1
|
Zhu X, Zhou Y, Wen Z, Ye W, Gao L, Xu Y. Association between Dietary Inflammatory Index and Bone Mineral Density Changes among Pregnant Women: A Prospective Study in China. Nutrients 2024; 16:455. [PMID: 38337739 PMCID: PMC10857122 DOI: 10.3390/nu16030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES This study aims to examine the relationship between dietary inflammatory index (DII) and bone mineral density (BMD) changes among Chinese pregnant women, offering valuable insights for dietary guidance during pregnancy. METHODS 289 pregnant women were enrolled in this cohort. Serum inflammatory factors and ultrasonic BMD were measured at the first, second, and the third trimesters. DII scores were calculated based on a semi-quantitative food frequency questionnaire (FFQ) and divided into tertiles. We compared the differences in inflammatory factors in serum across the tertiles of DII and changes in BMD at the second and third trimesters across the tertiles. RESULTS The participants with higher DII scores had higher total energy intakes than those with lower DII scores. The serum level of interleukin-6 (IL-6) was significantly different across the tertiles of the DII. Women who had lower DII scores had higher T-scores and Z-scores in the BMD assessment. In the test of trends, after adjusting potential covariates, including educational level, physical activity, body mass index, and calcium, vitamin D, or multivitamin supplements, DII values were determined to be positively related to the maternal BMD lost. CONCLUSIONS DII was positively associated with serum IL-6. Meanwhile, higher DII scores were associated with more bone mass loss in pregnant women. We recommend adhering to a lower-DII diet to preserve BMD during pregnancy.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan 7 Road, Beijing 100191, China; (X.Z.); (Y.Z.); (Z.W.); (W.Y.)
- Beifang Branch of Peking University Third Hospital, Chedaogou No. 10, Beijing 100089, China;
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan 7 Road, Beijing 100191, China; (X.Z.); (Y.Z.); (Z.W.); (W.Y.)
| | - Zhang Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan 7 Road, Beijing 100191, China; (X.Z.); (Y.Z.); (Z.W.); (W.Y.)
| | - Wanyun Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan 7 Road, Beijing 100191, China; (X.Z.); (Y.Z.); (Z.W.); (W.Y.)
| | - Lan Gao
- Beifang Branch of Peking University Third Hospital, Chedaogou No. 10, Beijing 100089, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan 7 Road, Beijing 100191, China; (X.Z.); (Y.Z.); (Z.W.); (W.Y.)
| |
Collapse
|
2
|
Huang J, Zheng J, Dadihanc T, Gao Y, Zhang Y, Li Z, Wang X, Yu L, Mijiti W, Xie Z, Ma H. Isoflavones isolated from chickpea sprouts alleviate ovariectomy-induced osteoporosis in rats by dual regulation of bone remodeling. Biomed Pharmacother 2024; 171:116214. [PMID: 38290254 DOI: 10.1016/j.biopha.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoporosis is a common systemic skeletal disease and a predominant underlying factor in the increased occurrence of fractures. The structure of isoflavones resembles that of estrogen and can confer similar but weaker effects. This study investigated the potential inhibitory effects of isoflavones from chickpea sprouts (ICS) on ovariectomy (OVX)-induced osteoporosis in vitro and in vivo. Notably, we found that ICS treatment could attenuate bone loss and improve trabecular microarchitecture and biomechanical properties of the fourth lumbar vertebra in OVX-induced osteoporotic rats and could also inhibit the development of a hyperosteometabolic state in this model. The osteogenic differentiation of bone marrow stem cells (BMSCs) was significantly enhanced by ICS intervention in vitro, and we confirmed that estrogen receptor α signaling was required for this increased osteogenic differentiation. Additionally, ICS has been shown to inhibit bone resorption via ERa modulation of the OPG/RANKL pathway. RANKL-induced osteoclastogenesis was reduced under ICS treatment, supporting that NF-κB signaling was inhibited by ICS. Thus, ICS attenuates osteoporosis progression by promoting osteogenic differentiation and inhibiting osteoclastic resorption. These results support the further exploration and development of ICS as a pharmacological agent for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Jinyong Huang
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Jingjie Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Tuerxunjiang Dadihanc
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Yanhua Gao
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 Xinjiang, China
| | - Yong Zhang
- School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Experimental Animal Center, Xinjiang Medical University, Urumqi 830011 Xinjiang, China
| | - Xi Wang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Wubulikasimu Mijiti
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China
| | - Zengru Xie
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China.
| | - Hairong Ma
- Clinical Medicine Institute, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education,Urumqi 830011 Xinjiang, China; Xinjiang Clinical Research Center for Orthopedics, Urumqi 830011 Xinjiang, China.
| |
Collapse
|
3
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhai XL, Tan MY, Wang GP, Zhu SX, Shu QC. The association between dietary approaches to stop hypertension diet and bone mineral density in US adults: evidence from the National Health and Nutrition Examination Survey (2011-2018). Sci Rep 2023; 13:23043. [PMID: 38155299 PMCID: PMC10754924 DOI: 10.1038/s41598-023-50423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
This study aimed to investigate the relationship between the dietary approaches to stop hypertension (DASH) dietary patterns and bone mineral density (BMD) in adults residing in the United States. To achieve this, data from the National Health and Nutrition Examination Survey (NHANES) database for 2011-2018 were utilized. This study utilized the NHANES database from 2011 to 2018, with a sample size of 8,486 US adults, to investigate the relationship between the DASH diet and BMD. The DASH diet was assessed based on nine target nutrients: total fat, saturated fat, protein, fiber, cholesterol, calcium, magnesium, sodium and potassium. The primary outcome measures were BMD values at the total BMD, thoracic spine, lumbar spine, and pelvis. Multivariable linear models were employed to analyze the association between the DASH diet and BMD. Interaction tests, subgroup, and sensitivity analysis were also followed. A negative correlation was observed between the DASH diet and total BMD (OR: - 0.003 [95%CI: - 0.005, - 0.001), pelvic (OR: - 0.005 [95%CI: - 0.007, - 0.002]), and thoracic BMD (OR: - 0.003 [95%CI: - 0.005, - 0.001]). However, the DASH diet does not appear to have a particular effect on lumbar spine BMD (OR: - 0.002 [95%CI: - 0.004, 0.001]). Similarly, when the DASH diet was categorized into tertiles groups, the relationship with total BMD, pelvic BMD, thoracic BMD, and lumbar spine BMD remained consistent. Furthermore, we performed a sensitivity analysis by converting BMD to Z-scores, and the results remained unchanged. Subgroup analyses and interaction tests indicated no significant dependence of BMI, gender, smoking, hypertension, and diabetes on the observed association (all p for interactions > 0.05). The DASH diet has been identified as potentially reducing total BMD, while specifically impacting thoracic and pelvic BMD. However, it appears to have no significant effect on lumbar spine BMD.
Collapse
Affiliation(s)
- Xiang-Long Zhai
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Mo-Yao Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gao-Peng Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi-Chen Shu
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Miedziaszczyk M, Maciejewski A, Idasiak-Piechocka I, Karczewski M, Lacka K. Effects of Isoflavonoid and Vitamin D Synergism on Bone Mineral Density-A Systematic and Critical Review. Nutrients 2023; 15:5014. [PMID: 38140273 PMCID: PMC10745652 DOI: 10.3390/nu15245014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Phytoestrogens are non-steroidal plant compounds, which bind to α and β estrogen receptors, thereby causing specific effects. The best-known group of phytoestrogens are flavonoids, including isoflavonoids-genistein and daidzein. They play a role in the metabolism of bone tissue, improving its density and preventing bone loss, which contributes to reducing the risk of fractures. Vitamin D is found in the form of cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) and is traditionally recognized as a regulator of bone metabolism. The aim of this review was to evaluate the synergistic effect of isoflavonoids and vitamin D on bone mineral density (BMD). The MEDLINE (PubMed), Scopus and Cochrane databases were searched independently by two authors. The search strategy included controlled vocabulary and keywords. Reference publications did not provide consistent data regarding the synergistic effect of isoflavonoids on BMD. Some studies demonstrated a positive synergistic effect of these compounds, whereas in others, the authors did not observe any significant differences. Therefore, further research on the synergism of isoflavonoids and vitamin D may contribute to a significant progress in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Miłosz Miedziaszczyk
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Ilona Idasiak-Piechocka
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| |
Collapse
|
6
|
Kumari S, Singh M, Nupur, Jain S, Verma N, Malik S, Rustagi S, Priya K. A review on therapeutic mechanism of medicinal plants against osteoporosis: effects of phytoconstituents. Mol Biol Rep 2023; 50:9453-9468. [PMID: 37676432 DOI: 10.1007/s11033-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Mohini Singh
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Nupur
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Smita Jain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Neha Verma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, 834002, Jharkhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India.
| |
Collapse
|
7
|
Stoodley IL, Williams LM, Wood LG. Effects of Plant-Based Protein Interventions, with and without an Exercise Component, on Body Composition, Strength and Physical Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2023; 15:4060. [PMID: 37764843 PMCID: PMC10537483 DOI: 10.3390/nu15184060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Maintaining muscle mass, strength, and function is crucial for our aging population. Exercise and dietary protein intake are recommended strategies; however, animal proteins have been the most studied. Plant-based protein sources have lower digestibility and incomplete amino acid profiles. However new innovative plant-based proteins and products may have overcome these issues. Therefore, this systematic review aimed to synthesize the current research and evaluate the effects of plant-based protein interventions compared to placebo on body composition, strength, and physical function in older adults (≥60 years old). The secondary aim was whether exercise improved the effectiveness of plant-based protein on these outcomes. Randomized controlled trials up to January 2023 were identified through Medline, EMBASE, CINAHL, and Cochrane Library databases. Studies contained a plant-protein intervention, and assessed body composition, strength, and/or physical function. Thirteen articles were included, all using soy protein (0.6-60 g daily), from 12 weeks to 1 year. Narrative summary reported positive effects on muscle mass over time, with no significant differences compared to controls (no intervention, exercise only, animal protein, or exercise + animal protein interventions). There was limited impact on strength and function. Meta-analysis showed that plant-protein interventions were comparable to controls, in all outcomes. In conclusion, plant-protein interventions improved muscle mass over time, and were comparable to other interventions, warranting further investigation as an anabolic stimulus in this vulnerable population.
Collapse
Affiliation(s)
- Isobel L. Stoodley
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lily M. Williams
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lisa G. Wood
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Yang HJ, Zhang T, Yue Y, Jeong SJ, Ryu MS, Wu X, Li C, Jeong DY, Park S. Protective Effect of Long-Term Fermented Soybeans with Abundant Bacillus subtilis on Glucose and Bone Metabolism and Memory Function in Ovariectomized Rats: Modulation of the Gut Microbiota. Foods 2023; 12:2958. [PMID: 37569228 PMCID: PMC10418888 DOI: 10.3390/foods12152958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the effects of different types of long-term fermented soybeans (traditionally made doenjang; TMD) on glucose and bone metabolism and memory function in ovariectomized (OVX) rats. The rats were categorized into six groups: Control, cooked unfermented soybeans (CSB), and four TMDs based on Bacillus subtilis (B. subtilis) and biogenic amine contents analyzed previously: high B. subtilis (HS) and high biogenic amines (HA; HSHA), low B. subtilis (LS) and HA (LSHA), HS and low biogenic amines (LA; HSLA), and LS and LA (LSLA). The rats in the CSB and TMD groups fed orally had a 4% high-fat diet for 12 weeks. Rats in the Control (OVX rats) and Normal-control (Sham-operated rats) groups did not consume CSB or TMD, although macronutrient contents were the same in all groups. Uterine weight and serum 17β-estradiol concentrations were much lower in the Control than the Normal-control group, but CSB and TMD intake did not alter them regardless of B. subtilis and biogenic amine contents. HOMA-IR, a measure of insulin resistance, decreased with TMD with high B. subtilis (HSLA and HSHA) compared to the Control group. In OGTT and IPGTT, serum glucose concentrations at each time point were higher in the Control than in the Normal-control, and HSLA and HSHA lowered them. Memory function was preserved with HSHA and HSLA administration. Bone mineral density decline measured by DEXA analysis was prevented in the HSHA and HSLA groups. Bone metabolism changes were associated with decreased osteoclastic activity, parathyroid hormone levels, and osteoclastic activity-related parameters. Micro-CT results demonstrated that TMD, especially HSLA and HSHA, preserved bone structure in OVX rats. TMD also modulated the fecal bacterial community, increasing Lactobacillus, Ligalactobacillus, and Bacillus. In conclusion, through gut microbiota modulation, TMD, particularly with high B. subtilis content, acts as a synbiotic to benefit glucose, bone, and memory function in OVX rats. Further research is needed to make specific recommendations for B. subtilis-rich TMD for menopausal women.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Yu Yue
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| | - Su-Ji Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Myeong-Seon Ryu
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Chen Li
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| | - Do-Yeon Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| |
Collapse
|
9
|
LU J, CHENG JH, XU Y, CHEN Y, QIAN K, ZHANG Y. Effect of germination on nutritional quality of soybean. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.008323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jinting LU
- Institute of Agricultural Products Processing, China
| | | | - Yayuan XU
- Institute of Agricultural Products Processing, China
| | - Yujie CHEN
- Institute of Agricultural Products Processing, China
| | - Kun QIAN
- Institute of Agricultural Products Processing, China
| | | |
Collapse
|
10
|
Nguyen DT, Kim MH, Yu NY, Baek MJ, Kang KS, Lee KW, Kim DD. Combined Orobol-Bentonite Composite Formulation for Effective Topical Skin Targeted Therapy in Mouse Model. Int J Nanomedicine 2022; 17:6513-6525. [PMID: 36575696 PMCID: PMC9790165 DOI: 10.2147/ijn.s390993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Orobol is an isoflavone that has a potent skin protection effect. The objective of this study was to prepare a novel bentonite-based composite formulation of orobol to enhance topical skin delivery. Methods The composition was optimized based on the orobol content in the composite and the in vitro release studies, followed by the in vitro and in vivo hairless mouse skin deposition studies. Physicochemical characterizations of the composite formulation were performed by powder X-ray refractometry (XRD) and scanning electron microscopy (SEM). The in vitro cytotoxicity and in vivo toxicity studies were conducted in human keratinocytes and in hairless mouse, respectively. Results and Discussions The in vitro release of orobol from the bentonite composites was higher than that from the suspension, which was further increased with the addition of phosphatidylcholine. The composite formulation significantly enhanced the in vitro and in vivo skin deposition of orobol in hairless mouse skin compared to the orobol suspension. Moreover, the addition of phosphatidyl choline not only improved the dissolution and incomplete release of orobol from the bentonite composite but also enhanced the deposition of orobol in the skin. XRD histograms and SEM images confirmed that the enhanced dissolution of orobol from the composite was attributed to its amorphous state on bentonite. The in vitro and in vivo toxicity studies support the safety and biocompatibility of the orobol-loaded bentonite composite formulation. Conclusion These findings suggest that the orobol-loaded bentonite composite formulation could be a potential topical skin delivery system for orobol.
Collapse
Affiliation(s)
- Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Young Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea,Correspondence: Dae-Duk Kim, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea, Tel +82-2-880-7870, Fax +82-2-873-9177, Email
| |
Collapse
|
11
|
Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/OPG Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8862278. [PMID: 36330454 PMCID: PMC9626210 DOI: 10.1155/2022/8862278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Bone remodels via resorption and formation, two phenomena that continuously occur in bone turnover. The RANKL/RANK/OPG pathway is one of the several mechanisms that affect bone turnover. The RANKL/OPG ratio has a substantial role in bone resorption. An imbalance between formation and resorption is related to an increased RANKL/OPG balance. OPG, a member of this system, can bind to RANKL and suppress RANK-RANKL interaction, and subsequently, inhibit further osteoclastogenesis. The serum levels of RANKL and OPG in the bone microenvironment are vital for osteoclasts formation. The RANK/RANKL/OPG system plays a role in the pathogenesis of bone disorders. This system can be considered a new treatment target for bone disorders. Soy isoflavones affect the RANK/RANKL/OPG system through numerous mechanisms. Soy isoflavones decrease RANKL levels and increase OPG levels. Therefore, isoflavones improve bone metabolism and decrease bone resorption. Soy isoflavones decrease serum markers of bone resorption and improve bone metabolism. However, while the available data are promising, the results of several studies reported no change in RANKL and OPG levels with isoflavones supplementation. In this regard, current evidence is insufficient for conclusive approval of the efficacy of isoflavones on RANKL/RANK/OPG and further research, including animal and human studies, are needed to confirm the effect of soy isoflavones on the RANKL/RANK/OPG pathway. This study was a review of available evidence to determine the role of isoflavones in bone hemostasis and the RANK/RANKL/OPG pathway. The identification of the effects of isoflavones on the RANKL/RANK/OPG pathway directs future studies and leads to the development of effective treatment strategies for bone disorders.
Collapse
|
12
|
Shitrit-Tovli A, Sides R, Kalev-Altman R, Meilich D, Becker G, Penn S, Shahar R, Ornan EM. The Use of Post-Natal Skeleton Development as Sensitive Preclinical Model to Test the Quality of Alternative Protein Sources in the Diet. Nutrients 2022; 14:3769. [PMID: 36145152 PMCID: PMC9501083 DOI: 10.3390/nu14183769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary protein is necessary throughout all life stages. Adequate intake of protein during juvenile years is essential to enable appropriate synthesis of bone matrix and achieve the full peak bone mass (PBM). Due to socio-demographic changes, accompanied by environmental damage and ethical problems, a transition to the consumption of different and alternative protein sources in the human diet must occur. This transition requires the precise evaluation of protein quality. Here, we utilize a preclinical model of young rats during their post-natal developmental period to define the nutritive quality of a number of alternative protein sources (soy, spirulina, chickpea, and fly larvae) by their health impact on growth performance and skeletal development. We indicate that when restricted (10% of calories) not one of the tested alternative protein sources have succeeded in causing optimal growth, as compared to the referenced source, casein; yet fly larvae protein followed by chickpea flour were found to be superior to the rest. Growth-plate histology and µ-CT analyses demonstrated a number of changes in growth patterns and bone morphometric parameters. Bone mechanical testing, by three-point bending analyses, was sensitive in demonstrating the effect of the reduction in the amount of the dietary protein. Moreover, the rats' weight and length, as well as their eating patterns, were found to reflect the proteins' quality better than their amino acid composition. Hence, our study emphasizes the importance of evaluating protein as a whole food source, and suggests a new approach for this purpose.
Collapse
Affiliation(s)
- Astar Shitrit-Tovli
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Roni Sides
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rotem Kalev-Altman
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dana Meilich
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Becker
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Svetlana Penn
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ron Shahar
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Efrat Monsonego Ornan
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Park B, Yu SN, Kim SH, Lee J, Choi SJ, Chang JH, Yang EJ, Kim KY, Ahn SC. Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand. J Microbiol Biotechnol 2022; 32:1017-1025. [PMID: 35879294 PMCID: PMC9628933 DOI: 10.4014/jmb.2203.03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.
Collapse
Affiliation(s)
- Bobae Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Sun Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 065510, USA
| | - Junwon Lee
- Department of Biomedicinal Science and Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Sung Jong Choi
- Spine Center, Bone Barun Hospital, Yangsan 50612, Republic of Korea
| | - Jeong Hyun Chang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Kwang-Youn Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Corresponding author Phone: +82-51-510-8092 E-mail:
| |
Collapse
|
14
|
Estrogenic in vitro evaluation of zearalenone and its phase I and II metabolites in combination with soy isoflavones. Arch Toxicol 2022; 96:3385-3402. [PMID: 35986755 PMCID: PMC9584851 DOI: 10.1007/s00204-022-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
AbstractHumans and animals are exposed to multiple substances in their food and feed that might have a negative health impact. Among these substances, the Fusarium mycoestrogen zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL) and α-zearalanol (α-ZAL) are known to possess endocrine disruptive properties. In a mixed diet or especially animal feed, these potential contaminants might be ingested together with naturally occurring phytoestrogens such as soy isoflavones. So far, risk assessment of potential endocrine disruptors is usually based on adverse effects of single compounds whereas studies investigating combinatorial effects are scarce. In the present study, we investigated the estrogenic potential of mycoestrogens and the isoflavones genistein (GEN), daidzein (DAI) and glycitein (GLY) as well as equol (EQ), the gut microbial metabolite of DAI, in vitro alone or in combination, using the alkaline phosphatase (ALP) assay in Ishikawa cells. In the case of mycoestrogens, the tested concentration range included 0.001 to 10 nM with multiplication steps of 10 in between, while for the isoflavones 1000 times higher concentrations were investigated. For the individual substances the following order of estrogenicity was obtained: α-ZEL > α-ZAL > ZEN > GEN > EQ > DAI > GLY. Most combinations of isoflavones with mycoestrogens enhanced the estrogenic response in the investigated concentrations. Especially lower concentrations of ZEN, α-ZEL and α-ZAL (0.001—0.01 nM) in combination with low concentrations of GEN, DAI and EQ (0.001—0.1 µM) strongly increased the estrogenic response compared to the single substances.
Collapse
|
15
|
Benjawan S, Nimitphong H, Tragulpiankit P, Musigavong O, Prathanturarug S, Pathomwichaiwat T. The effect of Cissus quadrangularis L. on delaying bone loss in postmenopausal women with osteopenia: A randomized placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154115. [PMID: 35523116 DOI: 10.1016/j.phymed.2022.154115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteopenia refers to bone density that is not normal but also not as low as that noted in osteoporosis. Osteopenia leads to osteoporosis and increases the risk of fractures. Current research is focused on agents that will prevent or slow the progression of bone loss. On the basis of published evidence, Cissus quadrangularis (CQ) might potentially provide a novel natural treatment for osteopenia. PURPOSE To determine the effect of 24 weeks of consecutive treatment with CQ on delaying bone loss and safety in postmenopausal women (PMW) with osteopenia. METHODS This study is a randomized, placebo-controlled trial. Here, 134 enrolled PMW with osteopenia (> 40 years and having no period for 1-10 years) received CQ at 1.2 (CQ1.2) or 1.6 g/day (CQ1.6) or placebo. The %change in bone mineral density (BMD) at the lumbar spine (L1-L4), femoral neck, and total hip served as the primary outcome. The %change in bone turnover markers (BTMs), including C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP), was the secondary outcome. These outcomes were compared between the CQ vs. placebo group at weeks 12 and 24. The least significant change (LSC) was used to monitor clinical changes. The adverse events (AE) were monitored. RESULTS A total of 108 participants completed this study. The %BMD changes in the CQ-treated groups did not differ at any site after 24 weeks compared to the placebo. Statistically significant differences were detected in CQ1.6 at the lumbar spine (0.011 ± 0.025 g/cm2, p = 0.008) and CQ1.2 at the femoral neck (-0.015 ± 0.036 g/cm2, p = 0.024) compared to baseline, but these changes did not exceed the LSC. Reduced bone remodeling activity was detected in both CQ-treated groups. Compared to the placebo, the %P1NP change was significantly reduced in CQ1.6 (-2.46 ± 26.05%; p < 0.01) at week 12 and in CQ1.2 (-3.36 ± 29.47%; p < 0.01) and CQ1.6 (-9.95 ± 22.22%; p < 0.01) at week 24. These results correlated with the within-group comparison, which showed a continuously significant increase in both BTMs in the placebo group. However, a stable CTX and a significant reduction in P1NP (p < 0.05) were detected in both CQ-treated groups. This reduction exceeded the LSC of P1NP. The incidence of adverse events did not differ among the three groups. CONCLUSION This is the first clinical report that showed a promising effect on delaying bone loss of orally administration of CQ for 24 weeks, as indicated by a slower bone remodeling process via a reduction in BTMs. However, no change in BMD was observed.
Collapse
Affiliation(s)
- Saksit Benjawan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Hataikarn Nimitphong
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Pramote Tragulpiankit
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Olarik Musigavong
- Chao Phraya Abhaibhubejhr Hospital, Prachin Anuson Road, Tha Ngam, Mueang Prachinburi, Prachinburi 25000, Thailand
| | - Sompop Prathanturarug
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Thanika Pathomwichaiwat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| |
Collapse
|
16
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
17
|
Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity. Nutrients 2022; 14:nu14112262. [PMID: 35684064 PMCID: PMC9183012 DOI: 10.3390/nu14112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Higher protein (>30% of total energy, HP)-energy restriction (HP-ER) diets are an effective means to improve body composition and metabolic health. However, weight loss (WL) is associated with bone loss, and the impact of HP-ER diets on bone is mixed and controversial. Recent evidence suggests conflicting outcomes may stem from differences in age, hormonal status, and the predominant source of dietary protein consumed. Therefore, this study investigated the effect of four 12-week energy restriction (ER) diets varying in predominate protein source (beef, milk, soy, casein) and protein quantity (normal protein, NP 15% vs. high, 35%) on bone and body composition outcomes in 32-week-old obese, ovariectomized female rats. Overall, ER decreased body weight, bone quantity (aBMD, aBMC), bone microarchitecture, and body composition parameters. WL was greater with the NP vs. HP-beef and HP-soy diets, and muscle area decreased only with the NP diet. The HP-beef diet exacerbated WL-induced bone loss (increased trabecular separation and endocortical bone formation rates, lower bone retention and trabecular BMC, and more rod-like trabeculae) compared to the HP-soy diet. The HP-milk diet did not augment WL-induced bone loss. Results suggest that specific protein source recommendations may be needed to attenuate the adverse alterations in bone quality following an HP-ER diet in a model of postmenopausal obesity.
Collapse
|
18
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
19
|
Engineering of cyclodextrin glycosyltransferase from Paenibacillus macerans for enhanced product specificity of long-chain glycosylated sophoricosides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
21
|
Kotake K, Kumazawa T, Nakamura K, Shimizu Y, Ayabe T, Adachi T. Ingestion of miso regulates immunological robustness in mice. PLoS One 2022; 17:e0261680. [PMID: 35061718 PMCID: PMC8782471 DOI: 10.1371/journal.pone.0261680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
Collapse
Affiliation(s)
- Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yu Shimizu
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Associations of dietary intakes of calcium, magnesium and soy isoflavones with osteoporotic fracture risk in postmenopausal women: a prospective study. J Nutr Sci 2022; 11:e62. [PMID: 35992572 PMCID: PMC9379929 DOI: 10.1017/jns.2022.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
The role of dietary factors in osteoporotic fractures (OFs) in women is not fully elucidated. We investigated the associations between incidence of OF and dietary calcium, magnesium and soy isoflavone intake in a longitudinal study of 48 584 postmenopausal women. Multivariable Cox regression was applied to derive hazard ratios (HRs) and 95 % confidence intervals (CIs) to evaluate associations between dietary intake, based on the averages of two assessments that took place with a median interval of 2⋅4 years, and fracture risk. The average age of study participants is 61⋅4 years (range 43⋅3–76⋅7 years) at study entry. During a median follow-up of 10⋅1 years, 4⋅3 % participants experienced OF. Compared with daily calcium intake ≤400 mg/d, higher calcium intake (>400 mg/d) was significantly associated with about a 40–50 % reduction of OF risk among women with a calcium/magnesium (Ca/Mg) intake ratio ≥1⋅7. Among women with prior fracture history, high soy isoflavone intake was associated with reduced OF risk; the HR was 0⋅72 (95 % CI 0⋅55, 0⋅93) for the highest (>42⋅0 mg/d) v. lowest (<18⋅7 mg/d) quartile intake. This inverse association was more evident among recently menopausal women (<10 years). No significant association between magnesium intake and OF risk was observed. Our findings provide novel information suggesting that the association of OF risk with dietary calcium intake was modified by Ca/Mg ratio, and soy isoflavone intake was modified by history of fractures and time since menopause. Our findings, if confirmed, can help to guide further dietary intervention strategies for OF prevention.
Collapse
|
23
|
Hameed Majeed M, Kadhem Abd Alsaheb N. Morphological Evaluation of PLA/Soybean Oil Epoxidized Acrylate Three-Dimensional Scaffold in Bone Tissue Engineering. JOURNAL OF RENEWABLE MATERIALS 2022; 10:2391-2408. [DOI: 10.32604/jrm.2022.019887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
The Potential Mechanism of Exercise Combined with Natural Extracts to Prevent and Treat Postmenopausal Osteoporosis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2852661. [PMID: 34956564 PMCID: PMC8709765 DOI: 10.1155/2021/2852661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic chronic bone metabolic disease caused by the imbalance between bone formation and bone resorption mediated by estrogen deficiency. Both exercise and natural extracts are safe and effective means to prevent and control PMOP. The additive effect of exercise synergy extract against PMOP may be no less than that of traditional medicine. However, the mechanism of action of this method has not been clarified in detail. A large number of studies have shown that the pathogenesis of PMOP mainly involves the OPG-RANKL-RANK system, inflammation, and oxidative stress. Based on the abovementioned approaches, the present study reviews the anti-PMOP effects and mechanisms of exercise and natural extracts. Finally, it aims to explore the possibility of the target of the two combined anti-PMOP through this approach, thereby providing a new perspective for joint intervention research and providing a new direction for the treatment strategy of PMOP.
Collapse
|
25
|
Cui Y, Cai H, Zheng W, Shu X. Associations of Dietary Intakes of Calcium, Magnesium, and Soy Isoflavones With Bone Fracture Risk in Men: A Prospective Study. JBMR Plus 2021; 6:e10563. [PMID: 35229059 PMCID: PMC8861979 DOI: 10.1002/jbm4.10563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
The role of dietary factors in osteoporotic fractures in men is underinvestigated. We examined the associations of dietary intakes of calcium, magnesium, and soy isoflavones with risk of osteoporotic fractures in the Shanghai Men's Health Study. Included in this prospective study were 61,025 men aged 40 to 74 years at study enrollment (2002–2006). The cohort was followed up via in‐person surveys for occurrence of bone fractures, major diseases, and survival status. Multivariable Cox regression was applied to evaluate the associations of variables under study (ie, dietary intakes of calcium, magnesium, and soy isoflavones) with incidence of osteoporotic and non‐osteoporotic fractures, measured by hazard ratio (HR) and 95% confidence interval (CI). During a median follow‐up of 9.5 years, 1.2% and 3.4% of participants experienced osteoporotic or non‐osteoporotic fractures, respectively. Dietary calcium intake was inversely associated with risk of osteoporotic fractures with adjusted HRs of 0.78 (95% CI 0.60–1.02) and 0.27 (95% CI 0.13–0.56), respectively, for intake levels of 401 mg/d and >1000 mg/d versus ≤400 mg/d. Higher magnesium intake was associated with increased risk of osteoporotic fractures after adjusting for dietary calcium intake, with HRs of 1.27 (95% CI 0.97–1.66) and 2.21 (95% CI 1.08–4.50), respectively, for intakes of 251 mg/d and >450 mg/d versus intake ≤250 mg/d. High soy isoflavone intake was associated with a 25% reduction of osteoporotic fracture risk (HR = 0.73, 95% CI 0.56–0.97 for soy isoflavone intake >45.2 mg/d versus <21.7 mg/d). Dietary intakes of calcium, magnesium, or soy isoflavones were unrelated to the risk of non‐osteoporotic fractures. Our study added to the evidence that dietary calcium intake was inversely associated with a reduced risk of osteoporotic fractures in a dose–response fashion, while high magnesium intake was associated with an increased risk. Our study also revealed a novel association between higher soy isoflavone consumption and osteoporotic fractures in men. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yong Cui
- Division of Epidemiology, Department of Medicine, Vanderbilt‐Ingram Cancer Center, Vanderbilt Epidemiology Center Vanderbilt University Medical Center Nashville TN USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt‐Ingram Cancer Center, Vanderbilt Epidemiology Center Vanderbilt University Medical Center Nashville TN USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt‐Ingram Cancer Center, Vanderbilt Epidemiology Center Vanderbilt University Medical Center Nashville TN USA
| | - Xiao‐Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt‐Ingram Cancer Center, Vanderbilt Epidemiology Center Vanderbilt University Medical Center Nashville TN USA
| |
Collapse
|
26
|
Kim SB, Assefa F, Lee SJ, Park EK, Kim SS. Combined effects of soy isoflavone and lecithin on bone loss in ovariectomized mice. Nutr Res Pract 2021; 15:541-554. [PMID: 34603603 PMCID: PMC8446686 DOI: 10.4162/nrp.2021.15.5.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND/OBJECTIVES Isoflavones (ISFs) are effective in preventing bone loss, but not effective enough to prevent osteoporosis. Mixtures of soy ISF and lecithin (LCT) were prepared and characterized in an attempt to improve the bone loss. MATERIALS/METHODS The daidzein (DZ) and genistein (GN) solubility in soy ISF were measured using liquid chromatography-mass spectrometry. The change in the crystalline characteristics of soy ISF in LCT was evaluated using X-ray diffraction analysis. Pharmacokinetic studies were conducted to evaluate and compare ISF bioavailability. Animal studies with ovariectomized (OVX) mice were carried out to estimate the effects on bone loss. The Student's t-test was used to evaluate statistical significance. RESULTS The solubility of DZ and GN in LCT was 125.6 and 9.7 mg/L, respectively, which were approximately 25 and 7 times higher, respectively, than those in water. The bioavailability determined by the area under the curve of DZ for the oral administration (400 mg/kg) of soy ISF alone and the soy ISF-LCT mixture was 13.19 and 16.09 µg·h/mL, respectively. The bone mineral density of OVX mice given soy ISF-LCT mixtures at ISF doses of 60 and 100 mg/kg daily was 0.189 ± 0.020 and 0.194 ± 0.010 g/mm3, respectively, whereas that of mice given 100 mg/kg soy ISF was 0.172 ± 0.028 g/mm3. The number of osteoclasts per bone perimeter was reduced by the simultaneous administration of soy ISF and LCT. CONCLUSIONS The effect of preventing bone loss and osteoclast formation by ingesting soy ISF and LCT at the same time was superior to soy ISF alone as the bioavailability of ISF may have been improved by the emulsification and solvation of LCT. These results suggest the possibility of using the combination of soy ISF and LCT to prevent osteoporosis.
Collapse
Affiliation(s)
| | - Freshet Assefa
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Su Jeong Lee
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | | |
Collapse
|
27
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
28
|
Akhavan Zanjani M, Rahmani S, Mehranfar S, Zarrin M, Bazyar H, Moradi Poodeh B, Zare Javid A, Hosseini SA, Sadeghian M. Soy Foods and the Risk of Fracture: A Systematic Review of Prospective Cohort Studies. Complement Med Res 2021; 29:172-181. [PMID: 34547749 DOI: 10.1159/000519036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The primary objective of our study was to systematically review all available prospective cohort studies which investigated the association of soy food intake and incident fracture risk. METHODS We searched PubMed, Scopus, and Embase databases for relevant studies up to June 2021. SYNTHESIS Of 695 records, a total of 5 cohort studies were included in the current systematic review. Two studies that were performed in China evaluated hip fracture while 2 studies that were done in Singapore evaluated any kind of fractures. The other study was conducted in Japan and evaluated osteoporosis fractures. All studies used a face-to-face interview to assess the dietary intake of soy foods. All 5 cohort studies were determined to be of high quality. One study considered soy food as a part of a vegetables-fruit-soy food dietary pattern. Others reported the association of dietary intake of soy foods with the risk of fractures. CONCLUSION The evidence from prospective cohort studies was suggestive for a protective role of soy foods, alone or within a dietary pattern, in the risk of incident fracture among Asian women, particularly for those in early menopause and those who used fermented soy products. But for men, the association was not significant. However, more cohort studies, including non-Asian populations, are required to confirm this association fully.
Collapse
Affiliation(s)
- Mohsen Akhavan Zanjani
- Division of Kinesiology, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sepideh Rahmani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| | - Milad Zarrin
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Bazyar
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Moradi Poodeh
- Department of Laboratory, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sadeghian
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
29
|
Anti-Osteoporotic Activity of Pueraria lobata Fermented with Lactobacillus paracasei JS1 by Regulation of Osteoblast Differentiation and Protection against Bone Loss in Ovariectomized Mice. FERMENTATION 2021. [DOI: 10.3390/fermentation7030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is the most common bone disease associated with low bone mineral density. It is the process of bone loss and is most commonly caused by decreased estrogen production in women, particularly after menopause. Pueraria lobata, which contains various metabolites, especially isoflavone, is widely known as regulator for bone mineral contents. In this study, the effects of the P. lobata extract (PE) with or without fermentation with Lactobacillus paracasei JS1 (FPE) on osteoporosis were investigated in vitro and in vivo. The effects of PE and FPE on human osteoblastic MG63 cells, RAW 264.7 cells, and ovariectomized (OVX)-induced model mice were analyzed at various ratios. We found that FPE increased calcium deposition and inhibited bone resorption by in vitro assay. Furthermore, treatment with PE and FPE has significantly restored destroyed trabecular bone in the OVX-induced bone loss mouse model. Overall, FPE demonstrated bioactivity to prevent bone loss by decreasing bone turnover.
Collapse
|
30
|
Kim IS, Yang WS, Kim CH. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int J Mol Sci 2021; 22:8570. [PMID: 34445273 PMCID: PMC8395274 DOI: 10.3390/ijms22168570] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoul 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology, Seoul 16419, Gyunggi-Do, Korea
| |
Collapse
|
31
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
32
|
Biological Mechanisms of Paeonoside in the Differentiation of Pre-Osteoblasts and the Formation of Mineralized Nodules. Int J Mol Sci 2021; 22:ijms22136899. [PMID: 34199016 PMCID: PMC8268717 DOI: 10.3390/ijms22136899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and β-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.
Collapse
|
33
|
Kim EY, Kwon CW, Chang PS. Purification and characterization of a novel acid-tolerant and heterodimeric β-glucosidase from pumpkin (Cucurbita moschata) seed. J Biosci Bioeng 2021; 132:125-131. [PMID: 34078567 DOI: 10.1016/j.jbiosc.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
A novel β-glucosidase was purified from pumpkin (Cucurbita moschata) seed by anion exchange chromatography and gel permeation chromatography, and its molecular mass was determined to be 42.8 kDa by gel permeation chromatography. The heterodimeric structure consisting of two subunits, free from disulfide bonds, was determined by native-PAGE analysis followed by zymography. The enzyme was maximally active at pH 4.0 and 70°C, and Vmax, Km, and kcat values were 0.078 units mg-1 protein, 2.22 mM, and 13.29 min-1, respectively, employing p-nitrophenyl-β-d-glucopyranoside as the substrate. The high content of glycine determined by amino acid analysis implies that the enzyme possesses flexible conformations and interacts with cell membranes and walls in nature. Circular dichroism studies revealed that the high stability of the enzyme within the pH range of 2.0-10.0 is due to its reversible pH-responsive characteristics for α-helix-antiparallel β-sheet interconversion.
Collapse
Affiliation(s)
- Eui Young Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Woo Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Polyphenols separated from Enteromorpha clathrata by one-dimensional coupled with inner-recycling high-speed counter-current chromatography and their antioxidant activities. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03751-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
36
|
Hamiche S, Bensouici C, Messaoudi A, Gali L, Khelouia L, Rateb ME, Akkal S, Badis A, Hattab ME. Antioxidant and structure–activity relationship of acylphloroglucinol derivatives from the brown alga Zonaria tournefortii. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02748-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Iwasaki M, Sato M, Yoshihara A, Saito T, Kitamura K, Ansai T, Nakamura K. A 5-year longitudinal association between dietary fermented soya bean (natto) intake and tooth loss through bone mineral density in postmenopausal women: The Yokogoshi cohort study. Gerodontology 2021; 38:267-275. [PMID: 33393717 DOI: 10.1111/ger.12523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/23/2020] [Accepted: 12/12/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In this 5-year cohort study, we aimed to determine whether the intake of natto, a fermented soya bean food product, has an indirect effect on tooth loss incidence through BMD changes among postmenopausal women. BACKGROUND Evidence indicates (1) that natto has a beneficial effect on bone health and (2) that a decrease in bone mineral density (BMD) is associated with tooth loss. METHODS The study recruited 435 postmenopausal women (average age = 64.2 years). Natto intake (exposure) was assessed at baseline using a food frequency questionnaire. Lumbar spine BMD and number of teeth were measured at baseline and 5-year follow-up. BMD change (mediator) and the number of teeth lost (outcome) over time were calculated. The mediation model consisted of these 3 variables. Mediation analysis was performed to test the indirect effect of the natto intake measured through BMD change on tooth loss. RESULTS During the study, the mean number of teeth lost was 1.2 (standard deviation = 1.8), and the mean BMD decline was 2.5% (standard deviation = 7.1). After adjusting for potential confounders, increasing habitual natto intake was significantly indirectly associated with a lower incidence of tooth loss mediated by BMD change (incidence rate ratio of tooth loss among women with "≥1 pack/day" natto intake was 0.90 [95% confidence interval = 0.82-0.99] compared to those with natto consumption of "rarely"). CONCLUSIONS Dietary natto intake is significantly indirectly associated with a lower incidence of tooth loss among postmenopausal women, and systemic bone density could be a mediator of this association.
Collapse
Affiliation(s)
| | - Misuzu Sato
- Division of Preventive Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiro Yoshihara
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiko Saito
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiro Ansai
- Division of Community, Oral Health Development, Kyushu Dental University, Kitakyushu, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
38
|
Ghirga F, Quaglio D, Mori M, Cammarone S, Iazzetti A, Goggiamani A, Ingallina C, Botta B, Calcaterra A. A unique high-diversity natural product collection as a reservoir of new therapeutic leads. Org Chem Front 2021. [DOI: 10.1039/d0qo01210f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review the successful application of computer-aided methods to screen a unique and high-diversity in house collection library composed of around 1000 individual natural products.
Collapse
Affiliation(s)
- Francesca Ghirga
- Center For Life Nano Science@Sapienza
- Istituto Italiano di Tecnologia
- 00161 Rome
- Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Mattia Mori
- Department of Biotechnology
- Chemistry and Pharmacy
- “Department of Excellence 2018–2022”
- University of Siena
- 53100 Siena
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Antonella Goggiamani
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Cinzia Ingallina
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs
- “Department of Excellence 2018–2022”
- The Sapienza University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
39
|
Tepavčević V, Cvejić J, Poša M, Bjelica A, Miladinović J, Rizou M, Aldawoud TM, Galanakis CM. Classification and discrimination of soybean (Glycine max (L.) Merr.) genotypes based on their isoflavone content. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Shi F, Ni L, Gao YM. Tetrandrine Attenuates Cartilage Degeneration, Osteoclast Proliferation, and Macrophage Transformation through Inhibiting P65 Phosphorylation in Ovariectomy-induced Osteoporosis. Immunol Invest 2020; 51:465-479. [PMID: 33140671 DOI: 10.1080/08820139.2020.1837864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Osteoporosis is a common metabolic bone disease with high prevalence. Tetrandrine (TET) suppressed osteoclastogenesis, while the roles of TET in osteoporosis regulation remained unclear. Thus, the study aimed to investigate the effect of TET on osteoporosis and the underlying mechanism. METHODS The osteoporosis rabbit model was established through anterior cruciate ligament transection (ACLT) and bilateral ovariectomy (OVX). The degeneration of articular cartilage was assessed using HE staining and Alcian blue staining. The liver and kidney tissue injury was determined using HE staining. The activity of osteoclasts was evaluated using Tartrate-resistant acid phosphatase (TRAP) staining. The changes in bone structural parameters were determined through measuring the BMD, BV/TV, Tb.Th, Tb.N, and Tb.Sp, and the serum levels of calcium and phosphorus. Macrophage polarization was determined using Flow cytometry. RESULTS The bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp were changed in osteoporosis rabbit, which was reversed by TET. Besides, TET suppressed the increased serum levels of calcium and phosphorus in osteoporosis rabbit. Furthermore, TET inhibited the degeneration of articular cartilage and the activity of osteoclasts induced by osteoporosis. Moreover, TET inhibited the levels of MMP-9, PPAR-γ, RANKL, β-CTX and TRACP-5b, and increased the levels of OPG, ALP and osteocalcin (OC) in osteoporosis. Additionally, TET promoted macrophage transformation from M1 to M2 in osteoporotic and inhibited the production of IL-1β, TNF-α, and IL-6. TET also inhibited the p65 phosphorylation in osteoporosis. Besides, TET reversed RANKL-induced osteoclasts proliferation, p65 phosphorylation, and the expression changes of RANKL, Ki67, PPAR-γ, ALP, OPG. CONCLUSION TET attenuated bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp, inhibited articular cartilage degeneration, promoted bone formation, inhibited the inflammatory response, and promoted macrophage transformation from M1 to M2 via NF-κB inactivation in osteoporosis. TET may be a promising drug for osteoporosis therapy. ABBREVIATION TET: Tetrandrine; ACLT: anterior cruciate ligament transection; OVX: ovariectomy; TRAP: Tartrate-resistant acid phosphatase; BMD: bone mineral density; BV/TV: Bone volume/total volume; Tb.Th: trabecular thickness; Tb.N: trabecular number; Tb.Sp: trabecular separation; MMP-9: Matrix metallopeptidase 9; PPAR-γ: Peroxisome proliferator-activated receptor gamma; RANKL: Receptor activator of nuclear factor kappa-B ligand; OPG: Osteoprotegerin; ALP: alkaline phosphatase; OC: osteocalcin; β-CTX: β isomer of C-terminal telopeptide of type Ⅰ collagen; TRACP-5b: Tartrate-resistant acid phosphatase 5b; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin 6; NF-κB: Nuclear factor kappa B; PKC-α: Protein kinase C alpha; qRT-PCR: Quantitative real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Fang Shi
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| | - Lei Ni
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ye-Mei Gao
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| |
Collapse
|
41
|
Sansai K, Na Takuathung M, Khatsri R, Teekachunhatean S, Hanprasertpong N, Koonrungsesomboon N. Effects of isoflavone interventions on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2020; 31:1853-1864. [PMID: 32524173 DOI: 10.1007/s00198-020-05476-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
UNLABELLED Isoflavones have a structure similar to 17β-estradiol, so they may be useful to postmenopausal women in preventing bone loss related to estrogen deficiency. The present study integrated the findings from 63 randomized controlled trials and found that isoflavone interventions may have benefits in the prevention and treatment of menopause-related osteoporosis. PURPOSE This study aimed to determine the efficacy of isoflavone interventions on bone density outcomes and the safety of isoflavone interventions in postmenopausal women by means of systematic review and meta-analysis. METHODS A systematic search was performed on three databases (PubMed, Scopus, and Cochrane Library). Included studies were limited to randomized controlled trials (RCTs) assessing the effects of isoflavone intervention on bone mineral density (BMD) in postmenopausal women. Mean difference (MD) in BMD or relative risk for adverse outcomes was used as a summary effect measure; pooled-effect estimates were calculated using a random-effects model. RESULTS A total of 63 RCTs, involving 6427 postmenopausal women, were included in the meta-analysis. Statistically significant differences in BMD at the last follow-up visit between the two groups (isoflavones vs. control) were found at the lumbar spine (MD = 21.34 mg/cm2, 95% CI = 8.21 to 34.47 mg/cm2, p = 0.001), the femoral neck (MD = 28.88 mg/cm2, 95% CI = 15.05 to 42.71 mg/cm2, p < 0.0001), and the distal radius (MD = 19.27 mg/cm2, 95% CI = 5.65 to 32.89 mg/cm2, p = 0.006). The positive effects in improved BMD were primarily associated with two formulations, i.e., genistein 54 mg/day and ipriflavone 600 mg/day. Isoflavone interventions were generally safe and well tolerated. CONCLUSION Isoflavone interventions, genistein (54 mg/day) and ipriflavone (600 mg/day) in particular, have beneficial effects on BMD outcomes and are safe in postmenopausal women. They may be considered as a complementary or alternative option in the prevention and treatment of menopause-related osteoporosis.
Collapse
Affiliation(s)
- K Sansai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand
- Master of Science Program in Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - M Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - R Khatsri
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - S Teekachunhatean
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand
- Center of Thai Traditional and Complementary Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - N Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - N Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Center, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
42
|
Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway. Life Sci 2020; 258:118143. [DOI: 10.1016/j.lfs.2020.118143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
|
43
|
Zakłos-Szyda M, Gałązka-Czarnecka I, Grzelczyk J, Budryn G. Cicer arietinum L. Sprouts' Influence on Mineralization of Saos-2 and Migration of MCF-7 Cells. Molecules 2020; 25:E4490. [PMID: 33007937 PMCID: PMC7583992 DOI: 10.3390/molecules25194490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, we investigated the biological activity of four extracts obtained from Cicer arietinum L. sprouts. The fermentation of the sprouts with Lactobacillus casei and their incubation with β-glucosidase elevated the concentrations of isoflavonoids, especially coumestrol, formononetin and biochanin A. To study the biological activity of C. arietinum, the human osteosarcoma Saos-2 and human breast cancer MCF-7 cell lines were used. The extracts obtained from fermented sprouts exhibited the strongest ability to decrease intracellular oxidative stress in both types of cells. They augmented mineralization and alkaline phosphatase activity in Saos-2 cells, as well as diminished the secretion of interleukin-6 and tumor necrosis factor α. Simultaneously, the extracts, at the same doses, inhibited the migration of MCF-7 cells. On the other hand, elevated concentrations of C. arietinum induced apoptosis in estrogen-dependent MCF-7 cells, while lower doses stimulated cell proliferation. These results are important for carefully considering the use of fermented C. arietinum sprouts as a dietary supplement component for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Ilona Gałązka-Czarnecka
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| | - Joanna Grzelczyk
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| |
Collapse
|
44
|
Lu LJW, Chen NW, Nayeem F, Nagamani M, Anderson KE. Soy isoflavones interact with calcium and contribute to blood pressure homeostasis in women: a randomized, double-blind, placebo controlled trial. Eur J Nutr 2020; 59:2369-2381. [PMID: 31535213 PMCID: PMC7416691 DOI: 10.1007/s00394-019-02085-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/28/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Estrogens and calcium regulate vascular health but caused adverse cardiovascular events in randomized trials. OBJECTIVES Whether phytoestrogenic soy isoflavones modulate the physiological effects of calcium on blood pressure was explored. DESIGN A double-blind, randomized study assigned 99 premenopausal women to 136.6 mg isoflavones (as aglycone equivalents) and 98 to placebo for 5 days per week for up to 2 years. Blood pressure, serum calcium and urinary excretion of daidzein (DE) and genistein (GE) were measured repeatedly before and during treatment. RESULTS Isoflavones did not affect blood pressure per intake dose assignment (i.e. intention-to-treat, n = 197), but significantly affected blood pressure per measured urinary excretion of isoflavones (i.e. per protocol analysis, n = 166). Isoflavones inversely moderated calcium effects on systolic blood pressure (SBP) (interaction term β-estimates: - 3.1 for DE, - 12.86 for GE, all P < 0.05), and decreased diastolic blood pressure (DBP) (β-estimates: - 0.84 for DE, - 2.82 for GE, all P < 0.05) after controlling for calcium. The net intervention effects between the maximum and no isoflavone excretion were - 17.7 and + 13.8 mmHg changes of SBP, respectively, at serum calcium of 10.61 and 8.0 mg/dL, and about 2.6 mmHg decrease of DBP. CONCLUSIONS Moderation by isoflavones of the physiological effect of calcium tends to normalize SBP, and this effect is most significant when calcium concentrations are at the upper and lower limits of the physiological norm. Isoflavones decrease DBP independent of calcium levels. Further studies are needed to assess the impact of this novel micronutrient effect on blood pressure homeostasis and cardiovascular health. TRIAL REGISTRATION www.clinicaltrials.gov identifier: NCT00204490.
Collapse
Affiliation(s)
- Lee-Jane W Lu
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA.
| | - Nai-Wei Chen
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA
| | - Fatima Nayeem
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA
| | - Manubai Nagamani
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
- Houston Bay Area Fertility Center, Webster, TX, 77598, USA
| | - Karl E Anderson
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA.
| |
Collapse
|
45
|
Zakłos-Szyda M, Nowak A, Pietrzyk N, Podsędek A. Viburnum opulus L. Juice Phenolic Compounds Influence Osteogenic Differentiation in Human Osteosarcoma Saos-2 Cells. Int J Mol Sci 2020; 21:E4909. [PMID: 32664580 PMCID: PMC7404185 DOI: 10.3390/ijms21144909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Bone mass loss occurs with a decrease in osteoblast proliferation and differentiation, or the enhancement of bone resorption, which further leads to the impairment of bone mineral density and increase in bone fracture. Recent studies suggest that some phenolic compounds found in food play positive role in bone metabolism. High content of phenolic compounds with potential beneficial effects on bone metabolism have been identified in the Viburnum opulus fruit. The aim of the study was to determine the influence of V. opulus fresh juice (FJ) and juice purified by solid phase extraction (PJ) on osteogenesis processes with osteosarcoma Saos-2 cell lines. V. opulus purified juice revealed stronger potential as an inducer of Saos-2 osteogenic differentiation. Saos-2 cells matrix mineralization was evaluated with alkaline phosphatase (ALP) activity measurement and alizarin red S staining. Gene expression analysis showed the elevation of the mRNA levels of Runt-related transcription factor 2 (RUNX2), ALP, collagen type 1 and osteonectin, whereas the nuclear factor-κB ligand and osteoprotegerin ratio (RANKL/OPG) decreased. Furthermore, V. opulus was able to diminish the secretion of pro-inflammatory cytokines Il6 and TNFα, however had no effect on vascular endothelial growth factor (VEGF). It decreased intracellular oxidative stress and induced DNA repair, but had no effect on the growth inhibition of lactic acid beneficial microorganisms.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland; (N.P.); (A.P.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Nina Pietrzyk
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland; (N.P.); (A.P.)
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland; (N.P.); (A.P.)
| |
Collapse
|
46
|
Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020; 12:nu12071986. [PMID: 32635394 PMCID: PMC7400143 DOI: 10.3390/nu12071986] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a common chronic disease characterized by a decrease in bone mineral density, impaired bone strength, and an increased risk of fragility fractures. Fragility fractures are associated with significant morbidity, mortality and disability and are a major public health problem worldwide. The influence of nutritional factors on the development and progression of this disease can be significant and is not yet well established. Calcium intake and vitamin D status are considered to be essential for bone metabolism homeostasis. However, some recent studies have questioned the usefulness of calcium and vitamin D supplements in decreasing the risk of fractures. The adequate intake of protein, vegetables and other nutrients is also of interest, and recommendations have been established by expert consensus and clinical practice guidelines. It is important to understand the influence of nutrients not only in isolation but also in the context of a dietary pattern, which is a complex mixture of nutrients. In this review, we evaluate the available scientific evidence for the effects of the main dietary patterns on bone health. Although some dietary patterns seem to have beneficial effects, more studies are needed to fully elucidate the true influence of diet on bone fragility.
Collapse
Affiliation(s)
- Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de las Nieves Hospital, 18014 Granada, Spain
- Correspondence: (A.M.-G.); (M.M.-T.)
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18014 Granada, Spain;
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18014 Granada, Spain;
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica Endocrinología y Nutrición, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
- Correspondence: (A.M.-G.); (M.M.-T.)
| |
Collapse
|
47
|
Zeng J, Feng Y, Feng J, Chen X. The effect of soy intervention on insulin-like growth factor 1 levels: A meta-analysis of clinical trials. Phytother Res 2020; 34:1570-1577. [PMID: 32072706 DOI: 10.1002/ptr.6630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
Abstract
A low insulin-like growth factor 1 (IGF-1) level is known to be associated with many disorders. Several studies have shown that soy consumption may influence IGF-1, but the findings remain inconclusive. In this work, we conducted a systematic review and meta-analysis to provide a more accurate estimation of the effect of soy consumption on plasma IGF-1. A comprehensive systematic search was performed in Scopus, Embase, Web of Science, and PubMed/MEDLINE databases from inception until October 2019. Eight studies fulfilled the eligibility criteria. The pooled weighted mean difference (WMD) of the eligible studies was calculated with random-effects approach. Overall, a significant increment in plasma IGF-1 was observed following soy intervention (WMD: 13.5 ng/ml, 95% CI: 5.2, 21.8, I2 = 97%). Subgroup analyses demonstrated a significantly greater increase in IGF-1, when soy was administered at a dosage of ≤40 g/day (WMD: 11.7 ng/ml, 95% CI: 10.9 to 12.6, I2 = 98%), and when the intervention duration was <12 weeks (WMD: 26.6 ng/ml, 95% CI: 9.1 to 44.1, I2 = 0.0%). In addition, soy intervention resulted in a greater increase in IGF-1 among non-healthy subjects (WMD: 36 ng/ml, 95% CI: 32.7 to 39.4, I2 = 84%) than healthy subjects (WMD: 9.8 ng/ml, 95% CI: 8.9 to 10.7, I2 = 90%). In conclusion, this study provided the first meta-analytical evidence that soy intake may increase IGF-1 levels, but the magnitude of the increase is dependent on the intervention dosage, duration, and health status of the participants.
Collapse
Affiliation(s)
- Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Yue Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Xi Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
48
|
Isoflavone-enriched whole soy milk powder stimulates osteoblast differentiation. Journal of Food Science and Technology 2020; 58:595-603. [PMID: 33568853 DOI: 10.1007/s13197-020-04572-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Functional foods with high nutritive values and potential therapeutic potential is a prerequisite for today's ailing world. Soybeans exert beneficial effects on human health. It contains plentiful polyunsaturated fatty acids and dietary fibers along with several isoflavonoids having bioactivity for improving health. Recent studies have shown that soybean isoflavones can have a positive effect on bone growth. The current study was designed to observe any impact of isoflavone-enriched soy milk powder (I-WSM) on inducing osteogenic properties at cellular and molecular levels. Precisely, we have evaluated the effect of I-WSM on the bone differentiation process. Our results show that I-WSM has the ability to stimulate osteogenic properties in osteoblasts both at the initial and terminal stages of differentiation. Treatment of I-WSM on osteoblasts demonstrates the inductive effect on the expression of osteogenic transcriptional factors like Runx2 and Osterix. Moreover, I-WSM increased the expression of the extracellular matrix protein osteocalcin, required for the formation of scaffold for bone mineralization. The estrogen signaling pathway was utilized by I-WSM to induce osteogenic activity. Taken together, here we report the cellular and molecular events mediated by I-WSM to exert an osteogenic effect in osteoblasts, which will help to understand its mechanism of action and project it as a remedy for the bone-related disease. Taken together, I-WSM has the ability to exert the osteogenic effect in osteoblasts via the estrogen signaling pathway and thus might be projected as a remedy for a bone-related disease like osteoporosis.
Collapse
|
49
|
Cady N, Peterson SR, Freedman SN, Mangalam AK. Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Front Neurol 2020; 11:150. [PMID: 32231636 PMCID: PMC7083015 DOI: 10.3389/fneur.2020.00150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The human body has a large, diverse community of microorganisms which not only coexist with us, but also perform many important physiological functions, including metabolism of dietary compounds that we are unable to process ourselves. Furthermore, these bacterial derived/induced metabolites have the potential to interact and influence not only the local gut environment, but the periphery via interaction with and modulation of cells of the immune and nervous system. This relationship is being further appreciated every day as the gut microbiome is researched as a potential target for immunomodulation. A common feature among inflammatory diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut microbiota dysbiosis when compared to healthy controls. However, the specifics of these microbiota-neuro-immune system interactions remain unclear. Among all factors, diet has emerged as a strongest factor regulating structure and function of gut microbial community. Phytoestrogens are one class of dietary compounds emerging as potentially being of interest in this interaction as numerous studies have identified depletion of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been reported to show protective effects when compounds are administered in the animal model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize the importance of gut bacteria and their mechanisms of action in the production of phytoestrogen metabolites, and discuss what is known about the interactions of specific compounds with cells immune and nervous system. A better understanding of gut bacteria-mediated phytoestrogen metabolism and mechanisms through which these metabolites facilitate their biological actions will help in development of novel therapeutic options for MS as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Cady
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | | | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Immunology, University of Iowa, Iowa City, IA, United States
- Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
50
|
Improved Pharmacokinetics and Tissue Uptake of Complexed Daidzein in Rats. Pharmaceutics 2020; 12:pharmaceutics12020162. [PMID: 32079113 PMCID: PMC7076374 DOI: 10.3390/pharmaceutics12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacokinetic profile and tissue uptake of daidzein (DAI) was determined in rat serum and tissues (lungs, eyes, brain, heart, spleen, fat, liver, kidney, and testes) after intravenous and intraperitoneal administration of DAI in suspension or complexed with ethylenediamine-modified γ-cyclodextrin (GCD-EDA/DAI). The absolute and relative bioavailability of DAI suspended (20 mg/kg i.v. vs. 50 mg/kg i.p.) and complexed (0.54 mg/kg i.v. vs. 1.35 mg/kg i.p.) was determined. After i.p. administration, absorption of DAI complexed with GCD-EDA was more rapid (tmax = 15 min) than that of DAI in suspension (tmax = 45 min) with a ca. 3.6 times higher maximum concentration (Cmax = 615 vs. 173 ng/mL). The i.v. half-life of DAI was longer in GCD-EDA/DAI complex compared with DAI in suspension (t0.5 = 380 min vs. 230 min). The volume of distribution of DAI given i.v. in GCD-EDA/DAI complex was ca. 6 times larger than DAI in suspension (38.6 L/kg vs. 6.2 L/kg). Our data support the concept that the pharmacokinetics of DAI suspended in high doses are nonlinear. Increasing the intravenous dose 34 times resulted in a 5-fold increase in AUC. In turn, increasing the intraperitoneal dose 37 times resulted in a ca. 2-fold increase in AUC. The results of this study suggested that GCD-EDA complex may improve DAI bioavailability after i.p. administration. The absolute bioavailability of DAI in GCD-EDA inclusion complex was ca. 3 times greater (F = 82.4% vs. 28.2%), and the relative bioavailability was ca. 21 times higher than that of DAI in suspension, indicating the need to study DAI bioavailability after administration by routes other than intraperitoneal, e.g., orally, subcutaneously, or intramuscularly. The concentration of DAI released from GCD-EDA/DAI inclusion complex to all the rat tissues studied was higher than after administration of DAI in suspension. The concentration of DAI in brain and lungs was found to be almost 90 and 45 times higher, respectively, when administered in complex compared to the suspended DAI. Given the nonlinear relationship between DAI bioavailability and the dose released from the GCD-EDA complex, complexation of DAI may thus offer an effective approach to improve DAI delivery for treatment purposes, for example in mucopolysaccharidosis (MPS), allowing the reduction of ingested DAI doses.
Collapse
|