Ca 2+ Signaling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3691349. [PMID: 28713824 PMCID: PMC5497615 DOI: 10.1155/2017/3691349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/25/2022]
Abstract
Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+ signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+ signaling, including most prominently an inhibition of the passive ER Ca2+ leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+ leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+ signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+ signaling machinery are different.
Collapse
|
25
|
Blonde L, Aschner P, Bailey C, Ji L, Leiter LA, Matthaei S. Gaps and barriers in the control of blood glucose in people with type 2 diabetes. Diab Vasc Dis Res 2017; 14:172-183. [PMID: 28467203 PMCID: PMC5418936 DOI: 10.1177/1479164116679775] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycaemic control is suboptimal in a large proportion of people with type 2 diabetes who are consequently at an increased and avoidable risk of potentially severe complications. We sought to explore attitudes and practices among healthcare professionals that may contribute to suboptimal glycaemic control through a review of recent relevant publications in the scientific literature. METHODS An electronic search of the PubMed database was performed to identify relevant publications from January 2011 to July 2015. The electronic search was complemented by a manual search of abstracts from key diabetes conferences in 2014/2015 available online. RESULTS Recently published data indicate that glycaemic control is suboptimal in a substantial proportion (typically 40%-60%) of people with diabetes. This is the case across geographic regions and in both low- and higher-income countries. Therapeutic inertia appears to be an important contributor to poor glycaemic control in up to half of people with type 2 diabetes. In particular, prescribers are often willing to tolerate extended periods of 'mild' hyperglycaemia as well as having low expectations for their patients. There are often delays of 3 years or longer in initiating or intensifying glucose-lowering therapy when needed. CONCLUSION Many people with type 2 diabetes are failed by current management, with approximately half not achieving or maintaining appropriate target blood glucose levels, leaving these patients at increased and avoidable risk of serious complications. Review criteria: The methodology of this review article is detailed in the 'Methods' section.
Collapse
Affiliation(s)
- Lawrence Blonde
- Department of Endocrinology, Ochsner Medical Center, New Orleans, LA, USA
- Lawrence Blonde, Department of Endocrinology, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| | - Pablo Aschner
- Endocrinology Unit, Javeriana University School of Medicine, Bogotá, Colombia
| | - Clifford Bailey
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Linong Ji
- Peking University People’s Hospital, Beijing, China
| | - Lawrence A Leiter
- Keenan Research Center in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital and Division of Endocrinology & Metabolism, University of Toronto, Toronto, ON, Canada
| | - Stephan Matthaei
- Diabetes, Metabolism and Endocrinology Center, Quakenbrück Hospital, Quakenbrück, Germany
| | | |
Collapse
|
26
|
Novel insights into DNA methylation and its critical implications in diabetic vascular complications. Biosci Rep 2017; 37:BSR20160611. [PMID: 28183874 PMCID: PMC5350598 DOI: 10.1042/bsr20160611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Recent epidemiological and clinical studies have shown that type 2 diabetic patients can develop diabetic vascular complications even after intensive glycaemic control. It has been suggested that this phenomenon could be explained by the hypothesis of 'metabolic memory'. The underlying mechanisms between these enduring effects and the prior hyperglycaemic state are still not well understood. Preliminary studies demonstrate that hyperglycaemia can regulate gene expression by epigenetic modifications, such as DNA methylation, which can persistently exist even after glucose normalization. Increasing evidence shows that epigenetic mechanisms may play a substantial role in the pathophysiology of diabetes and its associated vascular complications, including atherosclerosis, diabetic cardiomyopathy (DCM), nephropathy and retinopathy. In this review, we will examine the growing role of DNA methylation in diabetes and its vascular complications, thus it can provide critical implications for the early prevention of diabetes and its vascular complications.
Collapse
|
27
|
Abstract
OBJECTIVE The aim of this study was to evaluate the impact of diabetes duration on long-term clinical outcomes after drug-eluting stent (DES) implantation or coronary artery bypass grafting (CABG). METHODS A total of 820 diabetic patients treated with initial DES (n=451) or CABG (n=369) were consecutively enrolled in this single-center follow-up study. The main outcomes included major adverse cardiac events and major adverse cardiac or cerebrovascular events (MACCEs). Cox regression analysis with propensity adjustment was used for data analysis. RESULTS Three-year risks of major adverse cardiac events were significantly higher in the DES group compared with the CABG group irrespective of whether the diabetes durations were less or more than 5 years [hazard ratio (HR) 2.27, 95% confidence interval (CI) 1.19-4.31, P=0.01; HR 3.73, 95% CI 2.72-10.12, P<0.01; P for interaction=0.28]. A similar trend was observed for repeat revascularization. However, CABG was associated with increased risk of stroke, especially in the patients with diabetes duration of at least 5 years (HR 0.02, 95% CI 0.002-0.12, P<0.01). Three-year risk of MACCEs was significantly higher in the DES group in patients with diabetes duration of at least 5 years (HR 2.13, 95% CI 1.34-3.39, P<0.01), but not for those less than 5 years (HR 1.03, 95% CI 0.65-1.63, P=0.91). A statistically significant interaction between diabetes duration and treatment strategy was found for MACCEs (P for interaction=0.04). CONCLUSION Short diabetes duration (<5 years) was associated with equal risk of MACCEs among stable coronary artery disease patients with DES and CABG, emphasizing the need to consider the duration of diabetes when determining the best strategy for patients undergoing coronary revascularization.
Collapse
|
28
|
Bar-Dayan Y, Zilberman I, Boaz M, Landau Z, Glandt M, Jakubowicz D, Wainstein J. Prevalence of undiagnosed hyperglycaemia in patients presenting to the Department of Emergency Medicine with no known history of diabetes. Int J Clin Pract 2016; 70:771-4. [PMID: 27531637 DOI: 10.1111/ijcp.12867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Diabetes is considered a major epidemic of the 21st century. Usually, diabetes begins asymptomatically and the diagnosis takes place an average of 8-12 years after the onset of dysglycaemia. Blood check for glucose is taken at different medical setting, whether at the fasting condition or randomly. Previous studies had shown that abnormal blood glucose predicts future diabetes. Hence, medical staff should consider taking reasonable actions in patients with abnormal blood glucose. OBJECTIVE To assess the prevalence of hyperglycaemia in patients presenting to the Department of Emergency Medicine (DEM) with no known history of diabetes, and to evaluate how often were they recommended following this up as an outpatient by the medical staff. DESIGN A cross-sectional study examined the medical records of adult patients referred to the DEM during 1 November 2011-31 January 2012. PARTICIPANTS Patients with random blood glucose ≥140 mg/dL and no known history of diabetes were included in the study. The discharge letter was examined for the presence of instructions to conduct further follow up. KEY RESULTS A total of 16 784 patients presented to the DEM. Of these, 402 patients (2.4%) without known diabetes were hyperglycaemic, 346 patients had blood glucose levels ≥140 mg/dL and 56 patients had blood glucose levels above 200 mg/dL. Only 35 of the 402 included patient files (8.7%) contained instructions for further investigation. There was no statistically significant difference between those who received a letter for further follow up compared with those who did not receive it with respect to age, sex or blood glucose levels. CONCLUSION Over 2% of patients who presented to the DEM were hyperglycaemic, without a prior diagnosis of diabetes. A small per cent was recommended to have outpatient follow-up. This represents a missed opportunity for earlier diagnosis of diabetes and emphasised the need for raising medical staff awareness concerning abnormal blood glucose and its implication.
Collapse
Affiliation(s)
- Yosefa Bar-Dayan
- Diabetes Unit, Wolfson Medical Center, Holon, Israel.
- Sackler Faculty of Medicine, Tel Aviv, Israel.
| | - Irena Zilberman
- Department of Radiology, Wolfson Medical Center, Holon, Israel
| | - Mona Boaz
- Epidemiology and Research Unit, Wolfson Medical Center, Holon, Israel
- Department of Nutrition Science, Faculty of Health, Ariel University, Ariel, Israel
| | - Zohar Landau
- Sackler Faculty of Medicine, Tel Aviv, Israel
- Pediatric Diabetes Unit, Wolfson Medical Center, Holon, Israel
| | - Mariela Glandt
- Diabetes Medical Center, Tel Aviv, Israel
- Bronx-Lebanon Hospital, Bronx, NY, USA
| | - Daniela Jakubowicz
- Diabetes Unit, Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Julio Wainstein
- Diabetes Unit, Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
29
|
Radcliffe NJ, Seah JM, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig 2016; 8:6-18. [PMID: 27181363 PMCID: PMC5217935 DOI: 10.1111/jdi.12533] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) represents a major component of the health burden associated with type 1 and type 2 diabetes. Recent advances have produced an explosion of ‘novel’ assay‐based risk markers for DKD, though clinical use remains restricted. Although many patients with progressive DKD follow a classical albuminuria‐based pathway, non‐albuminuric DKD progression is now well recognized. In general, the following clinical and biochemical characteristics have been associated with progressive DKD in both type 1 and type 2 diabetes: increased hemoglobin A1c, systolic blood pressure, albuminuria grade, early glomerular filtration rate decline, duration of diabetes, age (including pubertal onset) and serum uric acid; the presence of concomitant microvascular complications; and positive family history. The same is true in type 2 diabetes for male sex category, in patients following an albuminuric pathway to DKD, and also true for the presence of increased pulse wave velocity. The following baseline clinical characteristics have been proposed as risk factors for DKD progression, but with further research required to assess the nature of any relationship: dyslipidemia (including low‐density lipoprotein, total and high‐density lipoprotein cholesterol); elevated body mass index; smoking status; hyperfiltration; decreases in vitamin D, hemoglobin and uric acid excretion (all known consequences of advanced DKD); and patient test result visit‐to‐visit variability (hemoglobin A1c, blood pressure and high‐density lipoprotein cholesterol). The development of multifactorial ‘renal risk equations’ for type 2 diabetes has the potential to simplify the task of DKD prognostication; however, there are currently none for type 1 diabetes‐specific populations. Significant progress has been made in the prediction of DKD progression using readily available clinical data, though further work is required to elicit the role of several variables, and to consolidate data to facilitate clinical implementation.
Collapse
Affiliation(s)
- Nicholas J Radcliffe
- Austin Clinical School, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Jas-Mine Seah
- Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Michele Clarke
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology & Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - George Jerums
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia.,Menzies School of Health, Darwin, Northern Territory, Australia
| |
Collapse
|
30
|
Wang Y, Ye J, Li J, Chen C, Huang J, Liu P, Huang H. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc Diabetol 2016; 15:19. [PMID: 26833058 PMCID: PMC4736185 DOI: 10.1186/s12933-015-0325-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Abnormalities in lipid and glucose metabolism are constantly observed in type 2 diabetes. However, these abnormalities can be ameliorated by polydatin. Considering the important role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in metabolic diseases, we explore the possible mechanism of polydatin on lipid and glucose metabolism through its effects on PCSK9. METHODS An insulin-resistant HepG2 cell model induced by palmitic acid (PA) and a db/db mice model were used to clarify the role of polydatin on lipid and glucose metabolism. RESULTS In insulin-resistant HepG2 cells, polydatin upregulated the protein levels of LDLR and GCK but repressed PCSK9 protein expression, besides, polydatin also inhibited the combination between PCSK9 and LDLR. Knockdown and overexpression experiments indicated that polydatin regulated LDLR and GCK expressions through PCSK9. In the db/db mice model, we found that polydatin markedly enhanced GCK and LDLR protein levels, and inhibited PCSK9 expression in the liver. Molecular docking assay was further performed to analyze the possible binding mode between polydatin and the PCSK9 crystal structure (PDB code: 2p4e), which indicated that steady hydrogen bonds formed between polydatin and PCSK9. CONCLUSIONS Our study indicates that polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating PCSK9.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jiantao Ye
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| | - Jie Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cheng Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Junying Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Colucciello M. Current intravitreal pharmacologic therapies for diabetic macular edema. Postgrad Med 2015; 127:640-53. [PMID: 26036708 DOI: 10.1080/00325481.2015.1052523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Diabetic retinopathy is the leading cause of vision loss in working-age adults; it is a highly prevalent cause of vision loss overall and has a potent impact on the quality of life in those with diabetes mellitus and public health in general. Diabetic macular edema (DME) is the most common cause of vision loss from diabetic retinopathy. In patients with diabetes mellitus, chronic hyperglycemia leads to activation of the inflammatory cascade and retinal capillary damage that result in microaneurysm formation in the retina. In addition to the possibility of associated ischemia, microaneurysms are hyperpermeable; the resultant loss of the blood-retinal barrier leads to vision loss if consequent edema involves the center of the fovea. The standard of DME therapy for >25 years was focal laser photocoagulation applied to or near the microaneurysms. However, results from clinical trials of intravitreal vascular endothelial growth factor (VEGF) blockers and corticosteroids for the treatment of DME have led to a dramatic paradigm shift away from laser therapy to primary treatment with these pharmacologic agents. METHODS Medline literature search of approaches for treating DME. RESULTS Intravitreal pharmacologic treatments with anti-VEGF agents and corticosteroids have recently been shown to be superior to laser treatment of DME. CONCLUSION The existence of pharmacologic treatment of DME, shown to be superior to laser monotherapy, has created a seismic change in the approach of treatment of these patients. This review provides a summary of the therapies and the rationale regarding the current pharmacologic therapy of DME.
Collapse
|
32
|
Fulcher G, Roberts A, Sinha A, Proietto J. What happens when patients require intensification from basal insulin? A retrospective audit of clinical practice for the treatment of type 2 diabetes from four Australian centres. Diabetes Res Clin Pract 2015; 108:405-13. [PMID: 25887419 DOI: 10.1016/j.diabres.2015.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 01/25/2023]
Abstract
AIMS Little is known about clinical practices beyond the initiation of basal insulin in patients with type 2 diabetes mellitus (T2DM) in Australia. To determine the proportion of patients who progressed from basal insulin to each of three possible therapy groups: Group 1 addition of rapid-acting insulin, Group 2 switch to pre-mixed insulin, Group 3 addition of another therapy (incretin, glitazone, sulphonylurea, metformin, acarbose). METHODS Retrospective audit across four Australian hospital clinics. Patients had a diagnosis of T2DM, basal insulin had been initiated and a subsequent treatment intensification/change had occurred during the analysis period (September 2007-March 2012). RESULTS Patients were classified into one of three intensification groups for analysis: Group 1, 56.1% (111/198); Group 2, 22.7% (45/198) and Group 3, 21.2% (42/198). Prior to basal insulin initiation, mean T2DM duration was 11 years. Between starting basal insulin and treatment intensification, 42/183 (22.9%) patients achieved the HbA1c target of <7.0% (53 mmol/mol). Initiation of basal insulin provided temporary improvement in glycaemic control followed by subsequent deterioration. With further treatment intensification, only 40/180 (22.2%) patients achieved the HbA1c target of <7.0% (53 mmol/mol). Patients in the insulin groups gained weight (Group 1, rapid acting insulin, 1.9 ± 7.4 kg; Group 2, premixed insulin 2.3 ± 4.8 kg); those in Group 3 lost weight (-0.9 ± 13.54 kg). Hypoglycaemic episodes were uncommon irrespective of group. CONCLUSIONS There is continued need for improved patient management; individualised strategies should focus on when to initiate insulin, how to adjust and optimise doses over time and, when required, the introduction of intensification regimens.
Collapse
Affiliation(s)
- Gregory Fulcher
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, Sydney, 2006 NSW, Australia.
| | - Anthony Roberts
- South Australian Endocrine Clinical Research, 8A Hampton Rd, Keswick, 5035 SA, Australia.
| | - Ashim Sinha
- Cairns Base Hospital and Diabetes Centre, 381 Sheridan St, Cairns, 4870 QLD, Australia.
| | - Joseph Proietto
- Department of Medicine, Austin Health, University of Melbourne, 145 Studley Rd, Heidelberg, 3084 VIC, Australia.
| |
Collapse
|
33
|
Woittiez NJC, Roep BO. Impact of disease heterogeneity on treatment efficacy of immunotherapy in Type 1 diabetes: different shades of gray. Immunotherapy 2015; 7:163-74. [DOI: 10.2217/imt.14.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes results from selective destruction of insulin-producing pancreatic β-cells by a progressive autoimmune process. Type 1 diabetes proves very heterogeneous in pathology, disease progression and efficacy of therapeutic intervention. Indeed, several immunotherapies that appear ineffective for the entire treated patient population in fact look promising in subgroups of patients. It therefore seems inconceivable that one standard therapy will provide the golden bullet of disease intervention. Instead, personalized medicine may improve immune intervention efficacy rates. We discuss the effect of disease heterogeneity on treatment outcome of immunotherapies, identifying apparent gaps in our understanding of treatment efficacy in subgroups of Type 1 diabetic patients as well as identifying future opportunities for immunotherapy.
Collapse
Affiliation(s)
- Nicky JC Woittiez
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, E3-Q, LUMC, PO Box 9600, NL-2300RC Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, E3-Q, LUMC, PO Box 9600, NL-2300RC Leiden, The Netherlands
| |
Collapse
|
34
|
Yacoub TG. Application of clinical judgment and guidelines to achieving glycemic goals in type 2 diabetes: focus on pharmacologic therapy. Postgrad Med 2014; 126:95-106. [PMID: 24918795 DOI: 10.3810/pgm.2014.05.2759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful management of patients with type 2 diabetes mellitus requires attention to 4 pillars of care: diet, exercise, blood glucose monitoring, and pharmacologic therapy. For pharmacologic therapy, the availability of multiple drugs in different classes can make choices regarding initiation and intensification of treatment challenging. This article, focusing on clinical practice, reviews and provides guidance on assessing recommendations made by the latest diabetes guidelines for pharmacotherapy published by the American Diabetes Association and the American Academy of Clinical Endocrinologists. The article discusses how diabetes guidelines evolved, their move toward personalization of therapy, and their effective use in clinical practice. An appraisal of various pharmacologic strategies is integrated with the author's approach to achieving glycemic goals with a minimum of weight gain or hypoglycemic episodes. Using patients' baseline glycated hemoglobin levels and the degree to which their fasting and postprandial plasma levels contribute to their hyperglycemia is explained as a strategy by which drugs can be chosen that act on these parameters. Lifestyle interventions such as diet and exercise should continue to form the foundation of the therapeutic alliance between the clinician and patient as pharmacologic therapy is initiated or intensified.
Collapse
Affiliation(s)
- Tamer G Yacoub
- Clinical Endocrinologist, Prima-Care Medical Center, Fall River, MA.
| |
Collapse
|
35
|
Pradas-Juni M, Nicod N, Fernández-Rebollo E, Gomis R. Differential transcriptional and posttranslational transcription factor 7-like regulation among nondiabetic individuals and type 2 diabetic patients. Mol Endocrinol 2014; 28:1558-70. [PMID: 25058603 DOI: 10.1210/me.2014-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human genetic studies have revealed that the T minor allele of single nucleotide polymorphism rs7903146 in the transcription factor 7-like 2 (TCF7L2) gene is strongly associated with an increased risk of diabetes by 30%-40%. Molecular and clinical studies are of great importance for understanding how this unique variation in TCF7L2 influences type 2 diabetes (T2D) onset and progression. At the molecular level, some studies have been performed in diabetic mice and pancreatic islets from healthy human donors. Whereas TCF7L2 mRNA levels are up-regulated in islets, protein levels are down-regulated. We performed studies on TCF7L2 splicing, mRNA expression, and protein levels in immortalized human lymphocytes from nondiabetic individuals and T2D patients carrying the C/C or the at-risk T/T genotype. Our results show differential expression of TCF7L2 splice variants between nondiabetic and T2D patients carrying the at-risk genotype, as well as differences in protein levels. Therefore, we investigated the regulation of splice variants, and our results propose that splicing of exon 4 is under control of the serine-arginine-rich factor transformer 2 β (TRA2B). Finally, we studied the endoplasmic reticulum stress pathways, looking for a posttranslational explanation. We saw a shift in the activation of these pathways between nondiabetic individuals and T2D patients carrying the at-risk genotype. These results suggest that, in human immortalized lymphocytes carrying the at-risk T/T genotype, first the differential expression of TCF7L2 splice variants implies a regulation, at least for exon 4, by TRA2B and second, the differential protein levels between both T/T carriers point to a different activation of endoplasmic reticulum stress pathways.
Collapse
Affiliation(s)
- M Pradas-Juni
- Diabetes and Obesity Research Laboratory (M.P.-J., N.N., E.F-R., R.G.), Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (M.P.-J., N.N., E.F.-R., R.G.), 08017 Barcelona, Spain; Department of Medicine (R.G.), University of Barcelona, 08036 Barcelona, Spain; and Hospital Clínic de Barcelona (R.G.), 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta Gen Subj 2014; 1840:1404-12. [DOI: 10.1016/j.bbagen.2013.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
|
37
|
Bailey CJ, Aschner P, Del Prato S, LaSalle J, Ji L, Matthaei S. Individualized glycaemic targets and pharmacotherapy in type 2 diabetes. Diab Vasc Dis Res 2013; 10:397-409. [PMID: 23711582 DOI: 10.1177/1479164113490765] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Global Partnership for Effective Diabetes Management, established to provide practical guidance to improve patient outcomes in diabetes, has developed and modified recommendations to improve glycaemic control in type 2 diabetes. The Global Partnership advocates an individualized therapeutic approach and, as part of the process to customize therapy, has previously identified specific type 2 diabetes patient subgroups that require special consideration. This article builds on earlier publications, expanding the scope of practical guidance to include newly diagnosed individuals with complications and women with diabetes in pregnancy. Good glycaemic control remains the cornerstone of managing type 2 diabetes, and plays a vital role in preventing or delaying the onset and progression of diabetic complications. Individualizing therapeutic goals and treatments to meet glycaemic targets safely and without delay remains paramount, in addition to a wider programme of care to reduce cardiovascular risk factors and improve patient outcomes.
Collapse
Affiliation(s)
- Clifford J Bailey
- Diabetes Research, School of Life & Health Sciences, Aston University, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The term 'legacy effect'--a memory of a treatment which produces benefits long after the cessation of the intervention--was adopted for the first time to describe the benefits of early and strict control of diabetes on cardiovascular complications. The search for a similar effect for early treatment of immune-mediated renal diseases, interrupting some self-amplification loops of the pathogenetical immunological mechanisms and leaving a permanent memory, is fascinating. Some recent reports suggest a long-term beneficial or legacy effect of early treatment of IgA nephropathy after a randomized controlled trial (RCT) using mycophenolate mofetil, methylprednisolone pulses or steroid/immunosuppressive multiple therapy, or prolonged steroid doses associated with tonsillectomy. Long-lasting effects of treatments are more likely to be achieved in early stages of IgA nephropathy, when mesangial proliferative or endocapillary hypercellular lesions are pre-eminent over sclerosis, and when proteinuria is not massive, above all in young patients. The long-term results considered are relevant, but have the counterpart of the risk of drug toxicity or side effects, which are particularly undesired in patients with a mild disease. Hence, there is interest for drugs targeting the intestinal mucosal immunity with a little systemic effect, aimed at interrupting the initial pathogenetical mechanism. The possibility of modulating anti-inflammatory regulatory T cells by modifying inducible enzymes is another fascinating field of future research.
Collapse
Affiliation(s)
- Rosanna Coppo
- Nephrology, Dialysis and Transplantation Unit, Regina Margherita Children's University Hospital, Città della Salute e della Scienza di Torino, Turin 10126, Italy.
| |
Collapse
|
39
|
|
40
|
Maahs DM, Snell-Bergeon JK. Current knowledge and future directions on cardiovascular disease in diabetes. Diabetes Technol Ther 2012; 14 Suppl 1:S75-6. [PMID: 22650228 PMCID: PMC4971415 DOI: 10.1089/dia.2012.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- David M Maahs
- Barbara Davis Center for Childhood Diabetes, and Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | |
Collapse
|