1
|
Vanathi M, Yadav DK, Velpandian T, Ahmed NH, Muraleekrishna M, Beniwal A, Lomi N, Gupta N, Tandon R, Khan MA. Evaluation of topical 1% posaconazole therapy in refractory fungal keratitis. Indian J Ophthalmol 2025; 73:64-72. [PMID: 39723856 DOI: 10.4103/ijo.ijo_1811_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/13/2024] [Indexed: 12/28/2024] Open
Abstract
PURPOSE The primary objective was to evaluate the clinical response of refractory cases of fungal keratitis to topical 1% posaconazole therapy. METHODS Prospective longitudinal non-randomized open label dual-cohort study of 70 eyes of refractory fungal keratitis, 35 were recruited as posaconazole treatment (PCZ) group for topical 1% posaconazole therapy and compared to 35 eyes on conventional antifungal therapy. Study parameters included demographic and treatment details, visual acuity, comprehensive slit-lamp biomicroscopy, clinical photography, ASOCT at recruitment and weekly (week 1, 2, 3 and 4 after treatment initiation). Clinical assessment included keratitis severity grade, time of healing, and healing response. Anti-fungal susceptibility testing was performed. RESULTS The mean age of 35 patients recruited in the PCZ treatment group was 45 ± 17.32 years and that for the conventional treatment group was 43.22 ± 15.04 years. Culture isolation was possible in 25 eyes (71.4%) in the PCZ treatment group, with Fusarium and Aspergillus spp. being the most common cornea pathogenic mycotic organisms. The mean healing time in the PCZ group was 27.13 ± 5.8 days and in the conventional treatment group was 26.41 ± 4.81 days. Healing response in the PCZ treatment showed that 27 eyes (77.14%) had healed, 3 (8.5%) had delayed healing, and 5 (14.28%) required therapeutic keratoplasty, whereas in the conventional treatment group, 26 (74.28%) healed, 2 (5.7%) had delayed healing, and 7 (20%) needed keratoplasty (P = 0.65, 0.72, 0.54, respectively). Topical 1% PCZ therapy of chronic mycotic keratitis was helpful in resolution in 85.7% of cases (30 eyes) with five eyes needing surgical intervention, which was comparable to that of conventional antimycotic therapy cohorts. Fusarium isolates showed greater susceptibility to natamycin in our study per MIC50 values, with susceptibility to the common antimycotic agents varying between the Aspergillus spp. in both PCZ treatment and conventional treatment groups. All isolates showed minimal values of MIC-50 with PCZ. Antifungal susceptibility testing in our study recruits showed that about 90% of the Fusarium spp. isolates to be best responsive to natamycin and PCZ, whereas Aspergillus niger isolates were sensitive to voriconazole, itraconazole, amphotericin B, and PCZ, Aspergillus flavus to voriconazole and PCZ, Aspergillus fumigatus to both polyenes and triazoles. Cladosporium spp. were best sensitive to natamycin and PCZ, Penicillium spp. to natamycin and azoles. Alternaria keratitis isolates were sensitive to voriconazole and PCZ, whereas Rhizopus isolate was best sensitive to PCZ. CONCLUSION Topical 1% PCZ therapy in refractory fungal keratitis was comparable to that of conventional antimycotic agents, with lower MIC-50 against the common pathogenic fungi as compared to natamycin, amphotericin B, and voriconazole.
Collapse
Affiliation(s)
- Murugesan Vanathi
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra K Yadav
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nishat Hussain Ahmed
- Ocular Microbiology Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Manu Muraleekrishna
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Abhijeet Beniwal
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neiwete Lomi
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Noopur Gupta
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Maroof A Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Xia H, Yang J, Song F, Pu G, Dong F, Liang Z, Zhang J. Development of ion-triggered in situ gel containing ketoconazole/hydroxypropyl-β-cyclodextrin for ocular delivery: in vitro and in vivo evaluation. Drug Deliv 2024; 31:2424217. [PMID: 39533742 PMCID: PMC11562027 DOI: 10.1080/10717544.2024.2424217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The application of ketoconazole (KET) in ocular drug delivery is restricted by its poor aqueous solubility though its broad-spectrum antifungal activity. The aim of this study is to develop an ion-sensitive in situ gel (ISG) of KET to promote its ocular bioavailability in topical application. The solubility of KET in water was increased by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), then KET-HPβCD inclusion complex (KET-IC) was fabricated into an ion-sensitive ISG triggered by sodium alginate (SA). The in vitro drug release and antifungal activities investigations demonstrated that the KET-IC-ISG formulation increased drug release and anti-fungal activities compared to pure KET. The ex vivo rabbit corneal permeation studied demonstrated higher permeability of KET-IC-ISG formulation (Papp of (6.34 ± 0.21) × 10-4 cm/h) than pure KET (Papp of (3.09 ± 0.09) × 10-4 cm/h). The cytotoxicity assay and the ocular irritation study in rabbits confirmed the KET-IC-ISG safety and well tolerance. The ocular pharmacokinetics of KET in rabbits was investigated and the results showed that the KET-IC-ISG increased its bioavailability in cornea by 47-fold. In conclusion, the KET-IC-ISG system promoted the precorneal retention, the ocular drug bioavailability and the developed formulation is a potential strategy to treat mycotic keratitis.
Collapse
Affiliation(s)
- Huiyun Xia
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Fei Song
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Fudan Dong
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Andrade Júnior FPD, Galdino Gouveia R, Ilan Soares Medeiros C, Teixeira BDA, Farias BKDS, Oliveira NDR, Silva DDF, Lima EDO. Antifungal activity of citronellal against Trichophyton rubrum and its predictive mechanism of action by CYP51 inhibition through molecular docking. Nat Prod Res 2024; 38:4125-4133. [PMID: 37933528 DOI: 10.1080/14786419.2023.2277352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
The present study aimed to investigate the antifungal activity of citronellal (CIT) against clinical isolates of T. rubrum and to show the possible mechanism of action involved. The antifungal potential of CIT was evaluated from the Minimum Inhibitory Concentration (MIC), Minimum Fungicide Concentration (MFC) and assays with ergosterol and sorbitol, to elucidate the possible mechanisms of action, and molecular docking. MIC and MFC values ranged from 4 to 512 µg/mL. Regarding the mechanism of action, the monoterpene demonstrated interaction with fungal ergosterol. In addition, it is possible to observe that CIT acts on crucial enzymes for the biosynthesis and maintenance of the fungal cell membrane, due to the ability of the monoterpene to bind to CYP51. The results obtained in this research demonstrate that CIT has the potential to become, in the future, a product for the treatment of dermatophytosis.
Collapse
Affiliation(s)
| | | | | | - Bráulio de Almeida Teixeira
- Master in Natural and Synthetic Bioactive Products, Federal University of Paraiba (UFPB), João Pessoa, Brazil
| | | | - Nayana da Rocha Oliveira
- Master in Natural and Synthetic Bioactive Products, Federal University of Paraiba (UFPB), João Pessoa, Brazil
| | | | | |
Collapse
|
4
|
Dong L, Fan Z, Fang B, Zhao X, Yao H, Cai G, Yang S, Zhang G, Cheng X, Feng Y, Mi S, Sun W. Oriented cellulose hydrogel: Directed tissue regeneration for reducing corneal leukoplakia and managing fungal corneal ulcers. Bioact Mater 2024; 41:15-29. [PMID: 39101028 PMCID: PMC11292264 DOI: 10.1016/j.bioactmat.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Fungal corneal ulcer is one of the leading causes of corneal blindness in developing countries. Corneal scars such as leukoplakia are formed due to inflammation, oxidative stress and non-directed repair, which seriously affect the patients' subsequent visual and life quality. In this study, drawing inspiration from the oriented structure of collagen fibers within the corneal stroma, we first proposed the directional arrangement of CuTA-CMHT hydrogel system at micro and macro scales based on the 3D printing extrusion method combined with secondary patterning. It played an antifungal role and induced oriented repair in therapy of fungal corneal ulcer. The results showed that it effectively inhibited Candida albicans, Aspergillus Niger, Fusarium sapropelum, which mainly affects TNF, NF-kappa B, and HIF-1 signaling pathways, achieving effective antifungal functions. More importantly, the fibroblasts interacted with extracellular matrix (ECM) of corneal stroma through formation of focal adhesions, promoted the proliferation and directional migration of cells in vitro, induced the directional alignment of collagen fibers and corneal stromal orthogonally oriented repair in vivo. This process is mainly associated with MYLK, MYL9, and ITGA3 molecules. Furthermore, the downregulation the growth factors TGF-β and PDGF-β inhibits myofibroblast development and reduces scar-type ECM production, thereby reducing corneal leukoplakia. It also activates the PI3K-AKT signaling pathway, promoting corneal healing. In conclusion, the oriented CuTA-CMHT hydrogel system mimics the orthogonal arrangement of collagen fibers, inhibits inflammation, eliminates reactive oxygen species, and reduces corneal leukoplakia, which is of great significance in the treatment of fungal corneal ulcer and is expected to write a new chapter in corneal tissue engineering.
Collapse
Affiliation(s)
- Lina Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Burns, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Bixing Fang
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoyu Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hongyi Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Gangpei Cai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuo Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Xiaoqi Cheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Tian X, Zhan L, Long X, Lin J, Zhang Y, Luan J, Peng X, Zhao G. Multifunctional natamycin modified chondroitin sulfate eye drops with anti-inflammatory, antifungal and tissue repair functions possess therapeutic effects on fungal keratitis in mice. Int J Biol Macromol 2024; 279:135290. [PMID: 39233178 DOI: 10.1016/j.ijbiomac.2024.135290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Fungal keratitis (FK) is recognized as a stubborn ocular condition, caused by intense fungal invasiveness and heightened immune reaction. The glycosaminoglycan chondroitin sulfate exhibits properties of immunomodulation and tissue regeneration. In prior investigations, oxidized chondroitin sulfate (OCS) ameliorated the prognosis of FK in murine models. To further improve the curative efficacy, we used the antifungal drug natamycin to functionalize OCS and prepared oxidized chondroitin sulfate-natamycin (ON) eye drops. The structure of ON was characterized by FTIR, UV-vis, and XPS, revealing that the amino group of natamycin combined with the aldehyde group in OCS through Schiff base reaction. Antifungal experiments revealed that ON inhibited fungal growth and disrupted the mycelium structure. ON exhibited exceptional biocompatibility and promoted the proliferation of corneal epithelial cells. Pharmacokinetic analysis indicated that ON enhanced drug utilization by extending the mean residence time in tears. In murine FK, ON treatment reduced the clinical score and corneal fungal load, restored corneal stroma conformation, and facilitated epithelial repair. ON effectively inhibited neutrophil infiltration and decreased the expression of TLR-4, LOX-1, IL-1β, and TNF-α. Our research demonstrated that ON eye drops achieved multifunctional treatment for FK, including inhibiting fungal growth, promoting corneal repair, enhancing drug bioavailability, and controlling inflammatory reactions.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of materials Science and Engineering, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
6
|
Asao K, Hashida N, Maruyama K, Motooka D, Nakamura S, Nishida K. Cases of endophthalmitis caused by Candida albicans and Candida dubliniensis identified via internal transcribed spacer deep sequencing. BMC Ophthalmol 2024; 24:444. [PMID: 39385149 PMCID: PMC11463106 DOI: 10.1186/s12886-024-03702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND We report two cases of fungal endophthalmitis induced by Candida species identified based on internal transcribed spacer 1 (ITS1) sequencing. CASE PRESENTATION In two cases, endophthalmitis was suspected, and the patients underwent pars plana vitrectomy. Case 1 was a 64-year-old woman with a history of cataract surgery 10 days prior. She had a history of anal primary melanoma, which metastasized throughout the body and subsequently relapsed. Vitreous culture and ITS-1 deep sequencing revealed the presence of the rare fungus, Candida dubliniensis. Case 2 was a 54-year-old man with a history of liver cancer and kidney failure. Culture methods and ITS1 deep sequencing both revealed the presence of Candida albicans. Both patients exhibited good visual prognoses after treatment with topical and systemic antibiotics. CONCLUSIONS We present two cases of fungal endophthalmitis caused by two Candida species identified by both the culture method and ITS1 deep sequencing. The fungal pathogen was identified by ITS deep sequencing three days after sample submission; the culture method yielded results after 1 week. These findings support the applicability of ITS1 sequencing for timely pathogen identification for cases of fungal endophthalmitis and provide detailed taxonomic information at the species level.
Collapse
Affiliation(s)
- Kazunobu Asao
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | - Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Department of Vision Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Asmawi AA, Adam F, Mohd Azman NA, Abdul Rahman MB. Advancements in the nanodelivery of azole-based fungicides to control oil palm pathogenic fungi. Heliyon 2024; 10:e37132. [PMID: 39309766 PMCID: PMC11416272 DOI: 10.1016/j.heliyon.2024.e37132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The cultivation of oil palms is of great importance in the global agricultural industry due to its role as a primary source of vegetable oil with a wide range of applications. However, the sustainability of this industry is threatened by the presence of pathogenic fungi, particularly Ganoderma spp., which cause detrimental oil palm disease known as basal stem rot (BSR). This unfavorable condition eventually leads to significant productivity losses in the harvest, with reported yield reductions of 50-80 % in severely affected plantations. Azole-based fungicides offer potential solutions to control BSR, but their efficacy is hampered by limited solubility, penetration, distribution, and bioavailability. Recent advances in nanotechnology have paved the way for the development of nanosized delivery systems. These systems enable effective fungicide delivery to target pathogens and enhance the bioavailability of azole fungicides while minimising environmental and human health risks. In field trials, the application of azole-based nanofungicides resulted in up to 75 % reduction in disease incidence compared to conventional fungicide treatments. These innovations offer opportunities for the development of sustainable agricultural practices. This review highlights the importance of oil palm cultivation concerning the ongoing challenges posed by pathogenic fungi and examines the potential of azole-based fungicides for disease control. It also reviews recent advances in nanotechnology for fungicide delivery, explores the mechanisms behind these nanodelivery systems, and emphasises the opportunities and challenges associated with azole-based nanofungicides. Hence, this review provides valuable insights for future nanofungicide development in effective oil palm disease control.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610, Selangor, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Nurul Aini Mohd Azman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Tian X, Ji X, Zhang R, Long X, Lin J, Zhang Y, Zhan L, Luan J, Zhao G, Peng X. Therapeutic effect of oxidized bletilla striata polysaccharide-natamycin eye drops on fungal keratitis. J Biomater Appl 2024:8853282241280844. [PMID: 39208309 DOI: 10.1177/08853282241280844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN). METHODS UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with A. fumigatus and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration. RESULTS OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of A. fumigatus keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors in vivo. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models. CONCLUSION OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with A. fumigatus keratitis.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyue Ji
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ranran Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Bisen AC, Sanap SN, Agrawal S, Biswas A, Mishra A, Verma SK, Singh V, Bhatta RS. Etiopathology, Epidemiology, Diagnosis, and Treatment of Fungal Keratitis. ACS Infect Dis 2024; 10:2356-2380. [PMID: 38847789 DOI: 10.1021/acsinfecdis.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Fungal keratitis (FK) is a severe ocular condition resulting from corneal infection that is prevalent in tropical countries, particularly in developing regions of Asia and Africa. Factors like corneal lens misuse, inappropriate steroid use, and diagnostic challenges have provoked the epidemic. FK causes significant vision impairment, scarring, and ocular deformities. Accurate pathological diagnosis is crucial for effective therapeutic intervention. Topical antifungal therapy with surface healing medications proves effective in preventing fungal-borne ulcers. Managing FK requires a comprehensive understanding of fungal pathogenesis, guiding formulation strategies and preventive measures to curb global ocular blindness. This review provides in-depth insights into FK, covering etiology, epidemiology, pathogenesis, therapeutic interventions, antifungal resistance, limitations, prevention, and future perspectives on ocular surface disease management.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Arpon Biswas
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anjali Mishra
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vaishali Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
11
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
12
|
El Hachem S, Fattouh N, Chedraoui C, Finianos M, Bitar I, Khalaf RA. Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate. J Fungi (Basel) 2024; 10:347. [PMID: 38786702 PMCID: PMC11122215 DOI: 10.3390/jof10050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. METHODS The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. RESULTS We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. CONCLUSION This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance.
Collapse
Affiliation(s)
- Setrida El Hachem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
- Department of Biology, Saint George University of Beirut, Beirut 1100-2807, Lebanon
| | - Christy Chedraoui
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Roy A. Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| |
Collapse
|
13
|
Talarico L, Clemente I, Gennari A, Gabbricci G, Pepi S, Leone G, Bonechi C, Rossi C, Mattioli SL, Detta N, Magnani A. Physiochemical Characterization of Lipidic Nanoformulations Encapsulating the Antifungal Drug Natamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:726. [PMID: 38668220 PMCID: PMC11053702 DOI: 10.3390/nano14080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Natamycin is a tetraene polyene that exploits its antifungal properties by irreversibly binding components of fungal cell walls, blocking the growth of infections. However, topical ocular treatments with natamycin require frequent application due to the low ability of this molecule to permeate the ocular membrane. This limitation has limited the use of natamycin as an antimycotic drug, despite it being one of the most powerful known antimycotic agents. In this work, different lipidic nanoformulations consisting of transethosomes or lipid nanoparticles containing natamycin are proposed as carriers for optical topical administration. Size, stability and zeta potential were characterized via dynamic light scattering, the supramolecular structure was investigated via small- and wide-angle X-ray scattering and 1H-NMR, and the encapsulation efficiencies of the four proposed formulations were determined via HPLC-DAD.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ilaria Clemente
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandro Gennari
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
| | - Giulia Gabbricci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Pepi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Bonechi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Luca Mattioli
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Nicola Detta
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Agnese Magnani
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Reginatto P, Agostinetto GDJ, Teixeira ML, de Andrade SF, Fuentefria AM. Synergistic activity of clioquinol with voriconazole and amphotericin B against fungi of interest in eye infections. J Mycol Med 2024; 34:101462. [PMID: 38290229 DOI: 10.1016/j.mycmed.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Keratoplasty represents a risk factor for fungal eye infections, despites the antibacterial actives in the corneal tissue preservation means, it does not contain active substances with antifungal action. Among the most commonly associated fungal agents are the species belonging to the genera Fusarium and Candida. These agents can trigger an infectious process characterized by swift progression associated with high rates of morbidity, causing irreversible damage. Polyene and azole antifungals are the main agents of ocular therapy, however, they demonstrate some limitations, such as their toxicity and fungal resistance. In this context, drug repositioning and the combination of antifungals may be an alternative. Hence, the goal of this study was to investigate the potential activity of clioquinol (CLQ), a derivative of 8-hydroxyquinoline with previously described antifungal activity, along with its triple and quadruple combinations with antifungal agents commonly used in ophthalmic fungal therapy, natamycin (NAT), voriconazole (VRC), and amphotericin B (AMB), against main fungal pathogens in eye infections. The MICs for CLQ ranged from 0.25 to 2.0 μg/mL, for NAT from 4.0 to 32.0 μg/mL, for AMB it ranged from 0.25 to 16.0 μg/mL and for VRC from 0.03125 to 512.0 µg/mL. Among the tested combinations, the VRC-AMB-CLQ combination stands out, which showed a synergistic effect for more than 50 % of the tested strains and did not present antagonistic results against any of them. Toxicity data were similar to those antifungals already used, even with lower potential toxicity. Therefore, both clioquinol and the triple combination VCR-AMB-CLQ exhibited promising profiles for use as active components in corneal tissue preservation medium.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Zhou Y. Survival of a Rhino-Orbital-Cerebral Mucormycosis Patient after Localized Combination Liposomal Amphotericin B Medications: A Case Report. Case Rep Ophthalmol 2024; 15:122-128. [PMID: 38322311 PMCID: PMC10846874 DOI: 10.1159/000536185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction The aim of this study was to report a case of ROCM related to nasogastric intubation who was survived by liposomal amphotericin B (LAmB) combination therapy in situ without orbital exenteration. Case Presentation A 44-year-old woman presented with a 1-week history of rapidly enlarging swelling on the right nose, cheek, and lower eyelid after underwent gastrointestinal decompression. The lesions were derived from the nasal area where the nasogastric tube had been placed. Based on the biopsy results and clinical manifestations, ROCM was diagnosed. Immediate combination therapy with intravenous LAmB and micafungin and multisection debridement of the right facial region were applied. Postoperative treatment included cleaning, irrigating, and local dressing of the wound area using LAmB. LAmB was also used daily as binocular eye drops against deep infection on the eyeballs. The patient recovered well 4 months later and remained free of disease after 40 months of follow-up. Conclusion This case adds to our knowledge on the potential risk of nasogastric intubation for mucormycosis infection. Nasogastric tube may be the source of infection associated with ROCM. This report evaluates the beneficial effect of LAmB combination therapy in situ for cleaning, irrigating, local wound dressing, and eye drops on lesion areas. The combination of LAmB as cleaning, irrigating, local dressing solution, and eye drops to control intraocular and intraorbital ROCM infection has not been previously reported to our knowledge. These methods provide multiple choices to substitute for orbital exenteration on the survival of ROCM patients.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ophthalmology, Qingdao Qingda Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Qingdao, China
- Zhengda Guangming International Eye Research Center, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
17
|
Mahfud MAS, Syahirah NA, Akram M, Mahfufah U, Saputra MD, Elim D, Andi MNF, Sultan NAF, Himawan A, Domínguez-Robles J, Pamornpathomkul B, Mir M, Permana AD. Solid Dispersion Incorporated into Dissolving Microneedles for Improved Antifungal Activity of Amphotericin B: In Vivo Study in a Fungal Keratitis Model. Mol Pharm 2023; 20:6246-6261. [PMID: 37975721 DOI: 10.1021/acs.molpharmaceut.3c00647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal keratitis (FK) is a fungal infection of the cornea, which is part of the eye and causes corneal ulcers and an increased risk of permanent blindness, which is often found in Candida albicans species. Amphotericin B (AMB), which is a group of polyenes as the first-line treatment of FK, is effective in annihilating C. albicans. However, AMB preparations such as eye drops and ointments have major drawbacks, for instance, requiring more frequent administrations, loss of the drug by the drainage process, and rapid elimination in the precornea, which result in low bioavailability of the drug. An ocular dissolving microneedle containing the solid dispersion amphotericin B (DMN-SD-AMB) had been developed using a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers, while the solid dispersion AMB (SD-AMB) was contained in the needle as a drug. This study aims to determine the most optimal and safest DMN-SD-AMB formula for the treatment of FK in the eye as well as a solution to overcome the low bioavailability of AMB eye drops and ointment preparations. SD-AMB had been successfully developed, which was characterized by increased antifungal activity and drug release in vitro compared to other treatments. Furthermore, DMN-SD-AMB studies had also been successfully performed with the best formulation, which exhibited the best ex vivo corneal permeation profile and antifungal activity as well as being safe from eye irritation. In addition, an in vivo antifungal activity using a rabbit infection model shows that the number of fungal colonies was 0.98 ± 0.11 log10 CFU/mL (F3), 5.76 ± 0.32 log10 CFU/mL (AMB eye drops), 4.01 ± 0.28 log10 CFU/mL (AMB ointments), and 9.09 ± 0.65 log10 CFU/mL (control), which differed significantly (p < 0.05). All of these results evidence that DMN-SD-AMB is a new approach to developing intraocular preparations for the treatment of FK.
Collapse
Affiliation(s)
| | | | - Muhammad Akram
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | | | - Maria Mir
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad 45320, Pakistan
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
18
|
Demarinis G, Tatti F, Taloni A, Giugliano AV, Panthagani J, Myerscough J, Peiretti E, Giannaccare G. Treatments for Ocular Diseases in Pregnancy and Breastfeeding: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1433. [PMID: 37895903 PMCID: PMC10610321 DOI: 10.3390/ph16101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Pregnancy is a medical condition in which the physiological changes in the maternal body and the potential impact on the developing fetus require a cautious approach in terms of drug administration. Individual treatment, a thorough assessment of the extent of the disease, and a broad knowledge of the therapeutic options and different routes of administration of ophthalmic drugs are essential to ensure the best possible results while minimizing risks. Although there are currently several routes of administration of drugs for the treatment of eye diseases, even with topical administration, there is a certain amount of systemic absorption that must be taken into account. Despite continuous developments and advances in ophthalmic drugs, no updated data are available on their safety profile in these contexts. The purpose of this review is both to summarize the current information on the safety of ophthalmic treatments during pregnancy and lactation and to provide a practical guide to the ophthalmologist for the treatment of eye diseases while minimizing harm to the developing fetus and addressing maternal health needs.
Collapse
Affiliation(s)
- Giuseppe Demarinis
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Via Ospedale 48, 09124 Cagliari, Italy; (G.D.); (F.T.); (E.P.)
| | - Filippo Tatti
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Via Ospedale 48, 09124 Cagliari, Italy; (G.D.); (F.T.); (E.P.)
| | - Andrea Taloni
- Department of Ophthalmology, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | | | - Jesse Panthagani
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK; (J.P.); (J.M.)
| | - James Myerscough
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK; (J.P.); (J.M.)
| | - Enrico Peiretti
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Via Ospedale 48, 09124 Cagliari, Italy; (G.D.); (F.T.); (E.P.)
| | - Giuseppe Giannaccare
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Via Ospedale 48, 09124 Cagliari, Italy; (G.D.); (F.T.); (E.P.)
- Department of Ophthalmology, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
19
|
Madkhali OA. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm J 2023; 31:101733. [PMID: 37649674 PMCID: PMC10463261 DOI: 10.1016/j.jsps.2023.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
Human pathogenic fungi are responsible for causing a range of infection types including mucosal, skin, and invasive infections. Life-threatening and invasive fungal infections (FIs) are responsible for mortality and morbidity, especially for individuals with compromised immune function. The number of currently available therapeutic agents against invasive FIs is limited compared to that against bacterial infections. In addition, the increased mortality and morbidity caused by FIs are linked to the limited number of available antifungal agents, antifungal resistance, and the increased toxicity of these agents. Currently available antifungal agents have several drawbacks in efficiency, efficacy, toxicity, activity spectrum, and selectivity. It has already been demonstrated with numerous metallic nanoparticles (MNPs) that these nanoparticles can serve as an effective and alternative solution as fungicidal agents. MNPs have great potential owing to their intrinsic antifungal properties and potential to deliver antifungal drugs. For instance, gold nanoparticles (AuNPs) have the capacity to disturb mitochondrial calcium homeostasis induced AuNP-mediated cell death in Candida albicans. In addition, both copper nanoparticles and copper oxide nanoparticles exerted significant suppressive properties against pathogenic fungi. Silver nanoparticles showed strong antifungal properties against numerous pathogenic fungi, such as Stachybotrys chartarum, Mortierella alpina, Chaetomium globosum, A. fumigatus, Cladosporium cladosporioides, Penicillium brevicompactum, Trichophyton rubrum, C. tropicalis, and C. albicans. Iron oxide nanoparticles showed potent antifungal activities against A. niger and P. chrysogenum. It has also been reported that zinc oxide nanoparticles can significantly inhibit fungal growth. These NPs have already exerted potent antifungal properties against a number of pathogenic fungal species including Candida, Aspergillus, Fusarium, and many others. Several strategies are currently used for the research and development of antifungal NPs including chemical modification of NPs and combination with the available drugs. This review has comprehensively presented the current and innovative antifungal approach using MNPs. Moreover, different types of MNPs, their physicochemical characteristics, and production techniques have been summarized in this review.
Collapse
Affiliation(s)
- Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
20
|
Ahmad I, Farheen M, Kukreti A, Afzal O, Akhter MH, Chitme H, Visht S, Altamimi AS, Alossaimi MA, Alsulami ER, Jaremko M, Emwas AH. Natural Oils Enhance the Topical Delivery of Ketoconazole by Nanoemulgel for Fungal Infections. ACS OMEGA 2023; 8:28233-28248. [PMID: 37576685 PMCID: PMC10413480 DOI: 10.1021/acsomega.3c01571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Nanoemulgel (NEG) pharmaceutical formulations are gaining popularity because of their ability to serve both as a nanoemulsion and as a gel. These products are well-known for their ease of use, spreadability, controlled release, and ability to hydrate dry skin. Natural essential oils have been shown to promote the cutaneous permeability of topical formulations, enhancing medication safety and efficacy. Herein, we developed NEG for the enhanced permeation of ketoconazole against candidiasis using clove oil (clove-oil-NEG) or eucalyptus oil (eucalyptus-oil-NEG), using the gelling agents carbopol 943 and hydroxypropyl methylcellulose (HPMC). We tested various excipients to increase the solubility of ketoconazole and formulate a nanoemulsion (NE). We measured the NE droplet particle size, shape, entrapment efficiency, and drug release. Furthermore, the physicochemical properties of the optimized nanoemulsion formulation were characterized by techniques such as Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis. The NEs were loaded into gels to form NEGs. NEGs were characterized for drug content, homogeneity, rheology, spreadability, and antifungal activity against Candida albicans, both in vitro and in vivo. Optimized ketoconazole NEG preparations consisted of either 15% clove oil or 20% eucalyptus oil. Droplet sizes in the optimized NEs were <100 nm, and the polydispersity indexes were 0.24 and 0.26. The percentages of ketoconazole released after 24 h from the clove-oil-NEG and eucalyptus-oil-NEGs were 91 ± 4.5 and 89 ± 7%, respectively. Scanning electron microscopy (SEM) showed that the NEGs had a smooth, uniform, and consistent shape and internal structural organization. The drug contents in the clove-oil-NEG and eucalyptus-oil-NEG were 98.5 ± 2.2 and 98.8 ± 3.4%, respectively. Permeation values of ketoconazole from clove-oil-NEG and eucalyptus-oil-NEG were 117 ± 7 and 108.34 ± 6 μg cm-2, respectively. The ketoconazole NEG formulations also had higher levels of fungal growth inhibition than a marketed formulation. Finally, in vivo studies showed that the NEGs do not irritate the skin. Ketoconazole NEG with either 15% clove oil or 20% eucalyptus oil is stable with better efficacy than ketoconazole alone due to excellent dispersion, drug dissolution, and permeability and thus might be recommended for the effective and safe treatment of candidiasis.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Ms Farheen
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Ashish Kukreti
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Havagiray Chitme
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Sharad Visht
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | | | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ebtisam R. Alsulami
- Nursing
Department, Najran Armed Forces Hospital, Najran 66251, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
21
|
Zhao K, Hu F, Zhang Z, Yin X, Wang H, Li M. 0.01% Hypochlorous Acid Treats Aspergillus fumigatus Keratitis in Rats by Reducing Fungal Load and Inhibiting the Inflammatory Response. Transl Vis Sci Technol 2023; 12:3. [PMID: 37531113 PMCID: PMC10405862 DOI: 10.1167/tvst.12.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To investigate the antifungal and anti-inflammatory effects of 0.01% hypochlorous acid (HCLO) on rats with Aspergillus fumigatus keratitis. Methods The time-kill assay and broth microdilution procedures were used in vitro to demonstrate that 0.01% HCLO was fungicidal and fungistatic. The severity of the disease was evaluated in vivo using a clinical score and slit-lamp photographs. Fungal load, polymorphonuclear neutrophil infiltration, and the production of related proteins were determined using colony plate counting, in vivo confocal microscopy, periodic acid-Schiff staining, fungal fluorescence staining, immunofluorescence staining, myeloperoxidase assay, and Western blotting. Result In vitro, 0.01% HCLO can destroy A. fumigatus spores in 1 minute. The optical density of the 0.01% HCLO group was significantly lower than that of the phosphate-buffered saline control group (P < 0.01), and no visible mycelium was observed using a fluorescence microscope. 0.01% HCLO reduced the severity of A. fumigatus keratitis in rats by decreasing the clinical score, fungal loading (periodic acid-Schiff, plate count, and fungal fluorescence staining), and inhibiting neutrophil infiltration and activity (immunofluorescence staining and myeloperoxidase). Furthermore, the Western blot analysis revealed that 0.01% HCO decreased protein expression levels of tumor necrosis factor-α and IL-1β. Conclusions According to our findings, 0.01% HCLO can kill A. fumigatus spores in vitro. It has antifungal and anti-inflammatory effects on A. fumigatus keratitis in rats. It also inhibited A. fumigatus growth; decreased neutrophil infiltration, tumor necrosis factor-α, and IL-1β expression; and provided a potential treatment for fungal keratitis. Translational Relevance This study provides a potential treatment for fungal keratitis in the clinic.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Fen Hu
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Zhaowei Zhang
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyue Yin
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - He Wang
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingxin Li
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J 2023; 31:1167-1180. [PMID: 37273269 PMCID: PMC10236373 DOI: 10.1016/j.jsps.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Solid-lipid nanoparticles (SLNs) are an innovative group of nanosystems used to deliver medicine to their respective targets with better efficiency and bioavailability in contrast to classical formulations. SLNs are less noxious, have fewer adverse effects, have more biocompatibility, and have easy biodegradability. Lipophilic, hydrophilic and hydrophobic drugs can be loaded into SLNs, to enhance their physical and chemical stability in critical environments. Certain antifungal agents used in different treatments are poorly soluble medications, biologicals, proteins etc. incorporated in SLNs to enhance their therapeutic outcome, increase their bioavailability and target specificity. SLNs-based antifungal agents are currently helpful against vicious drug-resistant fungal infections. This review covers the importance of SLNs in drug delivery of classical antifungal drugs, historical background, preparation, physicochemical characteristic, structure and sizes of SLNs, composition, drug entrapment efficacy, clinical evaluations and uses, challenges, antifungal drug resistance, strategies to overcome limitations, novel antifungal agents currently in clinical trials with special emphasis on fungal infections.
Collapse
|
23
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Reginatto P, Agostinetto GDJ, Fuentefria RDN, Marinho DR, Pizzol MD, Fuentefria AM. Eye fungal infections: a mini review. Arch Microbiol 2023; 205:236. [PMID: 37183227 PMCID: PMC10183313 DOI: 10.1007/s00203-023-03536-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Ocular fungal infections annually affect more than one million individuals worldwide. The management of these infections is problematic, mainly due to the limited availability of effective antifungal agents. Thus, ocular infections are increasingly recognized as important causes of morbidity and blindness, especially keratitis and endophthalmitis. Thus, this review aims to demonstrate the importance of fungal eye infections through the description of the main related aspects, with emphasis on the treatment of these infections. For this purpose, a search for scientific articles was conducted in databases, such as Medline, published from 2000 onwards, addressing important aspects involving fungal eye infections. In addition, this work highlighted the limited therapeutic arsenal available and the severity associated with these infections. Thus, highlighting the importance of constantly updating knowledge about these pathologies, as it contributes to agility in choosing the available and most appropriate therapeutic alternatives, aiming at positive and minimally harmful results for that particular patient.
Collapse
Affiliation(s)
- Paula Reginatto
- Laboratório de Pesquisa em Micologia Aplicada, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Giovanna de Jesus Agostinetto
- Laboratório de Pesquisa em Micologia Aplicada, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Melissa Dal Pizzol
- Serviço de Oftalmologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Laboratório de Pesquisa em Micologia Aplicada, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Lucyshyn DR, Childs-Sanford SE, Choi E, Ledbetter EC. IN VIVO CONFOCAL MICROSCOPY FOR CHARACTERIZATION OF MYCOTIC KERATITIS IN OWLS ( BUBO SCANDIACUS, STRIX VARIA) AND A WOODCOCK ( SCOLOPAX MINOR): THREE CASES. J Zoo Wildl Med 2023; 54:202-210. [PMID: 36971646 DOI: 10.1638/2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 03/29/2023] Open
Abstract
This case series describes the use of in vivo confocal microscopy in the diagnosis and treatment of mycotic keratitis in two owls (one Bubo scandiacus, one Strix varia) and one woodcock (Scolopax minor). Each bird was at increased risk of fungal infection due to recent injury or stress. Ophthalmic findings in all birds included blepharospasm, ocular discharge, ulcerative keratitis, white or yellow corneal plaques, and anterior uveitis. Fungal hyphae were identified in corneal samples from all three eyes examined cytologically and in all three eyes by using in vivo confocal microscopy. Aspergillus fumigatus was isolated from a corneal culture in one bird. Despite medical treatment, progressive ocular disease prompted enucleation in two birds. Fungal hyphae were detected by histopathology in one of the two enucleated eyes. In vivo confocal microscopy aided the diagnosis of fungal keratitis in all birds and was the only diagnostic method that allowed immediate, real-time quantification of the extent (area and depth) and severity of mycotic keratitis.
Collapse
Affiliation(s)
- Danica R Lucyshyn
- Departments of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Childs-Sanford
- Departments of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Eunju Choi
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Eric C Ledbetter
- Departments of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA,
| |
Collapse
|
26
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
27
|
Dimethyl fumarate ameliorates fungal keratitis by limiting fungal growth and inhibiting pyroptosis. Int Immunopharmacol 2023; 115:109721. [PMID: 36641891 DOI: 10.1016/j.intimp.2023.109721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE We aimed to investigate the therapeutic role of dimethyl fumarate (DMF) in fungal keratitis. METHODS Human corneal epithelial cells (HCECs) and mouse models of fungal keratitis were used in this study. The antifungal effect of DMF on Aspergillus fumigatus (A. fumigatus) was confirmed by examining the minimum inhibitory concentration (MIC), biofilm formation, conidial adherence and corneal fungal loads. Slit-lamp photography, haematoxylin and eosin staining and immunostaining were used to assess the severity of corneal impairment. RT-PCR, western blot, ELISA, immunohistochemistry and immunostaining were performed to examine the effects of DMF on the expression of the inflammatory mediators during fungal infection. RESULTS In vitro, DMF limited A. fumigatus growth, biofilm formation, and conidial adherence and reduced the mRNA levels of AldA, GlkA, GAPDH, HxkA, PgkA, Sdh2, GelA and ChsF in A. fumigatus. In vivo, DMF effectively decreased corneal fungal loads. DMF attenuated corneal inflammatory impairment by suppressing inflammatory cell accumulation and downregulating cytokine expression. DMF notably downregulated the high expression of NLRP3, cleaved GSDMD, cleaved caspase-1, mature IL-1β and mature IL-18 induced by fungi. The production of Nrf2 and HO-1 could be further increased by DMF in infected HCECs. Nrf2 siRNA pretreatment counteracted DMF-mediated downregulation of the expression of the active forms of IL-18, IL-1β, caspase-1 and GSDMD. CONCLUSION DMF limits fungal growth by suppressing biofilm formation, conidial adherence and respiratory metabolism. It also exerts an anti-inflammatory effect on fungal keratitis by inhibiting pyroptosis, which could be regulated by Nrf2. Our results suggest that DMF plays a therapeutic role in fungal keratitis.
Collapse
|
28
|
Luan S, Peng X, Lin J, Zhang Y, Zhan L, Yin J, Luan J, Ji X, Zhao G. Gallic Acid Ameliorates Aspergillus Fumigatus Keratitis Through Reducing Fungal Load and Suppressing the Inflammatory Response. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36350620 PMCID: PMC9652715 DOI: 10.1167/iovs.63.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose The purpose of this study was to explore the antifungal and anti-inflammatory effects of gallic acid (GA) on Aspergillus fumigatus (A. fumigatus) keratitis. Methods CCK-8 assay and Draize eye test were used to determine the non-cytotoxic concentration of GA in RAW264.7 cells and an A. fumigatus keratitis mouse model. The antifungal effects of GA were analyzed using minimal inhibitory concentration (MIC), biofilm formation test, fungal adherence assay, calcofluor white staining, and propidium iodide staining. The therapeutic effects of GA were estimated by slit lamp photographs, clinical score, hematoxylin and eosin (H&E) staining, and Periodic acid-Schiff staining in vivo. Immunofluorescence staining and myeloperoxidase assay were conducted to identify neutrophil infiltration and activity. RT-PCR, ELISA, and Western blot were performed to detect the expression of pro-inflammatory cytokines and Nrf2/HO-1. Results In HCECs and A. fumigatus keratitis mouse model, GA at 100 µg/mL did not affect cell viability, thus this concentration was applied to subsequent experiments. In vitro, GA significantly inhibited A. fumigatus growth, biofilm formation, and adhesion. In vivo, 100 µg/mL GA alleviated the severity of fungal keratitis (FK) by repressing fungal load, reducing neutrophil infiltration, and lowering MPO activity. Besides, the expression of IL-1β, TNF-α, LOX-1, and COX-2 was inhibited, whereas Nrf2 and HO-1 expression was enhanced at both mRNA and protein levels in the 100 µg/mL GA treated group in comparison to PBS control. Conclusions GA ameliorates FK severity through inhibiting A. fumigatus load, reducing neutrophils infiltration, downregulating the expression of pro-inflammatory cytokines, and enhancing the Nrf2/HO-1 pathway, which provides new insight into A. fumigatus keratitis treatment.
Collapse
Affiliation(s)
- Songying Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyue Ji
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
29
|
Hoffman JJ, Arunga S, Mohamed Ahmed AHA, Hu VH, Burton MJ. Management of Filamentous Fungal Keratitis: A Pragmatic Approach. J Fungi (Basel) 2022; 8:1067. [PMID: 36294633 PMCID: PMC9605596 DOI: 10.3390/jof8101067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2023] Open
Abstract
Filamentous fungal infections of the cornea known as filamentous fungal keratitis (FK) are challenging to treat. Topical natamycin 5% is usually first-line treatment following the results of several landmark clinical trials. However, even when treated intensively, infections may progress to corneal perforation. Current topical antifungals are not always effective and are often unavailable. Alternatives topical therapies to natamycin include voriconazole, chlorhexidine, amphotericin B and econazole. Surgical therapy, typically in the form of therapeutic penetrating keratoplasty, may be required for severe cases or following corneal perforation. Alternative treatment strategies such as intrastromal or intracameral injections of antifungals may be used. However, there is often no clear treatment strategy and the evidence to guide therapy is often lacking. This review describes the different treatment options and their evidence and provides a pragmatic approach to the management of fungal keratitis, particularly for clinicians working in tropical, low-resource settings where fungal keratitis is most prevalent.
Collapse
Affiliation(s)
- Jeremy J. Hoffman
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Sagarmatha Choudhary Eye Hospital, Lahan 56500, Nepal
| | - Simon Arunga
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Ophthalmology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Abeer H. A. Mohamed Ahmed
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Victor H. Hu
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- National Institute for Health Research Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
30
|
Megha K, Sharma M, Sharma C, Gupta A, Sehgal R, Khurana S. Evaluation of in vitro activity of five antimicrobial agents on Acanthamoeba isolates and their toxicity on human corneal epithelium. Eye (Lond) 2022; 36:1911-1917. [PMID: 34548636 PMCID: PMC9500015 DOI: 10.1038/s41433-021-01768-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Acanthamoeba keratitis (AK) is an important cause of ocular morbidity in both contact lens wearers and non wearers. Medical management comprises prolonged empiric treatment with multiple drugs, leading to adverse effects and suboptimal cure. The present study evaluated the efficiency and safety of common antimicrobial agents used in treatment of AK. METHODS Six Acanthamoeba isolates (four AK, two water samples) were axenized and subjected to in vitro susceptibility testing against chlorhexidine, pentamidine isethionate, polymyxin B, miltefosine, and fluconazole to check for trophocidal and cysticidal activity. The safety profile was analysed by observing the cytotoxicity of the highest cidal concentration toward human corneal epithelial cell (HCEC) line. RESULTS Chlorhexidine had the lowest cidal concentration against both cysts and trophozoites (range 4.16-25 μg/ml) followed by pentamidine isethionate (range 25-166.7 μg/ml). Both agents were nontoxic to HCEC. Polymyxin B (range 25-200 μg/ml) and fluconazole (range 64-512 μg/ml) had relatively higher minimum inhibitory concentrations (MIC); fluconazole was nontoxic even at 1024 μg/ml, but cytotoxicity was observed at 400 μg/ml with polymyxin B. Miltefosine was not effective against cysts at tested concentrations. A. castellanii were more susceptible to all agents (except pentamidine isethionate) than A. lenticulata. Clinical isolates were less susceptible to polymyxin B and fluconazole than environmental isolates, reverse was true for miltefosine. CONCLUSION Chlorhexidine and pentamidine isethionate were the most effective and safe agents against both trophozoites and cysts forms of our Acanthamoeba isolates. Fluconazole had higher MIC but was nontoxic. Polymyxin B was effective at high MIC but therapeutic dose was found toxic. Miltefosine, at tested concentrations, could not inhibit cysts of Acanthamoeba. Clinical isolates had higher MICs for polymyxin B and fluconazole.
Collapse
Affiliation(s)
- Kirti Megha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chayan Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
31
|
Tian X, Peng X, Long X, Lin J, Zhang Y, Zhan L, Zhao G. Oxidized chondroitin sulfate eye drops ameliorate the prognosis of fungal keratitis with anti-inflammatory and antifungal effects. J Mater Chem B 2022; 10:7847-7861. [PMID: 36070420 DOI: 10.1039/d2tb00114d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungal keratitis (FK) is a refractory ophthalmic disease that can result in vision impairment and even blindness due to the severe fungal invasiveness and excessive inflammatory response. Therefore, antifungal treatment combined with local immunosuppressive therapy is regarded as the most effective strategy to improve the clinical outcome of FK. Oxidized polysaccharides with aldehyde groups possess obvious inhibitory activity towards microorganisms. Herein, we use chondroitin sulfate (CS), a recognized anti-inflammatory biopolysaccharide, to prepare oxidized chondroitin sulfate (OCS) via sodium periodate (NaIO4) oxidation for the treatment of FK. The chemical structure of OCS was characterized by FTIR, 1H NMR, and XPS, revealing that the O-dihydroxy in the D-glucuronic acid unit of CS was selectively broken by NaIO4, forming active aldehyde groups. The introduction of aldehydes not only retains the anti-inflammatory activity but also confers OCS with antifungal property. In vitro antifungal experiments showed that OCS inhibits the growth, represses the biofilm formation and alters the membrane integrity of A. fumigatus. The toxicity of OCS was evaluated by cytotoxicity tests (CCK-8) and the Draize eye test in vitro and in vivo. qRT-PCR confirmed that OCS had similar anti-inflammatory activity as CS. In mice with A. fumigatus keratitis, OCS versus CS or PBS showed an excellent therapeutic effect, characterized by a lower corneal inflammation score, less fungal load, reduced neutrophil recruitment, and the downregulated expression of pro-inflammatory factors. Our findings demonstrate that OCS improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of fungi, reducing the recruitment of neutrophils and inhibiting the inflammatory response. It provides innovative ideas for the development and application of OCS in medicine and biomaterials fields.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China. .,Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 40201, USA
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
32
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review highlights the complications of both intravitreal injection procedure as well as different intravitreal medications including antivascular endothelial growth factors, antibiotics, antivirals, antifungals, methotrexate, and steroids. Techniques for reducing rates of endophthalmitis will also be discussed. RECENT FINDINGS Intravitreal vancomycin can cause hemorrhagic occlusive retinal vasculitis resulting in severe vision loss. Intravitreal brolucizumab is associated with intraocular inflammation and retinal vasculitis resulting in significant vision loss. Face mask use by both patient and physician is not associated with increased risk of endophthalmitis and may decrease culture positive endophthalmitis. SUMMARY Intravitreal injections continue to be one of the most commonly performed procedures by ophthalmologists. Although the injections are generally well tolerated, sight-threatening complications can occur including endophthalmitis, retinal detachment, and/or retinal vasculitis. Adverse events associated with specific medications are outlined below. Several safety measures have been shown to reduce rates of endophthalmitis, the most concerning complication of this procedure.
Collapse
Affiliation(s)
- Dillan Patel
- Department of Ophthalmology, Temple University Hospital
| | - Samir N Patel
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Varun Chaudhary
- Department of Health Research Methods, Evidence and Impact
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sunir J Garg
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Durgun ME, Kahraman E, Hacıoğlu M, Güngör S, Özsoy Y. Posaconazole micelles for ocular delivery: in vitro permeation, ocular irritation and antifungal activity studies. Drug Deliv Transl Res 2022; 12:662-675. [PMID: 33830458 DOI: 10.1007/s13346-021-00974-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Posaconazole (PSC) is a triazole group anti-fungal agent with the widest spectrum. Although there is no commercially available ocular dosage form, its diluted oral suspension preparation (Noxafil®) is used as off-label in topical treatment of severe keratitis and sclerokeratitis in the clinic. However, ocular bioavailability of PSC suspension form is extremely low due to its highly lipophilic character. Thus, there is a clinical need to improve its ocular bioavailability and to develop novel delivery system for the treatment of ocular fungal infections. Herein, we studied ex vivo permeation, penetration, anti-fungal activity, and Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) toxicity tests in order to assess ocular targeting of PSC micelles, which were optimized in our previous study. The results indicated that micellar carrier system increased the permeability of PSC to eye tissues. Micelles showed higher affinity to ocular tissues than that of commercial oral suspension of PSC (Noxafil®). In vitro anti-fungal activity data also confirmed the efficacy of PSC loaded micellar formulations against Candida. albicans strains. The relative safety of the optimized micelles on the ocular tissue was shown with the HET-CAM toxicity test. In conclusion, micellar systems could be a promising strategy for the effective and safe delivery of PSC in the treatment of ocular fungal infections.
Collapse
Affiliation(s)
- Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Emine Kahraman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mayram Hacıoğlu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
35
|
Menard M, Shah YS, Stroh IG, Zafar S, Sriparna M, Zhang N, Agarwal AA, Shekhawat N, Srikumaran D, Woreta F. Microbial Profile and Clinical Outcomes of Fungal Keratitis at a Single-Center Tertiary Care Hospital. Clin Ophthalmol 2022; 16:389-399. [PMID: 35177897 PMCID: PMC8846617 DOI: 10.2147/opth.s346227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate baseline characteristics, microbiological spectrum, management, and outcomes of patients with culture-proven fungal keratitis. METHODS Retrospective review of all patients with culture-proven fungal keratitis seen over 6 years at a tertiary referral center. RESULTS The present study included 62 eyes from 62 patients. Infection with filamentous organisms was more common than with yeast (66.1% vs 27.4%). The most common filamentous organisms were Fusarium (17.7%) and Aspergillus (16.1%), while the most common yeast was Candida (24.2%). The main predisposing factor for filamentous keratitis was contact lens use. Yeast keratitis is most associated with an immunocompromised host and ocular surface disease. Corneal perforation (20.0%) and surgical interventions (46.8%) were common, with 27.4% of eyes requiring at least one penetrating keratoplasty. Filamentous keratitis is more likely than yeast keratitis to require urgent penetrating keratoplasty or enucleation and to receive more than one topical and systemic antifungal agent. Visual outcomes were poor with nearly half of the eyes remaining at 20/200 or worse upon resolution of infection. Worse visual outcomes were associated with poor vision at presentation and a history of ocular surface disease. Antifungal susceptibility testing was not routinely performed, but it demonstrated a relatively high minimum inhibitory concentration for at least one antifungal drug in 90% of cases when performed (16.1%) and guided the direction of treatment for 80% of the cases. CONCLUSION Fungal keratitis is visually devastating. Infections with filamentous fungi predominated over yeast and were generally treated more aggressively both medically and surgically. Filamentous and yeast keratitis had similar durations of infections and visual outcomes. Antifungal susceptibility testing influenced treatment in 80% of cases in which it was performed.
Collapse
Affiliation(s)
| | - Yesha S Shah
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inna G Stroh
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sidra Zafar
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manjari Sriparna
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy Zhang
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ank A Agarwal
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nakul Shekhawat
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Divya Srikumaran
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fasika Woreta
- Division of Cornea and External Disease, Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Correspondence: Fasika Woreta, Division of Cornea and External Disease, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Wilmer B20, Baltimore, MD, 21287, USA, Tel +410 955-5650, Email
| |
Collapse
|
36
|
A sensitive and rapid bioanalytical method for the quantitative determination of luliconazole in rabbit eye tissues using UPLC-MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123173. [DOI: 10.1016/j.jchromb.2022.123173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
|
37
|
Jia Y, Li C, Yin M, Lin J, Zhang L, Li N, Jiang N, Xu Q, Wang Q, Gu L, Yu B, Zhao G. Kaempferol ameliorate the prognosis of Aspergillus fumigatus keratitis by reducing fungal load and inhibiting the Dectin-1 and p38 MAPK pathway. Exp Eye Res 2022; 216:108960. [DOI: 10.1016/j.exer.2022.108960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/04/2022]
|
38
|
Das S, Mitra S, Garg P, Mallick A, Priyadarshini SR, Sharma S. Efficacy of voriconazole and amphotericin B in corneal preservative media. Indian J Ophthalmol 2021; 70:90-94. [PMID: 34937215 PMCID: PMC8917542 DOI: 10.4103/ijo.ijo_1365_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose: To evaluate the efficacy of voriconazole and amphotericin B in McCarey–Kaufman (MK) media. Methods: MK media vials were supplemented with either voriconazole at 1, 2, 20, 50, 100 μg/mL or amphotericin B at 0.5, 1, 2, 10, 20 μg/mL. The standard inoculum of the American Type Culture Collection (ATCC) strain of Candida albicans, Aspergillus flavus, and Fusarium keratinoplasticum was added to the set of vials. The efficacy outcomes were calculated as ‘viable fungal colony counts’ determined from the samples taken on Days 0 and 4. MK media containing fungal inoculum but without antifungal supplements were used as control. Results: In the voriconazole arm, on Day 4, a reduction in the colony count was observed for Candida albicans (1 μg/mL, 36%; 100 μg/mL, 100%), Aspergillus flavus (1 μg/mL, 53.8%; 100 μg/mL, 80.4%), and Fusarium keratinoplasticum (1 μg/mL, 39.0%; 100 μg/mL, 72.2%). Similarly, in the amphotericin B arm, on Day 4, a reduction in the colony count was observed for Candida albicans (0.5 μg/mL; 99.9%; 20 μg/mL, 100%), Aspergillus flavus (0.5 μg/mL, 65.2%; 20 μg/mL, 84.8%), and Fusarium keratinoplasticum (0.5 μg/mL, 90.1%; 20 μg/mL, 100%). Conclusion: Compared to voriconazole, the addition of amphotericin B significantly reduces fungal contamination in MK media.
Collapse
Affiliation(s)
- Sujata Das
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sanchita Mitra
- Ocular Microbiology Service, L V Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Prashant Garg
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Aparajita Mallick
- Ocular Microbiology Service, L V Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Smruti R Priyadarshini
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
39
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
40
|
Wu B, Sai S, Li K, Sun X, Han J, Tian B. Maleimide-functionalized phospholipid/Pluronic F127 mixed micelles for efficient ophthalmic delivery of voriconazole against Candida albicans. Colloids Surf B Biointerfaces 2021; 209:112180. [PMID: 34775252 DOI: 10.1016/j.colsurfb.2021.112180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023]
Abstract
Drugs that are topically applied on the eyes have low bioavailability, which has always been an important problem. In this study, maleimide functionalized, voriconazole (VCZ) loaded mixed micelles (Mal-VCZ-MM) were designed. Pluronic F127 and phospholipid were used as materials, and maleimide was used as an adhesive. The prepared Mal-VCZ-MM was nearly spherical with a particle size of 84.45 ± 1.39 nm and a zeta potential of - 20.3 ± 0.29 mV. The encapsulation efficiency of Mal-VCZ-MM was 95.33 ± 0.06%, and it had high stability with a critical micelle concentration value of 1.28 × 10-4 mg/mL. CCK-8 assay showed that its cytotoxicity was lower than that of free VCZ solution (VCZ-Sol). Both quantitative and qualitative analyses of the HCE-T cellular uptake showed that the cellular internalization of Mal-C6-MM was significantly stronger than that of C6-MM. The endocytosis pathway was macropinocytosis-mediated, cavernous-mediated, and energy-dependent. In vitro results against Candida albicans showed that the diameters of the antifungal inhibition zones of VCZ-Sol, VCZ-MM, and Mal-VCZ-MM were 15.5 ± 0.50 mm, 24.0 ± 0.71 mm, and 31.5 ± 1.12 mm, respectively. The antifungal effect of Mal-VCZ-MM was significantly higher than that of VCZ-Sol and VCZ-MM (P < 0.001). This study shows that Mal-VCZ-MM is a highly effective hydrophobic ophthalmic drug-delivery carrier that can improve the therapeutic effect of the drug.
Collapse
Affiliation(s)
- Baohuan Wu
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Xingchen Sun
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China.
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China.
| |
Collapse
|
41
|
Shing B, Balen M, McKerrow JH, Debnath A. Acanthamoeba Keratitis: an update on amebicidal and cysticidal drug screening methodologies and potential treatment with azole drugs. Expert Rev Anti Infect Ther 2021; 19:1427-1441. [PMID: 33929276 PMCID: PMC8551003 DOI: 10.1080/14787210.2021.1924673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023]
Abstract
Introduction: Acanthamoeba encompasses several species of free-living ameba encountered commonly throughout the environment. Unfortunately, these species of ameba can cause opportunistic infections that result in Acanthamoeba keratitis, granulomatous amebic encephalitis, and occasionally systemic infection.Areas covered: This review discusses relevant literature found through PubMed and Google scholar published as of January 2021. The review summarizes current common Acanthamoeba keratitis treatments, drug discovery methodologies available for screening potential anti-Acanthamoeba compounds, and the anti-Acanthamoeba activity of various azole antifungal agents.Expert opinion: While several biguanide and diamidine antimicrobial agents are available to clinicians to effectively treat Acanthamoeba keratitis, no singular treatment can effectively treat every Acanthamoeba keratitis case.Efforts to identify new anti-Acanthamoeba agents include trophozoite cell viability assays, which are amenable to high-throughput screening. Cysticidal assays remain largely manual and would benefit from further automation development. Additionally, the existing literature on the effectiveness of various azole antifungal agents for treating Acanthamoeba keratitis is incomplete or contradictory, suggesting the need for a systematic review of all azoles against different pathogenic Acanthamoeba strains.
Collapse
Affiliation(s)
- Brian Shing
- Biomedical Sciences Graduate Division, University of California San Diego, 9500 Gilman Drive, MC 0685, La Jolla, CA 92093-0756, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0756, La Jolla, CA 92093-0756, USA
| | - Mina Balen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0756, La Jolla, CA 92093-0756, USA
- Division of Biological Sciences, University of California San Diego, San Diego, 9500 Gilman Drive, MC 0346, La Jolla, CA 92093-0756, USA
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0756, La Jolla, CA 92093-0756, USA
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0756, La Jolla, CA 92093-0756, USA
| |
Collapse
|
42
|
Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi-Comparison with Aspergillus fumigatus. Foods 2021; 10:foods10092073. [PMID: 34574183 PMCID: PMC8469148 DOI: 10.3390/foods10092073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 μg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.
Collapse
|
43
|
Yu Z, Zhu J, Jin J, Yu L, Han G. Trends in Outpatient Prescribing Patterns for Ocular Topical Anti-Infectives in Six Major Areas of China, 2013-2019. Antibiotics (Basel) 2021; 10:916. [PMID: 34438966 PMCID: PMC8388675 DOI: 10.3390/antibiotics10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Topical anti-infectives are important in the management of ocular infections, but little is known about their current status and trends in their use in China. Thus, we carried out a prescription-based, cross-sectional study using the database of Hospital Prescription Analysis Projection of China, and aimed to analyze the trend in the use of ocular topical anti-infectives for outpatients of the ophthalmology department from 2013 to 2019. A total of 2,341,719 prescriptions from 61 hospitals located in six major areas written by ophthalmologists for outpatients were identified, and 1,002,254 of the prescriptions contained at least one anti-infective. The yearly anti-infective prescriptions increased continuously from 126,828 prescriptions in 2013 to 163,434 prescriptions in 2019. The cost also increased from 4,503,711 Chinese Yuan (CNY) in 2013 to CNY 5,860,945 in 2019. However, the use rate of anti-infectives decreased slightly from 46.5% in 2013 to 41.1% in 2019. Patients aged between 19 and 45 years old had the highest anti-infective use rate. Levofloxacin was the most frequently used anti-infective and kept on increasing among all age groups, occupying 67.1% of the total cost at the end of the study. Tobramycin was more frequently used in pediatric patients than in adults, but the use still decreased. Ganciclovir was the preferred anti-viral drug over acyclovir. In conclusion, the prescriptions and cost of ocular topical anti-infectives for outpatients both increased progressively. The increasingly widespread use of levofloxacin raised concerns regarding safety in pediatrics and resistance development. The observed trends can lead to the more efficient management of ocular anti-topical anti-infectives in China.
Collapse
Affiliation(s)
- Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| | - Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| | - Jiayi Jin
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gang Han
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| |
Collapse
|
44
|
Zhu Y, Peng X, Zhang Y, Lin J, Zhao G. Baicalein Protects Against Aspergillus fumigatus Keratitis by Reducing Fungal Load and Inhibiting TSLP-Induced Inflammatory Response. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34038512 PMCID: PMC8164373 DOI: 10.1167/iovs.62.6.26] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the antifungal and anti-inflammatory effects of baicalein on Aspergillus fumigatus (A. fumigatus) keratitis and the underlying mechanisms. Methods The noncytotoxic antifungal concentration of baicalein was determined using CCK8, cell scratch assay, minimum inhibitory concentration, biofilm formation, scanning electron microscopy, propidium iodide uptake test and adherence assay in vitro and Draize test in vivo. In fungal keratitis (FK) mouse models, clinical score and plate count were used to evaluate FK severity, and myeloperoxidase assay and immunofluorescence staining were performed to examine neutrophil infiltration and activity. Real-time PCR, ELISA, and Western blot were performed to explore the anti-inflammatory activity of baicalein and the underlying mechanisms in vivo and in vitro. Results Baicalein at 0.25 mM (noncytotoxic) significantly inhibited A. fumigatus growth, biofilm formation, and adhesion in vitro. In A. fumigatus keratitis mice, baicalein mitigated FK severity, reduced fungal load, and inhibited neutrophil infiltration and activity. Baicalein not only suppressed mRNA and protein levels of proinflammatory factors IL-1β, IL-6, and TNF-α, but also inhibited the expression of thymic stromal lymphopoietin (TSLP) and TSLP receptor (TSLPR) in vivo and in vitro. In HCECs, mRNA and protein levels of IL-1β, IL-6, and TNF-α were significantly lower in the TSLP siRNA–treated group, while higher in the rTSLP-treated group than in the corresponding control. Baicalein treatment significantly inhibited rTSLP induced the expression of IL-1β, IL-6, and TNF-α. Conclusions Baicalein plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal growth, biofilm formation, and adhesion, and suppressing inflammatory response via downregulation of the TSLP/TSLPR pathway.
Collapse
Affiliation(s)
- Yunan Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
45
|
Caldeirão ACM, Araujo HC, Tomasella CM, Sampaio C, dos Santos Oliveira MJ, Ramage G, Pessan JP, Monteiro DR. Effects of Antifungal Carriers Based on Chitosan-Coated Iron Oxide Nanoparticles on Microcosm Biofilms. Antibiotics (Basel) 2021; 10:antibiotics10050588. [PMID: 34067527 PMCID: PMC8155828 DOI: 10.3390/antibiotics10050588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Resistance of Candida species to conventional therapies has motivated the development of antifungal nanocarriers based on iron oxide nanoparticles (IONPs) coated with chitosan (CS). This study evaluates the effects of IONPs-CS as carriers of miconazole (MCZ) or fluconazole (FLZ) on microcosm biofilms. Pooled saliva from two healthy volunteers supplemented with C. albicans and C. glabrata was the inoculum for biofilm formation. Biofilms were formed for 96 h on coverslips using the Amsterdam Active Attachment model, followed by 24 h treatment with nanocarriers containing different concentrations of each antifungal (78 and 156 µg/mL). MCZ or FLZ (156 µg/mL), and untreated biofilms were considered as controls. Anti-biofilm effects were evaluated by enumeration of colony-forming units (CFUs), composition of the extracellular matrix, lactic acid production, and structure and live/dead biofilm cells (confocal laser scanning microscopy-CLSM). Data were analyzed by one-way ANOVA and Fisher LSD's test (α = 0.05). IONPs-CS carrying MCZ or FLZ were the most effective treatments in reducing CFUs compared to either an antifungal agent alone for C. albicans and MCZ for C. glabrata. Significant reductions in mutans streptococci and Lactobacillus spp. were shown, though mainly for the MCZ nanocarrier. Antifungals and their nanocarriers also showed significantly higher proportions of dead cells compared to untreated biofilm by CLSM (p < 0.001), and promoted significant reductions in lactic acid, while simultaneously showing increases in some components of the extracellular matrix. These findings reinforce the use of nanocarriers as effective alternatives to fight oral fungal infections.
Collapse
Affiliation(s)
- Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD-Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, Brazil;
| | - Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil; (H.C.A.); (C.S.); (J.P.P.)
| | - Camila Miranda Tomasella
- School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, Brazil;
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil; (H.C.A.); (C.S.); (J.P.P.)
| | - Marcelo José dos Santos Oliveira
- Department of Physics, School of Technology and Applied Sciences (FCT), São Paulo State University (Unesp), Presidente Prudente 19060-900, Brazil;
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G2 3JZ, UK;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil; (H.C.A.); (C.S.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, Brazil;
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil; (H.C.A.); (C.S.); (J.P.P.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
46
|
Ando T, Kawakami H, Mochizuki K, Murata K, Manabe Y, Takagi D, Yagasaki A, Niwa Y, Yamada N, Ogura S, Matsumoto K, Morita K, Todokoro D, Kamei K. Intraocular penetration of liposomal amphotericin B after intravenous injection in inflamed human eyes. J Infect Chemother 2021; 27:1319-1322. [PMID: 33994091 DOI: 10.1016/j.jiac.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the intraocular penetration of amphotericin B (AMPH-B) after an intravenously injection of liposomal amphotericin B (L-AMB) in inflamed human eyes. METHODS Seven eyes of 5 patients with fungal eye diseases (endophthalmitis in 6 eyes and keratitis in 1 eye) were treated with intravenous injections of 100-250 mg/day of L-AMB. Samples of blood, corneal button, aqueous humor, and vitreous humor were collected and assessed for AMPH-B. RESULTS The AMPH-B level in the cornea (604.0 μg/g) of the case with fungal keratitis exceeded the minimum inhibitory concentration. However, the levels in the aqueous and vitreous humors of the cases with fungal endophthalmitis were lower, e.g., 0.02 ± 0.01 μg/ml (0.09% of serum level) in the aqueous humor and 0.05 ± 0.08 μg/ml (0.17% of serum level) in the vitreous humor. CONCLUSIONS The AMPH-B levels administered intravenously were very low in the aqueous and vitreous humors. Our findings indicate that intravenous L-AMB can be considered only for patients with mild endogenous fungal endophthalmitis, e.g., isolated chorioretinitis without vitreous extensions.
Collapse
Affiliation(s)
- Tomoko Ando
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan
| | - Hideaki Kawakami
- Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan.
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Murata
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Manabe
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Takagi
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayaka Yagasaki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshiaki Niwa
- Department of Ophthalmology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Noriaki Yamada
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Daisuke Todokoro
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Qin T, Dai Z, Xu X, Zhang Z, You X, Sun H, Liu M, Zhu H. Nanosuspension as an Efficient Carrier for Improved Ocular Permeation of Voriconazole. Curr Pharm Biotechnol 2021; 22:245-253. [PMID: 32867650 DOI: 10.2174/1389201021999200820154918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/25/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration. METHODS This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. RESULTS Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability. DISCUSSION Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5μg/mL, p < 0.05). CONCLUSION In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.
Collapse
Affiliation(s)
- Tang Qin
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhu Dai
- Pharmaceutical Department, Hubei Cancer Hospital, Wuhan, China
| | - Xiaodi Xu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zilin Zhang
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiangyu You
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongmei Sun
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Mingxing Liu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongda Zhu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
48
|
Azish M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity and mechanism of action of dichloromethane extract fraction A from Streptomyces libani against Aspergillus fumigatus. J Appl Microbiol 2021; 131:1212-1225. [PMID: 33590651 DOI: 10.1111/jam.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to investigate the mechanism of antifungal action of Streptomyces libani dichloromethane extract fraction A (DCEFA) against Aspergillus fumigatus and the host cytotoxicity. METHODS AND RESULTS DCEFA was purified from S. libani by autobiography and showed strong antifungal activity against A. fumigatus. A combination of electron microscopy, cell permeability assays, total oxidant status (TOS) assay, cell cytotoxicity assay and haemolysis activity was carried out to determine the target site of DCEFA. Exposure of A. fumigatus to DCEFA caused the damage to membranous cellular structures and increased release of cellular materials, potassium ions and TOS production. DCEFA was bound to ergosterol but did not affect fungal cell wall and ergosterol content. DCEFA did not show any obvious haemolytic activity for RBCs and toxicity against HEK-293 cell line. CONCLUSIONS DCEFA may inhibit A. fumigatus growth by targeting fungal cell membrane which results in the leakage of potassium ions and other cellular components, TOS production and final cell death. SIGNIFICANCE AND IMPACT OF THE STUDY DCEFA of S. libani could be considered as a potential source of novel antifungals which may be useful for drug development against A. fumigatus as a life-threatening human pathogen.
Collapse
Affiliation(s)
- M Azish
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
49
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
50
|
Mohammed I, Mohanty D, Said DG, Barik MR, Reddy MM, Alsaadi A, Das S, Dua HS, Mittal R. Antimicrobial peptides in human corneal tissue of patients with fungal keratitis. Br J Ophthalmol 2020; 105:1172-1177. [PMID: 32855162 DOI: 10.1136/bjophthalmol-2020-316329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fungal keratitis (FK) is the leading cause of unilateral blindness in the developing world. Antimicrobial peptides (AMPs) have been shown to play an important role on human ocular surface (OS) during bacterial, viral and protozoan infections. In this study, our aim was to profile a spectrum of AMPs in corneal tissue from patients with FK during the active pase of infection and after healing. METHODS OS samples were collected from patients at presentation by impression cytology and scraping. Corneal button specimens were collected from patients undergoing therapeutic penetrating keratoplasty for management of severe FK or healed keratitis. Gene expression of human beta-defensin (HBD)-1, -2, -3 and -9, S100A7, and LL-37 was determined by quantitative real-time PCR. RESULTS Messenger RNA expression (mRNA) for all AMPs was shown to be significantly upregulated in FK samples. The levels of HBD-1 and -2 mRNA were found to be elevated in 18/20 FK samples. Whereas mRNA for HBD-3 and S100A7 was upregulated in 11/20 and HBD9 was increased in 15/20 FK samples. LL-37 mRNA showed moderate upregulation in 7/20 FK samples compared with controls. In healed scar samples, mRNA of all AMPs was found to be low and matching the levels in controls. CONCLUSION AMP expression is a consistent feature of FK, but not all AMPs are equally expressed. HBD-1 and -2 are most consistently expressed and LL-37 the least, suggesting some specificity of AMP expression related to FK. These results will help to identify HBD sequence templates for designing FK-specific peptides to test for therapeutic potential.
Collapse
Affiliation(s)
- Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom
| | - Debasmita Mohanty
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom.,Ophthalmology Department, Nottingham University Hospitals, Queens Medical Centre, Nottingham United Kingdom
| | - Manas Ranjan Barik
- Ocular Microbiology Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Mamatha M Reddy
- Ocular Microbiology Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Ahmed Alsaadi
- Ophthalmology Department, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Sujata Das
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Harminder Singh Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom .,Ophthalmology Department, Nottingham University Hospitals, Queens Medical Centre, Nottingham United Kingdom
| | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| |
Collapse
|