1
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Singh R, Ramsuran V, Naranbhai V, Yende-Zuma N, Garrett N, Mlisana K, Dong KL, Walker BD, Abdool Karim SS, Carrington M, Ndung'u T. Epigenetic Regulation of BST-2 Expression Levels and the Effect on HIV-1 Pathogenesis. Front Immunol 2021; 12:669241. [PMID: 34025670 PMCID: PMC8131512 DOI: 10.3389/fimmu.2021.669241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
HIV-1 must overcome host antiviral restriction factors for efficient replication. We hypothesized that elevated levels of bone marrow stromal cell antigen 2 (BST-2), a potent host restriction factor that interferes with HIV-1 particle release in some human cells and is antagonized by the viral protein Vpu, may associate with viral control. Using cryopreserved samples, from HIV-1 seronegative and seropositive Black women, we measured in vitro expression levels of BST-2 mRNA using a real-time PCR assay and protein levels were validated by Western blotting. The expression level of BST-2 showed an association with viral control within two independent cohorts of Black HIV infected females (r=-0.53, p=0.015, [n =21]; and r=-0.62, p=0.0006, [n=28]). DNA methylation was identified as a mechanism regulating BST-2 levels, where increased BST-2 methylation results in lower expression levels and associates with worse HIV disease outcome. We further demonstrate the ability to regulate BST-2 levels using a DNA hypomethylation drug. Our results suggest BST-2 as a factor for potential therapeutic intervention against HIV and other diseases known to involve BST-2.
Collapse
Affiliation(s)
- Ravesh Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Vivek Naranbhai
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Mary Carrington
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
3
|
Evans N, Martinez E, Petrosillo N, Nichols J, Islam E, Pruitt K, Almodovar S. SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV AIDS (Auckl) 2021; 13:361-375. [PMID: 33833585 PMCID: PMC8020331 DOI: 10.2147/hiv.s300055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Paramount efforts worldwide are seeking to increase understanding of the basic virology of SARS-CoV-2, characterize the spectrum of complications associated with COVID-19, and develop vaccines that can protect from new and recurrent infections with SARS-CoV-2. While we continue learning about this new virus, it is clear that 1) the virus is spread via the respiratory route, primarily by droplets and contact with contaminated surfaces and fomites, as well as by aerosol formation during invasive respiratory procedures; 2) the airborne route is still controversial; and 3) that those infected can spread the virus without necessarily developing COVID-19 (ie, asymptomatic). With the number of SARS-CoV-2 infections increasing globally, the possibility of co-infections and/or co-morbidities is becoming more concerning. Co-infection with Human Immunodeficiency Virus (HIV) is one such example of polyparasitism of interest. This military-themed comparative review of SARS-CoV-2 and HIV details their virology and describes them figuratively as separate enemy armies. HIV, an old enemy dug into trenches in individuals already infected, and SARS-CoV-2 the new army, attempting to attack and capture territories, tissues and organs, in order to provide resources for their expansion. This analogy serves to aid in discussion of three main areas of focus and draw attention to how these viruses may cooperate to gain the upper hand in securing a host. Here we compare their target, the key receptors found on those tissues, viral lifecycles and tactics for immune response surveillance. The last focus is on the immune response to infection, addressing similarities in cytokines released. While the majority of HIV cases can be successfully managed with antiretroviral therapy nowadays, treatments for SARS-CoV-2 are still undergoing research given the novelty of this army.
Collapse
Affiliation(s)
- Nicholas Evans
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Edgar Martinez
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Nicola Petrosillo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Jacob Nichols
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Ebtesam Islam
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| |
Collapse
|
4
|
Antiviral Activity and Adaptive Evolution of Avian Tetherins. J Virol 2020; 94:JVI.00416-20. [PMID: 32238588 DOI: 10.1128/jvi.00416-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.
Collapse
|
5
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
6
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proc Natl Acad Sci U S A 2019; 116:5705-5714. [PMID: 30842281 DOI: 10.1073/pnas.1819475116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.
Collapse
|
8
|
Modulation of the innate immune response by human cytomegalovirus. INFECTION GENETICS AND EVOLUTION 2018; 64:105-114. [DOI: 10.1016/j.meegid.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
9
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
10
|
Echebli N, Tchitchek N, Dupuy S, Bruel T, Peireira Bittencourt Passaes C, Bosquet N, Le Grand R, Bourgeois C, Favier B, Cheynier R, Lambotte O, Vaslin B. Stage-specific IFN-induced and IFN gene expression reveal convergence of type I and type II IFN and highlight their role in both acute and chronic stage of pathogenic SIV infection. PLoS One 2018; 13:e0190334. [PMID: 29324751 PMCID: PMC5764266 DOI: 10.1371/journal.pone.0190334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) play a major role in controlling viral infections including HIV/SIV infections. Persistent up-regulation of interferon stimulated genes (ISGs) is associated with chronic immune activation and progression in SIV/HIV infections, but the respective contribution of different IFNs is unclear. We analyzed the expression of IFN genes and ISGs in tissues of SIV infected macaques to understand the respective roles of type I and type II IFNs. Both IFN types were induced in lymph nodes during early stage of primary infection and to some extent in rectal biopsies but not in PBMCs. Induction of Type II IFN expression persisted during the chronic phase, in contrast to undetectable induction of type I IFN expression. Global gene expression analysis with a major focus on ISGs revealed that at both acute and chronic infection phases most differentially expressed ISGs were inducible by both type I and type II IFNs and displayed the highest increases, indicating strong convergence and synergy between type I and type II IFNs. The analysis of functional signatures of ISG expression revealed temporal changes in IFN expression patterns identifying phase-specific ISGs. These results suggest that IFN-γ strongly contribute to shape ISG upregulation in addition to type I IFN.
Collapse
Affiliation(s)
- Nadia Echebli
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Stéphanie Dupuy
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Timothée Bruel
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Caroline Peireira Bittencourt Passaes
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Benoit Favier
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Olivier Lambotte
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- APHP, Service de Médecine Interne–Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
11
|
Foster TL, Pickering S, Neil SJD. Inhibiting the Ins and Outs of HIV Replication: Cell-Intrinsic Antiretroviral Restrictions at the Plasma Membrane. Front Immunol 2018; 8:1853. [PMID: 29354117 PMCID: PMC5758531 DOI: 10.3389/fimmu.2017.01853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a perfect location for host antiviral restrictions that target enveloped viruses in general. In this review we will examine the current understanding of innate host antiviral defences that inhibit these essential replicative steps of primate lentiviruses associated with the plasma membrane, the mechanism by which these viruses have adapted to evade such defences, and the role that this virus/host battleground plays in the transmission and pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Toshana L Foster
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Hotter D, Kirchhoff F. Interferons and beyond: Induction of antiretroviral restriction factors. J Leukoc Biol 2017; 103:465-477. [PMID: 29345347 DOI: 10.1002/jlb.3mr0717-307r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
Antiviral restriction factors are structurally and functionally diverse cellular proteins that play a key role in the first line of defense against viral pathogens. Although many cell types constitutively express restriction factors at low levels, their induction in response to viral exposure and replication is often required for potent control and repulse of the invading pathogens. It is well established that type I IFNs efficiently induce antiviral restriction factors. Accumulating evidence suggests that other types of IFN, as well as specific cytokines, such as IL-27, and other activators of the cell are also capable of enhancing the expression of restriction factors and hence to establish an antiviral cellular state. Agents that efficiently induce restriction factors, increase their activity, and/or render them resistant against viral antagonists without causing general inflammation and significant side effects hold some promise for novel therapeutic or preventive strategies. In the present review, we summarize some of the current knowledge on the induction of antiretroviral restriction factors and perspectives for therapeutic application.
Collapse
Affiliation(s)
- Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
13
|
Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity. J Virol 2017; 92:JVI.01531-17. [PMID: 29046453 DOI: 10.1128/jvi.01531-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that counteract the host innate immune response to facilitate efficient viral replication. CoV nonstructural protein 14 (nsp14) encodes 3'-to-5' exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order Nidovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade double-stranded RNA (dsRNA) replication intermediates. In this study, we tested the hypothesis that CoV ExoN also functions to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-β) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor-deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-β gene expression, and in the presence of an IFN-β-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to those of untreated samples. However, ExoN(-) virus generated from IFN-β-pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest murine hepatitis virus (MHV) ExoN activity is required for resistance to the innate immune response, and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity.IMPORTANCE CoVs encode multiple antagonists that prevent or disrupt an efficient innate immune response. Additionally, no specific antiviral therapies or vaccines currently exist for human CoV infections. Therefore, the study of CoV innate immune antagonists is essential for understanding how CoVs overcome host defenses and to maximize potential therapeutic interventions. Here, we sought to determine the contributions of nsp14 ExoN activity in the induction of and resistance to the innate immune response. We show that viruses lacking nsp14 ExoN activity are more sensitive than wild-type MHV to restriction by exogenous IFN-β and that viruses produced in the presence of an antiviral state are less capable of establishing a subsequent viral infection. Our results support the hypothesis that murine hepatitis virus ExoN activity is required for resistance to the innate immune response.
Collapse
|
14
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|
15
|
Forlani G, Tosi G, Turrini F, Poli G, Vicenzi E, Accolla RS. Tripartite Motif-Containing Protein 22 Interacts with Class II Transactivator and Orchestrates Its Recruitment in Nuclear Bodies Containing TRIM19/PML and Cyclin T1. Front Immunol 2017; 8:564. [PMID: 28555140 PMCID: PMC5430032 DOI: 10.3389/fimmu.2017.00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023] Open
Abstract
Among interferon (IFN) inducible antiviral factors both tripartite motif-containing protein 22 (TRIM22) and class II transactivator (CIITA) share the capacity of repressing human immunodeficiency virus type 1 (HIV-1) proviral transcription. TRIM22 is constitutively expressed in a subset of U937 cell clones poorly permissive to HIV-1 replication, whereas CIITA has been shown to inhibit virus multiplication in both T lymphocytic and myeloid cells, including poorly HIV-1 permissive U937 cells, by suppressing Tat-mediated transactivation of HIV-1 transcription. Therefore, we tested whether TRIM22 and CIITA could form a nuclear complex potentially endowed with HIV-1 repressive functions. Indeed, we observed that TRIM22, independent of its E3 ubiquitin ligase domain, interacts with CIITA and promotes its recruitment into nuclear bodies. Importantly, TRIM19/promyelocytic leukemia (PML) protein, another repressor of HIV-1 transcription also acting before proviral integration, colocalize in these nuclear bodies upon TRIM22 expression induced by IFN-γ. Finally, tTRIM22 nuclear bodies also contained CyclinT1, a crucial elongation factor of HIV-1 primary transcripts. These findings show that TRIM22 nuclear bodies are a site of recruitment of factors crucial for the regulation of HIV-1 transcription and highlight the potential existence of a concerted action between TRIM22, CIITA, and TRIM19/PML to maintain a state of proviral latency, at least in myeloid cells.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanna Tosi
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Filippo Turrini
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Roberto S Accolla
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
16
|
The Envelope Gene of Transmitted HIV-1 Resists a Late Interferon Gamma-Induced Block. J Virol 2017; 91:JVI.02254-16. [PMID: 28100611 PMCID: PMC5355616 DOI: 10.1128/jvi.02254-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFN-γ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFN-γ stimulation can induce an antiviral state that can be both distinct from that of type I interferon and can potently inhibit HIV-1 in primary CD4+ T cells and a number of human cell lines. Strikingly, we find that transmitted/founder (TF) HIV-1 viruses can resist a late block that is induced by type II IFN, and the use of chimeric IFN-γ-sensitive/resistant viruses indicates that interferon resistance maps to the env gene. Simultaneously, in vitro evolution also revealed that just a single amino acid substitution in the envelope can confer substantial resistance to IFN-mediated inhibition. Thus, the env gene of transmitted HIV-1 confers resistance to a late block that is phenotypically distinct from blocks previously described to be resisted by env and is therefore mediated by unknown IFN-γ-stimulated factor(s) in human CD4+ T cells and cell lines. This important unidentified block could play a key role in constraining HIV-1 transmission. IMPORTANCE The human immune system can hinder invading pathogens through interferon (IFN) signaling. One consequence of this signaling is that cells enter an antiviral state, increasing the levels of hundreds of defenses that can inhibit the replication and spread of viruses. The majority of HIV-1 infections result from a single virus particle (the transmitted/founder) that makes it past these defenses and colonizes the host. Thus, the founder virus is hypothesized to be a relatively interferon-resistant entity. Here, we show that certain HIV-1 envelope genes have the unanticipated ability to resist specific human defenses mediated by different types of interferons. Strikingly, the envelope gene from a founder HIV-1 virus is far better at evading these defenses than the corresponding gene from a common HIV-1 lab strain. Thus, these defenses could play a role in constraining the transmission of HIV-1 and may select for transmitted viruses that are resistant to this IFN-mediated inhibition.
Collapse
|
17
|
Neil SJD. Exercising Restraint. Cell Host Microbe 2017; 21:274-277. [PMID: 28279329 DOI: 10.1016/j.chom.2017.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ten years ago, while in Paul Bieniasz's group, I determined that an interferon-induced antiviral activity inhibited the release of enveloped viruses by tethering them to the plasma membrane of infected cells. This commentary examines the lead up to this study and how our observations led to the identification of tetherin.
Collapse
Affiliation(s)
- Stuart J D Neil
- Department of Infectious Disease, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
18
|
Corleis B, Lisanti AC, Körner C, Schiff AE, Rosenberg ES, Allen TM, Altfeld M, Kwon DS. Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection. PLoS One 2017; 12:e0173161. [PMID: 28253319 PMCID: PMC5333889 DOI: 10.1371/journal.pone.0173161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
HIV-1 is able to evade innate antiviral responses during acute infection to establish a chronic systemic infection which, in the absence of antiretroviral therapy (ART), typically progresses to severe immunodeficiency. Understanding these early innate immune responses against HIV-1 and their mechanisms of failure is relevant to the development of interventions to better prevent HIV-1 transmission. Human beta defensins (HBDs) are antibacterial peptides but have recently also been associated with control of viral replication. HBD1 and 2 are expressed in PBMCs as well as intestinal tissue, but their expression in vivo during HIV-1 infection has not been characterized. We demonstrate that during acute HIV-1 infection, HBD1 but not HBD2 is highly upregulated in circulating monocytes but returns to baseline levels during chronic infection. HBD1 expression in monocytes can be induced by HIV-1 in vitro, although direct infection may not entirely account for the increase in HBD1 during acute infection. We provide evidence that HIV-1 triggers antiviral IFN-α responses, which act as a potent inducer of HBD1. Our results show the first characterization of induction of an HBD during acute and chronic viral infection in humans. HBD1 has been reported to have low activity against HIV-1 compared to other defensins, suggesting that in vivo induced defensins may not significantly contribute to the robust early antiviral response against HIV-1. These data provide important insight into the in vivo kinetics of HBD expression, the mechanism of HBD1 induction by HIV-1, and the role of HBDs in the early innate response to HIV-1 during acute infection.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonella C. Lisanti
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail E. Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric S. Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Vanwalscappel B, Rato S, Perez-Olmeda M, Díez Fuertes F, Casartelli N, Alcami J, Mammano F. Genetic and phenotypic analyses of sequential vpu alleles from HIV-infected IFN-treated patients. Virology 2016; 500:247-258. [PMID: 27855354 DOI: 10.1016/j.virol.2016.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
Treatment of HIV-infected patients with IFN-α results in significant, but clinically insufficient, reductions of viremia. IFN induces the expression of several antiviral proteins including BST-2, which inhibits HIV by multiple mechanisms. The viral protein Vpu counteracts different effects of BST-2. We thus asked if Vpu proteins from IFN-treated patients displayed improved anti-BST-2 activities as compared to Vpu from baseline. Deep-sequencing analyses revealed that in five of seven patients treated by IFN-α for a concomitant HCV infection in the absence of antiretroviral drugs, the dominant Vpu sequences differed before and during treatment. In three patients, vpu alleles that emerged during treatment improved virus replication in the presence of IFN-α, and two of them conferred improved virus budding from cells expressing BST-2. Differences were observed for the ability to down-regulate CD4, while all Vpu variants potently down-modulated BST-2 from the cell surface. This report discloses relevant consequences of IFN-treatment on HIV properties.
Collapse
Affiliation(s)
- Bénédicte Vanwalscappel
- INSERM, U941, Paris F-75010, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75475 Paris, France
| | | | - Mayte Perez-Olmeda
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - José Alcami
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
| | - Fabrizio Mammano
- INSERM, U941, Paris F-75010, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75475 Paris, France.
| |
Collapse
|
20
|
Landolfo S, De Andrea M, Dell’Oste V, Gugliesi F. Intrinsic host restriction factors of human cytomegalovirus replication and mechanisms of viral escape. World J Virol 2016; 5:87-96. [PMID: 27563536 PMCID: PMC4981826 DOI: 10.5501/wjv.v5.i3.87] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
Before a pathogen even enters a cell, intrinsic immune defenses are active. This first-line defense is mediated by a variety of constitutively expressed cell proteins collectively termed “restriction factors” (RFs), and they form a vital element of the immune response to virus infections. Over time, however, viruses have evolved in a variety ways so that they are able to overcome these RF defenses via mechanisms that are specific for each virus. This review provides a summary of the universal characteristics of RFs, and goes on to focus on the strategies employed by some of the most important RFs in their attempt to control human cytomegalovirus (HCMV) infection. This is followed by a discussion of the counter-restriction mechanisms evolved by viruses to circumvent the host cell’s intrinsic immune defenses. RFs include nuclear proteins IFN-γ inducible protein 16 (IFI16) (a Pyrin/HIN domain protein), Sp100, promyelocytic leukemia, and hDaxx; the latter three being the keys elements of nuclear domain 10 (ND10). IFI16 inhibits the synthesis of virus DNA by down-regulating UL54 transcription - a gene encoding a CMV DNA polymerase; in response, the virus antagonizes IFI16 via a process involving viral proteins UL97 and pp65 (pUL83), which results in the mislocalizing of IFI16 into the cytoplasm. In contrast, viral regulatory proteins, including pp71 and IE1, seek to modify or disrupt the ND10 proteins and thus block or reverse their inhibitory effects upon virus replication. All in all, detailed knowledge of these HCMV counter-restriction mechanisms will be fundamental for the future development of new strategies for combating HCMV infection and for identifying novel therapeutic agents.
Collapse
|
21
|
Wilkins J, Zheng YM, Yu J, Liang C, Liu SL. Nonhuman Primate IFITM Proteins Are Potent Inhibitors of HIV and SIV. PLoS One 2016; 11:e0156739. [PMID: 27257969 PMCID: PMC4892622 DOI: 10.1371/journal.pone.0156739] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins are potent antiviral factors shown to restrict the infection of many enveloped viruses, including HIV. Here we report cloning and characterization of a panel of nonhuman primate IFITMs. We show that, similar to human IFITM, nonhuman primate IFITM proteins inhibit HIV and other primate lentiviruses. While some nonhuman primate IFITM proteins are more potent than human counterparts to inhibit HIV-1, they are generally not effective against HIV-2 similar to that of human IFITMs. Notably, depending on SIV strains and also IFITM species tested, nonhuman primate IFITM proteins exhibit distinct activities against SIVs; no correlation was found to support the notion that IFITM proteins are most active in non-natural primate hosts. Consistent with our recent findings for human IFITMs, nonhuman primate IFITM proteins interact with HIV-1 Env and strongly act in viral producer cells to impair viral infectivity and block cell-to-cell transmission. Accordingly, knockdown of primate IFITM3 increases HIV-1 replication in nohuman primate cells. Interestingly, analysis of DNA sequences of human and nonhuman primate IFITMs suggest that IFITM proteins have been undergoing purifying selection, rather than positive selection typical for cellular restriction factors. Overall, our study reveals some new and unexpected features of IFITMs in restricting primate lentiviruses, which enhances our understanding of virus-host interaction and AIDS pathogenesis.
Collapse
Affiliation(s)
- Jordan Wilkins
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Yi-Min Zheng
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jingyou Yu
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Shan-Lu Liu
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE, Dryden KA, Pornillos O, Yeager M, Ganser-Pornillos BK, Jensen GJ, Sundquist WI. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 2016; 5. [PMID: 27253068 PMCID: PMC4936896 DOI: 10.7554/elife.16269] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/19/2016] [Indexed: 12/04/2022] Open
Abstract
TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI:http://dx.doi.org/10.7554/eLife.16269.001 After infecting a cell, a virus reproduces by forcing the cell to produce new copies of the virus, which then spread to other cells. However, cells have evolved ways to fight back against these infections. For example, many mammalian cells contain proteins called restriction factors that prevent the virus from multiplying. The TRIM5 proteins form one common set of restriction factors that act against a class of viruses called retroviruses. HIV-1 and related retroviruses have a protein shell known as a capsid that surrounds the genetic material of the virus. The capsid contains several hundred repeating units, each of which consists of a hexagonal ring of six CA proteins. Although this basic pattern is maintained across different retroviruses, the overall shape of the capsids can vary considerably. For instance, HIV-1 capsids are shaped like a cone, but other retroviruses can form cylinders or spheres. Soon after the retrovirus enters a mammalian cell, TRIM5 proteins bind to the capsid. This causes the capsid to be destroyed, which prevents viral replication. Previous research has shown that several TRIM5 proteins must link up with each other via a region of their structure called the B-box 2 domain in order to efficiently recognize capsids. How this assembly process occurs, and why it enables the TRIM5 proteins to recognize different capsids was not fully understood. Now, Li, Chandrasekaran et al. (and independently Wagner et al.) have investigated these questions. Using biochemical analyses and electron microscopy, Li, Chandrasekaran et al. found that TRIM5 proteins can bind directly to the surface of HIV-1 capsids. Several TRIM5 proteins link together to form large hexagonal nets, in which the B-box domains of the proteins are found at the points where three TRIM5 proteins meet. This arrangement mimics the pattern present in the HIV-1 capsid, and just a few TRIM5 rings can cover most of the capsid. Li, Chandrasekaran et al. then analysed TRIM5 proteins from several primates, including rhesus macaques, African green monkeys and chimpanzees. In all cases analyzed, the TRIM5 proteins assembled into hexagonal nets, although the individual units within the net did not have strictly regular shapes. These results suggest that TRIM5 proteins assemble a scaffold that can deform to match the pattern of the proteins in the capsid. Further work is now needed to understand how capsid recognition is linked to the processes that disable the virus. DOI:http://dx.doi.org/10.7554/eLife.16269.002
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | | | - Stephen D Carter
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Devin E Christensen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Kelly A Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, United States
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
23
|
Remion A, Delord M, Hance AJ, Saragosti S, Mammano F. Kinetics of the establishment of HIV-1 viral interference and comprehensive analysis of the contribution of viral genes. Virology 2015; 487:59-67. [PMID: 26499042 DOI: 10.1016/j.virol.2015.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/01/2015] [Accepted: 09/26/2015] [Indexed: 10/22/2022]
Abstract
Viral interference defines the reduced susceptibility of an infected cell to reinfection. For HIV-1, both receptor-dependent and independent pathways were described. The relative importance of different receptor-independent pathways has not been addressed. We have used reporter viruses to quantify the percentage of single- and double-infected cells, as a function of the delay between the two infections. For co-infection experiments, the frequency of double infected cells was higher than expected for independent events. By delaying the second infection, this frequency progressively diminished, resulting in significant interference after 18h. Interference measured here was largely receptor-independent. By individually deleting viral genes or expressing them in isolation, we demonstrate that the viral protein Rev plays a dominant role, while other viral proteins contributes to optimal interference. Our study defines the kinetics of early HIV-1 interference, describing the transition from higher susceptibility to double-infection to viral interference, and identifies Rev as its dominant effector.
Collapse
Affiliation(s)
- Azaria Remion
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Allan J Hance
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Sentob Saragosti
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Fabrizio Mammano
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
24
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
25
|
Zahoor MA, Xue G, Sato H, Aida Y. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells. Virus Res 2015; 208:156-63. [PMID: 26116899 DOI: 10.1016/j.virusres.2015.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Guangai Xue
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan; Japanese Foundation of AIDS Prevention, Tokyo, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
26
|
McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Götz N, Heilmann J, Mack K, Sauter D, Thompson D, Perreaud J, Rausell A, Munoz M, Ciuffi A, Kirchhoff F, Telenti A. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12:41. [PMID: 25980612 PMCID: PMC4434878 DOI: 10.1186/s12977-015-0165-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. Results Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. Conclusions A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0165-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul J McLaren
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland.
| | - Ali Gawanbacht
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nitisha Pyndiah
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Christian Krapp
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nicola Götz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Jessica Heilmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Mack
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Danielle Thompson
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Jérémie Perreaud
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Antonio Rausell
- Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland. .,Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Miguel Munoz
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | | |
Collapse
|
27
|
Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? Nat Rev Microbiol 2015; 13:403-13. [PMID: 25915633 DOI: 10.1038/nrmicro3449] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of interferons (IFNs) to inhibit HIV-1 replication in cell culture models has long been recognized, and the therapeutic administration of IFNα to HIV-1-infected patients who are not receiving antiretroviral therapy produces a clear but transient decrease in plasma viral load. Conversely, studies of chronic HIV-1 infection in humans and SIV-infected animal models of AIDS show positive correlations between elevated plasma levels of IFNs, increased expression of IFN-stimulated genes (ISGs), biomarkers of inflammation and disease progression. In this Review, we discuss the evidence that IFNs can control HIV-1 replication in vivo and debate the controversial role of IFNs in promoting the pathological sequelae of chronic HIV-1 infection.
Collapse
Affiliation(s)
- Tomas Doyle
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
28
|
Acchioni C, Marsili G, Perrotti E, Remoli AL, Sgarbanti M, Battistini A. Type I IFN--a blunt spear in fighting HIV-1 infection. Cytokine Growth Factor Rev 2014; 26:143-58. [PMID: 25466629 DOI: 10.1016/j.cytogfr.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
For more than 50 years, Type I Interferon (IFN) has been recognized as critical in controlling viral infections. IFN is produced downstream germ-line encoded pattern recognition receptors (PRRs) upon engagement by pathogen-associated molecular patterns (PAMPs). As a result, hundreds of different interferon-stimulated genes (ISGs) are rapidly induced, acting in both autocrine and paracrine manner to build a barrier against viral replication and spread. ISGs encode proteins with direct antiviral and immunomodulatory activities affecting both innate and adaptive immune responses. During infection with viruses, as HIV-1, that can establish a persistent infection, IFN although produced, is not able to block the initial infection and a chronic IFN-mediated immune activation/inflammation becomes a pathogenic mechanism of disease progression. This review will briefly summarize when and how IFN is produced during HIV-1 infection and the way this innate immune response is manipulated by the virus to its own advantage to drive chronic immune activation and progression to AIDS.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Giulia Marsili
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Edvige Perrotti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Marco Sgarbanti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
29
|
van Montfoort N, Olagnier D, Hiscott J. Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 2014; 25:657-68. [PMID: 25240798 DOI: 10.1016/j.cytogfr.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retroviruses can selectively trigger an array of innate immune responses through various PRR. The identification and the characterization of the molecular basis of retroviral DNA sensing by the DNA sensors IFI16 and cGAS has been one of the most exciting developments in viral immunology in recent years. DNA sensing by these cytosolic sensors not only leads to the initiation of the type I interferon (IFN) antiviral response and the induction of the inflammatory response, but also triggers cell death mechanisms including pyroptosis and apoptosis in retrovirus-infected cells, thereby providing important insights into the pathophysiology of chronic retroviral infection. Host restriction factors such as SAMHD1 and Trex1 play important roles in regulating innate immune sensing, and have led to the idea that innate immune defense and host restriction actually converge at different levels to determine the outcome of retroviral infection. In this review, we discuss the sensing of retroviruses by cytosolic DNA sensors, the relevance of host factors during retroviral infection, and the interplay between host factors and the innate antiviral response in different cell types, within the context of two human pathogenic retroviruses - human immunodeficiency virus (HIV-1) and human T cell-leukemia virus type I (HTLV-1).
Collapse
Affiliation(s)
- Nadine van Montfoort
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
30
|
Otsuki H, Yoneda M, Igarashi T, Miura T. Generation of a monkey-tropic human immunodeficiency virus type 1 carrying env from a CCR5-tropic subtype C clinical isolate. Virology 2014; 460-461:1-10. [PMID: 25010265 DOI: 10.1016/j.virol.2014.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 04/25/2014] [Indexed: 02/03/2023]
Abstract
Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that differs from CCR5 used by most currently circulating HIV-1 strains. We generated a new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical isolate. Using intracellular homologous recombination, we generated an uncloned chimeric virus consisting of at least seven types of recombination breakpoints in the region between vpr and env. The virus increased its replication capacity while maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM infection with the adapted virus exhibited high peak viremia levels in plasma while the virus was undetectable at 12-16 weeks. This virus serves as starting point for generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, perhaps through serial passage in macaques.
Collapse
Affiliation(s)
- Hiroyuki Otsuki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mai Yoneda
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
31
|
Landolfo S, Andrea MD, Gariglio M. Restriction factors against human CMV. Future Virol 2014. [DOI: 10.2217/fvl.14.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular proteins called 'restriction factors' (RFs) form an important component of the innate immune response to viral replication. However, viruses have learned how to antagonize RFs through mechanisms that are specific for each virus. Here, we summarize the general hallmarks of RFs before going on to discuss the specific strategies recruited by some key RFs that strive to hold human CMV (HCMV) infection back, as well as the counter-restriction mechanisms employed by the virus to overcome this innate defense. Such RFs include the cellular constituents of nuclear domain 10 (ND10), and IFI16, a nuclear member of the PYHIN protein family. Viral regulatory proteins, such as IE1 or pp71, try to oppose the ND10-induced blockade of virus replication by either modifying or disrupting this RF. IFI16, on the other hand, inhibits virus DNA synthesis by downregulating the transcription of viral gene UL54; the intruding virus attempts to antagonize IFI16 by mislocalizing it from the nucleus to the cytoplasm via the action of viral protein UL97. Finally, we consider how Viperin, a RF initially thought to inhibit HCMV maturation late during infection, has actually been demonstrated to enhance virus maturation by increasing lipid metabolism and enhancing virus envelopment.
Collapse
Affiliation(s)
- Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| |
Collapse
|
32
|
|
33
|
Abdel-Mohsen M, Deng X, Liegler T, Guatelli JC, Salama MS, Ghanem HEDA, Rauch A, Ledergerber B, Deeks SG, Günthard HF, Wong JK, Pillai SK. Effects of alpha interferon treatment on intrinsic anti-HIV-1 immunity in vivo. J Virol 2014; 88:763-7. [PMID: 24155399 PMCID: PMC3911728 DOI: 10.1128/jvi.02687-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
Alpha interferon (IFN-α) suppresses human immunodeficiency virus type 1 (HIV-1) replication in vitro by inducing cell-intrinsic retroviral restriction mechanisms. We investigated the effects of IFN-α/ribavirin (IFN-α/riba) treatment on 34 anti-HIV-1 restriction factors in vivo. Expression of several anti-HIV-1 restriction factors was significantly induced by IFN-α/riba in HIV/hepatitis C virus (HCV)-coinfected individuals. Fold induction of cumulative restriction factor expression in CD4(+) T cells was significantly correlated with viral load reduction during IFN-α/riba treatment (r(2) = 0.649; P < 0.016). Exogenous IFN-α induces supraphysiologic restriction factor expression associated with a pronounced decrease in HIV-1 viremia.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - John C. Guatelli
- University of California, San Diego, La Jolla, California, and VA San Diego Healthcare System, San Diego, California, USA
| | | | | | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| | - Satish K. Pillai
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| |
Collapse
|
34
|
Jung J, Byeon IJL, DeLucia M, Koharudin LMI, Ahn J, Gronenborn AM. Binding of HIV-1 Vpr protein to the human homolog of the yeast DNA repair protein RAD23 (hHR23A) requires its xeroderma pigmentosum complementation group C binding (XPCB) domain as well as the ubiquitin-associated 2 (UBA2) domain. J Biol Chem 2013; 289:2577-88. [PMID: 24318982 DOI: 10.1074/jbc.m113.534453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human homolog of the yeast DNA repair protein RAD23, hHR23A, has been found previously to interact with the human immunodeficiency virus, type 1 accessory protein Vpr. hHR23A is a modular protein containing an N-terminal ubiquitin-like (UBL) domain and two ubiquitin-associated domains (UBA1 and UBA2) separated by a xeroderma pigmentosum complementation group C binding (XPCB) domain. All domains are connected by flexible linkers. hHR23A binds ubiquitinated proteins and acts as a shuttling factor to the proteasome. Here, we show that hHR23A utilizes both the UBA2 and XPCB domains to form a stable complex with Vpr, linking Vpr directly to cellular DNA repair pathways and their probable exploitation by the virus. Detailed structural mapping of the Vpr contacts on hHR23A, by NMR, revealed substantial contact surfaces on the UBA2 and XPCB domains. In addition, Vpr binding disrupts an intramolecular UBL-UBA2 interaction. We also show that Lys-48-linked di-ubiquitin, when binding to UBA1, does not release the bound Vpr from the hHR23A-Vpr complex. Instead, a ternary hHR23A·Vpr·di-Ub(K48) complex is formed, indicating that Vpr does not necessarily abolish hHR23A-mediated shuttling to the proteasome.
Collapse
Affiliation(s)
- Jinwon Jung
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | |
Collapse
|
35
|
Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J. SAMHD1 Host Restriction Factor: A Link with Innate Immune Sensing of Retrovirus Infection. J Mol Biol 2013; 425:4981-94. [DOI: 10.1016/j.jmb.2013.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023]
|
36
|
MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013; 502:563-6. [PMID: 24121441 DOI: 10.1038/nature12653] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/12/2013] [Indexed: 12/24/2022]
Abstract
HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-α at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-α. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.
Collapse
|
37
|
Krupp A, McCarthy KR, Ooms M, Letko M, Morgan JS, Simon V, Johnson WE. APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLoS Pathog 2013; 9:e1003641. [PMID: 24098115 PMCID: PMC3789815 DOI: 10.1371/journal.ppat.1003641] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/04/2013] [Indexed: 12/29/2022] Open
Abstract
Cellular restriction factors, which render cells intrinsically resistant to viruses, potentially impose genetic barriers to cross-species transmission and emergence of viral pathogens in nature. One such factor is APOBEC3G. To overcome APOBEC3G-mediated restriction, many lentiviruses encode Vif, a protein that targets APOBEC3G for degradation. As with many restriction factor genes, primate APOBEC3G displays strong signatures of positive selection. This is interpreted as evidence that the primate APOBEC3G locus reflects a long-term evolutionary “arms-race” between retroviruses and their primate hosts. Here, we provide direct evidence that APOBEC3G has functioned as a barrier to cross-species transmission, selecting for viral resistance during emergence of the AIDS-causing pathogen SIVmac in captive colonies of Asian macaques in the 1970s. Specifically, we found that rhesus macaques have multiple, functionally distinct APOBEC3G alleles, and that emergence of SIVmac and simian AIDS required adaptation of the virus to evade APOBEC3G-mediated restriction. Our evidence includes the first comparative analysis of APOBEC3G polymorphism and function in both a reservoir and recipient host species (sooty mangabeys and rhesus macaques, respectively), and identification of adaptations unique to Vif proteins of the SIVmac lineage that specifically antagonize rhesus APOBEC3G alleles. By demonstrating that interspecies variation in a known restriction factor selected for viral counter-adaptations in the context of a documented case of cross-species transmission, our results lend strong support to the evolutionary “arms-race” hypothesis. Importantly, our study confirms that APOBEC3G divergence can be a critical determinant of interspecies transmission and emergence of primate lentiviruses, including viruses with the potential to infect and spread in human populations. APOBEC3G is a host factor that can inhibit replication of primate lentiviruses, including HIV-1, HIV-2, and the related simian immunodeficiency viruses (SIVs) of African primates. As a consequence, primate lentiviruses encode a protein, called Vif, which can induce degradation of APOBEC3G. Given its antiviral role, APOBEC3G may be an important genetic barrier to interspecies jumping of primate lentiviruses. To study this possibility, we asked whether APOBEC3G affected transmission of SIV from sooty mangabeys (SIVsm) to rhesus macaques and subsequent emergence of pathogenic SIVmac in the 1970s. We found that APOBEC3G of sooty mangabeys and rhesus macaques have divergent protein sequences, and that the Vif proteins of SIVsm (Vif-SIVsm) cannot counteract rhesus macaque APOBEC3G. We mapped Vif-SIVsm resistance to a specific substitution in the N-terminal domain of rhesus APOBEC3G, in which a highly conserved tyrosine is replaced by leucine-arginine (Y→LR). We also identified a viral counter-adaptation, found in the Vif proteins of all SIVmac strains, which specifically confers the ability to antagonize APOBEC3G of rhesus macaques. This change was most likely selected during adaptation of SIV to its new host. Together, these results demonstrate that APOBEC3G can serve as a critical genetic determinant of interspecies transmission of primate immunodeficiency viruses.
Collapse
Affiliation(s)
- Annabel Krupp
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen and Nuremberg, Germany
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcel Ooms
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael Letko
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer S. Morgan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Welkin E. Johnson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mussil B, Suspène R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS One 2013; 8:e73641. [PMID: 23977391 PMCID: PMC3748023 DOI: 10.1371/journal.pone.0073641] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/21/2013] [Indexed: 01/14/2023] Open
Abstract
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | | | - Anne Gauvrit
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Misra A, Thippeshappa R, Kimata JT. Macaques as model hosts for studies of HIV-1 infection. Front Microbiol 2013; 4:176. [PMID: 23825473 PMCID: PMC3695370 DOI: 10.3389/fmicb.2013.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that the host range of primate lentiviruses is in part determined by their ability to counteract innate restriction factors that are effectors of the type 1 interferon (IFN-1) response. For human immunodeficiency virus type 1 (HIV-1), in vitro experiments have shown that its tropism may be narrow and limited to humans and chimpanzees because its replication in other non-human primate species is hindered by factors such as TRIM5α (tripartite motif 5 alpha), APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3), and tetherin. Based on these data, it has been hypothesized that primate lentiviruses will infect and replicate in a new species if they are able to counteract and evade suppression by the IFN-1 response. Several studies have tested whether engineering HIV-1 recombinants with minimal amounts of simian immunodeficiency virus sequences would enable replication in CD4+ T cells of non-natural hosts such as Asian macaques and proposed that infection of these macaque species could be used to study transmission and pathogenesis. Indeed, infection of macaques with these viruses revealed that Vif-mediated counteraction of APOBEC3G function is central to cross-species tropism but that other IFN-induced factors may also play important roles in controlling replication. Further studies of these macaque models of infection with HIV-1 derivatives could provide valuable insights into the interaction of lentiviruses and the innate immune response and how lentiviruses adapt and cause disease.
Collapse
Affiliation(s)
- Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
40
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Acquired immunodeficiency syndrome (AIDS) of humans is caused by two lentiviruses, human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2). Here, we describe the origins and evolution of these viruses, and the circumstances that led to the AIDS pandemic. Both HIVs are the result of multiple cross-species transmissions of simian immunodeficiency viruses (SIVs) naturally infecting African primates. Most of these transfers resulted in viruses that spread in humans to only a limited extent. However, one transmission event, involving SIVcpz from chimpanzees in southeastern Cameroon, gave rise to HIV-1 group M-the principal cause of the AIDS pandemic. We discuss how host restriction factors have shaped the emergence of new SIV zoonoses by imposing adaptive hurdles to cross-species transmission and/or secondary spread. We also show that AIDS has likely afflicted chimpanzees long before the emergence of HIV. Tracing the genetic changes that occurred as SIVs crossed from monkeys to apes and from apes to humans provides a new framework to examine the requirements of successful host switches and to gauge future zoonotic risk.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
42
|
Yu H, Usmani SM, Borch A, Krämer J, Stürzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, Gruters RA, Kirchhoff F. The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 2013; 10:27. [PMID: 23497283 PMCID: PMC3599662 DOI: 10.1186/1742-4690-10-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hangxing Yu
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 2013; 438:37-49. [PMID: 23411007 DOI: 10.1016/j.virol.2013.01.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/28/2012] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted by Aedes mosquitoes. Infection with CHIKV elicits a type I interferon response that facilities virus clearance, probably through the action of down-stream effectors such as antiviral IFN-stimulated genes (ISGs). Bone marrow stromal antigen 2 (BST-2) is an ISG shown to restrict HIV-1 replication by preventing the infection of bystander cells by tethering progeny virions on the surface of infected cells. Here we show that enrichment of cell surface BST-2 results in retention of CHIKV virus like particles (VLPs) on the cell membrane. BST-2 was found to co-localize with CHIKV structural protein E1 in the context of VLPs without any noticeable effect on BST-2 level. However, CHIKV nonstructural protein 1 (nsP1) overcomes BST-2-mediated VLPs tethering by down-regulating BST-2 expression. We conclude that BST-2 tethers CHIKV VLPs on the host cell plasma membrane and identify CHIKV nsP1 as a novel BST-2 antagonist.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 2013; 9:e1003124. [PMID: 23358889 PMCID: PMC3554583 DOI: 10.1371/journal.ppat.1003124] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 11/21/2012] [Indexed: 12/20/2022] Open
Abstract
The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. Many pathogenic viruses contain an envelope that must fuse with the cell membrane in order to gain entry and initiate infection. This process is mediated by one or more glycoproteins present on the surface of the virions, known as viral fusion proteins. Recently, a family of interferon-inducible transmembrane (IFITM) protein has been shown to block viral infection, including those of highly pathogenic viruses. Here we provide evidence that these IFITM proteins potently suppress membrane fusion induced by representatives of all three classes of viral fusion proteins. Interestingly, we found that the block is not at the steps of receptor binding or low pH that triggers conformational changes of viral fusion proteins required for membrane fusion. Rather, we discovered that the creation of hemifusion, an intermediate in which the outer membranes of the two lipid bilayers have merged but the inner membranes still remain intact is blocked by IFITM proteins. We further demonstrated that overexpression of IFITM proteins rigidify the cell membrane, thereby reducing membrane fluidity and fusion potential. Our study provides novel insight into the understanding of how IFITM proteins restrict viral entry and infection.
Collapse
Affiliation(s)
- Kun Li
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Similar patterns of infection with bovine foamy virus in experimentally inoculated calves and sheep. J Virol 2013; 87:3516-25. [PMID: 23325680 DOI: 10.1128/jvi.02447-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) are the least known retroviruses commonly found in primates, cats, horses, and cattle. Although FVs are considered apathogenic, simian and feline FVs have been shown to be associated with some transient health abnormalities in animal models. Currently, data regarding the course of infection with bovine FV (BFV) are not available. In this study, we conducted experimental infections of natural (cattle) and heterologous (sheep) hosts with the BFV(100) isolate and monitored infection patterns in both hosts during the early phase postinoculation as well as after long-term infection. Four calves and six sheep inoculated with BFV(100) showed no signs of pathology but developed persistent infection, as confirmed by virus rescue, consistent detection of BFV-specific antibodies, and presence of viral DNA. In both hosts, antibodies against BFV Gag and Bet appeared early after infection and persisted at high and stable levels while seroreactivity toward Env was consistently detectable only in BFV-infected sheep. Interestingly, the BFV proviral DNA load was highest in lung, spleen, and liver and moderate in leukocytes, while salivary glands contained either low or undetectable DNA loads in calves or sheep, respectively. Additionally, comparison of partial BFV sequences from inoculum and infected animals demonstrated very limited changes after long-term infection in the heterologous host, clearly less than those found in BFV field isolates. The persistence of BFV infection in both hosts suggests full replication competence of the BFV(100) isolate with no requirement of genetic adaptation for productive replication in the authentic and even in a heterologous host.
Collapse
|
46
|
Adaptation to the interferon-induced antiviral state by human and simian immunodeficiency viruses. J Virol 2013; 87:3549-60. [PMID: 23325684 DOI: 10.1128/jvi.03219-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The production of type I interferon (IFN) is an early host response to different infectious agents leading to the induction of hundreds of IFN-stimulated genes (ISGs). The roles of many ISGs in host defense are unknown, but their expression results in the induction of an "antiviral state" that inhibits the replication of many viruses. Here we show that prototype primate lentiviruses human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaques (SIV(MAC) and SIV(MNE)) can replicate in lymphocytes from their usual hosts (humans and macaques, respectively), even when an antiviral state is induced by IFN-α treatment. In contrast, HIV-1 and SIV(MAC)/SIV(MNE) replication was hypersensitive to IFN-α in lymphocytes from unnatural hosts, indicating that the antiviral state can effectively curtail the replication of primate lentiviruses in hosts to which they are not adapted. Most of the members of a panel of naturally occurring HIV-1 and HIV-2 strains behaved like prototype strains and were comparatively insensitive to IFN-α in human lymphocytes. Using chimeric viruses engineered to overcome restriction factors whose antiretroviral specificities vary in a species-dependent manner, we demonstrate that differential HIV-1 and SIV(MAC) sensitivities to IFN-α in lymphocytes from humans and macaques could not be ascribed to TRIM5, APOBEC3, tetherin, or SAMHD1. Single-cycle infection experiments indicated that at least part of this species-specific, IFN-α-induced restriction of primate lentivirus replication occurs early in the retroviral life cycle. Overall, these studies indicate the existence of undiscovered, IFN-α-inducible antiretroviral factors whose spectrum of activity varies in a species-dependent manner and to which at least some HIV/SIV strains have become adapted in their usual hosts.
Collapse
|
47
|
Johnson WE. Rapid adversarial co-evolution of viruses and cellular restriction factors. Curr Top Microbiol Immunol 2013; 371:123-51. [PMID: 23686234 DOI: 10.1007/978-3-642-37765-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of viruses over a century ago, virologists have recognized that host genetics plays a major role in viral tropism and the distribution of viruses in nature. Traditionally, studies of tropism have centered on identification of cellular factors required for viral replication, such as cell-surface entry receptors. However, over the past 20 years, there has been a steady increase in the identification and characterization of restriction factors (RFs), here defined as dominant cellular factors that have evolved specifically to interfere with viral replication. Genetic studies suggest that restriction factors impose significant barriers to interspecies movement of viruses and are therefore critical determinants of viral tropism. Furthermore, the scope of the ever-expanding list of restriction factors, and the variety of antiviral mechanisms they represent, testifies to the extraordinary impact viruses have had on organismal evolution-an impact hitherto underappreciated by evolutionary biologists and virologists alike. Recent studies of RF-encoding genes that combine molecular evolutionary analysis with functional assays illustrate the potential for asking questions about virus-host interactions as they play out in natural populations and across evolutionary timescales. Most notably, it has become common to apply tests of positive selection to RF genes and couple these analyses with virological assays, to reveal evidence for antagonistic virus-host co-evolution. Herein, I summarize recent work on the evolutionary genetics of mammalian RFs, particularly those of humans, non-human primates, and model organisms, and how RFs can reveal the influence of virus-host interactions on organismal evolution. Because intensive investigation of RF evolution is fairly new (and because there is still much to learn), the discussion is organized around five broad, outstanding questions that will need to be answered before we can fully appreciate the evolutionary biology of restriction.
Collapse
|
48
|
Abstract
Tetherin (BST2/CD317) has emerged as a key host cell defense molecule, inhibiting the release and spread of diverse enveloped virions from infected cells. In this chapter, I review the molecular and cellular basis for tetherin's antiviral activities and the function of virally encoded countermeasures that disrupt its function. I further describe recent advances in our understanding of tetherin's associated role in viral pattern recognition and the evidence for its role in limiting viral pathogenesis in vivo.
Collapse
Affiliation(s)
- Stuart J D Neil
- Department of Infectious Disease, King's College London School of Medicine, London, UK.
| |
Collapse
|
49
|
Blanco-Melo D, Venkatesh S, Bieniasz PD. Intrinsic cellular defenses against human immunodeficiency viruses. Immunity 2012; 37:399-411. [PMID: 22999946 DOI: 10.1016/j.immuni.2012.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 10/27/2022]
Abstract
Viral infections are often detrimental to host survival and reproduction. Consequently, hosts have evolved a variety of mechanisms to defend themselves against viruses. A component of this arsenal is a set of proteins, termed restriction factors, which exhibit direct antiviral activity. Among these are several classes of proteins (APOBEC3, TRIM5, Tetherin, and SAMHD1) that inhibit the replication of human and simian immunodeficiency viruses. Here, we outline the features, mechanisms, and evolution of these defense mechanisms. We also speculate on how restriction factors arose, how they might interact with the conventional innate and adaptive immune systems, and how an understanding of these intrinsic cellular defenses might be usefully exploited.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University 455 First Avenue New York, NY, 10016
| | - Siddarth Venkatesh
- Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University 455 First Avenue New York, NY, 10016
| | - Paul D Bieniasz
- Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University 455 First Avenue New York, NY, 10016
| |
Collapse
|
50
|
Abstract
Many viruses trigger the type I interferon (IFN) system, leading to the transcription of hundreds of interferon-stimulated genes (ISGs). The products of these ISGs exert numerous antiviral effector functions, many of which are still not fully described. Recent efforts have been aimed at identifying which ISGs are antiviral and further characterizing their mechanisms of action. IFN effectors vary widely in their magnitude of inhibitory activity and display combinatorial antiviral properties. Collectively, ISGs can target almost any step in a virus life cycle. Some of the most potent antiviral effectors reinforce the system by further inducing IFN or ISGs. Other genes enhance or facilitate viral replication, suggesting that some viruses may have evolved to co-opt IFN effectors for a survival advantage.
Collapse
Affiliation(s)
- John W Schoggins
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States.
| | | |
Collapse
|