1
|
Filippas-Ntekouan S, Dimou A, Dafopoulos P, Kostara C, Bairaktari E, Chasapi S, Spyroulias G, Koufakis T, Koutsovasilis A, Tsimihodimos V. Effect of dapagliflozin on the serum metabolome in patients with type 2 diabetes mellitus. J Diabetes Metab Disord 2025; 24:4. [PMID: 39697865 PMCID: PMC11649604 DOI: 10.1007/s40200-024-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Objectives SGLT-2 inhibitors have been shown to exert cardio- and renoprotective actions. We aimed to investigate the underlying mechanisms using 1H-NMR based metabolomics in patients with type-2 diabetes mellitus who received dapagliflozin. Methods 50 patients with type 2 diabetes mellitus, inadequately controlled on metformin monotherapy (HbA1c > 7%) received dapagliflozin for 3 months and 30 matched patients received insulin degludec for 3 months. Clinical and laboratory values, as well as 1H-NMR based metabolomics were assessed before treatment and after completion of 3 months of treatment. Results Dapagliflozin reduced weight, body mass index, systolic and diastolic blood pressure significantly. Using 1H-NMR based metabolomics, the dapagliflozin group showed a good separation with a degree of overlap before and after treatment initiation. Regarding targeted metabolomics, dapagliflozin increased serum ketone, citrate and tryptophan levels compared with insulin. On the other hand, serum taurine, threonine and mannose levels were significantly decreased following dapagliflozin administration. Conclusions Dapagliflozin led to a small, but significant change in serum metabolome. The observed changes may indicate improvement in energy metabolism, reduction in inflammatory activity and decreased insulin resistance which may provide further evidence of the agent's observed cardiac and renal protection. The study was registered with ClinicalTrials.gov (identifier: NCT02798757). Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01508-1.
Collapse
Affiliation(s)
| | - Aikaterini Dimou
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | - Christina Kostara
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | - Theoharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, 546 42 Greece
| | | | - Vasileios Tsimihodimos
- Department of Internal Medicine, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, 45500 Greece
| |
Collapse
|
2
|
Baran H, Jan Pietryja M, Kepplinger B. Importance of Modulating Kynurenic Acid Metabolism-Approaches for the Treatment of Dementia. Biomolecules 2025; 15:74. [PMID: 39858468 PMCID: PMC11764436 DOI: 10.3390/biom15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms. The discovery of new compounds with the ability to block kynurenine aminotransferases opens new therapeutic avenues for the treatment of memory impairment and dementia. The newly developed Helix pomatia snail model of memory can be used for the assessment of novel pharmacological approaches. Dietary supplementation with natural molecular/herbal extracts, exercise, and physical activity have significant impacts on endogenous pharmacology by reducing kynurenic acid synthesis, and these factors are likely to significantly modulate steady-state biological conditions and delay the negative consequences of aging, including the onset of pathological processes.
Collapse
Affiliation(s)
- Halina Baran
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Neurophysiology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marcelin Jan Pietryja
- St. Francis Herbarium, Monastery of the Franciscan Friars Minor, 40-760 Katowice, Poland;
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Department of Neurology, Neuropsychiatric Hospital, 3362 Mauer-Amstetten, Austria
| |
Collapse
|
3
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL, Hanssen NMJ. Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis 2023; 387:117344. [PMID: 37945449 DOI: 10.1016/j.atherosclerosis.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) remains the largest cause of death globally due to various risk factors. One novel potential contributor to CVD might be the metabolism of the essential amino acid tryptophan (Trp), which through many pathways can produce immunomodulatory metabolites such as kynurenine, indole-3-propionate and serotonin. We aim to identify the metabolites with the strongest association with cardiovascular disease, utilizing a substantial and diverse cohort of individuals. In our pursuit of this aim, our primary focus is to validate and reinforce the findings from previous cross-sectional studies. METHODS We used the community-based EPIC-Norfolk cohort (46.3 % men, age 59.8 ± 9.0) with a median follow-up of 22.1 (17.6-23.3) years to study associations between the relative levels of Trp metabolites measured with untargeted metabolomics and incident development of CVD. Serum from n = 11,972 apparently healthy subjects was analysed, of which 6982 individuals had developed CVD at the end of follow-up. Cox proportional hazard models were used to study associations, adjusted for sex, age, conventional cardiovascular risk factors and CRP. All metabolites were Ln-normalised prior to analysis. RESULTS Higher levels of Trp were inversely associated with mortality (HR 0.73; CI 0.64-0.83) and fatal CVD (HR 0.76; CI 0.59-0.99). Higher levels of kynurenine (HR 1.33; CI 1.19-1.49) and the [Kynurenine]/[Tryptophan]-ratio (HR 1.24; CI 1.14-1.35) were associated with a higher incident development of CVD. Serotonin was not associated with overall CVD, but we did find associations for myocardial infarction and stroke. Adjustment for CRP did not yield any discernible differences in effect size. CONCLUSIONS Tryptophan levels were inversely correlated with CVD, while several of its major metabolites (especially kynurenine and serotonin) were positively correlated. These findings indicate that mechanistic studies are required to understand the role of Trp metabolism in CVD with the goal to identify new therapeutic targets.
Collapse
Affiliation(s)
- Charlotte J Teunis
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands.
| | - Erik S G Stroes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia; Department of Immunology, Monash University, Melbourne, 3004, Australia
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
6
|
Fiore A, Zeitler L, Russier M, Groß A, Hiller MK, Parker JL, Stier L, Köcher T, Newstead S, Murray PJ. Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Mol Cell 2022; 82:920-932.e7. [PMID: 35245456 DOI: 10.1016/j.molcel.2022.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 12/19/2022]
Abstract
IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Alessandra Fiore
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Leonie Zeitler
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marion Russier
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Annette Groß
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Luca Stier
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
7
|
Tanaka Y, Onozato M, Mikami T, Kohwi-Shigematsu T, Fukushima T, Kondo M. Increased Indoleamine 2,3-Dioxygenase Levels at the Onset of Sjögren's Syndrome in SATB1-Conditional Knockout Mice. Int J Mol Sci 2021; 22:10125. [PMID: 34576286 PMCID: PMC8468825 DOI: 10.3390/ijms221810125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by dysfunction of salivary and lacrimal glands, resulting in xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). Autoantibodies, such as anti-SSA and anti-SSB antibodies, are hallmarks and important diagnostic factors for SS. In our previous study, we demonstrated that SS-like xerostomia was observed in SATB1 conditional knockout (SATB1cKO) mice, in which the floxed SATB1 gene was specifically deleted in hematopoietic cells as early as 4 weeks of age. In these mice, autoantibodies were not detected until 8 weeks of age in SATB1cKO mice, although exocrine gland function reached its lowest at this age. Therefore, other markers may be necessary for the diagnosis of SS in the early phase. Here, we found that mRNA expression of the interferonγ (IFN-γ) gene and the IFN-responsive indoleamine 2,3-dioxygenase (IDO) gene is upregulated in the salivary glands of SATB1cKO mice after 3 and 4 weeks of age, respectively. We detected l-kynurenine (l-KYN), an intermediate of l-tryptophan (l-Trp) metabolism mediated by IDO, in the serum of SATB1cKO mice after 4 weeks of age. In addition, the upregulation of IDO expression was significantly suppressed by the administration of IFN-γ neutralizing antibodies in SATB1cKO mice. These results suggest that the induction of IFN-dependent IDO expression is an initial event that occurs immediately after the onset of SS in SATB1cKO mice. These results also imply that serum l-KYN could be used as a marker for SS diagnosis in the early phases of the disease before autoantibodies are detectable.
Collapse
Grants
- JP24390121 to M.K. and Y.T., JP26670240 to M.K., 18K07075 to Y.T. MEXT/JSPS KAKENHI
- Strategic Research Foundation Grant-aided Project for Private Schools at Heisei 26th (S1411015 ) Ministry of Education, Culture, Sports, Science and Technology
- Research Promotion Grant (14-02) Toho University Graduate School of Medicine
- Project Research Grants (23-4 and 26-22 to Y.T.) Toho University School of Medicine
- N/A Public Foundation of the Vaccination Research Center
- Joint research Fund to M.K., Y.T., M.O. and K.F. Toho University
- Initiative for Realizing Diversity in the Research Environment Japan Science and Technology Agency
- R37CA39681 to T.K.-S. NIH HHS
- Grant-in Aid for Private University Research Branding Project Ministry of Education, Culture, Sports, Science and Technology
- Grant for Research Initiative Program Toho University
Collapse
Affiliation(s)
- Yuriko Tanaka
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (M.O.); (T.F.)
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, CA 94143, USA;
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (M.O.); (T.F.)
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| |
Collapse
|
8
|
Mott PD, Taylor CM, Lillis RA, Ardizzone CM, Albritton HL, Luo M, Calabresi KG, Martin DH, Myers L, Quayle AJ. Differences in the Genital Microbiota in Women Who Naturally Clear Chlamydia trachomatis Infection Compared to Women Who Do Not Clear; A Pilot Study. Front Cell Infect Microbiol 2021; 11:615770. [PMID: 33912473 PMCID: PMC8072278 DOI: 10.3389/fcimb.2021.615770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vitro studies indicate IFNγ is central to Chlamydia trachomatis (Ct) eradication, but its function may be compromised by anaerobes typically associated with bacterial vaginosis (BV), a frequent co-morbidity in women with Ct. Here we investigated the associations between natural clearance of cervical Ct infection, the vaginal microbiome, and the requirements for IFNγ by evaluating the vaginal microbial and cytokine composition of Ct treatment visit samples from women who cleared Ct infection in the interim between their Ct screening and Ct treatment visit. The pilot cohort was young, predominantly African American, and characterized by a high rate of BV that was treated with metronidazole at the Ct screening visit. The rate of natural Ct clearance was 23.6% by the Ct treatment visit (median 9 days). 16S rRNA gene sequencing revealed that metronidazole-treated women who had a Lactobacillus spp.-dominant vaginal microbiota (CST 2 or 3) at the Ct treatment visit, were more prevalent in the Ct clearing population than the non-clearing population (86% v. 50%). L. iners (CST2) was the major Lactobacillus spp. present in Ct clearers, and 33% still remained anaerobe-dominant (CST1). Vaginal IFNγ levels were not significantly different in Ct clearers and non-clearers and were several logs lower than that required for killing Ct in vitro. An expanded panel of IFNγ-induced and proinflammatory cytokines and chemokines also did not reveal differences between Ct clearers and non-clearers, but, rather, suggested signatures better associated with specific CSTs. Taken together, these findings suggest that BV-associated bacteria may impede Ct clearance, but a Lactobacillus spp.-dominant microbiome is not an absolute requirement to clear. Further, IFNγ may be required at lower concentrations than in vitro modeling indicates, suggesting it may act together with other factors in vivo. Data also revealed that the vaginal bacteria-driven inflammation add complexity to the genital cytokine milieu, but changes in this microbiota may contribute to, or provide cytokine biomarkers, for a shift to Ct clearance.
Collapse
Affiliation(s)
- Patricia Dehon Mott
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Caleb M. Ardizzone
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Kaitlyn G. Calabresi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David H. Martin
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Wang H, Li P, Zhang Y, Zhang C, Li K, Song C. Cytokine changes in different types of depression: Specific or general? ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.npbr.2020.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Pizzini A, Kurz K, Santifaller J, Tschurtschenthaler C, Theurl I, Fuchs D, Weiss G, Bellmann-Weiler R. Assessment of neopterin and indoleamine 2,3-dioxygenase activity in patients with seasonal influenza: A pilot study. Influenza Other Respir Viruses 2019; 13:603-609. [PMID: 31489989 PMCID: PMC6800299 DOI: 10.1111/irv.12677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Seasonal influenza is an important cause of morbidity and mortality worldwide. Immune activation after stimulation with interferon-gamma leads to increased production of neopterin but also results in increased tryptophan catabolism through indoleamine 2,3-dioxygenase (IDO). Our pilot study determined neopterin serum levels and IDO activity in patients with influenza infection and investigated whether neopterin is linked to clinical outcome parameters (mortality ≤30 days, acute cardiac events (ACE) length of hospitalization, ICU admission). METHODS Neopterin concentrations were analyzed in serum samples of 40 patients with a confirmed diagnosis of influenza infection and in-hospital treatment for >24 hours. Data were compared to values of 100 healthy blood donors and 48 age-matched pneumonia patients. In a subgroup of 14 patients, tryptophan and kynurenine concentrations, as well as kynurenine-to-tryptophan ratio, were analyzed. RESULTS In all influenza patients, neopterin concentrations were increased and significantly higher compared to those determined in patients with pneumonia and healthy controls. Positive correlations between the duration of hospitalization and neopterin were found. Significantly higher levels of kynurenine, kynurenine-to-tryptophan ratio, and lower levels of tryptophan were seen in influenza patients compared to healthy controls. CONCLUSIONS Neopterin seems to be related to the course of the disease and could be a valuable biomarker to identify patients at an elevated risk of a worsened outcome; however, further prospective validation studies are needed to support the here presented preliminary results.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Janine Santifaller
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph Tschurtschenthaler
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
11
|
Sodium Sulfite Exacerbates Allograft Vasculopathy and Affects Tryptophan Breakdown in Murine Heterotopic Aortic Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8461048. [PMID: 31089419 PMCID: PMC6476130 DOI: 10.1155/2019/8461048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Graft vasculopathy is the main feature of chronic rejection in organ transplantation, with oxidative stress being a major trigger. Inflammation-associated prooxidant processes may be controlled by antioxidants; however, interference with redox-regulated mechanisms is a complex endeavor. An essential feature of the cellular immune response is the acceleration of tryptophan (Trp) breakdown, leading to the formation of several bioactive catabolites. Long-term activation of this immunobiochemical pathway contributes to the establishment of a tolerogenic environment, thereby supporting allograft survival. Herein, the impact of the antioxidant sodium sulfite on the development of graft vasculopathy was assessed in murine aortic transplantation. Allogeneic (BALB/c to C57BL/6) heterotopic murine aortic transplantations were performed. Animals were left untreated or were treated with 10 μl of 0.1 M, of 0.01 M sodium sulfite, or of 0.1 M sodium sulfate, intraperitoneally once/day, until postoperative day (POD) 100. Grafts were assessed by histology, immunohistochemistry, and adhesion molecule gene expression. Serum concentrations of tryptophan and its catabolite kynurenine (Kyn) were measured. On day 100, graft vasculopathy was significantly increased upon treatment with 0.1 M sodium sulfite, compared to allogeneic untreated controls (p = 0.004), which correlated with a significant increase of α-smooth-muscle-actin, Vcam-1, and P-selectin. Serum Kyn concentrations increased in the allogeneic control group over time (p < 0.05, POD ≥ 50), while low-dose sodium sulfite treatment (0.01 M) treatment resulted in a decrease in Kyn levels over time (p < 0.05, POD ≥ 10), compared to the respective baselines (p < 0.05). Longitudinal analysis of serum metabolite concentrations in the different treatment groups further identified an overall effect of sodium sulfite on Kyn concentrations. Antioxidative treatment may result in ambivalent consequences. Our data reveal that an excess of antioxidants like sodium sulfite can aggravate allograft vasculopathy, which further highlights the challenges associated with interventions that interfere with the complex interplay of redox-regulated inflammatory processes.
Collapse
|
12
|
The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav Pharmacol 2019; 30:163-186. [DOI: 10.1097/fbp.0000000000000477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Ziklo N, Huston WM, Taing K, Timms P. High expression of IDO1 and TGF-β1 during recurrence and post infection clearance with Chlamydia trachomatis, are independent of host IFN-γ response. BMC Infect Dis 2019; 19:218. [PMID: 30832593 PMCID: PMC6398247 DOI: 10.1186/s12879-019-3843-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/21/2019] [Indexed: 11/11/2022] Open
Abstract
Background Chlamydia trachomatis infections in women continue to be a major public health concern due to their high prevalence and consequent reproductive morbidities. While antibiotics are usually efficient to clear the Chlamydia, repeat infections are common and may contribute to pathological outcomes. Interferon-gamma (IFN-γ)-mediated immunity has been suggested to be protective against reinfection, and represent an important anti-chlamydial agent, primarily via the induction of indoleamine-2,3 dioxygenase 1 (IDO1) enzyme. IDO1 catalyzes the degradation of tryptophan, which can eliminate C. trachomatis infection in vitro. Here, we sought to measure IDO1 expression levels and related immune markers during different C. trachomatis infection statuses (repeated vs single infection vs post antibiotic treatment), in vitro and in vivo. Methods In this study, we measured the expression levels of IDO1 and immune regulatory markers, transforming growth factor β1 (TGF-β1) and forkhead box P3 (FoxP3), in vaginal swab samples of C. trachomatis-infected women, with either single or repeated infection. In addition, we used an in vitro co-culture model of endometrial carcinoma cell-line and peripheral blood mononuclear cells (PBMCs) to measure the same immune markers. Results We found that in women with repeated C. trachomatis infections vaginal IDO1 and TGF-β1 expression levels were significantly increased. Whereas, women who cleared their infection post antibiotic treatment, had increased levels of IDO1 and TGF-β1, as well as FoxP3. Similarly, using the in vitro model, we found significant upregulation of IDO1 and TGF-β1 levels in the co-culture infected with C. trachomatis. Furthermore, we found that in PBMCs infected with C. trachomatis there was a significant upregulation in IDO1 levels, which was independent of IFN-γ. In fact, C. trachomatis infection in PBMCs failed to induce IFN-γ levels in comparison to the uninfected culture. Conclusions Our data provide evidence for a regulatory immune response comprised of IDO1, TGF-β1 and FoxP3 in women post antibiotic treatment. In this study, we demonstrated a significant increase in IDO1 expression levels in response to C. trachomatis infection, both in vivo and in vitro, without elevated IFN-γ levels. This study implicates IDO1 and TGF-β1 as part of the immune response to repeated C. trachomatis infections, independently of IFN-γ. Electronic supplementary material The online version of this article (10.1186/s12879-019-3843-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noa Ziklo
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD, Australia.
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia
| | - Kuong Taing
- Sunshine Coast Sexual Health and HIV Service (Clinic 87), Nambour, Sunshine Coast, QLD, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD, Australia
| |
Collapse
|
14
|
Knoll M, Fuchs D, Weiss G, Bellmann-Weiler R, Kovrlija B, Kurz K. Interferon-γ Mediated Pathways And Mitogen Stimulated Proliferation During And After An Acute Infection. Pteridines 2018. [DOI: 10.1515/pteridines-2018-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background: Interferon-γ (IFN- γ) regulates the degradation of tryptophan to kynurenine via induction of indoleamine- 2,3-dioxygenase (IDO). Local tryptophan depletion and accumulation of toxic metabolites might impair the proliferative capacity of lymphocytes. The aim of this study was to assess the actual status of immune system activation of patients with bacterial infection in the acute phase and during convalescence in vivo and in vitro. Parameters of systemic immune system activation were evaluated for associations with proliferative responsiveness of immune cells, and compared with healthy controls. Methods: 24 patients with various acute bacterial infections were included in the group of acutely ill patients. Sixteen patients participated in a follow-up examination after convalescence. The control group consisted of 6 healthy people. To assess the status of immune system activation in vivo, inflammation parameters C-reactive protein and differential blood counts were determined. Neopterin concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Tryptophan and kynurenine measurements were performed with high pressure liquid chromatography (HPLC). Peripheral blood mononuclear cells (PBMCs) were isolated from the patients’ blood and stimulated with concanavalin A (Con A), phytohemagglutinin (PHA) and pokeweed mitogen (PWM) in vitro proliferation rates were evaluated by ³H-thymidine incorporation and neopterin production and tryptophan degradation were determined in supernatants of mitogen stimulated PBMCs. Results: Patients with acute bacterial infections showed reduced tryptophan and elevated neopterin concentrations, which did not normalize after convalescence period. Higher plasma neopterin values and increased IDO-activity were associated with reduced proliferative responses in vitro after stimulation with PHA. Associations were observed during acute infection as well as convalescence. Conclusions: Results of this study show that increased immune system activation in vivo is associated with impaired proliferative responsiveness of immune cells in vitro in acute bacterial infections as well as during convalescence.
Collapse
Affiliation(s)
- Miriam Knoll
- Department of Internal Medicine II, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| | - Dietmar Fuchs
- Biological Chemistry, Biocentre, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| | - Bojana Kovrlija
- Department of Internal Medicine II, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck; Biological Chemistry, Biocentre, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck , Austria
| |
Collapse
|
15
|
Abstract
To design a bioreactor for removing the potential cancer nutrient L-tryptophan from blood, the L-tryptophan degrading enzyme tryptophan side chain oxydase (TSO) was chemically bound to glutaraldehyde activated gamma amino silane silica and to Zetaffinity microcolumns consisting of a glutaraldehyde activated polyacrylic-cellulose copolymer. Five experiments were carried out in sheep and six experiments in rabbits using a closed circuit plasmapheresis bioreactor system. L-tryptophan in sheep was degraded by the silica bioreactor in a single pass to undetectable levels as measured by high performance liquid chromatography (HPLC). Zetaffinity bioreactors degraded L-tryptophan in rabbits to more than 95% in a single pass. Whole blood L-tryptophan levels changed little throughout the experiment indicating a vast extravascular tryptophan pool. Enzyme leakage from the bioreactor was less than 10−5 IU TSO per ml plasma. The procedures were tolerated well by the animals without any change in vital signs
Collapse
Affiliation(s)
- G. Schmer
- Department of Laboratory Medicine, University of Washington, Seattle - U.S.A
| | - M.B. Dennis
- Department of Laboratory Medicine, University of Washington, Seattle - U.S.A
| | - S. Hsueh
- Department of Laboratory Medicine, University of Washington, Seattle - U.S.A
| | - K.C. Hou
- Department of Laboratory Medicine, University of Washington, Seattle - U.S.A
| |
Collapse
|
16
|
Rojas Márquez JD, Ana Y, Baigorrí RE, Stempin CC, Cerban FM. Mammalian Target of Rapamycin Inhibition in Trypanosoma cruzi-Infected Macrophages Leads to an Intracellular Profile That Is Detrimental for Infection. Front Immunol 2018. [PMID: 29515594 PMCID: PMC5826284 DOI: 10.3389/fimmu.2018.00313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The causative agent of Chagas’ disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR)-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO) were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1β production. Taking into account that IL-1β is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of mitochondrial ROS (mtROS) compared with control cells. Moreover, inhibition of mtROS production partially reversed the effect of rapamycin on parasite replication, with there being a significant increase in parasite load in rapamycin pretreated and infected macrophages from NLRP3 KO mice compared to wild-type control cells. Our findings strongly suggest that mTOR inhibition during T. cruzi infection induces NLRP3 inflammasome activation and mtROS production, resulting in an inflammatory-like macrophage profile that controls T. cruzi replication.
Collapse
Affiliation(s)
- Jorge David Rojas Márquez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Yamile Ana
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorrí
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Fabio Marcelo Cerban
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
17
|
Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget 2018; 7:66540-66557. [PMID: 27572319 PMCID: PMC5341819 DOI: 10.18632/oncotarget.11658] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022] Open
Abstract
Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.
Collapse
|
18
|
Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2980295. [PMID: 29576845 PMCID: PMC5821946 DOI: 10.1155/2018/2980295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis.
Collapse
|
19
|
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40:95-119. [PMID: 28899766 DOI: 10.1016/j.arr.2017.09.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted.
Collapse
Affiliation(s)
- Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Nabil Bosco
- Nestlé Research Center Asia, 21 Biopolis Road, 138567, Singapore
| | | | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, 33076 Bordeaux, France; Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Catholic University of Louvain, B-1200 Brussels, Belgium
| | - Joel Doré
- MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40124, Italy
| | - Markus J Lehtinen
- DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
| | - Tobias Recker
- International Life Sciences Institute European Branch, 1200 Brussels, Belgium.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
20
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
21
|
Debnath S, Velagapudi C, Redus L, Thameem F, Kasinath B, Hura CE, Lorenzo C, Abboud HE, O'Connor JC. Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int J Tryptophan Res 2017; 10:1178646917694600. [PMID: 28469469 PMCID: PMC5398653 DOI: 10.1177/1178646917694600] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Objective: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms. We investigated the relationships of TRP metabolism with inflammatory markers in patients with T2D and CKD. Methods: Data were collected from a well-characterized cohort of type 2 diabetic individuals with all stages of CKD, including patients on hemodialysis. Key TRP metabolites (kynurenine [KYN], kynurenic acid [KYNA], and quinolinic acid [QA]), proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and C-reactive protein were measured in plasma. The KYN/TRP ratio was utilized as a surrogate marker for indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity. Results: There was a significant inverse association between circulating TRP level and stages of CKD (P < 0.0001). Downstream bioactive TRP metabolites KYN, KYNA, and QA were positively and robustly correlated with the severity of kidney disease (P < 0.0001). In multiple linear regression, neither TNF-α nor IL-6 was independently related to KYN/TRP ratio after adjusting for estimated glomerular filtration rate (eGFR). Only TNF-α was independently related to KYN after taking into account the effect of eGFR. Conclusions: Chronic kidney disease secondary to T2D may be associated with accumulation of toxic TRP metabolites due to both inflammation and impaired kidney function. Future longitudinal studies to determine whether the accumulation of KYN directly contributes to CKD progression and associated symptoms in patients with T2D are warranted.
Collapse
Affiliation(s)
- Subrata Debnath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chakradhar Velagapudi
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Laney Redus
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Farook Thameem
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Balakuntalam Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia E Hura
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carlos Lorenzo
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason C O'Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
22
|
Cortés J, Alvarez C, Santana P, Torres E, Mercado L. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:73-78. [PMID: 27370975 DOI: 10.1016/j.dci.2016.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing.
Collapse
Affiliation(s)
- Jimena Cortés
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudio Alvarez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Paula Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Elisa Torres
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
23
|
Jung J, Gleave Parson M, Kraft JD, Lyda L, Kobe B, Davis C, Robinson J, Peña MMO, Robinson CM. Elevated interleukin-27 levels in human neonatal macrophages regulate indoleamine dioxygenase in a STAT-1 and STAT-3-dependent manner. Immunology 2016; 149:35-47. [PMID: 27238498 PMCID: PMC4981608 DOI: 10.1111/imm.12625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Microbial infections are a major cause of infant mortality as a result of limitations in immune defences. Interleukin-27 (IL-27) is a heterodimeric cytokine produced primarily by leucocytes and is immunosuppressive toward lymphocytes and leucocytes. Our laboratory demonstrated that human neonatal macrophages express IL-27 more abundantly than adult macrophages. Similarly in mice, IL-27 expression is elevated early in life and maintained through infancy. To determine IL-27-regulated mechanisms that may limit immunity, we evaluated the expression of a number of genes in response to this cytokine in primary human neonatal macrophages. Indoleamine 2,3-dioxygenase (IDO) gene expression was increased dose-responsively by IL-27. We have previously demonstrated inhibition of T-cell proliferation and cytokine production by neonatal macrophage-generated IL-27, and IDO is often implicated in this negative regulation. An increase in IDO protein was demonstrated by immunofluorescence microscopy and was consistent with increased enzyme activity following treatment with IL-27. Inclusion of a soluble receptor to neutralize endogenous IL-27, decreased IDO expression and activity compared with untreated macrophages. In response to IL-27, neonatal macrophages phosphorylate signal transdcuer and activator of transcription 1 (STAT-1) and STAT-3. Both transcription factors are recruited to the IDO regulatory region. STAT-3 dominates during steady-state regulation by lower levels of endogenous IL-27 production. A shift to enhanced STAT-1 recruitment occurs during increased levels of exogenously supplied IL-27. These data suggest an interesting interplay of STAT-1 and STAT-3 to regulate IDO activity and immunosuppression in response to different levels of IL-27 in the microenvironment of the immune response that may further our understanding of this interesting cytokine.
Collapse
Affiliation(s)
- Joo‐Yong Jung
- Department of BiologyBriar Cliff UniversitySioux CityIAUSA
| | - Madeline Gleave Parson
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Jennifer D. Kraft
- Department of Pathology Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaSCUSA
| | - Logan Lyda
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Brianna Kobe
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Celestia Davis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Jembber Robinson
- Department of Pathology Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaSCUSA
| | - Maria Marjorette O. Peña
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Cory M. Robinson
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| |
Collapse
|
24
|
Deac OM, Mills JL, Gardiner CM, Shane B, Quinn L, Midttun Ø, McCann A, Meyer K, Ueland PM, Fan R, Lu Z, Brody LC, Molloy AM. Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults. J Nutr 2016; 146:1801-6. [PMID: 27489009 PMCID: PMC4997280 DOI: 10.3945/jn.116.230698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Changes in tryptophan metabolism through the vitamin B-6-dependent kynurenine pathway have been linked to activation of the immune system. OBJECTIVE We hypothesized that blood concentrations of tryptophan and its catabolites were associated with biomarkers relevant to inflammatory processes in healthy noninflamed subjects. METHODS Healthy young adults (n = 737) aged 18-28 y without any known diseases or clinical evidence of inflammation provided blood samples for analysis of serum tryptophan/kynurenine metabolites, neopterin, C-reactive protein (CRP), and plasma pyridoxal 5'-phosphate (PLP) with LC-tandem mass spectrometry methodologies. A panel of cytokines was measured in serum by using high-sensitivity ELISA assays. Anthropometric and lifestyle data were collected by questionnaire. Multiple linear regression analysis to determine the effect of measured serum cytokine concentrations as predictors of tryptophan metabolites was performed on inverse normal-rank transformations of the data, adjusted for sex, body mass index, smoking, alcohol intake, and contraceptive use in women. RESULTS Median serum CRP and neopterin concentrations were well below established clinical cutoffs for inflammation. We observed significant positive associations between serum interleukin-10 (IL-10) and serum kynurenine (P = 0.0002), the kynurenine-to-tryptophan ratio (KTR) (P = 0.003), 3-hydroxykynurenine (P = 0.01), and 3-hydroxyanthranilic acid (P = 0.04). Serum neopterin was positively associated with kynurenine, the KTR (both P < 0.0001), and anthranilic acid (P = 0.004), and was negatively associated with serum tryptophan (P = 0.01) and PLP (P < 0.0001). Serum tumor necrosis factor α was also negatively associated with tryptophan (P < 0.001). CONCLUSIONS In healthy young adults with no apparent inflammatory conditions, serum tryptophan metabolites are significantly associated with key immune system biomarkers. The observed association between IL-10 and kynurenine is unexpected and suggests that kynurenine-linked mechanisms promoting negative regulation of inflammatory responses are associated with normal immune homeostasis.
Collapse
Affiliation(s)
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Barry Shane
- Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Louise Quinn
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | - Per M Ueland
- Section of Pharmacology, Institute of Medicine, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Zhaohui Lu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Lawrence C Brody
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD
| | - Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland;
| |
Collapse
|
25
|
Acute Psychological Stress Modulates the Expression of Enzymes Involved in the Kynurenine Pathway throughout Corticolimbic Circuits in Adult Male Rats. Neural Plast 2015; 2016:7215684. [PMID: 26819772 PMCID: PMC4706967 DOI: 10.1155/2016/7215684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022] Open
Abstract
Tryptophan is an essential dietary amino acid that is necessary for protein synthesis, but also serves as the precursor for serotonin. However, in addition to these biological functions, tryptophan also serves as a precursor for the kynurenine pathway, which has neurotoxic (quinolinic acid) and neuroprotective (kynurenic acid) metabolites. Glucocorticoid hormones and inflammatory mediators, both of which are increased by stress, have been shown to bias tryptophan along the kynurenine pathway and away from serotonin synthesis; however, to date, there is no published data regarding the effects of stress on enzymes regulating the kynurenine pathway in a regional manner throughout the brain. Herein, we examined the effects of an acute psychological stress (120 min restraint) on gene expression patterns of enzymes along the kynurenine pathway over a protracted time-course (1–24 h post-stress termination) within the amygdala, hippocampus, hypothalamus, and medial prefrontal cortex. Time-dependent changes in differential enzymes along the kynurenine metabolism pathway, particularly those involved in the production of quinolinic acid, were found within the amygdala, hypothalamus, and medial prefrontal cortex, with no changes seen in the hippocampus. These regional differences acutely may provide mechanistic insight into processes that become dysregulated chronically in stress-associated disorders.
Collapse
|
26
|
Mehraj V, Routy JP. Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int J Tryptophan Res 2015; 8:41-8. [PMID: 26309411 PMCID: PMC4527356 DOI: 10.4137/ijtr.s26862] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022] Open
Abstract
l-Tryptophan (l-Trp) is an essential amino acid that possesses diverse metabolic, neurological, and immunological roles spanning from the synthesis of proteins, neurotransmitter serotonin, and neurohormone melatonin, to its degradation into immunosuppressive catabolites by indoleamine-2, 3-dioxygenase (IDO) in the kynurenine pathway (KP). Trp catabolites, by activating aryl hydrocarbon receptor (AhR), play an important role in antimicrobial defense and immune regulation. IDO/AhR acts as a double-edged sword by both depleting l-Trp to starve the invaders and by contributing to the state of immunosuppression with microorganisms that were not cleared during acute infection. Pathogens experiencing Trp deprivation by IDO-mediated degradation include certain bacteria, parasites, and less likely viruses. However, chronic viral infections highjack the host immune response to create a state of disease tolerance via kynurenine catabolites. This review covers the latest data involving chronic viral infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes, and cytomegalovirus (CMV) and their cellular interplay with Trp catabolites. Strategies developed by viruses to escape immune control also represent new avenues for therapeutic interventions based on Trp metabolism.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada. ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
27
|
The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neuroscience 2015; 300:246-53. [DOI: 10.1016/j.neuroscience.2015.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
|
28
|
Zoller H, Jenal A, Staettermayer AF, Schroecksnadel S, Ferenci P, Fuchs D. Tryptophan Breakdown in Patients with HCV Infection is Influenced by IL28B Polymorphism. Pharmaceuticals (Basel) 2015; 8:337-50. [PMID: 26096654 PMCID: PMC4491665 DOI: 10.3390/ph8020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022] Open
Abstract
Until recently, the standard treatment of chronic hepatitis C virus (HCV) infection was a combination therapy with PEG-IFN-α plus ribavirin. Previous studies have proven that several markers predict the outcome of such therapy, e.g., pretreatment plasma levels of interferon inducible protein IP-10, HCV RNA and IL28B-related single nucleotide polymorphisms (SNP). Altered activity of tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been also shown in patients suffering from HCV infection. In this study, we investigated whether IL28B SNP in patients infected with HCV is related to the tryptophan breakdown rate. Before therapy, serum tryptophan and kynurenine concentrations were determined in 25 patients with established HCV infection and the kynurenine to tryptophan ratio (KYN/TRP) was calculated as an estimate of the tryptophan breakdown rate. In parallel, neopterin and nitrite concentrations were determined. A significant difference of serum KYN/TRP existed between the three IL28B polymorphism groups: C/C genotype had the highest and T/T genotype had the lowest KYN/TRP (p < 0.05). Likewise, C/C genotype was associated with higher KYN/TRP than non-C/C genotype (p = 0.01). There was a smaller difference between the three groups regarding the absolute kynurenine concentrations, the C/C genotype being associated with higher kynurenine concentrations. None of the other comparisons revealed any statistical significance. In conclusion, patients with C/C genotype presented with the highest tryptophan breakdown rate already before antiretroviral therapy with IFN-α/ribavirin. The differences in tryptophan metabolism might relate to HCV clearance and also to side effects of IFN-α therapy.
Collapse
Affiliation(s)
- Heinz Zoller
- Department of Internal Medicine, Biocenter, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Annina Jenal
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck 6020, Austria
| | | | - Sebastian Schroecksnadel
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Peter Ferenci
- Department of Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck 6020, Austria.
| |
Collapse
|
29
|
Demmers MWHJ, Korevaar SS, Roemeling-van Rhijn M, van den Bosch TPP, Hoogduijn MJ, Betjes MGH, Weimar W, Baan CC, Rowshani AT. Human renal tubular epithelial cells suppress alloreactive T cell proliferation. Clin Exp Immunol 2015; 179:509-19. [PMID: 25310899 DOI: 10.1111/cei.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 12/30/2022] Open
Abstract
Renal tubular epithelial cells (TECs) are one of the main targets of alloreactive T cells during acute rejection. We hypothesize that TECs modulate the outcome of alloimmunity by executing immunosuppressive effects in order to dampen the local inflammation. We studied whether TECs possess immunosuppressive capacities and if indoleamine 2,3-dioxygenase (IDO) might play a role in suppressing T cell alloreactivity. Next, we studied the role of programmed death ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1 with regard to TEC-related immunomodulatory effects. CD3/CD28 and alloactivated peripheral blood mononuclear cells were co-cultured with activated TECs. We analysed CD4(+) and CD8(+) T cell proliferation and apoptosis in the absence or presence of IDO inhibitor 1-methyl-L-tryptophan (1-L-MT), anti-PD-L1 and anti-ICAM-1. Further, we examined whether inhibition of T cell proliferation was cell-cell contact-dependent. We found that TECs dose-dependently inhibited CD4(+) and CD8(+) T cell proliferation (P<0.05). Activated TECs showed significantly increased IDO activity and up-regulated PD-L1 and ICAM-1 expression. Suppressed CD4(+) and CD8(+) T cell proliferation was only partially restored or failed to restore using 1-L-MT. Activated TECs increased early and late apoptosis of proliferating CD4(+) and CD8(+) T cells; only CD4(+) T cell apoptosis was statistically affected by 1-L-MT. Transwell experiments revealed that TEC-mediated immunosuppression is cell-cell contact-dependent. We found that anti-ICAM-1 affected only CD4(+) T cell apoptosis and not T cell proliferation. Our data show that TECs suppress both CD4(+) and CD8(+) T cell proliferation contact dependently. Interestingly, inhibition of proliferation and enhancement of apoptosis of T cell subsets is differentially regulated by indoleamine 2,3-dioxygenase and ICAM-1, with no evidence for the involvement of PD-L1 in our system.
Collapse
Affiliation(s)
- M W H J Demmers
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gostner JM, Becker K, Ueberall F, Fuchs D. The good and bad of antioxidant foods: An immunological perspective. Food Chem Toxicol 2015; 80:72-79. [PMID: 25698357 DOI: 10.1016/j.fct.2015.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/18/2023]
Abstract
Maintenance of redox homeostasis plays a central role in health and disease prevention, and antioxidant foods are thought to exert protective effects by counteracting oxidative stress. The term "dietary antioxidant" implies a classical reducing or radical-scavenging capacity, but more data on the in vivo bioactivity of such compounds are needed. Indeed, several dietary antioxidants activate signaling cascades that lead to effects that extend beyond radical scavenging, such as the induction of endogenous cytoprotective mechanisms and detoxification. Currently, the overall uptake of antioxidants with diet exceeds actual needs, as food additives that include vitamins, colorants, flavoring agents, and preservatives are often also relatively strong antioxidants. Chronic antioxidative stress favors adverse effects, such as the suppression of T helper (Th) type 1 immune responses and consequent activation of Th2 reactions that support the development of asthma, allergies, and obesity. In this context, we discuss the immunoregulatory pathway of tryptophan breakdown by enzyme indoleamine 2,3-dioxygenase (IDO), which represents a central regulatory hub for immune, metabolic, and neuroendocrine processes. Activation of IDO-mediated tryptophan metabolism is strongly redox-sensitive and is therefore susceptible to modulation by dietary components, phytochemicals, preservatives, and drugs.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Ueberall
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
31
|
Gostner JM, Becker K, Überall F, Fuchs D. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment. Expert Opin Ther Targets 2015; 19:605-15. [PMID: 25684107 DOI: 10.1517/14728222.2014.995092] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Degradation of the essential amino acid tryptophan via indoleamine 2,3-dioxygenase (IDO1) represents an important antiproliferative strategy of the cellular immune response. Tryptophan shortage and accumulation of kynurenine downstream products also affect T-cell responses, providing a negative feedback control of immune activation. IDO1 activity can promote a regulatory phenotype in both T cells and dendritic cells. These phenomena can support tumor immune escape. AREAS COVERED IDO1 activity reflects the course of several malignancies, and determination of kynurenine to tryptophan ratio in serum/plasma can be used to assess immune activation. Moreover, the accelerated breakdown of tryptophan has been correlated with the development of cancer-associated disturbances such as anemia, weight loss and depression. Tumoral IDO1 expression was correlated with a poor prognosis in several types of tumors, which makes it to an interesting target for immunotherapy. In addition, according to recent data, a role of trytptophan 2,3-dioxygenase (TDO) in tumorigenesis cannot be excluded. EXPERT OPINION Tryptophan metabolism is critical for cell proliferation, inflammation and immunoregulation. Accelerated tryptophan breakdown favors tumor immune escape. Accordingly, targeting IDO1 by immunotherapy may represent a favorable approach; however, blocking crucial immunoregulatory pathways could also introduce the risk of immune system overactivation, finally leading to unresponsiveness.
Collapse
Affiliation(s)
- Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Division of Medical Biochemistry , Innsbruck 6020 , Austria
| | | | | | | |
Collapse
|
32
|
Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Câmara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5:3-55. [PMID: 25584743 PMCID: PMC4381289 DOI: 10.3390/metabo5010003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.
Collapse
Affiliation(s)
- Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Priscilla Porto-Figueira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Rahul Dhakne
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - Hampapathalu Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
33
|
Chacko A, Barker CJ, Beagley KW, Hodson MP, Plan MR, Timms P, Huston WM. Increased sensitivity to tryptophan bioavailability is a positive adaptation by the human strains of Chlamydia pneumoniae. Mol Microbiol 2014; 93:797-813. [PMID: 24989637 DOI: 10.1111/mmi.12701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 11/30/2022]
Abstract
One of the most significant activities induced by interferon-gamma against intracellular pathogens is the induction of IDO (indoleamine 2,3-dioxygenase) expression, which subsequently results in the depletion of tryptophan. We tested the hypothesis that human strains of Chlamydia pneumoniae are more sensitive to tryptophan limitation than animal C. pneumoniae strains. The human strains were significantly more sensitive to IFN-γ than the animal strains in a lung epithelia cell model (BEAS-2B), with exposure to 1 U ml(-1) IFN-γ resulting in complete loss of infectious yield of human strains, compared to the animal strains where reductions in infectious progeny were around 3.5-4.0 log. Strikingly, the IFN-γ induced loss of ability to form infectious progeny production was completely rescued by removal of the IFN-γ and addition of exogenous tryptophan for the human strains, but not the animal strains. In fact, a human heart strain was more capable of entering a non-infectious, viable persistent stage when exposed to IFN-γ and was also more effectively rescued, compared to a human respiratory strain. Exquisite susceptibility to IFN-γ, specifically due to tryptophan availability appears to be a core adaptation of the human C. pneumoniae strains, which may reflect the chronic nature of their infections in this host.
Collapse
Affiliation(s)
- Anu Chacko
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Evolution to a chronic disease niche correlates with increased sensitivity to tryptophan availability for the obligate intracellular bacterium Chlamydia pneumoniae. J Bacteriol 2014; 196:1915-24. [PMID: 24682324 DOI: 10.1128/jb.01476-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more "susceptible" to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.
Collapse
|
35
|
Becker K, Schroecksnadel S, Gostner J, Zaknun C, Schennach H, Uberall F, Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:164-171. [PMID: 24041614 DOI: 10.1016/j.phymed.2013.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress is considered to be critically involved in the normal aging process but also in the development and progression of various human pathologies like cardiovascular and neurodegenerative diseases, as well as of infections and malignant tumors. These pathological conditions involve an overwhelming production of reactive oxygen species (ROS), which are released as part of an anti-proliferative strategy during pro-inflammatory immune responses. Moreover, ROS themselves are autocrine forward regulators of the immune response. Most of the beneficial effects of antioxidants are considered to derive from their influence on the immune system. Due to their antioxidant and/or radical scavenging nature, phytochemicals, botanicals and herbal preparations can be of great importance to prevent oxidation processes and to counteract the activation of redox-regulated signaling pathways. Antioxidants can antagonize the activation of T-cells and macrophages during the immune response and this anti-inflammatory activity could be of utmost importance for the treatment of above-mentioned disorders and for the development of immunotolerance. Herein, we provide an overview of in vitro assays for the measurement of antioxidant and anti-inflammatory activities of plant-derived substances and extracts, by discussing possibilities and limitations of these methods. To determine the capacity of antioxidants, the oxygen radical absorbance capacity (ORAC) assay and the cell-based antioxidant activity (CAA) assay are widely applied. To examine the influence of compounds on the human immune response more closely, the model of mitogen stimulated human peripheral blood mononuclear (PBMC) cells can be applied, and the production of the inflammatory marker neopterin as well as the breakdown of the amino acid tryptophan in culture supernatants can be used as readout to indicate an immunomodulatory potential of the tested compound. These two biomarkers of immune system activation are robust and correlate with the course of cardiovascular, neurodegenerative and malignant tumor diseases, but also with the normal aging process, and they are strongly predictive. Thus, while the simpler ORAC and CAA assays provide insight into one peculiar chemical aspect, namely the neutralization of peroxyl radicals, the more complex PBMC assay is closer to the in vivo conditions as the assay comprehensively enlights several properties of immunomodulatory test compounds.
Collapse
Affiliation(s)
- Kathrin Becker
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | | | - Johanna Gostner
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Cathrine Zaknun
- Division of Biological Chemistry, Medical University Innsbruck, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Florian Uberall
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
36
|
Kuehnl S, Schroecksnadel S, Temml V, Gostner JM, Schennach H, Schuster D, Schwaiger S, Rollinger JM, Fuchs D, Stuppner H. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1190-1195. [PMID: 23867649 PMCID: PMC3845384 DOI: 10.1016/j.phymed.2013.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/19/2013] [Accepted: 06/01/2013] [Indexed: 06/02/2023]
Abstract
Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5μM) and trachelogenin (IC50 of 57.4μM) showed higher activity than matairesinol (IC50 >200μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anticancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown.
Collapse
Affiliation(s)
- Susanne Kuehnl
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| | - Sebastian Schroecksnadel
- Innsbruck Medical University, Division of Biological Chemistry, Biocenter, 6020 Innsbruck, Austria
| | - Veronika Temml
- University of Innsbruck, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| | - Johanna M. Gostner
- Innsbruck Medical University, Division of Medical Biochemistry, Biocenter, CCB Innrain 80/82, 6020 Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Clinics, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Daniela Schuster
- University of Innsbruck, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| | - Stefan Schwaiger
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| | - Judith M. Rollinger
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Innsbruck Medical University, Division of Biological Chemistry, Biocenter, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Lustgarten MS, Price LL, Chale A, Phillips EM, Fielding RA. Branched chain amino acids are associated with muscle mass in functionally limited older adults. J Gerontol A Biol Sci Med Sci 2013; 69:717-24. [PMID: 24085401 DOI: 10.1093/gerona/glt152] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Metabolic profiling may provide insight into biologic mechanisms related to the maintenance of muscle and fat-free mass in functionally limited older adults. The objectives of the study were to characterize the association between thigh muscle cross-sectional area (CSA) and the fat-free mass index (FFMI; total lean mass/height(2)) with the serum metabolite profile, to further identify significant metabolites as associated with markers of insulin resistance or inflammation, and to develop a metabolite predictor set representative of muscle CSA and the FFMI in functionally limited older adults. METHODS Multivariable-adjusted linear regression was used on mass spectrometry-based metabolomic data to determine significant associations between serum metabolites with muscle CSA and the FFMI in 73 functionally limited (Short Physical Performance Battery ≤ 10) older adults (age range: 70-85 years). Significant metabolites were further examined for associations with markers of insulin resistance (homeostasis model assessment of insulin resistance) or inflammation (tumor necrosis factor-α and interleukin-6). Multivariable-adjusted stepwise regression was used to develop a metabolite predictor set representative of muscle CSA and the FFMI. RESULTS Seven branched chain amino acid-related metabolites were found to be associated with both muscle CSA and the FFMI. Separately, two metabolites were identified as insulin resistance-associated markers of the FFMI, whereas four metabolites were identified as inflammation-associated markers of either muscle CSA or the FFMI. Stepwise models identified combinations of metabolites to explain approximately 68% of the variability inherent in muscle CSA or the FFMI. CONCLUSIONS Collectively, we report multiple branched chain amino acids and novel inflammation-associated tryptophan metabolites as markers of muscle CSA or the FFMI in functionally limited older adults.
Collapse
Affiliation(s)
- Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts
| | - Lori Lyn Price
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, and Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts
| | - Angela Chale
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts
| | - Edward M Phillips
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts.
| |
Collapse
|
38
|
Temml V, Kuehnl S, Schuster D, Schwaiger S, Stuppner H, Fuchs D. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase. FEBS Open Bio 2013; 3:450-2. [PMID: 24251110 PMCID: PMC3829989 DOI: 10.1016/j.fob.2013.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/25/2013] [Accepted: 08/31/2013] [Indexed: 11/16/2022] Open
Abstract
Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect.
Collapse
Key Words
- 1-MT, d-1-methyl tryptophan
- 5-HT, 5-hydroxytryptamine, serotonin
- Carthamus tinctorius
- GBVI/WSA, generalized-born volume integral/weighted surface area
- IDO, indoleamine 2,3-dioxygenase
- IFN-γ, interferon-γ
- Indoleamine-2,3-dioxygenase
- Kyn/Trp, kynurenine to tryptophan ratio
- Lignan
- MMFF94, Merck Molecular Force Field 94
- PBMC, peripheral blood mononuclear cells
- TDO, tryptophan 2,3-dioxygenase
- Treg, regulatory T-cells
Collapse
Affiliation(s)
- Veronika Temml
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy, CCB Innrain 80/82, Innsbruck 6020, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Iachininoto MG, Nuzzolo ER, Bonanno G, Mariotti A, Procoli A, Locatelli F, Cristofaro RD, Rutella S. Cyclooxygenase-2 (COX-2) inhibition constrains indoleamine 2,3-dioxygenase 1 (IDO1) activity in acute myeloid leukaemia cells. Molecules 2013; 18:10132-45. [PMID: 23973990 PMCID: PMC6270179 DOI: 10.3390/molecules180910132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/01/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) metabolizes L-tryptophan to kynurenines (KYN), inducing T-cell suppression either directly or by altering antigen-presenting-cell function. Cyclooxygenase (COX)-2, the rate-limiting enzyme in the synthesis of prostaglandins, is over-expressed by several tumours. We aimed at determining whether COX-2 inhibitors down-regulate the IFN-g-induced expression of IDO1 in acute myeloid leukaemia (AML) cells. IFN-γ at 100 ng/mL up-regulated COX-2 and IDO1 in HL-60 AML cells, both at mRNA and protein level. The increased COX-2 and IDO1 expression correlated with heightened production of prostaglandin (PG)E₂ and kynurenines, respectively. Nimesulide, a preferential COX-2 inhibitor, down-regulated IDO1 mRNA/protein and attenuated kynurenine synthesis, suggesting that overall IDO inhibition resulted both from reduced IDO1 gene transcription and from inhibited IDO1 catalytic activity. From a functional standpoint, IFN-g-challenged HL-60 cells promoted the in vitro conversion of allogeneic CD4⁺CD25⁻ T cells into bona fide CD4⁺CD25⁺FoxP3⁺ regulatory T cells, an effect that was significantly reduced by treatment of IFN-γ-activated HL-60 cells with nimesulide. Overall, these data point to COX-2 inhibition as a potential strategy to be pursued with the aim at circumventing leukaemia-induced, IDO-mediated immune dysfunction.
Collapse
Affiliation(s)
- Maria Grazia Iachininoto
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Eugenia Rosa Nuzzolo
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Giuseppina Bonanno
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Andrea Mariotti
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Annabella Procoli
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
- Department of Pediatrics, University of Pavia, Strada Nuova 65, 27100 Pavia, Italy
| | - Raimondo De Cristofaro
- Department of Medicine and Geriatrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mail:
| | - Sergio Rutella
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
| |
Collapse
|
40
|
Jusof FF, Khaw LT, Ball HJ, Hunt NH. Improved spectrophotometric human interferon-gamma bioassay. J Immunol Methods 2013; 394:115-20. [DOI: 10.1016/j.jim.2013.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 11/12/2022]
|
41
|
Immunomodulatory effects in vitro of vitamin K antagonist acenocoumarol. Thromb Res 2013; 131:e264-9. [DOI: 10.1016/j.thromres.2013.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 02/04/2023]
|
42
|
Collino S, Montoliu I, Martin FPJ, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 2013; 8:e56564. [PMID: 23483888 PMCID: PMC3590212 DOI: 10.1371/journal.pone.0056564 10.1371/annotation/5fb9fa6f-4889-4407-8430-6dfc7ecdfbdd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic (1)H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.
Collapse
Affiliation(s)
- Sebastiano Collino
- Proteomics and Metabonomics, Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Collino S, Montoliu I, Martin FPJ, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 2013; 8:e56564. [PMID: 23483888 PMCID: PMC3590212 DOI: 10.1371/journal.pone.0056564] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022] Open
Abstract
The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic 1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.
Collapse
Affiliation(s)
- Sebastiano Collino
- Proteomics and Metabonomics, Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schaefer M, Capuron L, Friebe A, Diez-Quevedo C, Robaeys G, Neri S, Foster GR, Kautz A, Forton D, Pariante CM. Hepatitis C infection, antiviral treatment and mental health: a European expert consensus statement. J Hepatol 2012; 57:1379-90. [PMID: 22878466 DOI: 10.1016/j.jhep.2012.07.037] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 02/09/2023]
Abstract
Mental health problems frequently occur in chronic infection with the hepatitis C virus (HCV) and during antiviral treatment with pegylated interferon-alpha (PegIFNα) and ribavirin. Depression is one of the most important complications during antiviral treatment of chronic hepatitis C infection. However, an increased prevalence of depression, fatigue, and cognitive disturbances has also been reported in untreated HCV-positive patients. Patients with psychiatric disorders or drug addiction also have an increased risk of HCV infection. Furthermore, because of possible drug-drug interactions, new antivirals administered together with PegIFNα and ribavirin may complicate psychiatric side effect management, even if no specific psychiatric adverse events are known so far for these new drugs. The European liver patient's organization (ELPA) organised a European expert conference to review the literature and develop expert recommendations for the management of mental health problems in HCV infected patients. This paper results from the output of the 2011 EASL meeting and subsequent dialogue with patient groups and relevant experts in Europe. It summarises the current knowledge of HCV infection and the brain; prevalence, course, and neurobiology of IFN-α associated psychiatric side effects; possible risk factors for IFN-α associated depression and suicide attempts; psychiatric management of HCV infected patients before and during antiviral treatment; prevention of IFN- α associated psychiatric side effects; and psychiatric aspects of the new antivirals. The summarised current knowledge about mental health changes before and during antiviral treatment should improve interdisciplinary management of HCV infected patients.
Collapse
Affiliation(s)
- Martin Schaefer
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barth H, Raghuraman S. Persistent infectious diseases say - IDO. Role of indoleamine-2,3-dioxygenase in disease pathogenesis and implications for therapy. Crit Rev Microbiol 2012; 40:360-8. [PMID: 23174025 DOI: 10.3109/1040841x.2012.742037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Indoleamine-2,3-dioxygenase (IDO) is an enzyme that catabolises tryptophan - an essential amino acid critical for T cell proliferation. Initially recognized as a first line of host defense against infectious pathogens, IDO has been subsequently identified as an important immune-regulator inhibiting T-cell responses and promoting immune tolerance. Research over the past few years has demonstrated a crucial role for IDO in the pathogenesis of persistent infections that place an enormous burden on public health. In this review, we summarize current knowledge about IDO's role in causing pathogen persistence and progression to clinical disease. We conclude with a perspective on the potential benefits and risks of therapeutic IDO manipulation.
Collapse
|
46
|
The alternative translational profile that underlies the immune-evasive state of persistence in Chlamydiaceae exploits differential tryptophan contents of the protein repertoire. Microbiol Mol Biol Rev 2012; 76:405-43. [PMID: 22688818 DOI: 10.1128/mmbr.05013-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One form of immune evasion is a developmental state called "persistence" whereby chlamydial pathogens respond to the host-mediated withdrawal of L-tryptophan (Trp). A sophisticated survival mode of reversible quiescence is implemented. A mechanism has evolved which suppresses gene products necessary for rapid pathogen proliferation but allows expression of gene products that underlie the morphological and developmental characteristics of persistence. This switch from one translational profile to an alternative translational profile of newly synthesized proteins is proposed to be accomplished by maximizing the Trp content of some proteins needed for rapid proliferation (e.g., ADP/ATP translocase, hexose-phosphate transporter, phosphoenolpyruvate [PEP] carboxykinase, the Trp transporter, the Pmp protein superfamily for cell adhesion and antigenic variation, and components of the cell division pathway) while minimizing the Trp content of other proteins supporting the state of persistence. The Trp starvation mechanism is best understood in the human-Chlamydia trachomatis relationship, but the similarity of up-Trp and down-Trp proteomic profiles in all of the pathogenic Chlamydiaceae suggests that Trp availability is an underlying cue relied upon by this family of pathogens to trigger developmental transitions. The biochemically expensive pathogen strategy of selectively increased Trp usage to guide the translational profile can be leveraged significantly with minimal overall Trp usage by (i) regional concentration of Trp residue placements, (ii) amplified Trp content of a single protein that is required for expression or maturation of multiple proteins with low Trp content, and (iii) Achilles'-heel vulnerabilities of complex pathways to high Trp content of one or a few enzymes.
Collapse
|
47
|
Slavica L, Nurkkala-Karlsson M, Karlson T, Ingelsten M, Nyström J, Eriksson K. Indoleamine 2,3-dioxygenase expression and functional activity in dendritic cells exposed to cholera toxin. Scand J Immunol 2012; 76:113-22. [PMID: 22519828 DOI: 10.1111/j.1365-3083.2012.02713.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-metabolizing enzyme expressed by dendritic cells (DC), has the potential to inhibit T cell responses and to promote tolerance. In contrast, cholera toxin (CT), the enterotoxin produced by Vibrio cholerae, promotes T cell responses, partly through its ability to induce DC maturation and promote antigen presentation. We hypothesized that the adjuvant activity of CT is associated with a lack of induction of IDO in DC. To test this hypothesis, monocyte-derived DC were pulsed with CT, and the IDO mRNA expression, IDO functional activity and cytokine production were measured as well as the ability of DC to induce T cell responses in vitro. Cholera toxin exposure induced enhanced levels of IDO mRNA in DC but no functional IDO protein activity. Cholera toxin pulsing however primed DC for CD40L-induced IDO protein activity. CD40L stimulation of CT-pulsed DC induced a modest IL-12p40 production, but not IL-12p70 or IL-23 secretion. Furthermore, CT-pulsed DC induced strong allogeneic and autologous T cell responses in vitro, which were not affected by the IDO-specific inhibitor 1-methyl tryptophan. Our results show that CT per se does not induce the expression of functional IDO protein, although it primes DC for CD40L-mediated IDO production and IL-12p40 secretion. Furthermore, CT-treated DC were equally powerful in their T cell stimulatory capacity as cytokine-matured DC.
Collapse
Affiliation(s)
- L Slavica
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Celecoxib enhances the effect of reboxetine and fluoxetine on cortical noradrenaline and serotonin output in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:143-8. [PMID: 22691715 DOI: 10.1016/j.pnpbp.2012.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 06/03/2012] [Indexed: 12/21/2022]
Abstract
A substantial number of patients with major depressive disorder (MDD) do not respond adequately to current antidepressant pharmacological treatments, which are all more or less based on a gradually increased enhancement of monoaminergic neurotransmission. Although a functional deficiency in monoaminergic neurotransmission may contribute to MDD, the etiology and pathophysiology are far from clarified. Recent studies suggest that inflammatory processes may contribute, since increased levels of pro-inflammatory cytokines and prostaglandin E(2) (PGE(2)) have repeatedly been observed in a subset of patients suffering from MDD. Interestingly, adjunct treatment with the anti-inflammatory drug celecoxib, a cyclo-oxygenase-2 (COX-2) inhibitor which blocks the PGE(2)-production, has shown to enhance the efficacy of both reboxetine, a selective noradrenaline reuptake inhibitor, as well as fluoxetine, a selective serotonin reuptake inhibitor, in treatment-resistant depression. To examine the neurobiological underpinnings to the clinical observations, we here studied the acute effects of a combined treatment with celecoxib and reboxetine on noradrenaline and dopamine output, as well as celecoxib and fluoxetine on 5-HT output in the medial prefrontal cortex, using in vivo microdialysis in awake freely moving rats. Celecoxib significantly potentiated the effects of reboxetine and fluoxetine on cortical noradrenaline and 5-HT output, respectively, but not the reboxetine-induced dopamine output. Moreover, celecoxib, when given alone, enhanced 5-HT output. These findings provide, in principle, novel experimental support for the clinical utility of combined treatment with antidepressant and anti-inflammatory drugs, such as COX-2 inhibitors, in MDD.
Collapse
|
49
|
Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev 2012; 112:5949-66. [PMID: 22991938 DOI: 10.1021/cr300174a] [Citation(s) in RCA: 513] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meggie Hakim
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest 2012; 41:635-57. [PMID: 23017139 DOI: 10.3109/08820139.2012.695417] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are critical mediators of tumor-associated immune suppression, with their numbers and activity strongly increased in most human cancers and animal models. MDSCs suppress anti-tumor immunity through multiple mechanisms, including the manipulation of arginine and tryptophan metabolism by such factors as arginase (Arg), inducible nitric oxide synthase (iNOS/NOS2), and indoleamine-2,3-dioxygenase (IDO). Prostaglandin E(2) (PGE(2)), a mediator of chronic inflammation and tumor progression, has emerged as a key molecule in MDSC biology. PGE(2) promotes MDSC development and their induction by additional factors, directly suppresses T cell immune responses and participates in the induction of other MDSC-associated suppressive factors, including Arg, iNOS and IDO. It further promotes MDSC recruitment to tumor environments through the local induction of CXCL12/SDF-1 and the induction and stabilization of the CXCL12 receptor, CXCR4, on tumor-associated MDSCs. The establishment of a positive feedback loop between PGE(2) and cyclooxygenase 2 (COX-2), the key regulator of PGE(2) synthesis, stabilizes the MDSC phenotype and is required for their suppressive function. The central role of PGE(2) in MDSC biology provides for a feasible target for counteracting MDSC-mediated immune suppression in cancer.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Biotechnology, Jožef Stefan Institute, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|